
ANALYZING THE GALBRAITH-LIN-SCOTT POINT MULTIPLICATION
METHOD FOR ELLIPTIC CURVES OVER BINARY FIELDS

DARREL HANKERSON, KORAY KARABINA, AND ALFRED MENEZES

Abstract. Galbraith, Lin and Scott recently constructed efficiently-computable endomorphisms
for a large family of elliptic curves defined over Fq2 and showed, in the case where q is prime, that
the Gallant-Lambert-Vanstone point multiplication method for these curves is significantly faster
than point multiplication for general elliptic curves over prime fields. In this paper, we investigate
the potential benefits of using Galbraith-Lin-Scott elliptic curves in the case where q is a power of
2. The analysis differs from the q prime case because of several factors, including the availability of
the point halving strategy for elliptic curves over binary fields. Our analysis and implementations
show that Galbraith-Lin-Scott offers significant acceleration for curves over binary fields, in both
doubling- and halving-based approaches. Experimentally, the acceleration surpasses that reported
for prime fields (for the platform in common), a somewhat counterintuitive result given the relative
costs of point addition and doubling in each case.

1. Introduction

Let E be a Koblitz elliptic curve, i.e., the elliptic curve Y 2 + XY = X3 + 1 or Y 2 + XY =
X3 +X2 +1 defined over F2. Koblitz [24] (see also [36]) showed how point multiplication in E(F2n)
can be accelerated by exploiting the Frobenius endomorphism π : (x, y) 7→ (x2, y2). Namely, if
P ∈ E(F2n) and k ∈ Z, then one first writes k =

∑
kiπ

i for ki ∈ {0,±1}, and thereafter computes
kP =

∑
kiπ

i(P). This yields a point multiplication algorithm that is faster than the traditional
point multiplication methods because π(P) can be computed much faster than 2P .

Gallant, Lambert and Vanstone (GLV) [11] showed how efficiently-computable endomorphisms
can also be used to accelerate point multiplication on certain ordinary elliptic curves defined over
finite fields Fq of characteristic greater than 3 (cf. §2.3). The GLV technique is usually applied to
elliptic curves Y 2 = X3 + aX defined over Fq where q ≡ 1 (mod 4), or elliptic curves Y 2 = X3 + b
defined over Fq where q ≡ 1 (mod 3). The first curve has an efficiently-computable endomorphism
ψ : (x, y) 7→ (−x, iy) where i ∈ Fq has multiplicative order 4, and the second curve has an
efficiently-computable endomorphism ψ : (x, y) 7→ (βx, y) where β ∈ Fq has multiplicative order 3.
These curves are special in that they have complex multiplication by orders in Q(i) and Q(

√−3),
respectively. They are also rare in the sense that there are, respectively, only 4 and 6 isomorphism
classes of these kinds of curves over a field Fq, whereas the total number of isomorphism classes of
elliptic curves over Fq is approximately 2q.

Recently, Galbraith, Lin and Scott (GLS) [10] constructed efficiently-computable endomorphisms
for a large family of elliptic curves defined over Fq2 (these endomorphisms had been discovered
earlier by Iijima, Matsuo, Chao and Tsujii [18]) and showed that the GLV technique can be used to
significantly speed point multiplication on these curves in the case where q is a prime number and
the wordlength of the software platform is small. The GLS elliptic curves are quite special in that
their j-invariants belong to Fq. Nevertheless, since there are approximately q isomorphism classes

Date: August 1, 2008.

1

2 DARREL HANKERSON, KORAY KARABINA, AND ALFRED MENEZES

of such elliptic curves (out of the roughly 2q2 elliptic curves defined over Fq2), the class of elliptic
curves for which the GLV technique is effective has been significantly enlarged.

In this paper, we investigate the potential advantages of GLS elliptic curves defined over binary
fields F22` . In particular, we wish to determine whether GLV point multiplication is faster than the
traditional double-and-add point multiplication methods for these curves, and similarly for halve-
and-add methods [23, 34], for the GLS curves themselves and also against general elliptic curves over
F2n for prime n ≈ 2`. An affirmative answer would mean that there is a large class of elliptic curves
over binary fields for which GLV point multiplication is effective. Our analysis and experiments
show that the GLS curves offer a significant performance advantage using the GLV technique,
under both doubling-based and halving-based point multiplication methods. In comparison to the
prime field case examined in [10], the experimental results are somewhat counterintuitive in that
acceleration against general elliptic curves is larger for the binary case (on “workstation class”
processors) even though the cost of point addition relative to doubling is higher (and it is the
number of point doubles or halvings that are reduced by GLV). While binary fields have been less
attractive on many processors due to availability of fast integer multipliers, the interest is likely to
increase with the characteristic 2 multiplier on 64-bit operands announced by Intel for upcoming
processors, since performance profiles will change dramatically [13, 14].

The remainder of this paper is organized as follows. In §2, we review the double-and-add, halve-
and-add, and GLV methods for elliptic curve point multiplication. An explicit formulation of the
efficiently-computable endomorphism for elliptic curves over binary fields Fq2 is developed in §3.
Resistance of GLS curves to Weil descent attacks on the elliptic curve discrete logarithm problem
is studied in §4. The point multiplication methods are compared in §5, and experimental results
are presented in §6. Finally, we make some concluding remarks in §7.

2. Point multiplication methods

Consider the ordinary elliptic curve

E/F2n : Y 2 +XY = X3 + aX2 + b

defined over a binary field F2n , and suppose that #E(F2n) = hr where r is prime and h is small
(so r ≈ 2n). Let S denote the unique order-r subgroup of E(F2n) This section reviews the double-
and-add, halve-and-add, and GLV methods for computing kP , where P ∈ S and k ∈ [0, r − 1].

We denote by m the cost of performing a multiplication in F2n , and by A and D, respectively,
the cost of performing addition and doubling in E(F2n). We have D ≈ 4m when López-Dahab
projective coordinates [27] are used to represent points, and A ≈ 8m when mixed affine-projective
coordinates are employed.

2.1. Double-and-add. Let w ≥ 2 be a positive integer. The width-w NAF of a positive integer k
is an expression k =

∑l−1
i=0 ki2i where each nonzero coefficient ki is odd, |ki| < 2w−1, kl−1 6= 0, and

at most one of any w consecutive digits is nonzero. The length l of the width-w NAF is at most one
more than the length of the binary representation of k, and the average density of nonzero digits
among all width-w NAFs of length l is approximately 1/(w + 1) [36, 33].

To compute kP , one first determines the width-w NAF of k, computes Pi = iP for i ∈
{1, 3, 5, . . . , 2w−1 − 1}, and initializes an accumulator to ∞. The digits of the width-w NAF are
then examined from left to right. For each digit ki, the accumulator is doubled and ±Pki

is added
to it (if ki 6= 0). The expected cost of computing kP can be seen to be approximately

(1)
[
1D + (2w−2 − 1)A

]
+

[
n

w + 1
A+ nD

]
.

ANALYZING THE GLS POINT MULTIPLICATION METHOD FOR BINARY ELLIPTIC CURVES 3

2.2. Halve-and-add. Halve-and-add was proposed independently by Knudsen [23] and Schroeppel
[34]. The idea is to replace almost all point doublings in double-and-add methods with a potentially
faster operation called point halving. To simplify the exposition we assume that n is odd and
Tr(a) = 1, where Tr : x 7→∑n−1

i=0 x
2i

denotes the trace function from F2n to F2.
Point halving is the following operation: given Q = (u, v) ∈ S, compute the unique point

R = (x, y) ∈ S such that Q = 2R. Recall that the (affine) coordinates of Q can be obtained from
those of R via the doubling formulae: λ = x+ y/x, u = λ2 + λ+ a, v = x2 + u(λ+ 1). To recover
R from Q, one first finds a solution λ̂ to the quadratic equation λ̂2 + λ̂ = u + a. Then one has
λ = λ̂ + Tr(t) where t = v + uλ̂ [23]. One can then compute x =

√
t+ u or x =

√
t if Tr(t) = 0

or 1, and y = λx+ x2. In the halve-and-add algorithm described in the next paragraph, repeated
halving of Q is required. To accelerate halving, one uses the λ-representation (u, λQ) of Q, where
λQ = u + v/u. The revised formula for t is t = u(u + λQ + λ̂); note that y does not have to be
computed (thus saving a multiplication).

To compute kP , one first finds the w-NAF representation
∑l

i=0 k
′
i2

i of 2l−1k mod n; here l ≈ n is
the bitlength of k. Then k ≡∑l−1

i=0 k
′
l−1−i/2

i+2k′l (mod n), whence kP =
∑l−1

i=0 k
′
l−1−i(

1
2iP)+2k′lP .

The halve-and-add algorithm for computing kP is analogous to the double-and-add method, and
has an expected cost of approximately

(2)
[
1D + (2w−2 − 1)A

]
+

[
n

w + 1
Ã+ nH

]
,

where Ã = A + m is the cost of a point addition when one of the inputs is in λ-representation,
and H is the cost of a halving. Square roots in F2n can be computed very efficiently, especially
when the reduction polynomial selected to represent F2n is judiciously chosen [2]. A solution to
the quadratic equation λ̂2 + λ̂ = c can be obtained using the formula λ̂ =

∑(n−1)/2
i=0 c2

2i
; the cost of

evaluating this expression can be as low as half the cost of a field multiplication if there is sufficient
storage for some precomputed values (see [7]). It follows that the point halving cost is H ≈ 2m.
The speed advantage of halve-and-add over double-and-add can now be appreciated by comparing
(1) and (2).

2.3. GLV method. Suppose that ψ is a (non-trivial) efficiently-computable endomorphism of E
defined over F2n . Let λ ∈ [2, r − 2] be the integer such that ψ(Q) = λQ for all Q ∈ S. Then
‘efficiently-computable’ means that ψ(Q) can be computed much more efficiently than computing
λQ by standard point multiplication techniques. The GLV strategy [11] for computing kP is to
first use the extended Euclidean algorithm to write k = k1 + k2λ mod r, where k1, k2 ≈

√
r, and

then compute kP = k1P + k2ψ(P) using simultaneous multiple point multiplication (also known
as ‘Shamir’s trick’ – see Algorithm 14.88 in [31]) or interleaving [11, 32]. Since the bitlengths of k1

and k2 are half that of k, half of the point doublings are eliminated. If interleaving is used, and if k1

and k2 are represented in width-w NAFs, then the expected cost of computing kP is approximately

(3) 2
[
1D + (2w−2 − 1)A

]
+

[
n

w + 1
A+

n

2
D

]
.

3. The endomorphism

3.1. Weierstrass form. Let q = 2` and let

E/Fq : Y 2 +XY = X3 + aX2 + b

4 DARREL HANKERSON, KORAY KARABINA, AND ALFRED MENEZES

be an ordinary elliptic curve defined over Fq. Recall that the elliptic curve

Ẽ/Fq : Y 2 +XY = X3 + ãX2 + b̃

is isomorphic to E over Fq if and only if Tr(ã) = Tr(a) and b̃ = b, where Tr : x 7→ ∑`−1
i=0 x

2i
. If E

and Ẽ are isomorphic over Fq then an isomorphism E → Ẽ is given by (x, y) 7→ (x, y + ρx) where
ρ ∈ Fq satisfies ρ2 + ρ = a+ ã.

Now, suppose that #E(Fq) = q + 1− t. Then #E(Fq2) = (q + 1)2 − t2. Let Tr′ : x 7→∑2`−1
i=0 x2i

denote the trace function from Fq2 to F2, and let a′ ∈ Fq2 be an element with Tr′(a′) = 1. Since
Tr′(a) = 0, the elliptic curve

E′/Fq2 : Y 2 +XY = X3 + a′X2 + b

is the quadratic twist of E over Fq2 and #E′(Fq2) = 2q2 + 2−#E(Fq2) = (q − 1)2 + t2.
The elliptic curves E and E′ are isomorphic over Fq4, with the isomorphism given by

φ : E → E′, (x, y) 7→ (x, y + sx),

where s ∈ Fq4 \Fq2 satisfies s2 + s = a+a′. The map φ is an involution, so the inverse isomorphism
is φ−1 = φ. Define the Frobenius map π : E → E by (x, y) 7→ (xq, yq), and define

ψ : E′ → E′ by ψ = φπφ−1.

More explicitly, we have
ψ : (x, y) 7→ (xq, yq + sqxq + sxq).

Since

sq + s =
∑̀
i=1

(s2
i
+ s2

i−1
) =

∑̀
i=1

(s2 + s)2
i−1

=
∑̀
i=1

(a+ a′)2
i−1 ∈ Fq2 ,

the endomorphism ψ is defined over Fq2. Moreover, it is efficiently computable, its cost being
roughly equal to a single Fq2 multiplication.

Now, suppose that #E′(Fq2) = hr where r is prime and h is small. Let S denote the unique
order-r subgroup of E′(Fq2). If Q = (x, y) ∈ S, then

ψ2(Q) = φπ2φ−1(Q) = (x, y + sq2
x+ sx) = (x, y + x) = −Q,

since sq2
+ s = Tr′(a+ a′) = 1. Hence ψ2 = −1. Thus, there is an integer λ satisfying λ2 + 1 ≡ 0

(mod r) such that ψ(Q) = λQ for all Q ∈ S.

3.2. Edwards form. Bernstein, Lange and Farashahi [4] showed that all elliptic curves over binary
fields can be written in Edwards form, which has the advantage of efficient and complete addition
formulas. The following shows that the elliptic curve E′/Fq2 and the efficiently-computable endo-
morphism ψ can be transformed to Edwards form.

Select d1 ∈ Fq2 so that Tr′(d1) = Tr′(a′) + 1 and Tr′(
√
b/d2

1) = 1; Theorem 4.3 of [4] shows that
such d1 can be easily found. Let d2 = d2

1 + d1 +
√
b/d2

1, and define

E′
2/Fq2 : Y 2 +XY = X3 + (d2

1 + d2)X2 + b.

Then, since Tr′(d2
1 +d2) = Tr′(a′), we have E′ ∼= E′

2 over Fq2 with isomorphism γ : E′ → E′
2 defined

by (x, y) 7→ (x, y + ρx) where ρ2 + ρ = a′ + d2
1 + d2. Now, according to [4], E′

2 is isomorphic over
Fq2 to the complete Edwards binary elliptic curve

E′
e/Fq2 : d1(X + Y) + d2(X2 + Y 2) = XY +XY (X + Y) +X2Y 2

ANALYZING THE GLS POINT MULTIPLICATION METHOD FOR BINARY ELLIPTIC CURVES 5

with isomorphism ξ : E′
2 → E′

e given by

(x, y) 7→
(

d1(x+ d2
1 + d1 + d2)

x+ y + (d2
1 + d1)(d2

1 + d1 + d2)
,

d1(x+ d2
1 + d1 + d2)

y + (d2
1 + d1)(d2

1 + d1 + d2)

)

and inverse isomorphism ξ−1 : E′
e → E′

2 given by

(x, y) 7→
(
d1(d2

1 + d1 + d2)(x+ y)
xy + d1(x+ y)

, d1(d2
1 + d1 + d2)

(
x

xy + d1(x+ y)
+ d1 + 1

))
.

Hence ψe = ξγψγ−1ξ−1 is an efficiently-computable endomorphism on E′
e satisfying ψe(Q) = λQ

for all order-r points Q ∈ E′
e(Fq2), and so GLV point multiplication can be effectively carried out

in E′
e(Fq2).

4. Security

The Gaudry-Hess-Smart Weil descent attack [12], and its generalization by Hess [17], has been
shown to be effective for solving the discrete logarithm problem (DLP) in some elliptic curves over
characteristic two finite fields of composite extension degrees. In this section we study the possible
effectiveness of Weil descent attacks on GLS elliptic curves over F22` where ` is prime. That is, we
examine whether the attacks can be used to solve the DLP faster than it would take Pollard’s rho
method which has running time approximately 2` (for the hardest instances).

We begin by introducing some notation. Let n ∈ {2, `, 2`}, and let q = 22`/n. Let K = F22` and
k = Fq. Let σ : K → K denote the Frobenius automorphism defined by α 7→ αq. If f =

∑d
i=0 cix

i

is a polynomial in F2[x] and γ ∈ K, then we define f(σ)(γ) =
∑d

i=0 ciγ
qi

. For γ ∈ K, we denote
by Ordγ the unique polynomial f ∈ F2[x] of least degree satisfying f(σ)(γ) = 0. It is easy to see
that Ordγ is a divisor of xn + 1, and that Ordγ = Ordγ2 .

Let E : Y 2 + XY = X3 + aX2 + b be an elliptic curve defined over F22` . In the following, we
are really only interested in those curves for which #E(F22`) = hr where r is prime and h is small,
whence r ≈ 22`; these are the curves of interest in cryptographic applications. Since Tr′(a) = 1 for
all GLS curves, we fix a to be some element satisfying Tr′(a) = 1 and sometimes denote E by Eb.
Note that #E(F22`) ≡ 2 (mod 4).

In the generalized Gaudry-Hess-Smart (gGHS) attack [17], one first writes b = (γ1γ2)2, where
γ1, γ2 ∈ K and either TrK/k(γ1) 6= 0 or TrK/k(γ2) 6= 0. Let s1 = deg(Ordγ1), s2 = deg(Ordγ2), and
t = deg(lcm(Ordγ1 ,Ordγ2 , x + 1)). Then the gGHS attack reduces the DLP in E(K) to the DLP
in the jacobian JC(k) of a curve C of genus g = 2t − 2t−s1 − 2t−s2 + 1 defined over k. The curve C
is hyperelliptic if and only if γ1 ∈ k or γ2 ∈ k. Since #JC(k) ≈ qg, a necessary condition for JC(k)
to contain a subgroup of order r is g ≥ n. One can then hope, at least if g is not too large, that
the known discrete log algorithms for higher-genus curves could be used to solve the DLP in JC(k)
in time less than 2`.

Even if the gGHS attack turns out to be ineffective for a particular GLS curve E′, it may be
effective for an isogenous curve E defined over F22` .1 In that case, it is generally feasible to map
the DLP in E′(F22`) to the DLP in E(F22`) by using a chain of low degree isogenies (see [8] and
[19]). Thus, for a chosen GLS curve E′, it is important to verify that the gGHS attack is ineffective
for all elliptic curves isogenous to E′.

We consider separately the cases n = 2, n = ` and n = 2`.

1Two elliptic curves E1 and E2 defined over a finite field K are isogenous over K is #E1(K) = #E2(K). The
equivalence classes of elliptic curves with respect to isogeny are called isogeny classes.

6 DARREL HANKERSON, KORAY KARABINA, AND ALFRED MENEZES

4.1. Case 1: n = 2 and q = 2`. We have xn + 1 = (x + 1)2. It follows that we must either
take Ordγ1 = (x + 1)2 and Ordγ2 = (x + 1)2 (in which case the gGHS attack produces a genus-3
non-hyperelliptic curve C1 over F2`), or Ordγ1 = (x + 1)2 and Ordγ2 = (x + 1) (in which case
the gGHS attack produces a genus-2 hyperelliptic curve C2 over F2`). Since the fastest algorithm
known for solving the DLP in JC1(F2`) has running time approximately 2` [5], and since the fastest
algorithm known for the DLP in JC2(F2`) is Pollard’s rho method, the gGHS attack with n = 2 is
ineffective.

4.2. Case 2: n = ` and q = 22. Let d denote the multiplicative order of 2 modulo n. We have
xn+1 = (x+1)f1f2 · · · fs, where the fi are pairwise distinct irreducible polynomials of degree d and
s = (n−1)/d [30, Lemma 7]. One can check that the selection Ordγ1 = fi and Ordγ2 = x+1 yields
the smallest useful genus, namely g = 2d − 1. Now, for each prime ` ∈ [80, 256] with ` 6∈ {89, 127},
we have d ≥ 15. For these `, the gGHS attack produces a curve C of genus at least 215−1 = 32767;
the orders of the jacobians JC(F22) have bitlength at least 65534. Since the hardest instances of
the DLP in elliptic curves over 512-bit fields is roughly equally as difficult as factoring 15360-bit
integers, and since the latter problem is certainly no harder than the DLP in 65534-bit jacobians,
it follows that the gGHS attack is ineffective for all ` 6∈ {89, 127}.

For ` = 89, we have d = 11. Hence the gGHS attack produces curves C of genus at least
211−1 = 2047. The bitlength of #JC(F22) is at least 4094. Since the hardest instances of the DLP
in elliptic curve over 178-bit fields is certainly no more difficult than factoring 1500-bit integers,
the gGHS attack is ineffective for ` = 89.

For ` = 127, we have d = 7 and s = 18. For some elliptic curves over F22` , the gGHS attack
produces a genus-127 hyperelliptic curve C over F22 . According to the estimates in [29], the Enge-
Gaudry index-calculus algorithm [6] can solve the DLP in JC(F22) in time approximately 252, which
is much faster than the 2127 time it would take using Pollard’s rho method. Thus the gGHS attack
is indeed effective for some elliptic curves when ` = 127 and n = 127. The vulnerable b’s, and
upper bounds on their numbers, are listed in Table 1.2 In total, there are at most 236 vulnerable

Table 1. List of vulnerable b = (γ1γ2)2 for the case ` = n = 127, q = 22.

Ordγ1 Ordγ2 s1 s2 t g Upper bound on number of b’s

(x+ 1)fi (x+ 1)fi 8 8 8 255 s(q7 − 1)2(q − 1)2/2 ≈ 235

(x+ 1)fi fi 8 7 8 254 s(q7 − 1)(q − 1)(q7 − 1) ≈ 234

(x+ 1)fi x+ 1 8 1 8 128 s(q7 − 1)(q − 1)(q − 1) ≈ 222

fi fi 7 7 8 253 s(q7 − 1)2/2 ≈ 232

fi x+ 1 7 1 8 127 s(q7 − 1)(q − 1) ≈ 220

b’s. Note, however, that if b is vulnerable then so is b2. Moreover, the elliptic curves Eb and Eb2 are
isogenous over F2254 . Hence the number of isogeny classes that contain at least one vulnerable curve
is at most 236/254 ≈ 228. Now, there are ≈ 2127 isogeny classes of ordinary elliptic curves over F2254

that have order congruent to 2 modulo 4, of which roughly
√

2127 = 263.5 classes contain a GLS
curve. We assume that the probability of a curve E having a vulnerable curve in its isogeny class
is independent of whether E is a GLS curve — this is a plausible assumption because there is no
reason to believe that the b’s in Table 1 are more likely to be in F2127 , and because the vulnerability
of a curve does not seem to depend on its order. Under this assumption, the probability that a

2For any factor f ∈ F2[x] of xn − 1, the number of γ ∈ F22` satisfying Ordγ = f can be easily computed using
Theorem 5 of [30].

ANALYZING THE GLS POINT MULTIPLICATION METHOD FOR BINARY ELLIPTIC CURVES 7

randomly selected GLS curve has a vulnerable curve in its isogeny class is at most 228/2127 ≈ 1/299,
which is certainly negligible.

For the case ` = 127, an explicit check that a given GLS curve E′ does not succumb to the
gGHS attack would require enumerating all the (at most) 228 b’s in Table 1 (excluding the squares
of a selected b), and then checking that #Eb(F2254) 6= #E′(F2254) for each b. The Magma package,
running on a 1 GHz Sun V440, can compute the order of a randomly selected elliptic curve over
F2254 is about 0.42 seconds. Thus, performing the explicit check would require about 1305 days of
CPU time, a feasible task since it can be easily parallelized.

4.3. Case 3: n = 2` and q = 2. Let d denote the multiplicative order of 2 modulo n. We have
xn + 1 = (x+ 1)2f2

1 f
2
2 · · · f2

s , where the fi are pairwise distinct irreducible polynomials of degree d
and s = (` − 1)/d. One can check that the gGHS attack produces a curve C/F2 of genus at least
2d+1. If ` ∈ [80, 256] is a prime with ` 6∈ {89, 127} then d ≥ 15, while if ` = 89 then d = 11. Thus,
as in the previous case of n = `, the gGHS attack is ineffective for all ` 6= 127.

We next consider the case ` = 127 for which d = 7 and s = 18. For some elliptic curves over
F2254 , the gGHS attack produces a genus-256 hyperelliptic curve C over F2. Since the DLP in
JC(F2) can be solved much faster than the 2127 time it would take using Pollard’s rho method, the
gGHS attack is indeed effective for some elliptic curves when ` = 127 and n = 254. The vulnerable
b’s, and upper bounds on their numbers, are listed in Table 2. In total, there are at most 221

Table 2. List of vulnerable b = (γ1γ2)2 for the case ` = 127, n = 254, q = 2.

Ordγ1 Ordγ2 s1 s2 t g Upper bound on number of b’s

(x + 1)2fi (x+ 1)2fi 9 9 9 511 18 · 215

(x + 1)2fi (x+ 1)fi 9 8 9 510 18 · 215

(x + 1)2fi fi 9 7 9 508 18 · 215

(x + 1)2fi (x+ 1)2 9 2 9 384 18 · 29

(x + 1)2fi x+ 1 9 1 9 256 18 · 28

(x+ 1)fi (x+ 1)2 8 2 9 383 18 · 28

fi (x+ 1)2 7 2 9 381 18 · 28

vulnerable b’s. As in the n = 127 case, the number of isogeny classes that contain at least one
vulnerable curve is at most 221/254 ≈ 213. Hence the probability that a randomly selected GLS
curve has a vulnerable curve in its isogeny class is at most 213/2127 ≈ 1/2114, which is certainly
negligible. Furthermore, one can efficiently verify that there is no vulnerable curve isogenous to a
given GLS curve.

4.4. Summary. We have shown that GLS curves over F22` with ` prime, ` ∈ [80, 256], and ` 6= 127,
are not vulnerable to the generalized GHS Weil descent attack. Moreover, the probability that
a randomly selected GLS curve over F2254 is vulnerable (or isogenous to a vulnerable curve) is
negligibly small, and in any case there is an efficient check that can be performed to rule out this
possibility. Hence, GLS curves over F22` with ` prime can be easily selected so that the fastest
attack known on the DLP is Pollard’s rho method.

5. Comparisons

We examine point multiplication on GLS curves E′/F22` : Y 2 +XY = X3 +a′X2 +b and random
curves E/F2n : Y 2 + XY = X3 + aX2 + b (where n ≈ 2`). For the case of random curves, we
will consider the common scenario where n is prime, and where the curve coefficient b is chosen

8 DARREL HANKERSON, KORAY KARABINA, AND ALFRED MENEZES

at random subject to the requirement that #E(F2n) = hr where h is 2 or 4 (depending on Tr(a))
and r is prime; without loss of generality we may assume that a ∈ {0, 1}. Table 3 summarizes
point multiplication costs when parameters have been chosen compatible with the corresponding
method, where A′ and D′ denote cost of affine-coordinate addition and doubling, respectively, on
the GLS curve. This section discusses assumptions and recent formulae improvements relative to
the table, and highlights computational and practical differences between the curves and methods.

Table 3. Estimates for point multiplication on random curves E/F2n and GLS
curves E′/F22` . Multiplication costs for F2n and F22` are denoted by m and M ,
respectively. Inversion cost in F22` is denoted by I. Costs for multiplication by
curve parameter b (or

√
b) for each curve are denoted by b and B, estimated at

m/2 and M/3; ψ denotes the cost of applying the endomorphism. The costs in field
multiplications use w = 5, I = 6M , ψ = M , and scalar bitlengths 256 and 253 for
E and E′, resp.

Costs for Point Multiplication
Operation Evaluation Double-and-add Halve-and-add

Random curve E/F2n with D = 2m+ 2b, A = 8m, H = 5/3m
kP pre/posta D + (2w−2 − 1)A D + (2w−1 − 2)A

per-bit D + 1
w+1A H + 1

w+1 (A+m)
F2n -mult, n = 257 1168 926

GLS curve E′/F22` with D = 2M + 2B, D′ = A′ = 2M + I, H = 5/3M
kP pre/post D′ + (2w−2 − 1)A′

per-bit D + 1
w+1(A′ +M) H + 1

w+1 (A′ +M)
F22`-mult, ` = 127 1118 865

k1P + k2ψ(P) pre/post D′ + (2w−2 − 1)A′ + 2w−2ψ

per-bit (D + 2
w+1 (A′ +M))/2 (H + 2

w+1 (A′ +M))/2
F22`-mult, ` = 127 789 662

aHalve-and-add post-evaluation is multiple-accumulator fixup for right-to-left method.

5.1. Random curves. Fong et al. [7] compared point multiplication via doubling-based and
halving-based methods on random curves with a = 1, with operation count and experimental
data strongly favouring halving. Since then, formula improvements due to Kim and Kim [20] offer
a significant acceleration to point doubling in the scenario where halving applies, namely a = 1
with a modest amount of per-curve precomputation permitted.3

Table 4 summarizes the costs of point addition and doubling in López-Dahab coordinates with
various formulae and parameters. The significance of the Kim and Kim result is that total multipli-
cations for doubling remain unchanged from earlier formulae, but the number of multiplications by
curve parameter b is now 2 rather than 1. Since these formulae do not accelerate typical halving-
based methods, we are interested in a revised doubling vs. halving comparison when precomputation
significantly reduces the cost of multiplication by b. The comparison against halving is not quite

3Halving applies to curves with Tr(a) = 0, however there is a penalty of at least 1/2 field multiplication per halving
step [23, 22]. The doubling-based approach has a smaller “chaining penalty” with the a = 0 formulae of Bernstein et
al. [4].

ANALYZING THE GLS POINT MULTIPLICATION METHOD FOR BINARY ELLIPTIC CURVES 9

Table 4. Point operation cost for mixed-coordinate additions and projective dou-
blings, where the projective point (X : Y : Z) corresponds to the affine point
(X/Z, Y/Z2). M and S denote the costs of field multiplication and squaring, resp.,
and a, b,

√
b denote the cost of multiplication by the corresponding curve parame-

ters.

Addition Doubling
López, Dahab [27] 9M + 4S + 1a 3M + 5S + 1b+ 1a
King [21] 9M + 5S + 1aa

Lim, Hwang [26]; Al-Daoud,
Mahmod, Rushdan [1] 8M + 5S + 1ab

Lange [25] 4M + 4S + 1a
Kim, Kim [20] 2M + 5S + 2b a = 1c

Bernstein, Lange, Farashahi [4] 2M + 4S + 1b+ 1
√
b

2M + 5S + 1b+ 1
√
b

a = 1c

a = 0d

aProvides XZ and Z2 for subsequent double. bProvides Z2 for subsequent double.
cAssumes Z2 chained. dAssumes XZ and Z2 chained.

as straightforward as it appears, since there is a one-multiplication “penalty” on essentially every
point addition due to conversion from λ-coordinates. However, the a = 1 formula for doubling does
not pay this penalty, and this is the comparison that is most meaningful in the present context.

The counts in terms of field multiplication in Table 3 assume that field representations can
be selected where square roots are inexpensive, in which case the halving step is dominated by
a multiplication and the cost of the quadratic solver. In the modest-storage scenario with fields
of interest in this paper, we assume that a point halving can be done in 5/3 the time of a field
multiplication (so H ≈ 5

3m), and that multiplication by a constant with precomputation requires
half the time of a general multiplication (so b ≈ √b ≈ m/2). Under these assumptions, Table 3 gives
a factor 1.26 advantage to the halving-based approach on E. This is smaller than the factor 1.41
estimate in [7] where the López-Dahab doubling formulas were used without off-line precomputation
(but halving was estimated at a higher two-multiplication cost).

5.2. GLS curves. The GLS curves E′/F22` : Y 2 +XY = X3 + a′X2 + b are “small parameter” in
the sense that b ∈ F2` and a′ can be chosen arbitrarily subject to the trace requirement Tr′(a′) = 1.
Compared to the random curves, multiplication by the corresponding curve parameters b or

√
b is a

smaller fraction of the cost of a general multiplication. We can choose a′ so that multiplication by
a′ is inexpensive; however, the GLS curves are trace-1 but not a′ = 1. The Kim and Kim formula
for point doubling does not apply, but the techniques for a = 0 in the formula of Bernstein-Lange-
Farashahi can be adapted as follows. To find 2P = (x3, y3) for P = (x, y) /∈ {−P,∞}, write the
affine formulae as x3 = x2 + b/x2 and y3 = x2 + (λ+ 1)x3 where λ = x+ y/x. Then

y3 = x2 +
(
x2 + y + x

x

)(
x4 + b

x2

)
=
x6 + x(y2 + y + x)(x4 + b)

x4

and, as in (part of) Kim and Kim, the substitution x6 = (y2 +xy+ a′x2 + b)2 from the curve equa-
tion is used and the result written in López-Dahab projective form (U3, V3,W3). Straightforward
arithmetic gives the a = 0 Bernstein et al. formulae [4] but with the addition of a′(a′T3 +S3) in the
assignment to V3. This formulation is of interest only if multiplication by a′ is inexpensive, which
is the case for GLS curves since parameter a′ can be chosen so that this multiplication is essentially
free.

10 DARREL HANKERSON, KORAY KARABINA, AND ALFRED MENEZES

Unlike Kim and Kim, the “two multiplications by constants” a = 0 Bernstein et al. formulas
(and those adapted here for GLS) chain the quantity XZ in point doubling. The consequence
can be similar to the point-halving method, where a point addition has a “penalty” of an extra
multiplication. There is also multiplication by both b and

√
b in point doubling, although (as in

Kim and Kim) this can be done via two multiplications by b at the cost of an extra squaring.
The GLV technique also has a precomputation penalty in the sense that there are now two inputs

P and ψ(P) for which precomputation is required. If width-w NAF methods are employed, then
the basic issue is that precomputation is used less efficiently when interleaving k1P and k2ψ(P). In
practice, this penalty is small unless constraints limit the amount of precomputation to less than
four points. Further, the precomputation involving ψ(P) can be obtained from that for P since ψ
is inexpensive compared to point addition. For suitable a′, ψ can be essentially free, in which case
the table for ψ(P) can be omitted and the values obtained on-demand from the table for P .

The Tr′(a′) = 1 condition on the GLS curves is favourable to point halving techniques (as
discussed for random curves). The GLV and point halving techniques can be combined, with scalar
recoding performed as follows. Assume r ≈ 22` and let k′ = 2`k mod r. Find k′ ≡ k′1 +k′2λ (mod r)
via the usual GLV technique, giving k′i of expected length approximately `. Then ki ← k′i/2

` gives
k ≡ k1 + k2λ (mod r) with ki in essentially the form we seek, other than a few terms which will
involve doubling in point multiplication.

Finally, we note that the quadratic extension in GLS is attractive in the sense that operations in
F22` reduce to operations in F2` . In particular, precomputation for the quadratic solver can require
less storage than in the random curve case, and inversion in F22` is reduced to three multiplications
and an inversion in F2` . This inversion is likely to be sufficiently inexpensive that point addition
can be done in affine coordinates (and so halving-based methods can run entirely in affine).

5.3. Additional accelerations. Two types of accelerations are suggested by the GLS technique
and the improved Kim and Kim doubling formulas that exploit precomputation. We briefly consider
the effects of specializing curve parameters for random curves E and for GLS curves E′ (where GLS
has already forced a specialization of b, namely b ∈ F2`). We also examine precomputation strategies
that offer less dramatic acceleration than those involving curve parameters, but are similar in the
sense that they can re-use tables across point operations.

Specialized curve parameters. Since the GLS curves E′ are special in the sense that b ∈ F2` , we
consider specialized b for E and further specialization on E′ to speed point multiplication. At
the extreme are Koblitz curves where b = 1, in which case different techniques apply and will
not be considered here. For non-Koblitz curves, selecting specialized b will reduce the cost of
doubling while the cost of halving remains the same. If b is of low hamming weight, for example,
then multiplications by b and

√
b (given suitable field representation) in point doubling become

inexpensive.
The overall improvement can be incremental if precomputation was already giving these mul-

tiplications at 1/2 or 1/3 the cost of a general multiplication in E and E′, respectively, since the
savings are diluted by point additions and other operations. However, if quite special b is accept-
able and gives associated multiplication at, say, 1/8 the cost of general multiplication, then the
estimates in Table 3 for E give 976 and 925 as the corresponding F2n-multiplication counts for
point multiplication on E via doubling and halving, resp., predicting that the two methods run at
approximately the same time.

Re-use of per-point precomputation. Re-use of precomputation for field multiplication can be ap-
plied per-point, although the possible acceleration is much smaller than with modest amounts of

ANALYZING THE GLS POINT MULTIPLICATION METHOD FOR BINARY ELLIPTIC CURVES 11

per-curve precomputation involving b and
√
b. King [21] describes re-use of multiplication tables

within a point double or point addition, and this technique is examined in more detail in [3] (where
it is called “sequential multiplications”) in the context of hyperelliptic curves where the arithmetic
provides more opportunity to exploit the method.

King also describes a per-point precomputation strategy that applies in some point multiplication
methods where there is a small set of points repeatedly accessed, as in left-to-right width-w NAF
methods. The basic idea is to build tables for some of the field multiplications in point addition
involving coordinates from the small set, since these coordinates will be used repeatedly. The cost
of this precomputation is spread across the entire point multiplication rather than within a point
operation, although admittedly the method is useful only for small w and the gains are incremental.
Further, the right-to-left windowing method in [7] used with halve-and-add (when inversions are
expensive) precludes this acceleration, since the small set of fixed points is replaced by multiple
accumulators.

6. Experimental results

For a concrete comparison, we implemented point multiplication methods on two curves, each
at roughly the 128-bit security level. The target environment is “workstation-class” systems which
do not have severe memory constraints. In this section, we describe the curves, implementation
issues, development environment, and give timings.

We chose curve and field parameters to be compatible with the 128-bit security requirement and
with the methods of interest. For random curves we chose n = 257, and for GLS curves we could
not resist selecting ` = 127; if concerns about the security of elliptic curves over F2254 remain (see
§4), then ` = 131 would be a suitable alternative. For the random curve E, point halving and the
best doubling formulas desire a = 1, and we chose b pseudo-randomly so that #E(F2257) = 2r with
r prime. The reduction polynomials were selected so that both reduction and square roots would
be at low cost. The following table summarizes the selections.4

Curve a b Base Field Extension
√
x

E/F2n , n = 257 1 ∈ F2257 F2[x]/(x257+x41+1) — x129+x21

E′/F22` , ` = 127 u ∈ F2127 F2[x]/(x127+x63+1) F2127 [u]/(u2+u+1) x64+x32

For GLS, the choice a′ = u (compatible with the trace requirement) makes multiplication with
a′ very inexpensive (comparable to selecting a ∈ {0, 1} for random curves). The corresponding s
in GLS (see §3.1) satisfies sq + s = u + 1 and so ψ is essentially free. Curve parameter b ∈ F2127

was chosen so that #E′(F2254) = 2r where r is prime.

6.1. Implementation. The field and elliptic curve code was written in the C programming lan-
guage, except for a small fragment in assembly to assist in finding the degree of a polynomial
(for inversion). The big-number arithmetic required in the GLV method (to recode the scalar as
k ≡ k1 + k2λ (mod r)) and in halving-based methods (to recode the scalar in base 1/2) is via the
OpenSSL libraries.5 There are divisions required in GLV recoding, but these can be done per-curve
so that only multiplications and shifts are involved per-scalar. Recoding for halving involves a
single per-scalar modular reduction. Regardless, these operations are a minor portion of the overall
cost of scalar multiplication.

4There are polynomials x127 + r(x) giving two-term
√

x where r has smaller degree than in f(x) = x127 + x63 + 1;
we chose f since there are powers differing by a multiple of 64, and the higher degree of r is not a significant factor
in our environment. The root also is of advantageous form.

5The library at http://www.openssl.org is used in the communications tool OpenSSH, for example. Here, we are
using only the big-number subset.

12 DARREL HANKERSON, KORAY KARABINA, AND ALFRED MENEZES

Field multiplication. Base field multiplication is via comb methods [28]. Briefly, a common case
of combing calculates c · d with a single table of precomputation containing p · d for polynomials
p of degree less than w for some small w (e.g., w = 4). The words of c are then “combed” w
bits at a time to select the appropriate precomputed value to add at the desired location of the
accumulator. These have been among the fastest methods for multiplication on general-purpose
processors, and can be combined with shallow-depth Karatsuba-like techniques to control code
expansion. However, going from 32- to 64-bit code can reduce the advantage of combing over the
Karatsuba-down-to-word-multiplication used, for example, in the well-known Miracl library [35].6

Nonetheless, combing appears to be fastest in our environment, and we combed on field elements
with comb width 4. For 32- and 64-bit code, elements in F2257 can be represented in 8 or 4 words
along with an extra bit. Multiplication suffers only a small penalty by handling this bit separately.

Elements in the extension field F2254 = F2127 [u]/(u2 + u+ 1) are represented as a pair (a0, a1) =
a0 + a1u of F2127 -elements, and extension field multiplication requires three multiplications in F2127

via Karatsuba. Squaring requires two F2127-squarings. We expect similar multiplication times for
F2254 and F2257 , although the practical comparison is not as clear as the mathematics indicates.
Roughly speaking, comb multiplication looks best when the machine register size is small compared
to the number of words representing a field element. Depending on platform and n, it is possible
that combing is fastest on field elements rather than via shallow-depth Karatsuba-like techniques
combined with combing (essentially the technique for the extension field).

We used combing with windows of width 8 for multiplications by constants (b and
√
b). This is

double the window size used for general multiplication, and the precomputation of 256 elements (per
constant) is off-line. Hence, the run time is expected to be approximately half the time of a general
multiplication. A possible downside of combing is that compilers can be rather sensitive to the
precise form of the code; e.g., some compilers do not optimize arrays as well as scalars, even when
indices are known at compile-time. As a platform-dependent example, array dimensions and access
order in a table-lookup method such as comb can mean 10% overall difference in multiplication due
to the cost of addressing.

Inversion. Inversion is via a Euclidean-algorithm variant, and only limited optimization was per-
formed. An assembly language fragment for Pentium-like systems was used to exploit a bitscan
instruction (bsr) useful for speeding degree calculations. Inversion in F2254 was performed by ele-
mentary matrix methods costing three F2127 -multiplications and an inversion in F2127 .

Solving quadratics. Finding solutions to λ2 + λ = c for trace-0 c in F2257 was done via Algorithm
3.86 of [16] with 4-bit lookups in accumulation of half-traces. This technique is easier to implement
for a given field than the small-table methods illustrated in [7], and uses less storage and has
lower accumulation cost than the method used in [2]. The reduction polynomial x257 + x41 + 1
gives especially clean and efficient code, although this choice builds the table from 84 half-trace
computations rather than the 71 elements specified by this algorithm for x257 + x12 + 1 (but the
latter polynomial increases the cost of roots). The extra-digit storage-and-performance penalty
noted for multiplication is avoided in the quadratic solver by not tracking the constant term.

Solutions in F2254 are found by reduction to F2127 as follows. For c = c0+c1u with ci ∈ F2127 , solve
λ2+λ = c1 to get λ1, and then obtain λ0 from λ2+λ = c′0+Tr(c′0) where c′0 = c0+λ2

1 = c0+c1+λ1.
The solution is then λ0 + (λ1 + Tr(c′0))u.

6In personal communication, Julio López reports comb variants that can better exploit certain processor charac-
teristics; in particular, his timings on an AMD Athlon64 are 35% faster on F21223 than timings from an Opteron in
[15].

ANALYZING THE GLS POINT MULTIPLICATION METHOD FOR BINARY ELLIPTIC CURVES 13

Table 5. Timings (in 103 cycles) on a 3.16 GHz Xeon with Sun C 5.9. Field opera-
tion “const” denotes multiplication by a constant with precomputation, and “solve”
finds λ given trace-0 c so that λ2 + λ = c. “D&A” is width-5 NAF double-and-add.
“H&A” is width-5 NAF with right-to-left half-and-add on E [16, Algorithm 3.91]
and affine additions on E′. The GLV decomposition is kP = k1P + k2ψ(P) with
width-5 NAF applied to k1 and k2.

Base field Extension kP k1P + k2ψ(P)
mul const inv root solve mul inv D&A H&A D&A H&A

Random curve E/F2257 , F2257 = F2[x]/(x257+x41+1)
0.71 0.48 10.8 0.10 0.49 — — 1057 790 — —

GLS curve E′/F2254 , F2254 = F2127 [u]/(u2+u+1), F2127 = F2[x]/(x127+x63+1)
0.27 0.15 3.4 0.06 0.21 0.87 4.6 1122 758 822 584

Square-root computations are inexpensive with the choice of reduction polynomials f . Coeffi-
cients corresponding to even and odd powers of x were extracted simultaneously by 8-bit lookup,
and then

√
c =

∑
c2ix

i +
√
x

∑
c2i+1x

i. Since the degree of
√
x is at most (deg f + 1)/2 in our

case, no reduction is required and finding a square root is less expensive than a squaring.

6.2. Performance comparisons. Timings in Table 5 were obtained on a Sun X4150, a 64-bit
system built on the Intel Xeon processor (model 5460, 3.16 GHz). Roughly speaking, this processor
family includes the Intel Core2 and the Athlon64 and Opteron from AMD, with similar instruction
sets and timings. The compiler is Sun C 5.9, producing 64-bit objects.

The point multiplication times include the cost of scalar recoding (k ≡ k1 +k2λ (mod r) in GLV,
and base 1/2 form of k in halving). A sequence of pseudo-random elements and scalars was used
in the timings to preclude effects such as branch prediction that would not apply outside of the
laboratory. As expected, field multiplication times for F2257 and F2254 are roughly comparable. If
these times were the same, then Table 3 would predict that E′ is faster than E for point multipli-
cation in the non-GLV timings. The experimental data shows that E does better than predicted
in this comparison, and the main reason is that the comb multiplier is more efficient there than on
the subfield F2127 .

The GLV technique provides an acceleration of 27% and 23% for doubling- and halving-based
methods on E′; as expected, the combination of GLV decomposition and point halving gives the
best time. A comparison of interest is between E′ and E, and this is the comparison for prime fields
in [10] where the acceleration from GLV is 14% on a 32-bit Pentium 4 and 43% on an 8-bit Atmel;
a later draft included 64-bit code on an Intel Core2, with a 7% acceleration. The corresponding
comparison for point halving methods in our case is 26%. While the comparison against E may
indeed be the “right” one, it comes with a caveat that the measurement is polluted by differences
in field multiplication times, a portion of which are due to programmer talent or lack thereof and
vary by processor. A significant difference between the case for curves over prime fields from those
over binary fields is the cost ratio of point addition to doubles. As rough approximations in the
scenarios of interest, the ratio in the prime field case is 11/8, while the ratio for binary fields is
8/4. Since the GLV technique reduces doubles but not additions, the opportunity for improvement
is apparently larger for prime fields.7

7The explanation in [10] for the lower-than-expected improvement on 32-bit code involves overheads when field
elements are only a few words, along with implementation decisions that do not favour smaller fields.

14 DARREL HANKERSON, KORAY KARABINA, AND ALFRED MENEZES

7. Conclusions

The GLS curves over binary fields offer significant acceleration via the GLV decomposition tech-
nique. The advantage extends to comparisons against random curves, and with methods based on
point halving. Recent improvements to doubling formulae have narrowed the performance gap be-
tween the doubling- and halving-based techniques, although halving retains a significant advantage
provided a threshold amount of per-field precomputation is available for the quadratic solver. On
the other hand, if fairly specialized curve parameters are acceptable, then the analysis shows that
the new formulae can eliminate most of the advantage of halving.

References

[1] E. Al-Daoud, R. Mahmod, M. Rushdan and A. Kilicman, “A new addition formula for elliptic curves over
GF (2n)”, IEEE Transactions on Computers, 31 (2002), 972–975.

[2] R. Avanzi, “Another look at square roots (and other less common operations) in fields of even characteristic”,
Selected Areas in Cryptography – SAC 2007, Lecture Notes in Computer Science, 4876 (2007), 138–154.

[3] R. Avanzi and N. Thériault, “Effects of optimizations for software implementations of small binary field arith-
metic”, Arithmetic of Finite Fields – WAIFI 2007, Lecture Notes in Computer Science, 4547 (2007), 69–84.

[4] D. Bernstein, T. Lange and R. Farashahi, “Binary Edwards curves”, Cryptology ePrint Archive: Report
2008/171, 2008. Available from http://eprint.iacr.org/2008/171.

[5] C. Diem and E. Thomé, “Index calculus in class groups of non-hyperelliptic curves of genus three”, Journal of
Cryptology, to appear.

[6] A. Enge and P. Gaudry, “A general framework for subexponential discrete logarithm algorithms”, Acta Arith-
metica, 102 (2002), 83–103.

[7] K. Fong, D. Hankerson, J. López and A. Menezes, “Field inversion and point halving revisited”, IEEE Transac-
tions on Computers, 53 (2004), 1047–1059.

[8] S. Galbraith, “Constructing isogenies between elliptic curves over finite fields”, LMS Journal of Computation
and Mathematics, 2 (1999), 118–138.

[9] S. Galbraith, F. Hess and N. Smart, “Extending the GHS Weil descent attack”, Advances in Cryptology –
EUROCRYPT 2002, Lecture Notes in Computer Science, 2332 (2002), 29–44.

[10] S. Galbraith, X. Lin and M. Scott, “Endomorphisms for faster elliptic curve cryptography on general curves”,
Cryptology ePrint Archive: Report 2008/194, 2008. Available from http://eprint.iacr.org/2008/194.

[11] R. Gallant, R. Lambert and S. Vanstone, “Faster point multiplication on elliptic curves with efficient endomor-
phisms”, Advances in Cryptology – CRYPTO 2001, Lecture Notes in Computer Science, 2139 (2001), 190–200.

[12] P. Gaudry, F. Hess and N. Smart, “Constructive and destructive facets of Weil descent on elliptic curves”,
Journal of Cryptology, 15 (2002), 19–46.

[13] S. Gueron and M. Kounavis. “Carry-less multiplication and its usage for computing the GCM mode”, white
paper, Intel Corporation, 2008. Available from http://softwarecommunity.intel.com/articles/eng/3787.htm.

[14] S. Gueron and M. Kounavis. “A technique for accelerating characteristic 2 elliptic curve cryptography”, In Fifth
International Conference on Information Technology: New Generations (ITNG 2008), IEEE Computer Society,
2008, 265–272.

[15] D. Hankerson, A. Menezes, and M. Scott, “Software implementation of pairings”, draft chapter, 2008.
[16] D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2003.
[17] F. Hess, “Generalising the GHS attack on the elliptic curve discrete logarithm problem”, LMS Journal of

Computation and Mathematics, 7 (2004), 167–192.
[18] I. Iijima, K. Matsuo, J. Chao and S. Tsujii, “Construction of Frobenius maps of twists elliptic curves and its ap-

plication to elliptic scalar multiplication”, Proceedings of the 2002 Symposium on Cryptography and Information
Security – SCIS 2002, Japan, 2002.

[19] D. Jao, S. Miller and R. Venkatesan, “Do all elliptic curves of the same order have the same difficulty of discrete
log?”, Advances in Cryptology – ASIACRYPT 2005, Lecture Notes in Computer Science, 3788 (2005), 21–40.

[20] K. Kim and S. Kim, “A new method for speeding up arithmetic on elliptic curves over binary fields”, Cryptology
ePrint Archive: Report 2007/181, 2007. Available from http://eprint.iacr.org/2007/181.

[21] B. King, “An improved implementation of elliptic curves over GF (2n) when using projective point arithmetic”,
Selected Areas in Cryptography – SAC 2001, Lecture Notes in Computer Science, 2259 (2001), 134–150.

ANALYZING THE GLS POINT MULTIPLICATION METHOD FOR BINARY ELLIPTIC CURVES 15

[22] B. King and B. Rubin, “Improvements to the point halving algorithm”, Australasian Conference on Information
Security and Privacy – ACISP 2004, Lecture Notes in Computer Science, 3108 (2004), 262–276.

[23] E. Knudsen, “Elliptic scalar multiplication using point halving”, Advances in Cryptology – ASIACRYPT ’99,
Lecture Notes in Computer Science, 1716 (1999), 135–149.

[24] N. Koblitz, “CM-curves with good cryptographic properties”, Advances in Cryptology – CRYPTO ’91, Lecture
Notes in Computer Science, 576 (1992), 279–287.

[25] T. Lange, “A note on López-Dahab coordinates”, Tatra Mountains Mathematical Publications, 33 (2006), 75-81.
Also available from http://eprint.iacr.org/2004/323.

[26] C. Lim and H. Hwang, “Speeding up elliptic scalar multiplication with precomputation”, Information Security
and Cryptology ’99, Lecture Notes in Computer Science, 1787 (2000), 102–119.

[27] J. López and R. Dahab, “Improved algorithms for elliptic curve arithmetic in GF (2n)”, Selected Areas in Cryp-
tography – SAC ’98, Lecture Notes in Computer Science, 1556 (1999), 201–212.

[28] J. López and R. Dahab, “High-speed software multiplication in F2m”, Progress in Cryptology – INDOCRYPT
2000, Lecture Notes in Computer Science, 1977 (2000), 203–212.

[29] M. Maurer, A. Menezes and E. Teske, “Analysis of the GHS Weil descent attack on the ECDLP over characteristic
two finite fields of composite degree”, LMS Journal of Computation and Mathematics, 5 (2002), 127–174.

[30] A. Menezes and M. Qu, “Analysis of the Weil descent attack of Gaudry, Hess and Smart”, Topics in Cryptology
– CT-RSA 2001, Lecture Notes in Computer Science, 2020 (2001), 308–318.

[31] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.
[32] B. Möller, “Algorithms for multi-exponentiation”, Selected Areas in Cryptography – SAC 2001, Lecture Notes

in Computer Science, 2259 (2001), 165–180.
[33] J. Muir and D. Stinson, “Minimality and other properties of the width-w nonadjacent form”, Mathematics of

Computation, 75 (2006), 369-384.
[34] R. Schroeppel, “Automatically solving equations in finite fields”, US patent application No. 09/834,363, filed

April 12, 2001.
[35] M. Scott, MIRACL – Multiprecision Integer and Rational Arithmetic C Library, http://www.computing.dcu.ie/

∼mike/miracl.html.
[36] J. Solinas, “Efficient arithmetic on Koblitz curves”, Designs, Codes and Cryptography, 19 (2000), 195–249.

Department of Mathematics & Statistics, Auburn University, Auburn, Alabama 36849 USA
E-mail address: hankedr@auburn.edu

Department of Combinatorics & Optimization, University of Waterloo, Waterloo, Ontario N2L
3G1 Canada

E-mail address: kkarabin@uwaterloo.ca

Department of Combinatorics & Optimization, University of Waterloo, Waterloo, Ontario N2L
3G1 Canada

E-mail address: ajmeneze@uwaterloo.ca

