
Lattice-based Blind Signatures

Markus Rückert∗

markus.rueckert@cased.de

Technische Universität Darmstadt
Department of Computer Science

Cryptography and Computeralgebra
Germany

Abstract. Blind signatures (BS), introduced by Chaum, have become a cornerstone

in privacy-oriented cryptography. Using hard lattice problems, such as the shortest

vector problem, as the basis of security has advantages over using the factoring

or discrete logarithm problems. For instance, lattice operations are more efficient

than modular exponentiation and lattice problems remain hard for quantum and

subexponential-time adversaries. Generally speaking, BS allow a signer to sign

a message without seeing it, while retaining a certain amount of control over the

process. In particular, the signer can control the number of issued signatures. For the

receiver of the signature, this process provides perfect anonymity, e.g., his spendings

remain anonymous when using BS for electronic money.

We provide a positive answer to the question of whether it is possible to implement

BS based on lattice problems. More precisely, we show how to turn Lyubashevsky’s

identification scheme into a BS scheme, which has almost the same efficiency and

security in the random oracle model. In particular, it offers quasi-linear complexity,

statistical blindness, and its unforgeability is based on the hardness of worst-case

lattice problems with an approximation factor of Õ(n5) in dimension n. Moreover, it

is the first blind signature scheme that supports leakage-resilience, tolerating leakage

of a (1 − o(1)) fraction of the secret key in a model that is inspired by Katz and

Vaikuntanathan.

Keywords. Blind signatures, post-quantum, lattices, provable security, leakage

resilience

∗This work was supported by CASED (www.cased.de).

1

1. Introduction

Since Chaum proposed his idea of blind signatures [Cha82], it has become an important
primitive for anonymous Internet banking, e-voting (e.g., [RHOAGZ07]), as well as for
oblivious transfer [CNS07]. These applications will retain their importance in both,
near and far future. As for the near future, we are convinced that current factoring and
discrete logarithm based instantiations are efficient and secure. But for how long?

Today, when building provably secure cryptographic schemes, one also has to antici-
pate emerging technologies that may lead to new attacks. This is why we typically try to
use the mildest possible assumptions. Let us consider the example of quantum comput-
ers as a metaphor for these future developments. In the quantum-age, the cryptographic
assumptions change with the leap in computing power that quantum computers will
provide. There are only a few cryptographic assumptions that are conjectured to be
post-quantum, i.e., they are considered to withstand quantum computer attacks. One of
those assumptions is the hardness of finding short vectors in a lattice. Even for today,
there are benefits when building cryptography upon hard lattice problems because, un-
like factoring, they withstand subexponential attacks and the best known algorithms,
e.g., [AKS01], have an exponential complexity in the lattice dimension. Furthermore,
lattice problems typically allow a worst-case to average-case reduction that goes back to
Ajtai [Ajt96]. It states that a randomly chosen instance of a certain lattice problem is
at least as hard as the worst-case instance of a related lattice problem. Thus, choosing
secure keys is easy. This reduction was later on adapted to work with ideal lattices
by Lyubashevsky and Micciancio [LM06] because ideal lattices offer a compact public-
key representation and very efficient operations at the expense of a slightly stronger
assumption.

The security model, mainly influenced by Juels, Luby, and Ostrovsky [JLO97] as well
as Pointcheval and Stern [PS00], requires blind signature schemes to satisfy blindness
and one-more unforgeability. Blindness states that the signer must not obtain any in-
formation on the signed messages and one-more unforgeability means that an adversary
cannot obtain more signatures than there were interactions with the signer.
Our Contribution. We construct the first lattice-based blind signature scheme. It is
inspired by Lyubashevsky’s ID scheme [Lyu08a] in combination with the Fiat-Shamir
paradigm [FS86]. It is unconditionally blind, selective-failure blind [CNS07], and one-
more unforgeable in the random oracle model [BR93] if standard lattice problems in
ideal lattices [LM06] are hard in the worst-case. 1 Then, the worst-case assumption is
weaker as it refers to all lattices, instead of all ideal lattices. However, the ideal lattice
version is much more efficient. With its four moves it is quite efficient. All operations
have quasi-linear complexity and all keys and signatures require a quasi-linear amount
of storage bits, with respect to the main parameter n. Moreover, it is leakage resilient
according to a model inspired by Katz and Vaikuntanathan [KV09]. Let L be the bit-
length of the secret key. Our scheme remains secure, even if the adversary obtains
L(1 − o(1)) bits of the secret key via arbitrary side channels. This brings the security

1Notice that our scheme can instantiated with (regular) q-ary lattices as well.

2

model closer to reality, where the adversary may obtain information about the secret
key, e.g, via (remote) timing attacks or by having physical access to the signing device.
When applied in e-voting or e-cash schemes, such a resilience also helps against insider
attacks and may improve the trust that we are willing to grant these schemes. Another
application of our construction is identity-based blind signatures, when combined with
[Rüc10].

Our scheme is also the first leakage resilient blind signature scheme and our results in
this respect are applicable to Lyubashevsky’s ID and signature schemes [Lyu08a, Lyu09].
It may be possible to use an analogue of Pointcheval and Stern’s approach [PS00] to turn
the leakage resilient variants [KV09, ADW09] of the Okamoto-Schnorr signature scheme
[Sch91, Oka92] into blind signature schemes. However, it is unclear whether this will
actually work and whether it will be efficient.

Table 1 compares RSA and Okamoto-Schnorr (OS) blind signatures with our con-
struction in terms of computational cost. For all schemes, we propose parameter sets
for current, medium, and future security levels. We believe that RSA is a good basis for
comparison because it is easy to understand and very efficient as signing only involves
two modular exponentiations and verification can be done in a single one (small expo-
nent). We do not count multiplications. As observed in [BNPS03], the security of the
RSA blind signature scheme is based on a specially tailored interactive assumption that
is stronger than the original RSA assumption [BMV08]. Taking all this into account,
the timings observed for RSA provide an optimistic lower bound for current practical
and secure schemes. The timings for OS are expected timings based on the number of
modular exponentiations, not counting multiplications. We include OS because it fol-
lows the typical 3-move structure and is based on a standard assumption. It is therefore
closer to our protocol. The timings were obtained on an AMD Opteron CPU, running
at 2.3 GHz. For RSA and OS, we have used OpenSSL 0.9.8g, which is supposed to be
very efficient. For our blind signature schemes, we did a straightforward implementation,
which certainly leaves room for improvements. Here, the timings reflect the full scheme.

From Table 1, we clearly see that our scheme benefits from its quasi-linear complexity,
especially in higher levels of security. In addition, for our scheme, we can have various
trade-offs between signature size and speed. For more details, refer to Appendix C.
There, we also show how to optimize the key and signature sizes, which are typically
large in lattice-based constructions.

We believe that our work is an important contribution because the previous efficient
constructions, such as [Cha82, PS97, PS00, Abe01, BNPS03, CKW04, Oka06], have one
thing in common: they are built upon classic number theoretic assumptions, like the
hardness of factoring large integers or computing discrete logarithms. The more recent
approaches, e.g., by Boldyreva [Bol03] or Okamoto [Oka06], tend to use pairings that
yield very elegant constructions. They, however, are again based on the discrete loga-
rithm problem in this specific setting. None of the above schemes remains secure in the
presence of reasonably large quantum computers, where both factoring and computing
discrete logarithms become easy due to the seminal work of Shor [Sho97].

Finally, we would like to mention that there are also (typically inefficient) instanti-
ations from general assumptions, e.g., by Juels et al. [JLO97], Fischlin [Fis06], Hazay,

3

Scheme Secure until Security (bits) Moves KeyGen Sign Verify

RSA-1229 2012 Current (76) 2 95 ms 16 ms 5 ms

RSA-3313 2050 Medium (102) 2 1250 ms 46 ms 6 ms

RSA-15424 2282 Future (256) 2 251849 ms 2134 ms 20 ms

OS-1229 2012 Current (76) 3 16 ms 64 ms 24 ms

OS-3313 2050 Medium (102) 3 46 ms 184 ms 69 ms

OS-15424 2282 Future (256) 3 2134 ms 8536 ms 3201 ms

Section 3 (n = 1024) 2012 Current (76) 4 37 ms 220 ms 33 ms

Section 3 (n = 2048) 2050 Medium (102) 4 52 ms 283 ms 57 ms

Section 3 (n = 8192) 2282 Future (256) 4 305 ms 1175 ms 320 ms

The table compares our scheme with RSA and Okamoto-Schnorr for various moduli according to [Len05]
(Current, Medium) and [ECR10] (Future). The bitlengths can be computed on www.keylength.com. For
our blind signature scheme, we propose three optimized parameter sets for the same security levels based
on [RS10], which provides a framework for choosing secure parameters for lattice-based cryptography.
Note that the parameters for RSA and OS do not take potential quantum-computer attacks into account.
All timings are averaged over 1000 random instances.

Table 1: Comparison of RSA, Okamoto-Schnorr, and our blind signature scheme.

Katz, Koo, and Lindell [HKKL07], or Abe and Ohkubo [AO09]. Whether they are
post-quantum or leakage-resilient depends on the exact instantiation.
Main Obstacles. For every blind signature scheme, one has to overcome three basic
obstacles. The scheme needs to be blind, one-more unforgeable, and at the same time
complete. Blindness and unforgeability are already somewhat orthogonal because grant-
ing the user too much power to ensure blindness harms unforgeability and vice-versa.
Since working with lattices, we do not have access to a cyclic group structure as in
schemes that are based on the DDH or DL assumptions. There, blindness is typically
easier to achieve by multiplying the message with a random group element. The result
is again a random group element.

In lattices, we need to emulate this over an infinite structure via a filtering technique
that is inspired by [Lyu08a]. However, this technique introduces a completeness defect
that even affects the interaction of an honest user with an honest signer. Thus, the
protocol may need to be restarted. We show how this technique can be refined to allow
a time-memory trade-off, reducing the number of expected restarts at the expense of
only slightly larger signatures. When addressing this defect, we need additional means
to ensure blindness over repetitions of the protocol. Our solution involves a statistically
hiding commitment.

Similarly, the completeness defect has implications with respect to unforgeability as
the user may claim that the protocol has failed, whereas it was indeed successful. Here,
we extend the typical three-move structure to a four-move structure where the user
needs to demonstrate that he or she could not obtain a valid signature. Such a last

4

move, from user to signer, is highly unusual for blind signature schemes. We solve this
issue by designing a special proof of failure and by employing a computationally binding
commitment scheme.

All these issues, and the additional leakage resilience, need to be addressed simultane-
ously as they are interconnected. This leads to an intricate process of correctly setting
up the numerous parameters and sets for our scheme in Table 2.
RSA-style Blind Signatures. One might think that RSA-style (hash → blind →
invert→ unblind) lattice-based blind signatures can be implemented using the preimage
sampleable trapdoor function f : D ⊂ Zm → Znq from [GPV08]. If certain lattice
problems are hard, it is hard to sample preimages from D (small norm) unless one
knows short vectors x such that f(x) = 0. The user would hash the message M using
a full-domain hash h ← H(M) and blind using M∗ ← h + f(β) for β ∈ D. The signer
would sample from f−1(M∗)∩D and return the result σ∗. The function is compressing,
so there are no unique preimages. Using β and the fact that f is linear, the user can
compute σ ← σ∗ − β, which passes verification: f(σ) = f(σ∗)− f(β) = H(M∗). For the
proof, one would rely on an interactive “one-more“ trapdoor inversion assumption akin
to [BNPS03]. However, the adversary must never obtain a non-zero x ∈ D such that
f(x) = 0 because this would imply learning a piece of the secret key. Unfortunately,
such an attack is easy: take u ∈ D and send M∗ = f(u) to the signer, who returns σ∗.
Now, x = u− σ∗ is small and f(x) = 0. Also, x 6= 0 with high probability because there
are many preimages of f(u).
Organization. After a brief preliminaries section, we propose our blind signature
scheme in Section 3. There, we also provide a detailed analysis, including completeness,
blindness, one-more unforgeability, and leakage resilience. In Appendix C, we discuss
how to choose practical parameters and Appendix D contains all supporting lemmas for
the theorems in Section 3.

2. Preliminaries

With n, we always denote the security parameter. The joint execution of two algorithms
A and B in an interactive protocol with private inputs x to A and y to B is written
as (a, b) ← 〈A(x),B(y)〉. The private outputs are a for A and b for B. Accordingly,
〈A(x),B(y)〉k means that the interaction can take place up to k times. The statement
x←$X means that x is chosen uniformly at random from the finite set X. Recall that
the statistical distance of two random variables X,Y over a discrete domain D is defined
as ∆(X,Y) = 1/2

∑
a∈D |Prob[X = a] − Prob[Y = a] |. A function is negligible if it

vanishes faster than 1/p(n) for any polynomial p. All logarithms are base 2 and we
identify {1, . . . , k} with [k].

We recall the definitions of blind signatures and commitments. Afterwards, we briefly
recall some facts from lattice theory. For the reader’s convenience, the Forking Lemma
from [BN06] is repeated in Appendix A.

5

Experiment ExpblindS∗,BS(n)
b←${0, 1}
(pk, sk)←$BS.Kg(1n)
(M0,M1, statefind)←$S∗(find, sk, pk)

stateissue←$S∗〈·,U(pk,Mb)〉1,〈·,U(pk,M1−b)〉1(issue, statefind)
Let sb and s1−b be the outputs of U(pk,Mb)
and U(pk,M1−b), respectively.
If s0 6= fail and s1 6= fail

d←$S∗(guess, s0, s1, stateissue)
Else

d←$S∗(guess, fail, fail, stateissue)
Return 1 iff d = b

Experiment Expomf
U∗,BS(n)

H←$H(1n)
(pk, sk)←$BS.Kg(1n)

{(M1, s1), . . . , (M, s)}←$U∗H(·),〈S(sk),·〉∞(pk)
Let ` be the number of successful interaction
between U∗ and the signer.
Return 1 iff

1. Mi 6= Mj for all 1 ≤ i < j ≤ ;
2. BS.Vf(pk, si,Mi) = 1 for all i = 1, . . . , ;
3. `+ 1 = .

Figure 1: Security experiments for blindness and one-more unforgeability of blind
signatures.

2.1. Blind Signatures

A blind signature scheme BS consists of three algorithms (Kg, Sign,Vf), where Sign is an
interactive protocol between a signer S and a user U . The specification is as follows.
Key Generation. Kg(1n) outputs a private signing key sk and a public verification key

pk.
Signature Protocol. Sign(sk,M) describes the joint execution of S and U . The private

output of S is a view V and the private output of U is a signature s on the
message M ∈ M with message space M under sk. Thus, we write (V, s) ←
〈S(sk),U(pk,M)〉.

Signature Verification. The algorithm Vf(pk, s,M) outputs 1 if s is a valid signature
on M under pk and otherwise 0.

Completeness is defined as with digital signature schemes, i.e., every honestly created
signature for honestly created keys and for any messages M ∈M has to be valid under
this key. Views are interpreted as random variables, whose output is generated by
subsequent executions of the respective protocol. Two views V1 and V2 are considered
equal if they cannot be distinguished by any computationally unbounded algorithm with
noticeable probability.

As for security, blind signatures have to satisfy two properties: blindness and one-
more unforgeability [JLO97, PS00]. The notion of blindness is defined in the experi-
ment ExpblindS∗,BS in Figure 1, where the adversarial signer S∗ works in three modes. In
mode find, it chooses two messages M0,M1 and interacts with two users in mode is-
sue. Depending on a coin flip b, the first (second) user obtains a blind signature for
Mb (M1−b). After seeing the unblinded signatures in the original order, with respect
to M0,M1, the signer has to guess the bit b in mode guess. If either of the user algo-
rithms fails in outputting a valid signature, the signer is merely notified of the failure
and does not get any signature. Below, we deal with aborts as an extension. Also note
that we allow the adversary to keep a state that is fed back in subsequent calls. A
scheme BS is (t, δ)-blind, if there is no adversary S∗, running in time at most t, that
wins the above experiment with advantage at least δ, where the advantage is defined
as AdvblindS∗,BS =

∣∣Prob
[
ExpblindS∗,BS(n) = 1

]
− 1

2

∣∣. A scheme is statistically blind if the it is

6

(∞, δ)-blind for a negligible δ. The second security property, one-more unforgeability,
ensures that each completed interaction between signer and user yields at most one sig-
nature. It is formalized in the experiment Expomf

U∗,BS, where an adversarial user tries to
output  valid signatures after ` <  completed interactions with an honest signer. H is
a family of random oracles.

A signature scheme BS is (t, qSign, qH, δ)-one-more unforgeable if there is no adversary
A, running in time at most t, making at most qSign signature queries and at most qH
hash oracle queries, that wins the above experiment with probability at least δ.

2.2. Extensions

We consider three extensions to the above security model for blind signatures: one deals
with user aborts, the second with dishonestly chosen keys, and the third with leakage
resilience.
Security Under Aborts. Blindness in the previous subsection does not cover the
case where the protocol is aborted prematurely. There is the strengthened notion of
selective failure blindness [CNS07], where the malicious signer may choose either M0 or
M1 according to some secret distribution that makes the protocol fail. Preventing this
generically is easy as was shown by Fischlin and Schröder in [FS09]. In the course of the
discussion of our construction, we argue that it already is blind in this sense.
Adversely-chosen Keys. Consider the blindness experiment in [ANN06]. Instead of
having the experiment select pk, sk, we can let the signer output pk. Blindness may
be harder to achieve in this setting. However, our construction remains blind in this
stronger model as the proof does not exploit specifics about the key.
Leakage Resilience. Resilience to key leakage is a way to ensure security against
side-channel attacks. In [KV09], Katz and Vaikuntanathan give a nice overview of past
developments and the evolution of leakage resilience for authenticity [ADW09, KV09] and
secrecy, e.g., [DP08, AGV09, NS09]. Obviously, we are interested in authenticity in the
special case of blind signatures. We model key leakage in the unforgeability experiment
by adding a leakage oracle Leak(·) to Expomf

U∗,BS. The adversary can adaptively query Leak
with a series of functions fi, i ∈ {1, . . . , κ}, and receives fi(sk). The only restriction is
that

∑n
i=1 |fi(sk)| < λ(|sk|), where the function λ determines the amount of leakage that

we are willing to tolerate. Notice that the signer’s key does not have to evolve over
time and its secret state consists of the secret key only. Furthermore, observe that this
extension is only sensible as long as λ(|sk|) < min{|sk|, |s|}, where | · | denotes bit-length
and s is a signature. Otherwise, the adversary could easily obtain the entire secret key
or a signature of its choice. See Appendix B for the experiment. To demonstrate
leakage resilience, one has to show that the conditional min-entropy H∞(sk|Leak(sk)) =
minsk′{− log(Prob

[
sk = sk′|Leak(sk)

]
)} of the secret key is still sufficiently large to prove

security.

7

2.3. Commitments

Commitments typically work in two phases. First, one party publishes a commitment
C = com(M ; r) ∈ {0, 1}n, r←${0, 1}n, to a message M ∈ {0, 1}∗ without revealing any
information about it. This is the “hiding” property of the commitment scheme. In the
second phase, the party can prove that C actually corresponds to M by revealing r. It
is important that no algorithm can find a second message M ′ and randomness r′ such
that C = com(M ′; r′), i.e., break the “binding” property. As usual, these properties are
defined for families of such commitment functions. A scheme is (t, δ)-hiding (-binding)
if there is no algorithm running in time at most t that can break the hiding (binding)
property with probability at least δ. Both properties can be satisfied computationally or
unconditionally but there is no scheme that is unconditionally hiding and unconditionally
binding [Gol04].

For our scheme, we assume a statistically δ
(h)
com-hiding and computationally (tcom, δ

(b)
com)-

binding commitment scheme. As we are interested in fully lattice-based schemes, we
would like to point out that such commitment schemes can be built upon hard lat-
tice problems [KTX08] but in practice, one rather uses cryptographic hash functions
as a message authentication code. For example, using a lattice-based hash function
[ADL+08].

2.4. Lattices

A lattice in Rn is a discrete set Λ = {
∑d

i=1 xi bi |xi ∈ Z}, where b1, . . . ,bd are linearly
independent over R. The matrix B = [b1, . . . ,bd] is a basis of the lattice Λ and we
write Λ = Λ(B). The dimension of the lattice is d. The main computational problem in
lattices is the shortest vector problem (SVP), where an algorithm is given a description, a
basis, of a lattice Λ and is supposed to find the shortest vector v ∈ Λ \ {0} with respect
to a certain `p norm (up to an approximation factor). More precisely, find a vector
v ∈ Λ \ {0}, such that ‖v‖p ≤ γ ‖w‖p for all w ∈ Λ \ {0} for a fixed approximation
factor γ ≥ 1.

In this work, we are interested in a special family of lattices related to ideals in the
ring R = Zq[X]/〈g〉, where q is prime and Zq = {−(q − 1)/2, . . . , (q − 1)/2}. We
focus on g = Xn + 1 and n = “power of two” for efficiency reasons but it may be
replaced by any irreducible polynomial over Z. Then, our scheme and the analysis
become only slightly more involved. We identify f ∈ R with its coefficient vector f =
(f0, . . . , fn−1) ∈ Znq . Furthermore, we denote elements of the R-module Rm with â =
(a0, . . . ,am−1) or directly with (a0, . . . , amn−1) ∈ Zmnq . Consequently, we define ‖f‖∞ =
‖(f0, . . . , fn−1)‖∞. The norm on R is a slight abuse of notation, but it will only be used
if f has small coefficients over Z. A lattice corresponds to an ideal I ⊂ R if and only
if every lattice vector is the coefficient vector of a polynomial in I. The SVP problem
easily translates to ideal lattices, where we call it ideal-SVP (ISVP).

The average-case hardness assumption for our construction relies on the problem of
finding short vectors in the kernel of the family H(R,m) of module homomorphisms
hâ∈Rm : Rm → R, x̂ 7→ â ~ x̂ =

∑m−1
i=0 aixi, when restricting the domain to D′ ⊂ R,

8

i.e., restricting the coefficients in the input to [−2d, 2d]∩Z. This problem can be stated
as the following collision problem [LM06].

Definition 2.1 (Collision Problem) The collision problem Col(H(R,m), D) asks to
find a distinct pair (x̂, x̂′) ∈ Dm ×Dm such that h(x̂) = h(x̂′) for h←$H(R,m).

Obviously, the function is linear over Rm, i.e., h(a(x̂ + ŷ)) = a(h(x̂) + h(ŷ)) for all
a ∈ R, x̂, ŷ ∈ Rm. In addition, solving Col(H(R,m), D) implies being able to solve
ISVP∞ in every lattice that corresponds to an ideal in R by the following theorem.

Theorem 2.2 (Worst-case to Average-case, Theorem 2 in [LM06]) Let D = {f ∈
R : ‖f‖∞ ≤ d}, m > log(q)/ log(2d), and q ≥ 4dmn

√
n log(n). An adversary C

that solves the Col(h,D) problem, i.e., finds distinct preimages x̂, ŷ ∈ Dm such that
h(x̂) = h(ŷ), can be used to solve ISVP∞ with approximation factors γ ≥ 16dmn log2(n)
in the worst case.

3. Blind Signatures from Ideal Lattices

We construct a lattice-based blind signature scheme. It is secure in the random oracle
model under a worst-case assumption in ideal lattices and its time and space complexity
is quasi-optimal, Õ(n).

The road map for this section is as follows: We describe the 4-move blind signa-
ture scheme BS. Then, we prove completeness, blindness, and one-more unforgeability.
Proving completeness is non-trivial as we need to address an inevitable completeness
defect. In the course of the discussion we show that it neither harms security nor effi-
ciency. Afterwards, we prove that the scheme is statistically blind and that it is one-more
unforgeable unless the collision problem Col(H(R,m), D) is easy. In consequence, one-
more unforgeability can be based on the worst-case hardness of the ISVP. After the main
analysis, we prove that our scheme also supports leakage resilience.

Observe that the scheme requires lots of parameters that need to be carefully worked
out. Their definition in Table 2 will be justified later in the analysis. We chose not to
“unwind” the parameters ds, dε, etc. because we need their relative size in the various
lemmas below, making the proofs easier to understand. The asymptotics in the third
column should help estimating their magnitude. The parameter dε is a constant 1 here
but it can be increased if it is necessary to sign hash values of bit length > n log2(3). The
“usage” hint in the table points at the section, where they are most influential. As for
selecting practical parameters, we refer the reader to Appendix C. There, we propose
secure parameter sets based on the analysis in [RS10]. The appendix also includes a
discussion on possible trade-offs for efficiency.

3.1. Informal Description

We give a detailed, slightly informal description of the protocol Steps 1-5 in Figure 2.
For each step, we need a set of carefully chosen parameters from Table 2 to achieve

9

Parameter Value Asymptotics Usage

n power of 2 - main security parameter

ds positive integer constant < q/(4n) O(1) secret key size, unforgeability
Ds {f ∈ R : ‖f‖∞ ≤ ds} set of secret keys

cm > 1/ log(2ds) Õ(1) witness indistinguishability, leakage resilience

m bcm log(q)c+ 1 Ω(log(n)) worst-case to average-case reduction

Dε {f ∈ R : ‖f‖∞ ≤ 1 =: dε} O(1) hash output size

φ, ψ positive integer constant ≥ 1 O(1) completeness, speed

Dα {f ∈ R : ‖f‖∞ ≤ ψndε =: dα} O(n) blindness

Dε∗ {f ∈ R : ‖f‖∞ ≤ dα − dε =: dε∗} O(n) blindness

Dy {f ∈ R : ‖f‖∞ ≤ φmn
2dsdε∗ =: dy} Õ(n3) witness indistinguishability

G∗ {f ∈ R : ‖f‖∞ ≤ dy − ndsdε∗ =: dG∗} Õ(n3) witness indistinguishability, completeness defect

Dβ {f ∈ R : ‖f‖∞ ≤ φmndG∗ =: dβ} Õ(n4) blindness

G {f ∈ R : ‖f‖∞ ≤ dβ − dG∗ =: dG} Õ(n4) blindness, completeness defect

D {f ∈ R : ‖f‖∞ ≤ dG∗ + dβ + ndsdε =: dD} Õ(n4) collisions under h

q ≥ 4mn
√
n log(n)dD, prime Θ̃(n5√n) worst-case to average-case reduction

The table defines all parameters and sets for our scheme. The sets are defined via a norm bound, for
which we also state the asymptotic growth with respect to the security parameter n. The last column
states the main usage for the individual parameter or set. Some sets introduce a completeness error
to the scheme that can be reduced by increasing φ. Reducing this defect also significantly improves
performance. All sets are subsets of the ring R = Zq[X]/(Xn + 1).

Table 2: Parameters for the security parameter n.

completeness and security. For each parameter, the table contains a hint at their main
usage and justification in the analysis.

Basically, the protocol follows the structure of a 3-move identification scheme, which
provides a witness-indistinguishable proof of knowledge. The signer proves knowledge
of ŝ ∈ Dm

s such that h(ŝ) = S with S being the public key.
We stick to this basic structure and let the signer transmit a commitment Y = h(ŷ)

for a random value ŷ ∈ Dm
y . The user computes a challenge ε∗ as a function (involving

H) of Y and the to-be-signed message M and sends it to the signer, which returns
ẑ∗ = ŝε∗ + ŷ. Via the linearity of h, the user can verify that h(ẑ∗) = Sε∗ + Y using
only public knowledge. Afterwards, the user has to transform the “blinded” signature
(ẑ∗, ε∗) into the regular signature (ẑ, ε) for M.

However, to obtain a blind signature scheme from this strategy, we need to overcome
three main obstacles. First, the scheme needs to be unforgeable, i.e., neither Y nor
ẑ∗ may leak too much information about the secret key. Second, ε∗ and ẑ need to be
distributed independently of the message M to ensure blindness. Third, we need to
ensure completeness of the resulting protocol, which will be non-trivial because of the
following filtering technique [Lyu08a, Lyu09].

Roughly speaking, we add two numbers a ∈ [−A,A] and b←$[−3A, 3A] and filter the
output in the sense that we only reveal c = a+ b if c ∈ [−2A, 2A]. Otherwise, we choose
a fresh b and try again. This ensures that c is distributed independently of a. However,

10

Signer S(ŝ) User U(S,M)

1 ŷ←$D
m
y

Y−−−−−−−−−−−→ r←${0, 1}n
Y ← h(ŷ) C ← com(M ; r)

α←$Dα
β̂←$D

m
β

2 ε← H(Y − Sα− h(β̂), C)
ε∗ ← ε− α
If ε∗ 6∈ Dε∗

Start over with a fresh α

3 ẑ∗ ← ŝε∗ + ŷ
ε∗←−−−−−−−−−−−

If ẑ∗ 6∈ Gm∗
Trigger restart

4
ẑ∗−−−−−−−−−−−→ ẑ← ẑ∗ − β̂

If ẑ 6∈ Gm

result← (C,α, β̂, ε)
Else

result← ok

5 If result 6= ok
result←−−−−−−−−−−−

Parse result = (C,α, β̂, ε)

If (ε∗ + α = ε = H(Y − Sα− h(β̂), C)

and H(h(ẑ∗ − β̂)− Sε, C) = ε

and ẑ∗ − β̂ 6∈ Gm)
Trigger restart

Output V ← (ŷ,Y, ε∗, ẑ∗) Output (M, (r, ẑ, ε)) or ⊥ when result 6= ok

Figure 2: Issue protocol of the blind signature scheme BS. All parameters and sets are
defined in Table 2. Note that the signer implicitly verifies that the user’s
protocol messages come from the correct domains.

the filtering technique in this example only works with probability ≈ 2/3, but we expect
c ∈ [−2A, 2A] after ≈ 3/2 trials.

It is applied to (̂sε∗) + ŷ to hide the secret key ŝ by randomly choosing the coefficients
of ŷ from a relatively large set, compared to ‖ŝε∗‖∞, and then filtering the output until it
is in Gm∗ . Whenever filtering fails in Step 3, the signer has to restart the entire protocol.
After a small number of restarts, the signer can safely send ẑ∗, bearing no information
about the secret key. Actually, the filtering technique is much more involved and we
need to deal with sums of vectors. We will show the details and a refinement in the next
section.

Interestingly, the filtering technique can also be applied to achieve blindness. For the
protocol message ε∗ = ε − α after Step 2, we use α←$D

m
α to hide ε. This is necessary,

as ε will be a part of the output signature. The completeness defect in this filtering step
can be reduced to 0 because the user can repeat it locally. In Step 4, the user attempts
to “unblind” the signature by computing ẑ← ẑ∗− β̂, where β̂ is prepared in Step 1 and
randomly chosen from a relatively large set to hide ẑ∗. This is the third application of
the filtering technique. If it fails, the protocol needs to be restarted again.

This last defect is the reason for having the last move and Step 5. Even if both parties

11

are honest, the user might not be able to obtain a valid signature with non-negligible
probability (Step 4). This is highly unusual for a blind signature scheme, in fact we
are not aware of any other schemes with this kind of behavior. In such a case, the
user needs to prove that no valid signature could be obtained (Step 5) and the protocol
needs to be restarted. Therefore, the user submits (C,α, β̂, ε) to the signer, where C
is a commitment to the message M. The signer can verify that the user was unable to
obtain a valid signature relative to the commitment C. More formally, we prove that
successfully cheating in Step 5 implies being able to solve Col(H(R,m), D). In addition,
for unforgeability, we require that the commitment is binding and for blindness it is
crucial that it is hiding. The hiding property of the commitment also prevents the
signer from learning information about M across the required restarts.

Since restarts do not harm security, we can repeat the protocol until it is complete.
The expected number of repetitions is constant and it can be brought very close to 1 by
choosing the parameters appropriately.

3.2. Our Construction

We construct our blind signature scheme BS = (Kg,Sign,Vf) as follows.
Key Generation. BS.Kg(1n) selects a secret key ŝ←$D

m
s , and a compression function

h←$H(R,m). Let C(1n) be a commitment scheme, mapping {0, 1}∗ × {0, 1}n →
{0, 1}n. The algorithm chooses a function com←$C(1n) and, in addition, selects
H←$H(1n) mapping {0, 1}∗ → Dε ⊂ D.
Then, it computes the public key S← h(ŝ) and outputs (ŝ,S). For simplicity, we
treat h, com, H, and the parameters in Table 2 as globally known and implicit
inputs to all algorithms. However, each signer may choose them individually and
include them in the public key.

Signature Protocol. The signature issue protocol for messages M ∈ {0, 1}∗ is depicted
in Figure 2. Eventually, the user outputs a message M and a signature (r, ẑ, ε).
Notes: Upon a restart after Step 2, the user only selects a fresh α←$Dα and
repeats the operations that involve α. Whenever the signer triggers a restart, the
user chooses a fresh r in order to make the protocol execution independent of the
previous ones. Therefore, we omit values from previous runs in the signer’s view.
During Step 5, the signer can detect a cheating user that tries to trigger a restart,
despite having received a valid signature. In this case, the signer can stop the
protocol and assume that the user has obtained a valid signature.

Verification. BS.Vf(S, (r, ẑ, ε),M) outputs 1 iff ẑ ∈ Gm and H(h(ẑ)−Sε, com(M ; r)) =
ε.

3.3. Analysis and Security

In this section, we analyze our blind signature scheme with regard to completeness,
blindness, one-more unforgeability, and leakage resilience. For each aspect, we prove
a main theorem. Supporting lemmas are stated before the theorems and proven in
Appendix D.

12

3.3.1. Completeness

Completeness of BS is a non-trivial issue due to the eventual restarts and the many
parameters involved. The next lemma ensures that the number of restarts is small,
effectively constant.

Lemma 3.1 Let k = Ω(n), a,b ∈ Zk with arbitrary a ∈ {v ∈ Zk : ‖v‖∞ ≤ A}
and random b←${v ∈ Zk : ‖v‖∞ ≤ B}. Given B ≥ φkA for φ ∈ N>0, we have
Prob

b
[‖a− b‖∞ ≤ B −A] > 1

e1/φ
− o(1).

The multiplication of two polynomials moduloXn+1 plays a major role in the analysis.
Therefore, we need the following lemma, which is a special case of [Lyu08b, Lemma 2.8].

Lemma 3.2 For any two polynomials a,b ∈ R, we have ‖ab mod (Xn + 1)‖∞ ≤
n ‖a‖∞ ‖b‖∞.

Notice that it is possible to prove a better bound
√
n log(n) ‖a‖∞ ‖b‖∞ that holds with

overwhelming probability p(n) = 1 − 4ne− log2(n)/8, but p(n) does not converge fast
enough to be of practical use.

Theorem 3.3 (Completeness) Let g(n) = ω(log2(n)). The scheme BS is complete
after at most g(n) (or, an expected number of e2/φ) repetitions.

Proof. Let us assume that the protocol does not have to be restarted after Steps 2, 3,
and 4. Then, for all honestly generated key pairs (ŝ,S), all messages M ∈ {0, 1}∗, and
all signatures (r, ẑ, ε) we have ẑ ∈ Gm and h(ẑ)−Sε = h(ẑ∗− β̂)−Sε = h(ŝ(ε−α) + ŷ−
β̂) − Sε = Y − Sα − h(β̂) and com(M ; r) = C. Therefore H(h(ẑ) − Sε, com(M ; r)) = ε
and BS.Vf(S, (r, ẑ, ε),M) = 1.

Now, we analyze the probability of a restart. Observe that the restarts after Step 2
do not affect completeness, as the user does them locally. The number of trials here is
at most g(n) for any g(n) = ω(log(n)) due to Lemma 3.1 (k = n,A = ds, B = dα) for
ε− α ∈ Dε∗ . However, the expected number of trials is constant (e1/ψ). It is safe to set
ψ = 1 here but one might want less trials, e.g., less than 1.5 for ψ ≥ 3 and n > 1.

After Steps 3 and 4, aborts affect the protocol and trigger a full restart. In Step 3, we
need to ensure that ŝε∗+ŷ ∈ Gm∗ . By Lemma 3.2, we know that ‖ŝε∗ mod (Xn + 1)‖∞ ≤
ndsdε∗ and applying Lemma 3.1 (k = mn,A = ndsdε∗ , B = dy) yields the constant
success probability e−1/φ and a maximum number of trials of ω(log(n)). This can be
optimized by increasing φ. After an expected number e1/φ, the protocol proceeds to
Step 4.

In Step 4, the user attempts to “unblind” the signature and requires that ẑ∗− β̂ ∈ Gm.
Otherwise, the user convinces the signer that a restart is necessary. We apply Lemma
3.1 on (k = mn,A = dG∗ , B = dβ) and obtain the same behavior as in Step 3.

In total, after at most g(n), for any g(n) = ω(log2(n)), or an expected number e2/φ of
trials, the protocol is complete. �

13

In Appendix C, we will see that choosing φ = 4 is good choice to make the protocol
more efficient in practice. Observe that in any case, all operations (including eventual
restarts) in BS have Õ(n) complexity and that private keys, public keys, and signatures
have size Õ(n).

3.3.2. Blindness

We prove that BS is statistically blind based on the observation that the signer only
sees values that are independent of the message being signed. More precisely, the views
generated by two different messages are indistinguishable. For this argument to work,
we require a statistically hiding commitment scheme and carefully selected sets Dα,
Dβ, Dε∗ , and G. The following probabilistic lemma is crucial as it guarantees that the
user’s message after Step 2 and the final output are independent of the message. In
the context of ExpblindS∗,BS, this establishes a form of witness indistinguishability w.r.t. the
messages that are chosen by the malicious signer.

Lemma 3.4 Let k ∈ N, a,a′,b ∈ Zk with arbitrary a,a′ ∈ {v ∈ Zk : ‖v‖∞ ≤ A},
a random b←${v ∈ Zk : ‖v‖∞ ≤ B} for B > A. We define the random variables
c ← a − b and c′ ← a′ − b if max{‖a− b‖∞ , ‖a′ − b‖∞} ≤ B − A, otherwise, we
resample b. Then, ∆(c, c′) = 0.

The role of com is to ensure that the signer can only obtain negligible information from
restarts. Notice that BS is perfectly blind ((∞, 0)-blind) if the commitment scheme is
perfect (0-hiding).

Theorem 3.5 (Blindness) BS is (∞, δ(h)
com)-blind if com is δ

(h)
com- hiding.

Proof. As per experiment ExpblindS∗,BS, the adversarial signer outputs two messages M0,M1

and interacts with two users U(S,Mb), U(S,M1−b) after a secret coin flip b ← {0, 1}.
We show that these users do not leak any information about their respective message.

Technically, we establish that all protocol messages and the output, when interpreted
as random variables, are distributed independently of the message being signed. This
involves an analysis of ε∗, ẑ, and eventual restarts. As for ε and r we need not worry.
They are chosen uniformly at random.
Distribution of ε∗. Let ε∗b , ε

∗
1−b be the first protocol messages of U(pk,Mb) resp. U(pk,

M1−b). They are in Dε∗ and they are both of the form ε − α with ε ∈ Dε and
α←$Dα. The statistical distance ∆(ε∗b , ε

∗
1−b) is 0 by Lemma 3.4 (k = n,A =

ds, B = dα) because the coefficients in Dε∗ are bounded by B −A = dα − ds.
Distribution of ẑ. Let ẑ0, ẑ1 be part of the final output of U(pk,M0) resp. U(pk,M1).

Both are of the form ẑ∗− β̂ for ẑ∗ ∈ Gm∗ and β̂←$D
m
β . Furthermore, ẑ0 and ẑ1 are

forced to be in Gm, having coefficients bounded by dβ−dG∗ . Hence, the statistical
distance ∆(ẑ0, ẑ1) is 0 because of Lemma 3.4 (k = mn,A = dG∗ , B = dβ).

Restarts. Observe that each protocol run is statistically independent of the previous
runs by the statistical hiding property of the commitment com and because the
user selects fresh r, α, β̂ after every restart. This is the reason why we inherit the

14

statistical δ
(h)
com-hiding property to obtain (∞, δ(h)

com)-blindness instead of perfect
blindness. Finally, we need to argue about the restart after Step 4. The user sends
(C,α, β̂, ε) to the signer. These information allow the verification of the signature
with respect to C. The message is still statistically hidden by the hiding property
of com because the user never reveals the decommitment r.

Hence, the protocol hides the to-be-signed message and subsequent runs of the protocol
for the same message are statistically independent. �

Furthermore, our scheme already supports selective failure blindness as shown in [FS09]
because we are signing commitments instead of the adversely chosen messages. Even
the fourth move does not reveal any information about the message due to the hiding
property of the commitment.

3.3.3. One-more Unforgeability

In this section, we show that BS is one-more unforgeable, provided that the collision
problem Col(H(R,m), D) is hard and the commitment scheme is binding. The main
tool in the reduction is the Forking Lemma [PS00, BN06]. To simulate the environment,
especially blind signature queries, for the attacker A in the unforgeability experiment,
we require that there are at least two possible secret keys for each public key S (Lemma
3.6). Moreover, we need the signature protocol to be witness indistinguishable to prevent
the attacker from learning the secret key (Lemma 3.7). The binding property of com
is necessary to prevent an attacker from obtaining one signature that works for two
messages by changing the message under the commitment. All other attackers output at
least one signature that does not correspond to a completed interaction. Here, we apply
the Forking Lemma to extract knowledge about the secret key that was used to compute
the forgery. Using this knowledge the reduction can solve the collision problem. Finally,
we need to deal with Step 5 in the protocol. The adversary proves that it was unable to
obtain a valid signature. We show that this is sufficient if Col is hard.

Since the function family H(R,m) compresses the domain Dm
s , it is easy to show that

all secret keys collide with at least one other secret key.

Lemma 3.6 Let h ∈ H(R,m). For every secret key ŝ←$D
m
s , there is a second ŝ′ ∈

Dm
s \ {ŝ} with h(ŝ) = h(ŝ′) (with overwhelming probability).

The next lemma establishes witness indistinguishability of the protocol. Witness indis-
tinguishability ensures that the malicious verifier cannot distinguish whether the prover
uses one of two possible secret keys ŝ, ŝ′ ∈ h−1(S)∩Dm

s . Basically, it can be interpreted
as an application of Lemma 3.4 to ẑ∗ = (ŝε∗) + ŷ ∈ Gm∗ with some further observations.
The choice of ŷ←$Dy and the restriction “∈ Gm∗ ” hide the first summand.

Lemma 3.7 Let h ∈ H(R,m) and S ∈ R. For any message M and any two secret keys
ŝ, ŝ′ ∈ Dm

s with h(ŝ) = S = h(ŝ′), the resulting protocol views (Y, ε∗, ẑ∗) and (Y′, ε∗′, ẑ∗′)
are indistinguishable.

15

Using lemmas 3.6 and 3.7, we can exploit witness indistinguishability to simulate all blind
signature oracle queries with a secret key ŝ and at the same time expect the adversary
to output a forgery that corresponds to a different secret key ŝ′ with non-negligible
probability or break the binding property of the commitment scheme. We apply the
Forking Lemma to extract a solution to the Col(H(R,m), D).

Theorem 3.8 (One-more unforgeability) Let Sig be the signature oracle. Let TSig
and TH be the cost functions for simulating the oracles Sig and H, and let c < 1 be the
probability for a restart in the protocol. BS is (t, qSign, qH, δ)-one-more unforgeable if com
is (t′, δ/2)-binding and Col(H(R,m), D) is (t′, δ′/2)-hard with t′ = t + q

qSig
H (qSignTSig +

qHTH) and non-negligible δ′ if δ is non-negligible.

The probability δ′ depends on the number of issued signatures. It can be found at the
end of the proof.

Proof. Towards contradiction, we assume that there exists a successful forger A against
one-more unforgeability of BS with non-negligible probability δ. Using A, we construct
an algorithm B, such that it either solves the collision problem or breaks the binding
property of com.
Setup. B flips a coin b←${0, 1}. For b = 0, it selects h←$H(R,m). For b = 1, it

gets the description of h as input. B initializes a list LH ← ∅ of query-hash pairs
(R×{0, 1}∗, Dε). It chooses ŝ←$D

m
s and sets S← h(ŝ). Furthermore, it randomly

pre-selects random oracle answers h1, . . . ,hqH←$Dε and a random tape ρ. It runs
A(S; ρ) in a black-box simulation.

Random Oracle Queries. On input (u, C), B looks up (u, C) in LH. If it finds cor-
responding hash value ε then it returns ε. Otherwise, B selects the first unused ε
from the list h1, . . . ,hqH , stores ((u, C), ε) in LH, and returns ε.

Blind Signature Queries. B acts according to the protocol in Figure 2.
Output. Eventually, A stops and outputs (M1, (r1, ẑ1, ε1)), . . . , (M, (r, ẑ, ε)), qSign

+ 1 = , for distinct messages. If b = 0, the reduction looks for two pairs
(M∗1 , (r

∗
1, ẑ
∗, ε∗)) and (M∗2 6= M∗1 , (r

∗
2, ẑ
∗, ε∗)) and outputs (M∗1 , r

∗
1), (M∗2 , r

∗
2) to

break the binding property of com. If there is no such collision, B aborts. If b = 1,
the simulator B guesses an index k←$[] such that hı = εk for some ı ∈ [qH]. Then,
B starts over, running A(S; ρ) with random oracle answers h1, . . . ,hı−1,h

′
ı, . . . ,

h′qH for a fresh set h′ı, . . . ,hqH←$Dε. Both A and B are run with the same random
tape as in the first run. Among other values, A outputs (M ′k, (r

′
k, ẑ
′
k, ε
′
k)) and B

returns (ẑk − ŝεk, ẑ
′
k − ŝε′k) if ε′k = εk in an attempt to solve Col(H(R,m), D). If

ε′k 6= εk, the reduction retries at most qH times with a different random tape and
random oracle.

Analysis. A’s environment is perfectly simulated. Especially, restarts happen with the
same probability as in the original protocol. For b = 0, B (t′, δ/2)-breaks the binding
property of com ifA breaks the binding property of com to break one-more unforgeability.

For b = 1, we assume that A breaks one-more unforgeability without attacking com.
So, at least one of the output signatures is not obtained via an interaction. The prob-
ability that B guesses the index k of this signature correctly is at least 1/(qSign + 1).

16

Observe that εk is a random oracle answer but with probability 1/|Dε|. Furthermore,
notice that with probability 1/2, at least one of the re-runs of A yields the same map
{(ı, k) : hı = εk} as in the first run of A. Thus, we consider the indices in both “inter-
esting” replays to be constant.

Applying the Forking Lemma, we know that with probability δfrk ≥ (1 − c)(δ −
1/|Dε|)((δ − 1/|Dε|)/qH − 1/|Dε|), A is again successful in the one-more unforgeabil-
ity experiment and outputs (M ′k, (r

′
k, ẑ
′
k, ε
′
k)) using the same random oracle query as in

the first run. The additional (1 − c) factor takes a potential abort during the second
run into account, which happen with probability at most c. Therefore, we know that
(h(ẑk − Sεk), com(Mk; rk)) = (h(ẑ′k − Sε′k), com(M ′k; r

′
k)).

Now, we turn to solving the collision problem. We have to show that ẑk−ŝεk 6= ẑ′k−ŝε′k
and h(ẑk− ŝεk) = h(ẑ′k− ŝε′k). The second requirement follows directly from the previous
paragraph. The first is more involved. Here, it is important that the protocol is witness
indistinguishable (Lemma 3.7), i.e., the adversary does not recognize whether we have
used one of at least two possible ŝ, ŝ′ (Lemma 3.6 with probability greater than 1/2.
Thus, with probability at least 1/2 its output corresponds to ŝ′. Furthermore, the index
maps of output εi’s and random oracle answers hj ’s are constant in both runs. Both
conditions allow us to apply [PS00, Lemma 8]. It states that the random variables
χk = ẑk − ŝεk and χ′k = ẑ′k − ŝε′k will be sensitive to the modified random oracle
answers for indices ≥ ı. Hence, χk 6= χ′k with probability at least 1/2 and we obtain
the desired collision with norm at most dG + ndsdε < dD. Otherwise, we would have
ẑk − ŝεk = ẑ′k − ŝε′k and ẑk − ŝ′εk = ẑ′k − ŝ′ε′k. We subtract the equations and obtain
(εk−ε′k)(ŝ′− ŝ) = 0. We know that εk−ε′k 6= 0. Now, ‖(εk − ε′k)(ŝ′ − ŝ)‖∞ ≤ 4dsn < q/2
because ‖εk − ε′k‖∞ ≤ 2 and ‖ŝ′ − ŝ‖∞ ≤ 2ds. Thus, (εk−ε′k)(ŝ′−ŝ) = 0 over Z[X]/〈Xn+
1〉, which is an integral domain. So, we have the contradiction ŝ′ = ŝ and a collision
(ẑk− ŝεk, ẑ

′
k− ŝε′k) ∈ D×D. The success probability is at least δcol ≥ 1/4 δfrk/(qSign +1),

which is non-negligible if δ is non-negligible.
Concerning restarts, we argue that the user cannot obtain a valid signature out of an

aborted interaction without solving the collision problem. In order to trigger an abort
after Step 4, it outputs result = (C,α, β̂, ε) which, together with ẑ∗, ŷ, ε∗, satisfies all
abort criteria:

ε∗ + α = ε = H(Y − Sα− h(β̂), C) (1)

ε = H(h(ẑ∗ − β̂)− Sε, C) (2)

ẑ∗ − β̂ 6∈ Gm (3)

Assume that it also obtains a valid signature (r′, ẑ′, ε′) from this interaction. If ε = ε′,
then h(ẑ∗ − β̂∗ − ŝε) = h(ẑ′ − ŝε) by (2). If the arguments under h are equal, we have
ẑ∗−β̂ ∈ Gm — a contradiction with (3). If the arguments are distinct, we have a collision

in D because ‖ẑ′ − ŝε‖∞ ≤ dG < dD and
∥∥∥ẑ∗ − β̂∗ − ŝε

∥∥∥
∞
≤ dG∗ + dβ + ndsdε = dD.

The adversary may succeed by hiding ε′ 6= ε in ε∗. But then, we necessarily have
ε∗ = ε − α = ε′ − α′ by (1) for an α 6= α′ and we know that α = ε − ε′ + α′. So, the
adversary had to be able to predict the output of H to compute α.

17

To conclude, the probability that we can extract a collision from a cheating user during
an abort is at least δabort ≥ δ (1− 1/|Dε|), which is non-negligible if δ is non-negligible.
Thus, the overall success probability of the reduction is δ′ ≥ min(δcol, δabort) if the guess
b = 1 was correct. �

Hence, we require that qSig = o(n) to be able to rely on the subexponential hardness
of lattice problems. This constraint is an artifact of the proof technique as discussed in
[PS00] and it is not at all unusual for efficient blind signature schemes. There, it was
even required that qSig ≤ (log(n))O(1) because they needed a polynomial-time reduction.
In consequence, in our reduction, we greatly benefit from the subexponential hardness
of the underlying lattice problem. Alternatively, we believe that the running time of the
reduction can be significantly reduced to being polynomial in qSig by using techniques
due to Pointcheval [Poi98].

By Theorem 2.2, we get the following strong worst-case security guarantees.

Corollary 3.9 BS is one-more unforgeable if solving ISVP∞ is hard in the worst case
for approximation factors γ ≥ 16dDmn log2(n) = Õ(n5) in lattices that correspond to
ideals in R.

3.3.4. Leakage Resilience

Using an additional restriction for one of the parameters, we can safely leak a (1− o(1))
fraction of the secret key in the unforgeability experiment according to the definition
in Appendix B. Recall that m = bcm log(q)c + 1 for some cm = Õ(1). Thus, it is
possible to choose cm, say log(n), without loosing the scheme’s quasi-optimal efficiency.
The following theorem states that such a choice is sufficient to provide strong leakage
resilience.

To prove the theorem, we use a technical lemma from [KV09] in its alternative inter-
pretation.

Lemma 3.10 ([KV09, Lemma 1]) Let X be a random variable with H := H∞(X),
and fix H ′ ∈ [0, H]. Let f be a function whose range has size 2λ, and set Y := {y ∈
{0, 1}λ|H∞(X|y = f(X)) ≥ H ′}. Then Prob[f(X) ∈ Y] ≥ 1− 2λ−H+H′.

In our context, it states that the conditional min-entropy of the secret key after λ
bits of leakage is at least H ′ but with probability 2λ−H+H′ . We will use the lemma
with H ′ = 1 because one bit of uncertainty is sufficient to apply Lemma 3.7 (witness
indistinguishability) in Theorem 3.8.

Theorem 3.11 (Leakage Resilience) Let cm = ω(1) and let L := log(|Dm
s |) = mn

log(2ds + 1) be the length of the secret key. The conditional min-entropy H∞ of ŝ,
conditioned on S = h(ŝ) and a total secret-key leakage f(ŝ) of λ = δL = (1−o(1))L bits,
is positive with overwhelming probability.

Proof. We prove a conservative lower bound on the amount of tolerated leakage because
we treat the public key S as additional leakage. Therefore, we define a new total leakage

18

function f ′(ŝ) = f(ŝ)||h(ŝ) with a total leakage of at most λ′ = λ + n log(q) bits. Now,
we apply Lemma 3.10 to f ′, λ′, and H ′ with ŝ being the random variable. Observe that
H = L = mn log(2ds + 1). It yields

Prob
[
f ′(ŝ) ∈ Y

]
≥ 1− 2λ+n log(q)−L+1 , (4)

which we want to be overwhelming ≥ 1−2−p(n). We take any function p(n), ω(log(n)) ≤
p(n) ≤ O(n log(n)) and bound the relative leakage δ ≤ 1 − p(n)+n log(q)+1

L = 1 −
Θ(n log(n))
cmΘ(n log(n)) = 1− 1

ω(1) = 1− o(1).

In consequence, (4) becomes ≥ 1− 2

(
1− p(n)+n log(q)+1

L

)
L+n log(q)−L+1

= 1− 2p(n). Thus,
δL = (1− o(1))L leakage bits yield a non-zero conditional min-entropy with probability
1− 2−p(n) ≥ 1− 2−ω(log(n)). �

4. Conclusions

We have shown how to construct an efficient and provably secure blind signature scheme
based on the hardness of worst-case lattice problems. Our scheme has four moves, offers
quasi-optimal performance, and it is leakage resilient in an almost optimal sense. There-
fore, we expect our construction to withstand even subexponential-time and quantum
computer attacks, as well as limited side-channel attacks against the secret key.

Acknowledgments

The author thanks Özgür Dagdelen, Marc Fischlin, Tibor Jager, Vadim Lyubashevsky,
Chris Peikert, Michael Schneider, and Dominique Schröder for reviewing parts of this
work and for very helpful and encouraging discussions. He also thanks the ananymous
reviewers of ASIACRYPT 2010 for their valuable input.

References

[Abe01] Masayuki Abe. A secure three-move blind signature scheme for polyno-
mially many signatures. In Birgit Pfitzmann, editor, EUROCRYPT, vol-
ume 2045 of Lecture Notes in Computer Science, pages 136–151. Springer,
2001.

[ADL+08] Y. Arbitman, G. Dogon, V. Lyubashevsky, D. Micciancio, C. Peikert, and
A. Rosen. SWIFFTX: A proposal for the SHA-3 standard, 2008. In the
First SHA-3 Candidate Conference.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-
key cryptography in the bounded-retrieval model. In Halevi [Hal09], pages
36–54.

19

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In Omer Rein-
gold, editor, TCC, volume 5444 of Lecture Notes in Computer Science,
pages 474–495. Springer, 2009.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In STOC, pages 99–108. ACM, 1996.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the
shortest lattice vector problem. In STOC, pages 601–610. ACM, 2001.

[ANN06] Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On
the (im)possibility of blind message authentication codes. In David
Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in Computer
Science, pages 262–279. Springer, 2006.

[AO09] Masayuki Abe and Miyako Ohkubo. A framework for universally compos-
able non-committing blind signatures. In Matsui [Mat09], pages 435–450.

[BMV08] Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Separation
results on the ”one-more” computational problems. In Tal Malkin, editor,
CT-RSA, volume 4964 of Lecture Notes in Computer Science, pages 71–
87. Springer, 2008.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM Conference on Computer
and Communications Security, pages 390–399. ACM, 2006.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. The one-more-rsa-inversion problems and the security of
chaum’s blind signature scheme. J. Cryptology, 16(3):185–215, 2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature scheme. In
Yvo Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture
Notes in Computer Science, pages 31–46. Springer, 2003.

[BR93] Mihir Bellare and Pil Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In CCS. ACM, 1993.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO,
pages 199–203, 1982.

[CKW04] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind
signatures without random oracles. In Security in Communication Net-
works, volume 3352 of Lecture Notes in Computer Science, pages 134–148.
Springer, 2004.

20

[CNS07] Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive
oblivious transfer. In Moni Naor, editor, EUROCRYPT, volume 4515 of
Lecture Notes in Computer Science, pages 573–590. Springer, 2007.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptogra-
phy. In FOCS, pages 293–302. IEEE Computer Society, 2008.

[ECR10] ECRYPT2. Yearly report on algorithms and keysizes — report D.SPA.13,
2010. available at http://www.ecrypt.eu.org/documents/D.SPA.13.

pdf.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the com-
mon reference string model. In Cynthia Dwork, editor, CRYPTO, volume
4117 of Lecture Notes in Computer Science, pages 60–77. Springer, 2006.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO, volume 263 of Lecture Notes in Computer Science, pages 186–
194. Springer, 1986.

[FS09] Marc Fischlin and Dominique Schröder. Security of blind signatures un-
der aborts. In Stanislaw Jarecki and Gene Tsudik, editors, Public Key
Cryptography, volume 5443 of Lecture Notes in Computer Science, pages
297–316. Springer, 2009.

[Gol04] Oded Goldreich. The Foundations of Cryptography, volume 1. Cambridge
University Press, 2004.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, STOC, pages 197–206. ACM, 2008.

[Hal09] Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer
Science. Springer, 2009.

[HKKL07] Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell.
Concurrently-secure blind signatures without random oracles or setup
assumptions. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture
Notes in Computer Science, pages 323–341. Springer, 2007.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind dig-
ital signatures (extended abstract). In Burton S. Jr. Kaliski, editor,
CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages 150–
164. Springer, 1997.

21

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently se-
cure identification schemes based on the worst-case hardness of lattice
problems. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of Lec-
ture Notes in Computer Science, pages 372–389. Springer, 2008.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with
bounded leakage resilience. In Matsui [Mat09], pages 703–720.

[Len05] Arjen Lenstra. The Handbook of Information Security, chapter 114 —
Key Lengths. Wiley, 2005. available at http://www.keylength.com/

biblio/Handbook_of_Information_Security_-_Keylength.pdf.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knap-
sacks are collision resistant. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, ICALP (2), volume 4052 of Lecture
Notes in Computer Science, pages 144–155. Springer, 2006.

[Lyu08a] Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In Ronald Cramer, editor, Public Key Cryptography, vol-
ume 4939 of Lecture Notes in Computer Science, pages 162–179. Springer,
2008.

[Lyu08b] Vadim Lyubashevsky. Towards Practical Lattice-Based Cryptography.
PhD thesis, University of California, San Diego, 2008.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice
and factoring-based signatures. In Matsui [Mat09], pages 598–616.

[Mat09] Mitsuru Matsui, editor. Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Tokyo, Japan, December 6-10, 2009. Pro-
ceedings, volume 5912 of Lecture Notes in Computer Science. Springer,
2009.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leak-
age. In Halevi [Hal09], pages 18–35.

[Oka92] Tatsuaki Okamoto. Provably secure and practical identification schemes
and corresponding signature schemes. In Ernest F. Brickell, editor,
CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 31–
53. Springer, 1992.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without
random oracles. In Shai Halevi and Tal Rabin, editors, TCC, volume 3876
of Lecture Notes in Computer Science, pages 80–99. Springer, 2006.

[Poi98] David Pointcheval. Strengthened security for blind signatures. In Kaisa
Nyberg, editor, EUROCRYPT, volume 1403 of Lecture Notes in Com-
puter Science, pages 391–405. Springer, 1998.

22

[PS97] David Pointcheval and Jacques Stern. New blind signatures equivalent to
factorization (extended abstract). In ACM Conference on Computer and
Communications Security, pages 92–99, 1997.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. J. Cryptology, 13(3):361–396, 2000.

[RHOAGZ07] Francisco Rodŕıguez-Henŕıquez, Daniel Ortiz-Arroyo, and Claudia
Garćıa-Zamora. Yet another improvement over the mu-varadharajan e-
voting protocol. Comput. Stand. Interfaces, 29(4):471–480, 2007.

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-
based cryptosystems. Cryptology ePrint Archive, Report 2010/137, 2010.
http://eprint.iacr.org/.

[Rüc10] Markus Rückert. Adaptively secure identity-based identification from lat-
tices without random oracles. In Juan A. Garay and Roberto De Prisco,
editors, SCN, volume 6280 of Lecture Notes in Computer Science, pages
345–362. Springer, 2010.

[Sch91] C.P. Schnorr. Efficient signature generation by smart cards. J. Cryptology,
4:161–174, 1991.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM J. Comput.,
26(5):1484–1509, 1997.

A. Forking Lemma

The generalized Forking Lemma of Bellare and Neven [BN06] is a tool for proving se-
curity in the random oracle model. It provides a lower bound for the probability that a
randomized algorithm outputs two related values when run twice with the same random
tape but with a different random oracle.

Lemma A.1 (Lemma 1 in [BN06]) Fix an integer q ≥ 1 and a set H of size h ≥ 2.
Let A be a randomized algorithm that on input x, h1, . . . , hq returns a pair, the first
element of which is an integer in the range 0, . . . , q and the second element of which
we refer to as a side output. Let IG be a randomized algorithm that we call the input
generator. The accepting probability of A, denoted acc, is defined as the probability that
J ≥ 1 in the experiment x←$IG;h1, . . . , hq←$H; (J, σ)←$A(x, h1, . . . , hq). The forking
algorithm FA associated to A is the randomized algorithm that takes input x proceeds as
follows:

Algorithm FA(x)
Pick coins ρ for A at random
h1, . . . , hq←$H

23

(I, σ)← A(x, h1, . . . , hq; ρ)
If I = 0 then return (0, ε, ε)
h′I , . . . , h

′
q←$H

(I ′, σ′)← A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
q; ρ)

If I = I ′ and hI 6= h′I′ then return (1, σ, σ′)
Else return (0, ε, ε).

Let frk = Prob[b = 1 : x←$IG; (b, σ, σ′)← FA(x)]. Then frk ≥ acc
(
acc
q −

1
h

)
.

B. Leakage-resilience for Blind Signatures

The following experiment Expomf,λ-Leak
U∗,BS models leakage-resilience for unforgeability of

blind signatures. The scheme BS is leakage-resilient with λ if there is no efficient ad-
versary U∗ for which the experiment outputs 1. The parameter λ is a function of the
length L of the secret key and it controls the amount of tolerated leakage.

Experiment Expomf,λ-Leak
U∗,BS (n)

H←$H(1n)
(pk, sk)←$BS.Kg(1n)

{(M1, s1), . . . , (M, s)}←$U∗H(·),〈S(sk),·〉∞,Leak(sk,·)(pk)
Let ` be the number of successful interaction between U∗ and the signer.
Let f1, . . . , fκ be the leakage queries of U∗, each with output length λi.
Return 1 iff

1. Mi 6= Mj for all 1 ≤ i < j ≤ ;
2. BS.Vf(pk, si,Mi) = 1 for all i = 1, . . . , ;
3. `+ 1 = ;
4.
∑κ

i=1 λi ≤ λ(|sk|).

C. Practical Parameters

Although worst-case guarantees are a good argument for lattice-based cryptography in
general, we need to analyze the underlying average-case problem, the collision problem,
directly before proposing concrete parameters. To this end, we use the results from
[RS10], which provides a framework for choosing secure parameters for lattice-based
cryptography.

All we need to apply the framework, is to feed it with valid parameter relations
(cf. Table 2) and run the main reduction (one-more unforgeability). As a result, we end
up with an instance of the collision problem Col(H(R,m), D), or alternatively with the
SIS (short integer solution) problem. Since [RS10] only deals with `2-norm we relax the
adversaries task and assume it only needs to find a vector of Euclidean norm ≤ dD

√
mn.

The resulting instance of SIS then yields a hardness estimate δ, which can be related to
“bit security”.

24

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
u
n
s

φ

4096
2048
1024

exp(2/φ)

Figure 3: Average number of runs needed to complete in the signature protocol of BS
for φ ∈ [1, 15] ∩ Z

C.1. Optimization

Before we propose actual parameters, we show how to optimize the choice of parameters
based on the constraints in Table 2. We discuss the parameters q, ψ, φ, and ds.

Choosing q. From Table 2 and Theorem 2.2, we know that the worst-case to average-
case reduction relies on having q ≥ 4mn

√
n log(n)dD = Θ̃(n5√n). For practical param-

eters, we typically arrive at q ≈ n8.

Choosing ψ. As noted before, we can safely set ψ = 1 and let the user handle an
expected number of e restarts after Step 2 in the protocol. These restarts are performed
locally and experiments show that they do not significantly affect the overall efficiency
of the protocol.

Choosing φ. For φ, the situation is different because it controls the probability of a
restart after Steps 3 and 4. Restarts at this point cannot be done locally and involve an
increase in communication and computation costs. The influence becomes obvious when
looking at Figure 3. It shows the number of required repetitions of the blind signature
protocol for n ∈ {1024, 2048, 4096} and φ ∈ [1, 15] ∩ Z, averaged over 1000 random
instances. As a comparison, it also shows the estimated number of repetitions e2/φ from

25

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[
m
s
]

φ

4096

2048

1024

Figure 4: Average running time of signature protocol and the verification algorithm of
BS for φ ∈ [1, 15] ∩ Z in milliseconds. The running times include eventual
restarts.

Section 3. As expected, the behavior is almost independent of n. Our experiments
show that one should at least choose φ ≥ 4 and by closely looking at the numbers it
even makes sense to choose φ = 10 in some cases. This observation is backed up by
Figure 4, which shows the actual combined running time in milliseconds of signing and
verification, averaged over 1000 random instances. Since our implementation is pretty
straightforward without many optimizations, we believe that there is a lot of room for
improvements.

When increasing φ, one has to keep in mind that a larger φ also increases dD and
requires a slightly stronger hardness assumption.

Choosing ds. When looking at the constraint for m, basically m > log(q)/ log(2ds), it
is clear that a larger ds allows us to choose a smaller m. This can dramatically decrease
the required bandwidth and computational cost at the expense of a slightly larger secret
key. We show the effect of a larger ds in Figure 5 for n = 1024 and φ = 4. Notice that
we take the logarithm of ds and round m to the next integer. So, in order to decrease m
by a factor k, we need to choose ds around 2k. When removing the outliers, this leads to
a perfect stair-stepped graph. Also, this increase comes at the price of having a larger
dD and requires stronger hardness assumption.

26

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

[
m
s
]

d
s

2048

Figure 5: Average running time of signature protocol and the verification algorithm of
BS for ds ∈ [1, 1024] ∩ Z and n = 1024 and φ = 4.

C.2. Secure Parameters

Table 3 shows a few exemplary parameter sets for current (76 bit) and medium (102 bit)
security levels. According to www.keylength.com, they correspond to security until the
years 2012 and, 2050, respectively. We leave out the parameter sets for future (256 bit
/ year 2282) security.

For both security levels, we propose three parameter sets. The first requires the
mildest hardness assumption and uses the smallest modulus. The second minimizes
the number of repetitions and the third is simultaneously optimized for computational
cost and bandwidth including restarts. The optimization goal is denoted in bold face.
Depending on the application scenario, other trade-offs are possible.

D. Supporting Lemmas

D.1. Completeness

Proving Lemmas 3.1 and 3.2 concludes the discussion of completeness in Theorem 3.3.
Lemma 3.1 shows that the number of aborts/restarts in the protocol is small. Lemma
3.2 ensures that multiplying two polynomials in R only slightly increases the norm of
the resulting coefficient vector.

27

Parameter Current I Current II Current III Mid I Mid II Mid III

n 1024 1024 1024 2048 2048 2048
q ≈ 278 ≈ 285 ≈ 281 ≈ 285 ≈ 291 ≈ 294

φ 1 8 4 1 10 4
ds 1 1 283 1 1 241080
m 79 86 9 85 92 5

Repetitions 7.13 1.32 1.55 7.67 1.16 1.23
Secret key 15.7 kB 17 kB 10.3 kB 33.7 kB 36.5 kB 23.6kB
Public key 9.8 kB 10.6 kB 10,2 kB 21.2 kB 22.9 kB 23.6 kB
Signature 529.4 kB 643.4 kB 66.9 kB 1228.6 kB 1487.9 kB 89.4 kB
Communication 2706.4 kB 589.5 kB 95.2 kB 6771.5 kB 1199.8 kB 119.1 kB

KeyGen 296 ms 369 ms 37 ms 674 ms 843 ms 52 ms
Signing 7629 ms 1819 ms 220 ms 19000 ms 3656 ms 283 ms
Verification 226 ms 293 ms 33 ms 1620 ms 679 ms 57 ms

Table 3: Exemplary parameters for the blind signature scheme in Section 3. Sizes in kilo
bytes (kB) and times in milliseconds (ms) are rounded to the nearest integer.

Lemma 3.1 Let k = Ω(n), a,b ∈ Zk with arbitrary a ∈ {v ∈ Zk : ‖v‖∞ ≤ A}
and random b←${v ∈ Zk : ‖v‖∞ ≤ B}. Given B ≥ φkA for φ ∈ N>0, we have
Prob

b
[‖a− b‖∞ ≤ B −A] > 1

e1/φ
− o(1).

Proof (Lemma 3.1). Observe that Prob[‖a− b‖∞ ≤ B −A] = Prob[|ai − bi| ≤ B −A]k

and that the bi need to be in the range [−(B −A) + ai, B −A+ ai] ⊆ [−B,B] for that.
Therefore, the probability is(

2(B −A) + 1

2B + 1

)k
>

(
1− A

B

)k
≥
(

1− 1/φ

k

)k
.

By the series expansion at infinity, this is at least 1
e1/φ
− o(1) for an o(1) term that

vanishes like 1/k. �

Lemma 3.2 For any two polynomials a,b ∈ R, we have ‖ab mod (Xn + 1)‖∞ ≤
n ‖a‖∞ ‖b‖∞.

Proof (Lemma 3.2). Note that c = ab mod (Xn + 1) =
∑n−1

i=0 a0bX
i mod (Xn + 1).

Hence, we have ‖c‖∞ =
∥∥∥∑n−1

i=0 a0bX
i mod (Xn + 1)

∥∥∥
∞
≤ n ‖a‖∞maxi=0,...,n−1{bXi mod

(Xn + 1)}, where the last term is reminiscent of an operator norm. For our particular
ring polynomial Xn+ 1, this norm is easy to evaluate because bX = b0X+ b1X

2 + · · ·+
bn−2X

n−1 + bn−1X
n mod (Xn + 1) = −bn−1 + b0X+ b1X

2 + · · ·+ bn−2X
n−1. Therefore,

we have
∥∥bXi mod (Xn + 1)

∥∥
∞ = ‖b‖∞ and ‖c‖∞ ≤ n ‖a‖∞ ‖b‖∞. �

28

D.2. Blindness

Lemma 3.4 establishes blindness in Theorem 3.5. It guarantees that the every output
by the user is distributed independently of the signed message via a careful choice of
parameters and sets.

Lemma 3.4 Let k ∈ N, a,a′,b ∈ Zk with arbitrary a,a′ ∈ {v ∈ Zk : ‖v‖∞ ≤ A},
a random b←${v ∈ Zk : ‖v‖∞ ≤ B} for B > A. We define the random variables
c ← a − b and c′ ← a′ − b if max{‖a− b‖∞ , ‖a′ − b‖∞} ≤ B − A, otherwise, we
resample b. Then, ∆(c, c′) = 0.

Proof (Lemma 3.4). By definition, the statistical distance is
1
2

∑
c:‖c‖∞≤B−A

∣∣∣∣Prob
b

[a− b = c]− Prob
b

[a′ − b = c]

∣∣∣∣ = 1
2

∑
c

∣∣∣∣Prob
b

[b = a− c]− Prob
b

[b = a′ − c]

∣∣∣∣ .
Observe that max{‖a− c‖∞ , ‖a′ − c‖∞} ≤ A+ (B−A) = B and ‖b‖∞ ≤ B. Hence,

the probability in either case is 1/(2B + 1)k and the statistical distance is 0. �

D.3. One-more Unforgeability

Lemma 3.6 ensures that all secret keys collide with at least one alternative secret key
under h. In combination with Lemma 3.7, which proves witness indistinguishability of
the signature issue protocol, this allows us to build a reduction algorithm in Theorem
3.8 that correctly simulates the signer and breaks Col(H(R,m), D) with the help of a
forger.

Lemma 3.6 Let h ∈ H(R,m). For every secret key ŝ←$D
m
s , there is a second ŝ′ ∈

Dm
s \ {ŝ} with h(ŝ) = h(ŝ′) (with overwhelming probability).

Proof (Lemma 3.6). All functions in the family H(R,m) are compressing when applied
to the domain Dm

s for our choice of parameters because |Dm
s | = (2ds + 1)mn > 3mn >

(2ds)
n log(q)/ log(2ds) > 2n log(q) = qn = |R|. Therefore, all but at most qn elements in Dm

s

do not collide. The probability of selecting such an element is at most (q/(2ds+1)m)n <
2−n log(q) log(2ds+1)/ log(2ds) < 2−n log(q) = 2−Ω(n log(n)). �

Lemma 3.7 Let h ∈ H(R,m) and S ∈ R. For any message M and any two secret keys
ŝ, ŝ′ ∈ Dm

s with h(ŝ) = S = h(ŝ′), the resulting protocol views (Y, ε∗, ẑ∗) and (Y′, ε∗′, ẑ∗′)
are indistinguishable.

Proof (Lemma 3.7). The argument is an adaptation of [Lyu08b, Theorem 5.5]. We
interpret the components of the view as random variables. Firstly, observe that Y and
Y′ are chosen independently of the secret key. Secondly, ε∗ and ε∗′ are independent
of a particular ŷ ∈ h−1(Y) ∩ Dm

y because Y statistically hides ŷ. Finally, we need
to argue about the indistinguishability of ẑ∗ and ẑ∗′. Let ε∗ be any challenge and let
ẑ∗ = ŝε∗ + ŷ ∈ Gm∗ . Then, we can set ŷ′ ← ŷ + ŝε∗ − ŝ′ε∗ for which ẑ∗ = ŝ′ε∗ + ŷ′.
We need to show that ŷ′ ∈ h−1(Y) ∩ Dm

y . This implies that for every ŷ (for ŝ), there

29

is a ŷ′ (for ŝ′) that yields the same output. Thus, the probability of a restart would
also be equal. Clearly, ŷ′ ∈ h−1(Y) because h(ŷ′) = Y + Sε∗ − Sε∗ = Y. Furthermore,
‖ŷ′‖∞ ≤ ‖ẑ∗‖∞ + ‖ŝ′ε∗‖∞ ≤ dy − ndsdε∗ + ndsdε∗ = dy by Lemma 3.2 and we can
conclude ŷ′ ∈ Dm

y . �

30

