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Abstract. An efficient variant of the ElGamal public key encryption scheme is proposed which is
provably secure against adaptive chosen ciphertext attacks(IND-CCA2) under the decisional Diffie-
Hellman(DDH) assumption. Compared to the previously most efficient scheme under DDH assumption
by Kurosawa and Desmedt [Crypto 2004] it has one group element shorter ciphertexts, 50% shorter
secret keys, 25% shorter public keys and it is 28.6% more efficient in terms of encryption speed, 33.3%
more efficient in terms of decryption speed. A new security proof logic is used, which shows directly that
the decryption oracle will not help the adversary in the IND-CCA2 game. Compared to the previous
security proof, the decryption simulation is not needed in the new logic. This makes the security proof
simple and easy to understand.
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1 Introduction

Security against adaptive chosen ciphertext attacks (IND-CCA2 security) [1–3] is now commonly
accepted as the standard security notion for public key encryption schemes. Currently, most of
the practical IND-CCA2 secure public key encryption schemes in standard model are variants of
ElGamal[4] scheme. Cramer and Shoup[5, 6] proposed the first provably IND-CCA2 secure prac-
tical public key encryption scheme based on the decisional Diffie-Hellman(DDH) assumption in
the standard model. This was further improved by Kurosawa and Desmedt and yield a more
efficient scheme(KD04)[7]. Kiltz proposed a IND-CCA2 secure KEM(key encapsulation mecha-
nism) under the Gap Hashed Diffie-Hellman(GHDH) assumption[8]. Combined with a redundancy-
free DEM(data encapsulation mechanism) it will yield a IND-CCA2 secure hybrid encryption
scheme(Kiltz07) more efficient than KD04. Okamoto proposed a variant of KD04-KEM that is
IND-CCA2 secure[9] under the DDH assumption and πPRF(pseudo-random function with pairwise-
independent random sources). Combined with a redundancy-free DEM it will also yield a IND-
CCA2 secure hybrid encryption scheme(Okamoto07) more efficient than KD04. M.Abdalla, M.Bellare
and P.Rogaway proposed an efficient Diffie-Hellman Integrated Encryption Scheme(DHIES)[10]
which is provably IND-CCA2 secure based on oracle Diffie-Hellman(ODH) assumption. Although
Kiltz07, Okamoto07 and DHIES are more efficient than KD04, their underlying assumptions are
stronger than the DDH assumption. In fact the ODH assumption can be seen as the combination
of the gap Diffie-Hellman assumption and a random oracle hash function.

To prove the IND-CCA2 security of a scheme we need to show that the decryption oracle will not
give the adversary any useful help. Currently, this is achieved by security reduction: showing that
if there is an adversary A who can attack the IND-CCA2 security of a scheme, then an adversary
B can be constructed to solve the underlying intractable problem. Here adversary B, also called



the simulator, play the attack game with A and simulate the encryption oracle and the decryption
oracle of the scheme perfectly.

1.1 Our Contributions

We propose an efficient variant of the ElGamal public key encryption scheme which is provably
secure against adaptive chosen ciphertext attacks under the DDH assumption. Compared to the
previously most efficient scheme under DDH assumption by Kurosawa and Desmedt[7] it has one
group element shorter ciphertexts, 50% shorter secret keys, 25% shorter public keys and it is 28.6%
more efficient in terms of encryption speed, 33.3% more efficient in terms of decryption speed.

A new security proof logic is used, which shows directly that the decryption oracle will not help
the adversary in the IND-CCA2 game. In the new security proof method ciphertexts submitted
by the adversary are classified into two categories: ciphertexts that constructed by the adversary
independent of the challenge ciphertext(independent-ciphertexts) and ciphertexts that constructed
based on the challenge ciphertext(extended-ciphertexts). We show that the decryption will reject all
extended-ciphertexts. For independent-ciphertexts, we show that the decryption oracle will not leak
the distribution information of eKey(the key of the one-time symmetric key encryption scheme).
Since one-time symmetric key encryption scheme(SKE) is secure against passive attacks, the de-
cryption oracle will not leak information about the distribution of b(the target of IND-CCA2 game)
except with negligible probability. Compared to the previous security proof, we do not need to con-
struct the decryption simulation in the new logic. This makes the security proof simple and easy
to understand.

2 Definitions

In this section we describe the definitions of public key encryption, one-time symmetric encryp-
tion scheme, one-time message authentication code, target collision resistant hash function and
decisional Diffie-Hellman assumption.

In describing probabilistic processes, we write x
R← X to denote the action of assigning to the

variable x a value sampled according to the distribution X. If S is a finite set, we simply write
s

R← S to denote assignment to s of an element sampled from uniform distribution on S. If A is a
probabilistic algorithm and x an input, then A(x) denotes the output distribution of A on input x.
Thus, we write y

R← A(x) to denote of running algorithm A on input x and assigning the output
to the variable y.

2.1 Public Key Encryption

A public key encryption scheme consists the following algorithms:

– PKE.KeyGen(l): A probabilistic polynomial-time key generation algorithm takes as input a
security parameter l and outputs a public key/secret key pair (PK,SK). We write (PK,SK)←
PKE.KeyGen(l)

– PKE.Encrypt(PK,m): A probabilistic polynomial-time encryption algorithm takes as input a
public key PK and a message m, and outputs a ciphertext C. We write C ← PKE.Encrypt(PK,m)
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– PKE.Decrypt(SK,C): A decryption algorithm takes as input a ciphertext C and secret key SK,
and outputs a plaintext m or a reject symbol ⊥. We write m← PKE.Decrypt(SK, C).

We require that for all PK,SK output by PKE.KeyGen(l), all m ∈ {0, 1}∗, and all C output by
PKE.Encrypt(PK,m) we have PKE.Decrypt(SK, C) = m .

A public key encryption scheme is secure against adaptive chosen ciphertext attacks if the
advantage of any adversary in the following game is negligible in the security parameter l:

1. The adversary queries a key generation oracle. The key generation oracle computes (PK,SK)←
PKE.KeyGen(l) and responds with PK.

2. The adversary makes a sequence of calls to the decryption oracle. For each decryption or-
acle query the adversary submits a ciphertext C, and the decryption oracle responds with
PKE.Decrypt(SK, C).

3. The adversary submits two messages m0,m1 with |m0| = |m1|. On input m0,m1 the encryption
oracle computes:

b
R← {0, 1};C∗ ← PKE.Encrypt(PK,mb)

and responds with C∗.
4. The adversary continues to make calls to the decryption oracle except that it may not request

the decryption of C∗.
5. Finally, the adversary outputs a guess b′.

We say the adversary succeeds if b′ = b, and denote the probability of this event by PrA[Succ].
The adversary’s advantage is defined as AdvCCAPKE,A = |PrA[Succ]− 1/2|.

2.2 One-time symmetric key encryption scheme

Now we review the definition of one-time symmetric key encryption scheme[6]. A one-time sym-
metric key encryption scheme SKE consists of two algorithms:

– SKE.Encrypt(k, m): The deterministic, polynomial-time encryption algorithm takes as input a
key k, and a message m, and outputs a ciphertext χ. We write χ← SKE.Encrypt(k, m)

– SKE.Decrypt(k, χ): The deterministic, polynomial-time decryption algorithm takes as input a
key k, and a ciphertext χ, and outputs a message m or the special symbol reject. We write
m← SKE.Decrypt(k, χ)

We require that for all kLen ∈ N , for all k ∈ {0, 1}kLen,kLen denotes the length of the key of
SKE, and for all m ∈ {0, 1}∗ ,we have:

SKE.Decrypt(k, SKE.Encrypt(k, m)) = m.

A SKE scheme is secure against passive attacks if the advantage of any probabilistic, polynomial-
time adversary A in the following game is negligible in the security parameter kLen:

1. The challenger randomly generates an appropriately sized key k ∈ {0, 1}kLen.
2. A queries an encryption oracle with two messages m0,m1 , |m0| = |m1|. A bit b is randomly

chosen and the adversary is given a ”challenge ciphertext” χ∗ ← SKE.Encrypt(k, mb).
3. Finally, A outputs a guess b′ .

The adversary’s advantage in the above game is defined as AdvPASKE,A(kLen) = |Pr[b =
b′]− 1/2|. If a SKE is secure against passive attack we say it is IND-PA secure.
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2.3 One-time message authentication code

Now we review the definition of one-time message authentication code[6]. A one-time message
authentication code MAC consists of two algorithms:

– MAC.Gen(l): The parameter generate algorithm takes as input l, and outputs the definitions
of key space KV and the verification message space MV . We write (KV ,MV )←MAC.Gen(l)

– MAC.Ver(kv, α): The verification algorithm takes as input a key kv ∈ KV , and a message
α ∈ {0, 1}∗, and outputs a tag τ ∈MV . We write τ ←MAC.V er(kv, α)

We define the forgery attack game as follows:

1. MAC.Gen(l) outputs KV ,MV .
2. The adversary chose a bit string α∗ ∈ {0, 1}∗, and submits this to the verify oracle. The verify

oracle generate a random key kv ∈ KV then responds τ∗ ←MAC.V er(kv, α
∗) to A.

3. A outputs a list:
((α1, τ1), · · · , (αn, τn))

We say that A has produced a forgery if for some 1 ≤ i ≤ n and αi 6= α∗, we have τi ←
MAC.V er(kv, αi), where n ≤ N(l), N() is a polynomial function. Define AdvForgeMAC to be the
probability that A produces a forgery in the above game.

A MAC is secure against forgery attacks if the advantage of any PPT adversary A grows
negligibly in l.

2.4 Target collision resistant hash function

A (t, ε) target collision resistant hash function (TCR) family is a collection F of functions fK :
{0, 1}n → {0, 1}m indexed by a key K ∈ K (where K denotes the key space), and such that any
attack algorithm A running in time t has success probability at most ε in the following game:

– Key Sampling: A uniformly random key K ∈ K is chosen (but not yet revealed to A).
– A Commits: A runs (with no input) and outputs a hash function input s1 ∈ {0, 1}n.
– Key Revealed: The key K is given to A.
– A Collides: A continues running and outputs a second hash function input s2 ∈ {0, 1}n.

We say that A succeeds in the above game if it finds a valid collision for fK , i.e. if s1 6= s2 but
fK(s1) = fK(s2). We define the advantage of A as AdvTCR = |Pr[fK(s1) = fK(s2) : s1 6= s2]−1/2|.
We say H is target collision resistant hash function if AdvTCR is negligible.

2.5 Decisional Diffie-Hellman assumption

Now we review the definition of decisional Diffie-Hellman assumption[10]. Let G be a group of large
prime order q, A be an adversary, consider the following two experiments:

experiments Expddh−real
G,A : a, b

R← Z∗
q ;W ← gab; γ ← A(ga, gb,W ); return γ

experiments Expddh−rand
H,A : a, b, c

R← Z∗
q ;W ← gc; γ ← A(ga, gb,W ); return γ

Now define the advantage of the A as:

Advddh
G,A = |Pr[Expddh−real

G,A = 1]− Pr[Expddh−rand
G,A = 1]|

When it is the Expddh−rand
G,A experiment we say (g, ga, gb,W ) comes from the random distribution

R, otherwise we say (g, ga, gb,W ) comes from the DDH distribution D.
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3 New Scheme

We describe our new scheme as follow:

– KeyGen(1k): Assume that G is a group of order q where q is large prime number.

g
R← G;x, y

R← Z∗
q ; c← gx; d← gy

PK ← (g, c, d,H, TCR, SKE, MAC);SK ← (x, y)

Here TCR is a target collision resistant hash function, H : G → {0, 1}eLen+mLen is a hash
function that H(v) is uniformly distributed over {0, 1}(eLen+mLen) if v is uniformly distributed
over G(eLen is the length of SKE key, mLen is the length of MAC key), SKE is a IND-PA
secure one-time symmetric key encryption scheme, MAC is an one-time message authentication
code secure against forgery attacks.

– Encrypt(PK, m): The encryption algorithm works as follow:

r
R← Z∗

q ;u← gr; a← TCR(u); k ← H(crdra)

encKey ← k[1 · · · eLen];macKey ← k[eLen + 1 · · · eLen + mLen];

e← SKE.Encrypt(encKey, m), v ←MAC.V er(macKey, e);C ← (u, e, v)

– Decrypt(SK, C): The decryption algorithm works as follow:

a← TCR(u); k ← H(ux+ay)

encKey ← k[1 · · · eLen];macKey ← k[eLen + 1 · · · eLen + mLen];

if v = MAC.V er(macKey, e) return m← SKE.Decrypt(encKey, e);

else return ⊥

Now we prove that the scheme above is IND-CCA2 secure under the DDH assumption:

Theorem 1. The scheme above is secure against adaptive chosen cipher-text attack assuming that
(1) the decisional Diffie-Hellman problem is hard in group G, (2) SKE is secure against passive
attack, (3)MAC is secure against forgery attack, (4)TCR is a target collision resistant hash function.

To prove the theorem, we show that the decryption oracle will not leak any information about
the distribution of the hidden bit b except with negligible probability. Ciphertexts submitted by
the adversary are classified into two categories: ciphertexts that constructed by the adversary
independent of the challenge ciphertext(independent-ciphertexts) and ciphertexts that constructed
based on the challenge ciphertext(extended-ciphertexts). We show that the decryption will reject
all extended-ciphertexts. For independent-ciphertexts, we show that the decryption oracle will not
leak the distribution information of eKey. Since SKE is IND-PA secure, the decryption oracle will
not leak information about the distribution of b except with negligible probability.

In the IND-CCA2 game, the challenger runs the PKE.KeyGen(1) program and gets PK =
(g, c, d, TCR,H, SKE, MAC), SK = (x, y). Then the challenger gives PK to the adversary. In de-
cryption query phase, when receives the decryption request Ci = (ui, ei, vi) the challenger responses
with PKE.Decrypt(SK, Ci). In encryption oracle query phase, the challenger computes as follow:
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b
R← {0, 1}; r R← Z∗

q ;u← gr; a← TCR(u); k ← H(crdra)

encKey ← k[1 · · · eLen];macKey ← k[eLen + 1 · · · eLen + mLen];

e← SKE.Encrypt(encKey, mb), v ←MAC.V er(macKey, e);C ← (u, e, v)

Then the challenger send C to the adversary. The theorem now follows immediately from the
following two lemmas.

Lemma 1. The decryption oracle will not leak any information about the distribution of the hidden
bit b except with negligible probability.

When receive a decryption query Ci = (ui, ei, vi), there are four cases we need to consider.
Case1, Case2 and Case3 are the situations of extended-ciphertexts. Case 4 is the situation of
independent-ciphertexts.

Case 1: ui = u, ei = e, vi 6= v. It is clear that vi 6= MAC.V er(macKeyi, ei), and Ci will be rejected.
In this case the decryption oracle will not leak any information about the distribution of the
hidden bit b.

Case 2: ui = u, ei 6= e. Since MAC is secure against forgery attacks, we get that vi 6= MAC.V er(macKey∗, ei)
except with negligible probability. Thus, Ci will be rejected in this case. It yield that the de-
cryption oracle will not leak any information about the distribution of the hidden bit b except
with negligible probability.

Case 3: ui 6= u and ui is constructed based on u. Let ui = gri , ri = tr, ai = TCR(ui), we get cridriai =
ctrdtrai = (crdra)tdtr(ai−a). Since TCR is a target collision resistant hash function we have that
ai 6= a. Suppose the adversary can get H(crdra) from C, the information the adversary can
get includes (g, c, d, gr,H(crdra). Now we show that if the adversary A can distinguish dr from
random value we can construct an adversary B to solve the DDH problem:

Given a DDH challenge (g1, g2, u1, u2) ∈ G4, B selects random number w ∈ Z∗
q , sets g ←

g1, d ← g2, a ← TCR(u1), c ← gwd−a. Then B gives (g, c, d, u1,H(uw
1 ), u2) to A. Let u1 = gr

1,
we have uw

1 = (gwd−a)r
dra = crdra. So if A can tell whether u2 = dr then B can tell whether

u2 = dr = gr
2.

Now we have cridriai = (crdra)tdtr(ai−a) is independent from the adversary’s view. So macKeyi =
H(cridriai)[eLen+1 · · · eLen+mLen] is independent from the adversary’s view. Then the prob-
ability of vi = MAC.V er(macKeyi, ei) is negligible, and Ci will be rejected except with neg-
ligible probability. It yields that the decryption oracle will not leak any information about the
distribution of the hidden bit b except with negligible probability.

Case 4: ui 6= u and ui is independent of u. Let ui = gri , we have that ki = H(cridriai) is independent of
k = H(crdra). Since SKE is IND-PA secure the decryption oracle will not leak the information
of b directly. Now we show that the decryption oracle will not help the adversary to solve
the DDH problem of (g, cda, gr, (cda)r). Thus it will not leak the information of b indirectly.
Suppose the adversary can get ki = H(cridriai) from (Ci,mi). We show that if the adversary A
can distinguish (cda)ri from random value conditioned on ki, then we can construct an adversary
B to solve the DDH problem:
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Given a DDH challenge (g1, g2, u1, u2) ∈ G4, B selects random number w ∈ Z∗
q , sets g ←

g1, ai ← TCR(u1), c ← gwd−ai , d ← (g2g
−w)1/(a−ai). Then B gives (g, c, d, u1,H(uw

1 ), u2) to A.
Let u1 = gri

1 , we have uw
1 = (gwd−ai)ridriai = cridriai . So if A can tell whether u2 = (cda)ri then

B can tell whether u2 = (cda)ri = gri
2 .

We have that the output of the decryption oracle mi will not leak the distribution information
of (cda)ri . It means that the decryption oracle will not help the adversary to solve the DDH
problem of (g, cda, gr, (cda)r). So the decryption oracle will not leak the distribution information
of b indirectly. Finally, it yields that the decryption oracle will not leak any information about
the distribution of the hidden bit b in this case.

Lemma 2. Without the help of the decryption oracle the adversary can not distinguish b from 0
to 1 except with negligible probability.

We show that if the adversary can distinguish k = H((cda)r) from random value, then we can
construct an adversary B to solve the DDH problem:

Given a DDH challenge (g1, g2, u1, u2) ∈ G4, B selects random number w ∈ Z∗
q , sets g ← g1, d←

g2, c← gw
2 , a← TCR(u1),. Then B gives (g, c, d, u1,H(uw+a

2 ) to A. Let u1 = gr
1, u2 = gr′

2 , we have
uw+a

2 = cr′
dar′

. So if A can tell whether H(uw+a
2 ) = H(crdar) then B can tell whether u2 = gr

2.

We have that, without the help of the decryption oracle, encKey = H((cda)r)[1 · · · eLen] will
be independent from the adversary’s view. Since the SKE is IND-PA secure, the adversary can not
distinguish b from 0 to 1 except with negligible probability.

That’s finish the proof of theorem 1.
Remark:Note that a new proof logic was used in the security proof above, which shows directly

that the decryption oracle will not help the adversary. This is different from the typical reduction
proof, and our proof dose not need the decryption simulation.

4 Efficiency Analysis

The efficiency of KD04, Kiltz07, Okamoto07, DHIES and our scheme is listed in table 1.

Table 1. Efficiency comparison

Encryption(exp) Decryption(exp) Cipher-text overhead(bit) Assumption Public key Secret key

KD04 3.5(2exp+1mexp) 1.5(0exp+1mexp) 2|p| + |t| DDH 4|p| 4|q|
Kiltz07 3.5(2exp+1mexp) 1.5(0exp+1mexp) 2|p| GHDH 3|p| 2|q|

Okamoto07 3.5(2exp+1mexp) 1.5(0exp+1mexp) 2|p| DDH+πPRF 4|p| 4|q|
DHIES 2(2exp+0mexp) 1(1exp+0mexp) |p| + |t| ODH 2|p| 1|q|
NEW 2.5 (1exp+1mexp) 1(1exp+0mexp) |p| + |t| DDH 3|p| 2|q|

In table1, NEW is our new scheme, KD04 is the scheme in [7], Kiltz07 is the hybrid scheme
constructed by the KEM in [8] and a redundancy-free DEM, Okamoto07 is the hybrid scheme
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constructed by the KEM in [9] and a redundancy-free DEM, DHIES is the scheme in [10]. When
tabulating computational efficiency hash function and block cipher evaluations are ignored, multi-
exponentiation (mexp) is counted as 1.5 exponentiations (exp). Ciphertext overhead represents the
difference between the ciphertext length and the message length, and |p| is the length of an element
of G, |q| is the length of an element of Z∗

q , |t| is the length of the one-time message authentication
code.

It is clear that the new scheme is more efficient than all previously schemes except DHIES.
Yet DHIES is provably secure under the ODH assumption which can be seen as the combination
of the Gap Diffie-Hellman assumption and a random oracle hash function. While, our scheme can
be proved to be IND-CCA2 secure under the DDH assumption. Compared to the previously most
efficient scheme under DDH assumption by Kurosawa and Desmedt[7] it has one group element
shorter ciphertexts, 50% shorter secret keys, 25% shorter public keys and it is 28.6% more efficient
in terms of encryption speed, 33.3% more efficient in terms of decryption speed.

5 Conclusion

We proposed a new variant of the ElGamal public key encryption scheme. The new scheme is nearly
as efficient as the most efficient variant of ElGamal, DHIES. However, the new scheme is provably
IND-CCA2 secure under the DDH assumption. Compared to the previously most efficient scheme
under DDH assumption by Kurosawa and Desmedt[7] it more efficient in terms of computation,
bandwidth and key size. In the security proof, a simple and direct proof logic was used, which shows
directly that the decryption oracle will not leak the distribution information of b. Compared to the
current security reduction logic, the decryption simulation is not needed in the new proof logic.
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