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Abstract. Building upon a famous result due to Ajtai, we propose a
sequence of lattice bases with growing dimension, which can be expected
to be hard instances of the shortest vector problem (SVP) and which can
therefore be used to benchmark lattice reduction algorithms.
The SVP is the basis of security for potentially post-quantum cryptosys-
tems. We use our sequence of lattice bases to create a challenge, which
may be helpful in determining appropriate parameters for these schemes.
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1 Introduction

For the construction of post-quantum cryptosystems, it is necessary to identify
computational problems, whose difficulty can be used as a basis of the security
for such systems, and that remain difficult even in the presence of quantum com-
puters. One candidate is the problem of approximating short vectors in a lattice
(shortest vector problem — SVP). The quantum-hardness of this problem was
analyzed by Ludwig [24] and Regev [32]. They both find that the computational
advantage gained with quantum computers is marginal. There are several cryp-
tographic schemes whose security is based on the intractability of the SVP in
lattices of sufficiently large dimension (e.g. [15,16,3,33]). To determine appropri-
ate parameters for these cryptosystems, it is necessary to assess the practical
difficulty of this problem as precisely as possible.

In this paper, we present a sequence of lattice bases with increasing dimen-
sion, which we propose as a world wide challenge. The construction of these
lattices is based both on theoretical and on practical considerations. On the the-
oretical side, we apply a result of Ajtai [2]. It states that being able to find a
sufficiently short vector in a random lattice from a certain set, which also con-
tains our challenge lattices, implies the ability to solve supposedly hard problems
(cf. [34]) in all lattices with a slightly smaller dimension than that of the random
lattice. Furthermore, we invoke a theorem of Dirichlet on Diophantine approxi-
mation (cf. [19]). It guarantees the existence of a short vector in each challenge
lattice. On the practical side, using an analysis by Gama and Nguyen [12], we
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argue that finding this vector is hard for the lattices in our challenge. We also
present first experimental results that confirm the analysis.

Our challenge at http://www.latticechallenge.org can be considered as
an analogue of similar challenges for the integer factoring problem [35] and the
problems of computing discrete logarithms in the multiplicative group of a finite
field [26], or in the group of points on an elliptic curve over a finite field [9].

Our aim is to evaluate the current state-of-the-art in practical lattice basis
reduction by providing means for an immediate and well-founded comparison.
As a first application of the proposed challenge, we compare the performance of
LLL-type reduction methods — LLL [23], Stehlé’s fpLLL [29], Koy and Schnorr’s
segment LLL (sLLL) [21] — and block-type algorithms — Schnorr’s BKZ [38,37],
Koy’s primal-dual (PD) [20], Ludwig’s practical random sampling 1 (PSR) [25].
To our knowledge, this is the first comparison of these algorithms.

Related work. Lattice reduction has been subject to intense studies over the
last decades, where a couple of methods and reduction schemes, in particular
the LLL algorithm by Lenstra, Lenstra, and Lovász [23], have been developed
and successively improved. Especially, the block Korkine Zolorarev algorithm
(BKZ), due to Schnorr [37,38], has become the standard method when strong
lattice basis reduction is required.

There have been several approaches to measure the effectiveness of known
lattice reduction algorithms, especially in the context of the NTRU cryptosystem
[16]. Some of them, as in [17,18], base their analysis on cryptosystems while
others, like [30,12], make a more general approach using random lattices.

To our knowledge, there has never been a unified challenge, one that is in-
dependent of a specific cryptosystem, for lattice reduction algorithms. In all
previous challenges, the solution was always known to the creator.

Organization. In Section 2, we provide a brief introduction to lattices and state
some fundamental definitions. In Section 3, we define a family of lattices and
prove two properties, which are fundamental for our explicit construction pre-
sented in Section 4. Then, we give first experimental results comparing the per-
formance of various lattice reduction algorithms in Section 5. Finally, Section 6
introduces the actual lattice challenge.

2 Preliminaries

Let Rn denote the n-dimensional real vectorspace. We write the vectors of this
space in boldface to distinguish them from numbers. Any two vectors v,w ∈ Rn

have an inner product 〈v,w〉 = vT w. Any v ∈ Rn has a length given by the
Euclidean norm ‖v‖2 =

√〈v,v〉 =
√
v2
1 + · · ·+ v2

n. In addition to the Euclidean
norm, we also use the maximum norm ‖v‖∞ = maxi=1,...,n{|vi| }.

A lattice in Rn is a set L = {∑m
i=1 xi bi |xi ∈ Z}, where b1, . . . ,bm are

linearly independent over R. The matrix B = [b1, . . . ,bm] is called a basis of
1 A practical variant of Schnorr’s random sampling reduction [39].
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the lattice L and we write L = L(B). The number of linearly independent
vectors in the basis is the dimension of the lattice. If dim(L(B)) = n the lattice
is full-dimensional.

An m-dimensional lattice L = L(B) has many different bases, namely all
the matrices in the orbit BGLm(Z) = {BT |T ∈ GLm(Z)}. If the lattice is
full-dimensional and integral, that is L ⊆ Zn, then there exists a unique basis
B = (bi,j) of L, which is in Hermite normal form (HNF), i.e.

i. bi,j = 0 for all 1 ≤ j < i ≤ m
ii. bi,i > bi,j ≥ 0 for all 1 ≤ i < j ≤ m

Furthermore, the volume vol(L) of a full-dimensional lattice is defined as
|det(B)|, for any basis B of L. For every m-dimensional lattice L there is a dual
(or polar, reciprocal) lattice L∗ = {x ∈ Rm | ∀y ∈ L : 〈x,y〉 ∈ Z}. For any
full-dimensional lattice L = L(B), it holds that L∗ = L((B−1)T ). The length
of the shortest lattice vector, denoted with λ1 = λ1(L), is called first successive
minimum.

3 Foundations of the challenge

In this section, we define a family of sets containing lattices, where each set will
have two important properties:

1. All lattices in the set contain non-obvious short vectors;
2. Being able to find a short vector in a lattice chosen uniformly at random

from the set, implies being able to solve difficult computational problems in
all lattices of a certain smaller dimension.

The family of lattice sets. Let n ∈ N, c1, c2 ∈ R>0, such that

1
2 ln(2)

≤ c2 ≤ c1
4

ln
(

n

c1 ln(n)

)
. (1)

Furthermore, let

m = bc1n ln(n)c , (2)
q = bnc2c , (3)

and Zq = {0, . . . , q − 1}. For a matrix X ∈ Zn×m
q , with column vectors x1, . . . ,

xm, let

L(c1, c2, n,X) =

{
(v1, . . . , vm) ∈ Zm

∣∣∣∣∣
m∑

i=1

vi xi ≡ 0 (mod q)

}
.

All lattices in the set L(c1, c2, n, ·) = {L(c1, c2, n,X)|X ∈ Zn×m
q } are of dimen-

sion m and the family of lattices L is the set of all L(c1, c2, n, ·), such that c1, c2, n
are chosen according to (1).

In the following theorems, we prove that all lattices in the sets of the family
L have the desired properties.
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Existence of short vectors. We prove that all lattices in L(c1, c2, n, ·) of the family
L contain a vector with Euclidean norm less than n.

Theorem 1. Let n ∈ N, c1, c2 ∈ R>0, and q,m ∈ N be as described above. Then,
any lattice in L(c1, c2, n, ·) ∈ L contains a vector with Euclidean norm less than
n.

Proof. Let L(c1, c2, n,X) ∈ L(c1, c2, n, ·) ∈ L. We first show that any solution of
a certain Diophantine approximation problem corresponds to a vector in L(c1,
c2, n,X). Then, we use a theorem of Dirichlet to establish the existence of a
non-zero lattice vector of length less than n.

Let v ∈ L(c1, c2, n,X), then there exists w ∈ Zn, such that

1
q
X v −w = 0 .

This is equivalent to ∥∥∥∥1
q
X v −w

∥∥∥∥
∞
<

1
q
. (4)

Dirichlet’s theorem (cf. [36,19]) states that for any t > 1, there is v ∈ Zm

and w ∈ Zn, such that ∥∥∥∥1
q
X v −w

∥∥∥∥
∞
< e−

t
n and (5)

‖v‖∞ < e
t
m . (6)

We set t = n ln(q). Then, (5) implies that (4) is satisfied. It remains to prove
that ‖v‖∞ < n/

√
m because this implies ‖v‖2 < n. Using (6), we have

‖v‖∞ < e
t
m ≤ en ln(q)

m ≤ e
n ln(bnc2c)
bc1 n ln(n)c

∗≤ e
2 n c2 ln(n)
c1 n ln(n) ≤ e

2 c2
c1 .

For a rigorous proof of inequality ∗ see Appendix A. Together with (1), this
evaluates to

e
2 c2
c1 ≤ e

2 c1
4 c1

ln
“

n
c1 ln(n)

”
≤
√

n

c1 ln(n)
≤ n√

m
,

which completes the proof. ut

Hardness of finding short vectors. In the following, we show that being able to
find short vectors in an m-dimensional lattice chosen uniformly at random from
L(c1, c2, n, ·) ∈ L, implies being able to solve (conjectured) hard lattice problems
for all lattices of dimension n.

In his seminal work [2], Ajtai proved the following theorem that connects
average-case instances of certain lattice problems to worst-case instances. The
problems are defined as follows.
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1 n1/ log log n

hard

√
n/ log n

NP ∩ coAM

√
n

NP ∩ coNP

2n log log n/ log n

BPP

2n(log log n)2/ log n

P

Fig. 1. The complexity of γ-SVP for increasing γ (some constants omitted).

Lattice problems. Let L ⊆ Zn be an n-dimensional lattice and γ ≥ 1. We define
the

– Approximate shortest length problem (γ-SLP):
Find l ∈ R, such that l ≤ λ1(L) ≤ γ l.

– Approximate shortest vector problem (γ-SVP):
Find a vector v ∈ L \ {0}, such that for all w ∈ L : ‖v‖2 ≤ γ ‖w‖2.

– Approximate shortest basis problem (γ-SBP):
Find a basis B of L, such that for all C ∈ BGLm(Z) :

max
i=1,2,...,n

‖bi‖2 ≤ γ max
i=1,2,...,n

‖ci‖2 .

Theorem 2 ([2, Theorem 1]). Let c > 1 be an absolute constant. If there
exists a probabilistic polynomial time (in n) algorithm A that finds a vector
of norm < n in a random m-dimensional lattice from L(c1, c2, n, ·) ∈ L with
probability ≥ 1/2 then there exists

1. an algorithm B1 that solves the γ-SLP;
2. an algorithm B2 that solves the SVP, provided that the shortest vector is

γ-unique 2;
3. an algorithm B3 that solves the γ-SBP.

Algorithms B1,B2,B3 solve the respective problem (each with γ = nc) with prob-
ability exponentially close to 1 in all lattices of dimension n, i.e. especially in
the worst-case. B1,B2, and B3 run in probabilistic polynomial time in n.

As for the constant c in Theorem 2, there have been several improvements to
Ajtai’s reduction with c ≥ 8 [8]. The first improvement (c = 3.5 + ε) is due
to Cai and Nerurkar [8], whereas the most recent works by Miccancio [27] and
Micciancio and Regev [28], improve c to almost 3 1.

Asymptotic and practical hardness of the above problems depends on the
choice of γ. A recent survey [34] by Regev states the currently known“approxima-
bility” and “inapproximability” results. As for the complexity of lattice problems,
it focuses on the works of Lagarias, Lenstra, and Schnorr [22], Banaszczyk [7],
Goldreich and Goldwasser [14], Ajtai, Kumar, and Sivakumar [4], Aharonov and
Regev [1], and Peikert [31]. Since it is very helpful and descriptive, we adopted
Figure 1 from the survey.
2 A shortest vector v ∈ L is γ-unique if for all w ∈ L with ‖w‖2 ≤ γ ‖v‖2 ⇒ w = ±v.
3 Omitting poly-logarithmic terms in the resulting approximation factor.
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On the left, there are provably NP-hard problems, followed by a gap for which
the hardness is unknown. In the center, there are problems conjectured not to
be NP-hard because their NP-hardness would contradict the general perception
that coNP 6= NP. Finally, on the right, there are problems that can be solved in
probabilistic polynomial time.

We emphasize that the problems in Theorem 2 are not believed to be NP-
hard because γ >

√
n. Nevertheless, there is no known algorithm that efficiently

solves worst-case instances of lattice problems for sufficiently large dimensions n,
with an approximation factor polynomial in n. So Theorem 2 strongly supports
our claim that computing short vectors in the lattice family is hard. This is also
supported by a heuristic argument of Gama and Nguyen [12], which we refer to
in Section 4.

4 Construction of explicit bases

Ajtai’s construction in [2] defines all lattices implicitly. In this section, we show
how to generate explicit integral bases for these lattices.

For any m ≥ 500, we now construct a lattice Lm of dimension m, which
is our hard instance of the SVP. The lattice Lm is of the form L(c1, c2, n,X),
where the parameters c1, c2, n,X are chosen as a function of the dimension m
as follows.

We start with a desired lattice dimension m, set c2 = 1, and choose c1, n =
n(m) such that (1) and (2) hold. This is done by setting

c1 = inf{c ∈ R | ∃n ∈ N : m = bc n ln(n)c ∧ c2 ≤ c ln(n/(c ln(n)))/4} , (7)
n(m) = max{n ∈ N |m = bc1 n ln(n)c ∧ c2 ≤ c1 ln(n/(c1 ln(n)))/4} . (8)

With m = 500, for example, we get c1 = 1.9453, c2 = 1, and n = q = 63.
Having selected the set L(c1, c2, n, ·), we “randomly” pick a lattice from it.

We use the digits of π as a source of “randomness” 4. This approach is supported
by the conjectured normalcy of π in [5,6]. We write

3.π1 π2 π3 π4 . . . ,

so πi, for i ≥ 1, is the ith decimal digit of π in the expansion after the decimal
point. In order to compensate for potential statistical bias, we define

π∗i = π2 i + π2 i−1 mod 2 for i ≥ 1 .

Now, we use the sequence (π∗1 , π
∗
2 , π
∗
3 , π
∗
4 , . . .) as a substitute for a sequence of

uniformly distributed random bits.
The matrix X = (xi,j) ∈ Zn×m

q is chosen via

xi,j =
k+blog2(q)c∑

l=k

2l−k π∗l mod q for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

with k = k(i, j) = ((i− 1)m+ (j − 1)) blog2(q)c+ 1 .
4 The digits of π can be optained from ftp://pi.super-computing.org/.



7

With that, we have selected a “random” element L(c1, c2, n,X), for which we
will now generate an integral basis.

Let Im be the m-dimensional identity matrix. We start with the matrix

Y1 = (XT | q Im) =


x1,1 · · · xn,1 q 0 · · · 0

x1,2 · · · xn,2 0 q
...

...
. . .

...
...

. . . 0
x1,m · · · xn,m 0 · · · 0 q

 .

Let Y2 be the Hermite normal form of Y1, we compute the transformation matrix
T1, which satisfies

Y2 T1 = Y1 = (XT | qIm) .

We set T2 to be equal to T1, but without the n leading columns. This guarantees
that

Y2 T2 = q Im . (9)

Finally, we set the basis to B = TT
2 .

Now, we have to show that B is an integral basis of L(c1, c2, n,X). Clearly,
B is an integral matrix because the transformation T1, given by the HNF com-
putation, is in Zm×(n+m) and T2 is the same matrix with the n leading columns
removed.

By the uniqueness of inverses, (9) shows that B = ((Y2/q)−1)T . This implies
that B is a basis for the dual lattice of L(Y2/q) (cf. Section 2). Since Y2 is
an integral transformation of Y1, they span the same lattice. Thus, L(Y2/q) =
L(Y1/q).

By the defining property of the dual lattice, we have that for any v ∈ L(B)
and w ∈ L(Y1/q), it holds that 〈v,w〉 ∈ Z. So especially for all columns x
of XT , it holds that 〈v,x/q〉 ∈ Z, or equivalently 〈v,x〉 ∈ qZ. This implies
〈v,x〉 mod q = 0, which in turn gives us L(B) ⊆ L(c1, c2, n,X).

Now let v ∈ L(c1, c2, n,X), so for any column x of XT we have that the inner
product 〈v,x〉 mod q = 0, or equivalently 〈v,x/q〉 ∈ Z. Since we know L(c1, c2,
n,X) ⊆ Zm, it also holds that 〈v, e〉 ∈ Z for any column e of the identity matrix
Im. Since v has an integral inner product with each column vector in Y1/q, this
means v is in the dual lattice of L(Y1/q), which we know to be L(B). Finally,
we have L(B) = L(c1, c2, n,X).

For a small example of such a basis, refer to Appendix C.

The choice of parameters. We now argue that our choice of the paramters leads
to m-dimensional lattices Lm = L(c1, c2, n,X), in which vectors of norm less
than n(m) are hard to find.

We have chosen c2 = 1. By Theorem 1, this guarantees the existence of lattice
vectors with norm less than n(m) = q in Lm.

A choice of c2 < 1, and thus q < n, would imply that all q-vectors, namely
vectors that are zero except for one entry q, in Zm have Euclidean norm less
than n(m). This renders the lattice challenge preposterous because q-vectors are
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m n, q γ

500 63 1.0072m

825 127 1.0050m

1000 160 1.0042m

1250 208 1.0036m

1500 256 1.0031m

1750 304 1.0027m

2000 348 1.0024m

Table 1. Lattice parameters with the necessary Hermite factor γ.

easy to find. Moreover, Theorem 1 only guarantees the existence of one short
vector, which in this case might be a q-vector.

On the other hand, choosing c2 > 1 enlarges c1, and because of (2) decreases
n(m). Then, the hardness of lattice problems in a large dimension m would be
based on the worst-case hardness of lattice problems in a very small dimension
n. As n decreases, our hardness argument becomes less meaningful because even
worst-case lattice problems in small dimensions are believed to be easy.

Table 1 shows how m and n are related for the selected lattices Lm. For a
graphical overview, up to m = 2000, refer to Appendix B. Thus, in order to
apply Theorem 2 as a strong indication for hardness, we keep n(m) close to m in
the above construction. We choose a pseudo-random X to get a random element
in L(c1, c2, n, ·), as required by Theorem 2. Using the recent improvement of
Ajtai’s result due to Gentry, Peikert, and Vaikuntanathan [13], it is possible to
choose c2 arbitrarily close to 1. Their results can also be used to improve our
construction, by providing an even stronger indication of hardness.

To give an even stronger argument for the hardness of the SVP in our lattices,
we use a result by Gama and Nguyen [12]. They argue that finding vectors v in
a lattice L is difficult if

‖v‖ < γvol(L)1/m, (10)

where γ ≤ 1.01m and m is the dimension of L. In this inequality, γ is called
Hermite factor. For γ ≤ 1.005m Gama and Nguyen state that computing vectors
v that satisfy (10) is “totally out of reach”.

Finding a vector v ∈ Lm of length less than n(m) means finding a vector v
that satisfies (10) with Hermite factor

γ <
n(m)

vol(Lm)1/m
.

Such Hermite factors are tabulated in column 3 of Table 1.
In combination with the analysis of Gama and Nguyen, the table suggests

that while finding a vector shorter than n(m) in L500 is still possible, the respec-
tive problem in L825 will be very hard in practice. As the dimension increases, the
necessary Hermite factor falls below 1.004n and 1.003n. We think that finding
short vectors in the corresponding lattices will require entirely new algorithms.
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5 Experiments with lattice reduction algorithms

As a first application of our explicit construction of lattices Lm, we show how
various lattice reduction algorithms perform on them. Basically, there are two
types of algorithms: the LLL-type and the block-type. Building upon LLL, block-
type algorithms are typically stronger, in the sense that they are able to find
significantly shorter vectors. Block-type algorithms, however, are impractical for
large block sizes because their running time increases at least exponentially in
this parameter.

Toy challenges. In Section 4, we have seen that the problem of finding a vector
of length less than n(m) in lattices Lm starts to become difficult for m ≥ 500
and it should be infeasible for m ≥ 825.

Thus, we define a relaxed variant of the family L. It is the family of all lattice
sets L(2, 1, n, ·), i.e. we set c2 = 1 and c1 = 2, so (1) does not necessarily hold.
Although, in such lattices, there is no guarantee for the existence of lattice vec-
tors of norm less than n(m), such vectors indeed exist in practice. Moreover, our
explicit construction in Section 4 still works and produces bases for lattices Lm,
m < 500. In the following, the lattices Lm, 200 ≤ m < 500, will be referred to
as toy challenges. Explicit parameters for this range can be found in Appendix
D. There, we also compute the necessary Hermite factor as in Section 4. The
factors suggest that current lattice reduction methods are supposed to find lat-
tice vectors of norm less than n(m). Our experiments with block-type methods
confirm this.

All experiments were run on a single core AMD Opteron at 2.6 GHz, using
Shoup’s NTL [40] in version 5.4.2 and GCC 4.1.2. .

Implementations. For LLL and BKZ, we used the famous implementations in-
tegrated in the NTL. We thank Filipović and Koy for making available their
implementations of sLLL and PD, which were part of the diploma thesis [11].
We also thank Ludwig for making available and updating his implementation
of PSR that was part of his PhD thesis [25]. Finally, we thank Cadé and Stehlé
for making available their implementation of fpLLL, which can be obtained from
[41].

Figure 2 and Figure 3 depict the performance, i.e. the length of the shortest
obtained vector and the logarithmic running time in seconds, for LLL-type and
block-type methods, respectively. The boxed line in the left figures shows the
norm bound n(m) that has to be undercut. While block-type methods reliably
find vectors of norm less than n(m) up to a dimension around 500, the best
LLL-type algorithms merely succeed in dimensions < 300.

While being arguably efficient with our choice of parameters, sLLL is unable
to find sufficiently short vectors even in dimension 200. For larger dimensions,
however, the approximation results of all LLL-type algorithms seem to converge,
whereas the running time performance of fpLLL is significantly surpassed by that
of the other two.
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Fig. 2. Performance of LLL-type lattice reduction with comparable parameters.
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Fig. 3. Performance of block-type lattice reduction with comparable parameters.

In Figure 3a, observe that BKZ and PSR perform slightly better than PD,
which is mostly due to the internal sLLL step in PD. Accordingly, the graphs
seem to converge at the right end, similarly to those in Figure 2a. While the
approximation performance of block-type algorithms can be further improved
using higher block sizes, this approach is limited by the resulting running time.
Extrapolating to higher dimensions, it becomes obvious that finding sufficiently
short vectors in Lm requires a significantly larger effort for dimensions that are
somewhat higher than 600. This coincides with our observation on the Hermite
factor in Section 4.

As for the running time performance of the block-type schemes, observe in
Figure 3b that all three behave similarly. In lower dimensions, up to about m =
450, BKZ performs strictly better. In higher dimensions, the differences even out
and the random character of PSR becomes obvious in its slightly erratic timing.

To conclude, we have reviewed the current state-of-the-art performance of
lattice reduction algorithms, using reasonable parameters. We did not, however,
explore the limits of the block-type methods. This assessment, we leave to the
contestants of the actual lattice challenge that is defined in the next section.
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Fig. 4. Shortest vectors found by β-BKZ in dimension m = 500.

6 The challenge

In Section 4, we have constructed challenge lattices Lm of dimension m, for
m ≥ 500. The results in Section 3 together with the pseudo-random choice of
Lm guarantee the existence of vectors v ∈ Lm with ‖v‖2 < n(m), which are
hard to find. For a toy example, refer to Appendix C.

As stated before, we want the lattice challenge to be open in the sense that
it does not terminate when the first short vector is found. Having proven the
existence of just one solution might suggest that there are no more, but during
practical experiments, we found that many successively shorter vectors exist. For
example in Figure 4, we display that in dimension m = 500 BKZ with increasing
block size subsequently finds smaller and smaller lattice vectors.

We propose the following challenge to all researchers and students.

Lattice Challenge

The contestants are given lattice bases of lattices Lm, together with
a norm bound ν. Initially, we set ν = n(m).

The goal is to find a vector v ∈ Lm, with ‖v‖2 < ν.
Each solution v to the challenge decreases ν to ‖v‖2.
The challenge is hosted at http://www.latticechallenge.org.
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A Completing the proof of Theorem 1

With parameters c1, c2, n as in the theorem, we want to show that

bc1n ln(n)c ≥ c1n ln(n)/2 (11)

holds. By (1), we have that c1 ≥ 1/(2 ln(2)). Evaluating both sides of (11) with
n = 1, 2, 3, we find that the inequality holds for these n. For all n ≥ 4, consider
the following.

We have that c1 ≥ 1/(2 ln(2)) ≥ 2/4 ln(4), which implies

bc1n ln(n)c ≥ c1n ln(n)− 1
≥ c1n ln(n)/2 + c1n ln(n)/2− 1
≥ c1n ln(n)/2 + c14 ln(4)/2− 1
≥ c1n ln(n)/2

This completes the proof.

B Ratio between m and n

In order to get an idea of the ratio m/n in our challenge lattices, refer to Figure
5. The bend at m = 500 reflects our choice of c1 and c2 in the toy challenges,
where we “cap” the value of c2 at 2.0.
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Fig. 5. Ratio between challenge dimension m and reference dimension n.

C Challenge example

The following low-dimensional example gives an idea of what the challenge lat-
tices, and the short vectors in them, essentially look like. Its block structure is
similar to the one found by Coppersmith and Shamir for NTRU lattices [10].
This is not surprising because both belong to the class of modular lattices.

Example 1. The transposed challenge basis for m = 30, n = q = 8 looks like:

[

[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 -7 -4 -7 -6 -2 -3 -7]

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7 -4 -1 0 -6 -7 -1 -5]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -6 -2 -6 -6 -4 -6]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6 -7 -1 -5 -5 -1 -4 -3]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7 -4 -2 -3 -1 0 -1 -3]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6 -3 -5 -7 -3 -7 0 -2]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 -1 -6 -6 -6 -4 -3 -5]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -2 -2 -2 -7]

[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 -4 -3 0 -5 -7 -6 -4]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -3 -2 -4 -6 -4 -3 -2 -3]

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -7 -6 -4 0 0 -2 -7 -4]

[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -4 -1 0 0 -7 -3 -7 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 -6 -3 0 -4 -1 -2 -3]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -3 -1 0 -4 -3 -3 -2 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -6 -6 -2 -2 -1 -3 -6 -6]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -7 -7 -4 -2 -1 -2 -5]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -6 -2 -1 -4 -4 -3 -2 -6]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -2 -6 -1 -1 -5 -4 -3 -3]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -4 0 -5 -4 -6 -7 -5 -2]
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[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -4 -3 -3 0 -5 -3 -3 -7]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -4 0 -3 -2 -2 -6 -4 -4]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -5 -5 -3 0 -1 -3 0 -6]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8]

]

The shortest vector in the respective lattice is

[0 0 0 0 -1 1 0 0 -1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 -1 0 0 1 0 0 0]

and its Euclidean norm is
√

7 < n = 8.

D Toy challenges

Table 2 depicts the parameters of our toy challenges.

m n, q γ

200 30 1.0146m

225 33 1.0133m

250 36 1.0123m

275 38 1.0115m

300 41 1.0107m

325 44 1.0101m

350 46 1.0095m

375 49 1.0091m

400 51 1.0086m

425 54 1.0082m

450 56 1.0079m

475 59 1.0075m

Table 2. Lattice parameters with the necessary Hermite factor γ.


