
An improvement of discrete Tardos
fingerprinting codes∗

Koji Nuida1, Satoshi Fujitsu2, Manabu Hagiwara13, Takashi
Kitagawa1, Hajime Watanabe1, Kazuto Ogawa2, Hideki Imai14

1 Research Center for Information Security (RCIS), National Institute of
Advanced Industrial Science and Technology (AIST), Akihabara-Daibiru

Room 1102, 1-18-13 Sotokanda, Chiyoda-ku, Tokyo, 101-0021, Japan
Tel.: +81-3-5298-4722 Fax: +81-3-5298-4522

k.nuida@aist.go.jp

2 Science & Technical Research Laboratories, Japan Broadcasting Corporation
(NHK), 1-10-11 Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan

3 Center for Research and Development Initiative, Chuo University, 1-13-27
Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan

4 Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga,
Bunkyo-ku, Tokyo, 112-8551, Japan

Abstract

It has been known that the code lengths of Tardos’s collusion-secure
fingerprinting codes are of theoretically minimal order with respect to
the number of adversarial users (pirates). However, the code lengths can
be further reduced, as some preceding studies on Tardos’s codes already
revealed. In this article we improve a recent discrete variant of Tardos’s
codes, and give a security proof of our codes under an assumption weaker
than the original assumption (Marking Assumption). Our analysis shows
that our codes have significantly shorter lengths than Tardos’s codes. For
example, in a practical setting, the code lengths of our codes are about
3.01%, 4.28%, and 4.81% of Tardos’s codes if the numbers of pirates are
2, 4, and 6, respectively.

1 Introduction

Recent development of computer and network technology has promoted trades
of digital contents. This has increased not only convenience for both content
servers and users, but also risks of the distributed contents being illegally copied
and redistributed. Digital fingerprinting scheme is a solution for such problems,
in which the content server embeds some user identification data into each con-
tent in advance and detect the redistributor (called a pirate) from the data
embedded into the redistributed content. The object of this article is finger-
printing codes used for encoding the user identification data.

A collusion attack by more than one pirates is a typical attack (modification
and erasure) to the embedded fingerprint codeword. A fingerprinting code is
called c-secure, if it is secure against collusion attacks by at most c pirates,
namely if it is equipped with a tracing algorithm which can output a pirate
correctly with an overwhelming probability. The first construction of c-secure

∗A part of this work was presented at 17th Applied Algebra, Algebraic Algorithms, and
Error Correcting Codes (AAECC-17), Bangalore, India, December 16–20, 2007.

1

codes for every c was given by Boneh and Shaw [2], where they introduced a
certain assumption on the pirates’ attack strategies called Marking Assumption.
Then Tardos [8] proposed c-secure codes (under Marking Assumption) with
highly probabilistic codeword generation algorithms. A characteristic of his
codes is that by the tracing algorithm, closeness of each user’s codeword to the
codeword in the redistributed content is quantified as a “score” of each user
and then users whose scores exceed a given threshold are output. His work is a
milestone in this area because of the fact that code lengths of his c-secure codes
are of theoretically minimal order (that is, O(c2)) with respect to c.

After Tardos’s work, there have been proposed several improvements of his
codes. A direction investigated by S̆korić et al. [7] concerns reduction of the
code lengths by modifying the scoring function and by sharpening evaluation of
error probability of the tracing algorithm. Another direction taken by Blayer
and Tassa [1] concerns reduction of the code lengths by improving the parame-
ter choice for Tardos codes. Moreover, a work by Nuida et al. [5, 6] (following
Hagiwara et al. [3]) concerns implementation issues of the codes. Namely, they
replaced the continuous probability distributions used in Tardos codes with
certain finite (hence discrete) probability distributions, and proposed an appro-
priate way of approximating the scoring function, so that the resulting codes
can be implemented by using smaller amount of memory and numbers explic-
itly representable on computers. In addition, their “discrete Tardos codes” also
have shorter lengths than the original.

Our contribution in this article is a further improvement of the discrete
Tardos codes in [5, 6], at the following points:

• Modification of the tracing algorithm: In contrast with the previous codes
[3, 5, 6, 7, 8], our tracing algorithm outputs only one user having the
highest score. This results in significant reduction of the error probability.

• Reduction of code lengths: It is deduced from our formula of code lengths
that the lengths are reduced to less than or almost equal to 1/20 of Tardos
codes in many practical settings.

• Relaxation of Marking Assumption: Our security proof is given under an
assumption weaker than the Marking Assumption, thus it covers more
practical cases.

This article is organized as follows. Section 2 summarizes our models and
assumptions on fingerprinting codes. In Section 3, we introduce the abovemen-
tioned relaxation of Marking Assumption, and describe our codeword generation
algorithm and our tracing algorithm. In Section 4, we give our main results re-
garding the bound of error probabilities and the formula of code lengths of our
codes. Section 5 deals with some numerical examples of our codes and their
comparison with previous c-secure codes [6, 7, 8]. In Section 6, we investigate
an asymptotic behavior of code lengths of our codes. Arguments in these two
sections show that the lengths of our codes are significantly short. Finally,
Section 7 is devoted to the proofs of our results given in Section 4.

2

2 Preliminary

2.1 A general model for fingerprinting codes

In this subsection, we give a general model for fingerprinting codes. A specialized
model relevant to codes of our proposal will be shown in Section 2.2.

The players in our model are a content server (or a server in short) and
a number (denoted by N) of users. The users are classified into two types;
adversarial users called pirates, and the remaining users called innocent users.
Let ℓ denote the number of pirates.

Before the codeword generation phase, first the server chooses in a proba-
bilistic manner an auxiliary parameter P used in the remaining phases. This
phase may be omitted when such a parameter P is not necessary.

In the codeword generation phase, the server generates a codeword of each
user in a probabilistic manner which may depend on the above parameter P .
In this article we assume that the codeword wi = (wi,1, . . . , wi,m) of i-th user
ui is a binary sequence of the common length m. Then the server sends each
codeword wi to the corresponding user ui by a certain way, e.g. by embedding
wi as a digital fingerprint into a digital content and sending it to the user ui.

When the pirates receive their codewords, they create a new codeword (de-
noted by y) called a pirated codeword by an algorithm referred to as a pirates’
strategy. It is generally possible that pirates not only modify their codewords
but also erase some bits in them. To consider such attacks, we assume that the
length of y is also m but y consists of symbols in a larger alphabet {0, 1, ?},
where ‘?’ signifies an erased bit. The following two assumptions are standard
so far in the research area of fingerprinting codes. The former one was first
introduced by Boneh and Shaw [2], which is a consequence of a desired property
of steganography used by the server. On the other hand, the latter has been
implicitly put in most of the preceding works, and it represents a reasonable
assumption that codewords of innocent users and the parameter P (if it exists)
are kept secret for the pirates.

Definition 2.1 (Marking Assumption). If the bits wi1,j , . . . , wiℓ,j in the j-th
position of codewords of the pirates ui1 , . . . , uiℓ

(1 ≤ j ≤ m) all coincide with
each other (we call such a position undetectable), then the j-th bit yj of the
pirated codeword y also coincides with them.

Definition 2.2 (No Leakage Assumption). The distribution of the pirated code-
word y, conditioned on given pirates’ codewords, is independent of both innocent
users’ codewords and the parameter P (if it exists).

Then the pirates distribute the pirated codeword y, e.g. by distributing
copies of a pirated content involving a modified fingerprint that coincides with
y.

Finally, after the server obtains the pirated codeword y (e.g. by finding a
pirated content and extracting the embedded fingerprint), the server performs
a tracing algorithm to detect the pirates. A tracing algorithm takes the pirated
codeword y, the users’ codewords and the parameter P (if it exists) as input,
and outputs a (possibly empty) set of suspected users. A result of the algorithm
is regarded as a tracing error, or an error in short, unless the list of suspects
involves at least one pirate and no innocent user.

3

A fingerprinting code signifies a pair of a codeword generation algorithm
(including a choice of parameter P , if it exists) and a tracing algorithm. We
say that a fingerprinting code is c-secure (with ε-error) [2], if the probability
of tracing error, taken over choices of users’ codewords and parameter P (if it
exists), does not exceed a negligibly small value ε whenever ℓ ≤ c.

2.2 A model relevant to our codes

Here we give a specialized model based on the one in Section 2.1, which is
relevant to our fingerprinting codes proposed in this article. This model also
covers Tardos codes [8] and its recent variants such as [3, 5, 6, 7].

In this specialized model, first the server prepares a probability distribution
P with real values in the open interval (0, 1), which we refer to as a bias distribu-
tion. Then the parameter P is a sequence (p(1), . . . , p(m)) of values p(j) ∈ (0, 1)
chosen independently according to P. As is explained below, each p(j) signifies
the frequency of 1s appearing in j-th positions of users’ codewords. We refer to
the parameter P as the bias parameter.

In the codeword generation phase, the server chooses each bit wi,j in users’
codewords independently, with probability

Pr(wi,j = 1) = p(j) and Pr(wi,j = 0) = 1 − p(j) .

Given a pirated codeword y, the tracing algorithm first calculates a score S
(j)
i

for j-th bit wi,j of i-th user ui by a certain real-valued function, and then
sums them up as the total score Si =

∑m
j=1 S

(j)
i of i-th user. Secondly, the

algorithm compares the scores with an appropriately selected threshold Z, and
picks up every user ui with Si ≥ Z as a candidate of the output. We let this
model include the extreme case “Z = −∞”, where no user is exempted from
the candidates. Finally, the algorithm selects a part of the candidate users in a
certain manner and outputs every user in the selected part.

Example 2.3. In the case of Tardos codes [8], a certain continuous distribution
is used as the bias distribution (see [8] for details). By introducing an auxiliary
function σ(p) =

√
(1 − p)/p, the scoring function in [8] is given by S

(j)
i = σ(p(j))

if (yj , wi,j) = (1, 1), S
(j)
i = −σ(1 − p(j)) if (yj , wi,j) = (1, 0), and S

(j)
i = 0 if

yj ∈ {0, ?}. Moreover, the tracing algorithm outputs every user whose score
exceeds the threshold Z. In [8], the code length and the threshold are determined
by m = 100c2⌈log(N/ε)⌉ and Z = 20c⌈log(N/ε)⌉. On the other hand, in a
“discrete variant” of Tardos codes proposed by Hagiwara et al. in [3], the bias
distribution is a finite (hence discrete) probability distribution with only a small
number of possible values. Moreover, in a “symmetrized version” of Tardos
codes proposed by S̆korić et al. in [7], the scoring function is modified so that
S

(j)
i = σ(1 − p(j)) if yj ∈ {0, ?} and wi,j = 0, S

(j)
i = −σ(p(j)) if yj ∈ {0, ?} and

wi,j = 1, and S
(j)
i is the same as the original otherwise.

Now we give a remark on comparison between tracing algorithms of the
following two types. An algorithm of the first type outputs every user with
the score exceeding a threshold Z (e.g. Tardos codes). On the other hand, an
algorithm in the second type does not use a threshold (in other words, it is in
the extreme case Z = −∞) and outputs just one of the users with the highest
score. Then we have the following result:

4

Proposition 2.4. If all the remaining attributes are in common, the error
probability of a fingerprinting code with a tracing algorithm of second type is not
more than the error probability of a code with a tracing algorithm of first type.

Proof. In the case that a tracing algorithm of the second type results in an error,
an innocent user has the highest score, therefore we have either an innocent
user’s score exceeds a given threshold or no pirate’s score exceeds the same
threshold. Thus the corresponding tracing algorithm of the first type also results
in an error in this case. Hence the proposition follows.

3 Our proposal

This section summarizes our proposal; a relaxed version of Marking Assump-
tion, a codeword generation algorithm, and an improved tracing algorithm. An
appropriate choice of the code lengths together with a security proof of our
codes will be given in later sections.

3.1 A relaxation of Marking Assumption

An issue of the Marking Assumption (Definition 2.1) is that fingerprint embed-
ding schemes assuring this assumption strictly seem difficult to realize. From
this viewpoint, we put the following relaxed version of Marking Assumption:

Definition 3.1 (δ-Marking Assumption). The number of undetectable posi-
tions (see Definition 2.1 for terminology) in which y differs from the pirates’
codewords is not more than mδ, where m is the code length and δ ≥ 0 is a fixed
parameter.

When δ = 0, this assumption coincides with the Marking Assumption.

3.2 Our codeword generation algorithm

The following description of our codeword generation process is based on the
model in Section 2.2. Thus it now suffices to determine the bias distribution.
Here we introduce the following bias distribution PGL = PGL

c for each c:

Definition 3.2. Let Lk(t) = (d
dt)

k(t2−1)k/(k! 2k) be the k-th Legendre polyno-
mial, and put L̃k(t) = Lk(2t− 1). Then we define PGL

2k−1 = PGL
2k to be the finite

probability distribution whose values are the k zeroes of L̃k, with each value
p taken with probability C

(
p(1 − p)

)−3/2
L̃k

′(p)−2, where C is the normalized
constant making the sum of the probabilities equal to 1.

These bias distributions PGL
c were first introduced by a discrete variant

[5, 6] of Tardos codes. In [5, 6], PGL
c are called “Gauss-Legendre distributions”

due to their deep relation to the Gauss-Legendre quadrature in numerical ap-
proximation theory. It is shown in [5, 6] that PGL

c minimizes, among the bias
distributions with certain desirable property, the memory amount required to
record the bias parameter P , and that the code lengths are also reduced by
using PGL

c instead of the continuous bias distributions for Tardos codes. This
is the main reason of adopting the distributions PGL

c as our bias distributions.

5

We should note that the values and the corresponding emerging probabilities
of PGL

c are not rational, therefore we need some approximation to implement
these distributions on computer. Effects of such approximations will also be con-
sidered in our security proof. In this article, we assume the following condition
on the bias distribution P approximating PGL

c :

Definition 3.3. We say that a bias distribution P is symmetric, if P takes the
values p and 1 − p with the same probability for any 0 < p < 1.

Note that the original PGL
c are also symmetric in this sense.

3.3 Our tracing algorithm

Our tracing algorithm is also defined along the model in Section 2.2. For the
scoring rule, we put

σ(p) =
√

(1 − p)/p

and define the bitwise scores S
(j)
i by

S
(j)
i =

σ(p(j)) if yj = 1 and wi,j = 1 ,

−σ(1 − p(j)) if yj = 1 and wi,j = 0 ,

−σ(p(j)) if yj ∈ {0, ?} and wi,j = 1 ,

σ(1 − p(j)) if yj ∈ {0, ?} and wi,j = 0 .

(1)

Note that this scoring rule was used in a preceding work [7] to reduce the code
lengths of Tardos codes.

Then, instead of comparing users’ scores with a threshold, our tracing algo-
rithm simply outputs one of the users with the highest score. This modification
is in fact an improvement, due to Proposition 2.4. Note that the way of choosing
just one user from the users with the highest score may be arbitrarily designed,
since our security proof covers any possible way for this choice.

Note that scores determined by the above rule are in general not explicitly
representable on computer, therefore we also need some approximations of these
values. For this purpose, we enumerate the values of the symmetric (in the
sense of Definition 3.3) bias distribution P (which is either the distribution
PGL

c itself or its approximation) in increasing order as p0, p1, . . . , pk, and fix an
approximated value Ui of each σ(pi). Now by the symmetry property of P, we
have 1−pi = pk−i, therefore the value Uk−i (denoted by U ′

i for simplicity) is an
approximated value of σ(1 − pi). In this setting, we modify the above scoring
rule (1) for bitwise scores as follows:

S
(j)
i =

Uν if yj = 1 and wi,j = 1 ,

−U ′
ν if yj = 1 and wi,j = 0 ,

−Uν if yj ∈ {0, ?} and wi,j = 1 ,

U ′
ν if yj ∈ {0, ?} and wi,j = 0 ,

where p(j) = pν . (2)

Our security proof also consider the effects of this approximation.

6

4 Code lengths and error probabilities of our
codes

For our codes proposed in Section 3, in this section we give a bound of tracing
error probabilities and a formula of code lengths (Theorem 4.2), which show
that our codes are c-secure. Proofs of the results will be provided in Section 7.

First, we present some notations and terminology. Let P be a symmetric
bias distribution (see Definition 3.3), which is either the distribution PGL

c in
Definition 3.2 or its approximation. Let p0, p1, . . . , pk, Ui, and U ′

i be as defined
in the last paragraph of Section 3.3. Put

η = σ(p0) .

Let
δ′ = max

0≤i≤k
|σ(pi) − Ui| = max

0≤i≤k
|σ(1 − pi) − U ′

i | ,

i.e. the bound of approximation errors of the bitwise scores. Then we define the
tolerance rate ∆ of our code by

∆ = δ′ + 2ηδ ,

where the value δ is that appearing in δ-Marking Assumption (Definition 3.1).
For each 1 ≤ ℓ ≤ c and 0 ≤ x ≤ ℓ, put

Rℓ,x = max{0, E
[
px(1 − p)ℓ−x

(
xσ(p) − (ℓ − x)σ(1 − p)

)]
} ,

Rℓ = ℓE
[
(1 − p)ℓ−1/2p1/2

]
−

ℓ−1∑
x=1

(
ℓ

x

)
Rℓ,x ,

where the expectation values E[·] are taken over the values p of P. Then fix
a value R such that 2c∆ ≤ R ≤ Rℓ for all 1 ≤ ℓ ≤ c. Moreover, define the
following functions

B1(t) =
etη + η2e−t/η

η2 + 1
, B2,ℓ(t) = 1 +

etℓη − 1 − tℓη

ℓη2
− 2tR ,

Φ(t) = t(1 − log t) ,

where log denotes the natural logarithm, and put

Tℓ = B1(βℓ)B2,ℓ(β)e2βℓ∆ for each 1 ≤ ℓ ≤ c ,

where β > 0 is an appropriately chosen parameter (see below). These func-
tions have the following properties, from which it follows that the values Tℓ are
positive and bounded below from zero. The proofs will be given in Section 7.

Lemma 4.1. 1. For t > 0, B1(t) is an increasing function and B1(t) > 1.

2. For each 1 ≤ l ≤ c, the function B2,ℓ(t) (t > 0) takes the minimum value
at t = (ℓη)−1 log(1 + 2Rη), and B2,ℓ(t) > 1/2.

Now our bound of error probabilities and our formula of code lengths are
summarized as follows. The proofs will be given in Section 7. Moreover, some
numerical examples concerning this result will be provided in Section 5.

7

Theorem 4.2. Let 0 < ε < 1, and choose β > 0 so that NTc
m < 1. Let ℓ be

the number of pirates. We put δ-Marking Assumption (Definition 3.1) and No
Leakage Assumption (Definition 2.2).

1. If ℓ ≤ c, Tc ≤ T0 and NT0
m < 1, then the tracing error probability of our

code, using the scoring rule (2) instead of (1), is not more than Φ(NT0
m).

Hence our code is c-secure with ε-error if Φ(NT0
m) ≤ ε.

2. Let a > 1 such that ε ≤ ae1−a (e.g. a = 10/9 for ε ≤ 0.99). Then our
code is c-secure with ε-error if the code length satisfies that

m ≥ − 1
log Tc

(
log

N

ε
+ log

a

a − 1
+ log log

a

ε

)
(3)

(note that Tc < 1 by our assumption, therefore −(log Tc)−1 = | log Tc|−1).

This result implies that, for the sake of reducing code lengths, the parameter
β should be chosen so that the value Tc becomes as small as possible (note that
the function Φ(t) is increasing for 0 < t < 1). Since it seems very difficult to
determine the optimal value βoptimal of the parameter β for a general case, here
we instead give (by a heuristic approach) a simple formula βformula of nearly
optimal values of β. The definition of βformula is

βformula =
1

η2j1
log

(
1 +

2η

c
(R− ηj1∆)

)
, (4)

where
j1 = 2.40482 · · · (5)

denotes the smallest positive zero of the 0th-order Bessel function J0(t) =∑∞
i=0(−1)i(t/2)2i/(i!)2 of the first kind. The examples in Section 5 suggest

that the formula (4) is “pretty good”, though it is not optimal.
The asymptotic behavior of the code lengths of our codes will be investigated

in Section 6.

5 Numerical examples

This section is devoted to numerical examples of our c-secure codes, where c
varies as c = 2, 3, 4, 6, and 8, and to comparison of our codes with previously
proposed c-secure codes [5, 6, 7, 8].

5.1 Approximations of bias distributions and scoring func-
tions

The former part of Table 1 shows an approximation P of the bias distribution
PGL

c for each c, where columns entitled ‘p’ and ‘q’ denote, respectively, the values
of P and the emerging probabilities of the corresponding values. Note that
these distributions P are symmetric in the sense of Definition 3.3. Moreover,
approximations Ui of values of the function σ are given in the latter part of
Table 1. Now the bound δ′ of the approximation error is δ′ = 0 for c ≤ 2, and
δ′ = 10−5 for c ≥ 3. Table 2 shows approximations of the values of R and η.

8

Table 1: Approximations of the bias distributions PGL
c and bitwise scores

c p q c p q
1, 2 0.50000 1.00000 7, 8 0.06943 0.24833
3, 4 0.21132 0.50000 0.33001 0.25167

0.78868 0.50000 0.66999 0.25167
5, 6 0.11270 0.33201 0.93057 0.24833

0.50000 0.33598
0.88730 0.33201

c U0 U1 U2 U3

2 1
4 1.93187 0.51763
6 2.80590 1 0.35639
8 3.66101 1.42485 0.70182 0.27314

Table 2: Auxiliary values for our examples
c 2 3 4 6 8
R 0.50000 0.40823 0.40823 0.37796 0.36291
η 1.00000 1.93188 1.93188 2.80591 3.66102

5.2 Calculation of code lengths

Table 3 shows the code lengths of our codes under δ-Marking Assumption (Def-
inition 3.1). Here we set the tolerance late ∆ = δ′ + 2ηδ to 0.01; namely, our
codes are still c-secure even if mδ ≈ m/(200η) bits in undetectable positions are
flipped or erased. In the table, we consider the following three cases:

• Case 1: N = 100c and ε = 10−11,

• Case 2: N = 109 and ε = 10−6,

• Case 3: N = 106 and ε = 10−3.

In this example, we calculate the code lengths by using the first part of Theorem
4.2 and a numerical calculation, instead of a slightly looser formula (3) in the
second part of Theorem 4.2. The code length shown in the first row for each
c in Table 3 is calculated by using the optimal value βoptimal determined by a
numerical search. On the other hand, the code length in the second row for
each c in Table 3 is derived by using the formula (4) instead of βoptimal. This
table shows that the code lengths derived from (4) are not very apart from the
ones derived from βoptimal, namely the formula (4) is a good approximation of
βoptimal.

A similar table (Table 4) is also given for the case under the Marking As-
sumption instead of the δ-Marking Assumption (or equivalently, Table 4 deals
with the case that δ = 0). Again, the code lengths derived from the parameters
in (4) are not very apart from the ones derived from βoptimal.

5.3 Comparison of our code lengths with other codes

Tables 3 and 4 also show the code lengths 100c2⌈log(N/ε)⌉ of Tardos codes [8] for
the same settings (except that the lengths of Tardos codes for the cases in Table 3

9

Table 3: Length comparison under δ-Marking Assumption (where ∆ = 0.01)
Values in parentheses are code lengths calculated by using βformula instead of

βoptimal.
c Case 1 Case 2 Case 3 Case 4 βoptimal

Ours 403 444 273
2 (404) (444) (274) 0.16921

Tardos 12400 14000 8400
% 3.25 3.17 3.25 2.97

Ours 1514 1646 1014
3 (1630) (1771) (1091) 0.057404

Tardos 28800 31500 18900
% 5.26 5.23 5.37 4.89

Ours 2671 2879 1774
4 (2672) (2880) (1775) 0.034093

Tardos 51200 56000 33600
% 5.22 5.14 5.28 4.81

Ours 7738 8244 5079
6 (7743) (8249) (5082) 0.013798

Tardos 115200 126000 75600
% 6.72 6.54 6.72 6.13

Ours 16920 17879 11015
8 (16934) (17894) (11024) 0.0071633

Tardos 211200 224000 134400
% 8.01 7.98 8.20 7.47

10

Table 4: Length comparison under Marking Assumption (here ∆ = δ′)
Values in parentheses are code lengths calculated by using βformula instead of

βoptimal.
c Case 1 Case 2 Case 3 Case 4 βoptimal

Ours 373 410 253
2 (374) (411) (253) 0.17549

Tardos 12400 14000 8400
% 3.01 2.93 3.01 2.74

Ours 1309 1423 877
3 (1390) (1511) (931) 0.061345

Tardos 28800 31500 18900
% 4.55 4.52 4.64 4.23

Ours 2190 2360 1454
4 (2190) (2360) (1454) 0.037405

Tardos 51200 56000 33600
% 4.28 4.21 4.33 3.95

Ours 5546 5909 3640
6 (5547) (5909) (3641) 0.016111

Tardos 115200 126000 75600
% 4.81 4.69 4.81 4.39

Ours 10469 11062 6815
8 (10469) (11062) (6816) 0.0089586

Tardos 211200 224000 134400
% 4.96 4.94 5.07 4.62

11

are derived under Marking Assumption instead of δ-Marking Assumption), and
the percentages of our code lengths relative to those of Tardos codes. Moreover,
we also give (as “Case 4”) the percentages in the limit case N/ε → ∞ (i.e. N →
∞ or ε → 0). For the limit case, we use the formula (3) for code lengths of our
codes, therefore the percentage m/

(
c2⌈log(N/ε)⌉

)
converges to −

(
c2 log Tc

)−1 =(
c2| log Tc|

)−1 when N/ε → ∞. These two tables show that our codes have much
shorter code lengths than Tardos codes. Moreover, our code lengths are also
significantly shorter than a preceding improvement [5, 6] of Tardos codes. In
fact, numerical examples in [5, 6] show that the code lengths in [5, 6] are more
than 30% of those of Tardos codes for c ≤ 8.

On the other hand, it is proved in [7] that the code lengths of Tardos codes
(under Marking Assumption) can be reduced to π2/2% ≈ 4.93% of the original
by using the symmetrized scoring rule (1), provided we put a certain statistical
assumption on distributions of innocent users’ scores (see [7] for details). It is
worth noticing that, despite the unconditional security of our codes (that is, our
security proof holds without such a statistical assumption), our code lengths
shown in Tables 3 and 4 are almost the same as, or even shorter than, the
lengths given in [7] (i.e. 4.93% of Tardos codes) for many cases. Moreover, the
unconditionally c-secure code lengths given in [7] are π2% ≈ 9.87% of lengths
of Tardos codes, and our code lengths are shorter than their code lengths for
every case shown in the two tables.

6 Asymptotic behavior of our code lengths

In this section, we investigate an asymptotic behavior of code lengths m of
our c-secure codes in the limit case c → ∞. More precisely, we show that
m ∼ Kc2 log(N/ε) for some K < ∞ when c → ∞, and determine the constant
factor K (Theorem 6.3). Note that the factor K is 100 for Tardos codes.

6.1 The results

In our analysis, we use the following asymptotic properties of the bias distribu-
tions PGL

c , which are proved in [5]:

Lemma 6.1 ([5]). If P = PGL
c , then R = min1≤ℓ≤c Rℓ → 1/π and η/c → 1/j1

when c → ∞, where j1 is as defined in (5).

Following Lemma 6.1, we choose an approximation P of PGL
c for each c such

that R → 1/π, η/c → 1/j1 and c∆ → ∆0 when c → ∞, where 0 ≤ ∆0 < ∞.
(Although the values R, η and ∆ depend on c, we omit subscripts ‘c’ in the
notations for simplicity.) In particular, η → ∞ when c → ∞. Note that
∆0 ≤ (2π)−1 by our assumption 2c∆ ≤ R for each c (see Section 4).

We use the formula (3) for code lengths and the formula (4) for the parameter
β. Now we have N/ε → ∞ when c → ∞, since ε ≤ 1 and N ≥ c. Thus by (3),
the ratio m/

(
c2 log(N/ε)

)
converges (when c → ∞) to the same value as the

limit of −1/
(
c2 log Tc

)
, whenever the latter converges. Since

c2 log Tc = c2 log B1(βc) + c2 log B2,c(β) + 2βc3∆ ,

12

it suffices to calculate the limit of each term in the right-hand side. Now put

A = 1 +
2η

c
(R− ηj1∆) and A0 = 1 +

2
j1

(
1
π
− ∆0

)
,

therefore A → A0 > 1 when c → ∞. Then for the third term, we have

2βc3∆ =
c2

η2
· 2c∆

j1
log A → 2j1∆0 log A0 when c → ∞ .

In the remaining argument, we use the following lemma, which will be proved
in Section 6.2:

Lemma 6.2. Let f(c) and g(c) be real-valued functions.

1. If c2(f(c) − 1) → a ∈ R when c → ∞, then c2 log f(c) → a when c → ∞.

2. If f(c) → a and g(c) → 0 when c → ∞, 0 < a < ∞, and g(c) ̸= 0 for all
sufficiently large c, then (f(c)g(c) − 1)/g(c) → log a when c → ∞.

Owing to the first part of Lemma 6.2, it now suffices to determine the limit
of the values c2(B1(βc) − 1) and c2(B2,c(β) − 1). First, we have

c2(B1(βc) − 1) =
c2

η2
· η2

η2 + 1

(
Ac/(ηj1) − 1 − c

ηj1
· A−c/(η3j1) − 1

−c/(η3j1)

)
.

Since A → A0 > 1 when c → ∞, the second part of Lemma 6.2 implies that

lim
c→∞

c2(B1(βc) − 1) = j1
2 · 1 · (A0

0 − 1 − 1 · log A0) = j1
2(A0 − 1 − log A0)

(recall that η → ∞ when c → ∞). On the other hand, we have

c2(B2,c(β) − 1) =
c

η
· 1

η

(
Ac/(ηj1) − 1 − c

ηj1
log A

)
− c2

η2
· 2R

j1
log A .

Since Ac/(ηj1) − 1 − (ηj1)−1c log A is bounded when c → ∞, we have

lim
c→∞

c2(B2,c(β) − 1) = 0 − j1
2 · 2/π

j1
log A0 = −2j1

π
log A0 .

Hence by the first part of Lemma 6.2, we have

lim
c→∞

c2 log Tc = j1
2(A0 − 1 − log A0) −

2j1
π

log A0 + 2j1∆0 log A0

= −j1
2(A0 log A0 − A0 + 1) ,

therefore limc→∞ m/
(
c2 log(N/ε)

)
= j1

−2(A0 log A0 − A0 + 1)−1. The right-
hand side is a decreasing function of A0 > 1, therefore an increasing function of
∆0 ≥ 0. Hence it is optimal for decreasing the value to set ∆0 = 0.

Summarizing, we have the following result (assuming Lemma 6.2):

Theorem 6.3. In this setting, by putting A0 = 1 + 2/(j1π) where j1 is as
defined in (5), the asymptotic behavior of lengths m of our codes is given by

m ∼ Kc2 log(N/ε) where K =
1

j12(A0 log A0 − A0 + 1)
≈ 5.35310 · · · .

13

As a comparison with other codes, the constant factor K is K = 100 for
Tardos codes [8], K ≈ 20.6021 for codes in [5], K ≈ 20 for codes in [1], and
K ≈ 9.87 for codes in [7]. Theorem 6.3 shows that our asymptotic code lengths
are significantly shorter than those for the above codes. Note also that K ≈ 4.93
for codes in [7] under a certain statistical assumption (cf. Section 5.3), and that
our asymptotic ratios are close to that value though our security proof does not
require such an additional assumption.

6.2 Proof of Lemma 6.2

Here we give a proof of Lemma 6.2 to complete the proof of Theorem 6.3.

of Lemma 6.2. For the first part of Lemma 6.2, note that f(c) → 1 when c → ∞
since c2(f(c) − 1) is bounded. First, if the set f−1(1) = {c | f(c) = 1} is
bounded, then we have c2 log f(c) = c2(f(c) − 1) · (f(c) − 1)−1 log f(c) for all
sufficiently large c, and limc→∞(f(c)−1)−1 log f(c) = limx→1(x−1)−1 log x = 1
by L’Hôpital’s Rule, therefore our claim follows. Secondly, if the set f−1(1) is
not bounded, then a must be 0, since there is an infinite sequence c1, c2, . . .
diverging to ∞ such that f(ci) = 1 for all i. Now we define another function f(c)
by f(c) = f(c) if f(c) ̸= 1 and f(c) = ec−3

if f(c) = 1. This function satisfies
that f(c) ̸= 1 for any c and c2(f(c)− 1) → 0 when c → ∞, since c2(ec−3 − 1) =
(ec−3 − 1)/c−2 → 0 when c → ∞ by L’Hôpital’s Rule. Thus c2 log f(c) → 0
when c → ∞ by the above argument, while we have c2 log f(c) = 0 if f(c) = 1.
Hence we have c2 log f(c) → 0 when c → ∞, therefore our claim follows.

From now, we prove the second part of Lemma 6.2. First note that, if f(c)
is constantly equal to a, then we have

lim
c→∞

(f(c)g(c) − 1)/g(c) = lim
x→0

(ax − 1)/x = log a

by L’Hôpital’s Rule. Now for a general case, for any 0 < λ < a, we have
0 < a−λ < f(c) < a+λ for all sufficiently large c since f(c) → a when c → ∞.
This implies that

(a − λ)g(c) − 1
g(c)

<
f(c)g(c) − 1

g(c)
<

(a + λ)g(c) − 1
g(c)

(6)

for any sufficiently large c. By the above argument, the left-hand side and the
right-hand side of (6) converge to log(a − λ) and log(a + λ), respectively, when
c → ∞. Thus

log(a − λ) ≤ lim inf
c→∞

f(c)g(c) − 1
g(c)

≤ lim sup
c→∞

f(c)g(c) − 1
g(c)

≤ log(a + λ) . (7)

By taking the limit λ → 0, both the left-hand side and the right-hand side
converge to log a, therefore the middle two terms are both equal to log a. This
means that (f(c)g(c) − 1)/g(c) also converges to log a.

Hence the proof of Lemma 6.2 is concluded.

7 Proofs of results in Section 4

In this section, we give the proofs of our results in Section 4. First, in Section
7.1 we prove Lemma 4.1. Secondly, in order to prove Theorem 4.2, we present

14

in Section 7.2 a key lemma for the proof, and we show in Section 7.3 some
properties of distributions of the users’ scores. Section 7.4 is the body of the
proof of Theorem 4.2. Finally, in Section 7.5, we give a proof of the key lemma
presented in Section 7.2.

7.1 Proof of Lemma 4.1

In this subsection, we prove Lemma 4.1. The first part of Lemma 4.1 can be
proved by an easy analysis. Namely, we have B′

1(t) = η(etη−e−t/η)/(η2+1) > 0
for t > 0 since η > 0, therefore B1(t) is increasing for t > 0, and B1(t) > B1(0) =
1 for t > 0.

From now, we prove the second part of Lemma 4.1. The first claim, namely
B2,ℓ(t) takes the minimum value for t > 0 at t = t0 = (ℓη)−1 log(1 + 2Rη),
is proved by a straightforward analysis. For the remaining claim, it suffices to
show that B2,ℓ(t0) > 1/2. We have

B2,ℓ(t0) = 1 +
4R2

ℓ
f(s) , where f(t) =

t − (1 + t) log(1 + t)
t2

and s = 2Rη .

Now we use the following two lemmas:

Lemma 7.1. We have f(t) > −1/2 for t > 0.

Proof. First, by putting g(t) = (t+2) log(t+1)−2t, a direct calculation implies
that f ′(t) = g(t)t−3. Now we have g′(t) = log(t + 1) + (t + 1)−1 − 1 and
g′′(t) = (t + 1)−1 − (t + 1)−2 > 0 for t > 0, therefore g′(t) > g′(0) = 0 for t > 0
and g(t) > g(0) = 0 for t > 0. Thus f(t) is increasing for t > 0. Moreover, we
have limt→0 f(t) = −1/2 by applying L’Hôpital’s Rule twice. Hence the claim
follows.

Lemma 7.2. We have R ≤ 1/2.

Proof. Recall our assumption given in Section 4 that 2c∆ ≤ R ≤ Rℓ′ for all
1 ≤ ℓ′ ≤ c. In particular, R ≤ R1 = E

[
(1 − p)1/2p1/2

]
. Now the claim follows

from the fact that
√

(1 − p)p ≤ 1/2 for any 0 < p < 1.

By these two lemmas, we have B2,ℓ(t0) > 1+(1/ℓ) · (−1/2) ≥ 1/2 (note that
2Rη > 0). Hence the proof of Lemma 4.1 is concluded.

7.2 A key lemma

In this subsection, we present the following inequality regarding two random
variables, which will be a key ingredient of our proof of Theorem 4.2:

Lemma 7.3. Let g1 and g2 be two real-valued random variables on the same
probability space, and G(x) = Pr(g2 ≤ x) (x ∈ R) the distribution function of
g2. Suppose that we are given a weakly decreasing function φ : R → R≥0 (where
R≥0 denotes the set of nonnegative real numbers) and a right-continuous, weakly
increasing function F : R → R≥0 satisfying the following conditions:

1. we have G(x) ≤ F (x) for all x ∈ R, and limx→−∞ F (x) = 0,

15

2. for any finite closed interval I ⊂ R and any ε′ > 0, there exists a κ > 0
such that Pr(g1 ≥ x1 | x1 ≤ g2 < x2) ≤ φ(x1) + ε′ whenever x1, x2 ∈ I,
0 < x2 − x1 < κ and Pr(x1 ≤ g2 < x2) > 0.

Then Pr(g1 ≥ g2) ≤
∫

R φdF , where the integral in the right-hand side is the
Lebesgue-Stieltjes integral (see e.g. [4]) with respect to the function F .

The proof of this lemma will be given in Section 7.5.

7.3 Lemmas on distributions of users’ scores

In this subsection, we give two lemmas concerning distributions of the scores of
users in our codes, which will be used in our proof of Theorem 4.2. These lemmas
and their proofs presented below are based on the ones for similar properties
given in [3, 6, 8].

Our first lemma concerns the scores of innocent users:

Lemma 7.4. Let ui be an innocent user, and z ∈ R. Then for any fixed
bias parameter P , any pirated codeword y, and any α > 0, the score Si of ui

calculated by the rule (1) satisfies

Pr(Si ≥ z | P, y) = Pr(eαSi ≥ eαz | P, y)
≤ E

[
eαSi | P, y

]
e−αz ≤ B1(α)me−αz ,

where the conditional probabilities and the conditional expectation are taken over
choices of the codeword wi of the user ui.

Proof. The first equality in the statement is obvious, while the former of the
two inequalities is derived from Markov’s Inequality. For the latter of the two
inequalities, since each bit in wi is chosen independently of each other, we
have E

[
eαSi | P, y

]
=

∏m
j=1 E

[
eαS

(j)
i | P, y

]
. Now we define a function f(t) for

0 < t < 1 by f(t) = teα
√

(1−t)/t +(1− t)e−α
√

t/(1−t). Note that E
[
eαS

(j)
i | P, y

]
is equal to f(p(j)) if yj = 1 and to f(1 − p(j)) if yj ∈ {0, ?}. By putting
λ = α/

√
t(1 − t), a straightforward calculation shows that

f ′(t) =
e−α

√
t/(1−t)

2
(
(2 − λ)eλ − 2 − λ

)
(note that

√
(1 − t)/t = λ/α−

√
t/(1 − t)), while an elementary analysis implies

that (2−λ)eλ −2−λ < 0 for any λ > 0. Thus f ′(t) < 0 for 0 < t < 1, therefore
f(p(j)) ≤ f(p0) and f(1 − p(j)) ≤ f(p0) since p(j) ≥ p0 and 1 − p(j) ≥ p0

by the assumption that P is symmetric (see Definition 3.3). Finally, we have
f(p0) = B1(α) by the choice of η. Hence the claim follows.

On the other hand, our second lemma concerns the scores of the pirates:

Lemma 7.5. Fix an arbitrary pirates’ strategy satisfying Marking Assumption.
Let Si denote the score of a pirate ui calculated by the rule (1). Let Spmax denote
the maximum of the Si among the ℓ pirates ui, and Spsum denote the sum of
the ℓ scores Si. Then for any z ∈ R and any α > 0, we have

Pr(Spmax ≤ z) ≤ Pr(Spsum ≤ ℓz) = Pr(e−αSpsum ≥ e−αℓz)
≤ E

[
e−αSpsum

]
eαℓz ≤ B2,ℓ(α)meαℓz ,

16

where the probabilities and the expectation are taken over choices of the bias
parameter P , the pirates’ codewords wi, and the pirated codeword y.

Proof. The claim except the last inequality E
[
e−αSpsum

]
eαℓz ≤ B2,ℓ(α)meαℓz

follows from Markov’s Inequality and easy arguments. In order to prove the
above inequality, we investigate the value E

[
e−αSpsum

]
. In this proof, we assume

for simplicity that u1, . . . , uℓ are the ℓ pirates.
By No Leakage Assumption (Definition 2.2), the fixed (probabilistic) pirates’

strategy satisfies that Pr(y | w,P) = Pr(y | w) for any bias parameter P , any
collection w = (wi)i of the pirates’ codewords, and any pirated codeword y.
Thus we have Pr(P,w, y) = Pr(P)Pr(w | P)Pr(y | w), therefore

E
[
e−αSpsum

]
=

∑
w

∑
y

E(P)

[
e−αSpsumPr(w | P)

]
Pr(y | w) , (8)

where E(P)[·] denotes the expectation value taken over choices of P .
Put xj = #{i ∈ {1, . . . , ℓ} | wi,j = 1} for each 1 ≤ j ≤ m. Then, since each

wi,j depends solely on p(j) and is chosen independently of each other, we have

e−αSpsumPr(w | P) = e−α
Pm

j=1
Pℓ

i=1 S
(j)
i

m∏
j=1

ℓ∏
i=1

Pr(wi,j | p(j))

=
∏
j

(
e−α

P

i S
(j)
i (p(j))xj (1 − p(j))ℓ−xj

)
.

Since the j-th term of the product in the right-hand side depends on p(j) but
not on p(j′) for other j′, and each p(j) is chosen independently according to the
same bias distribution P, we have (for any w and y)

E(P)

[
e−αSpsumPr(w | P)

]
=

m∏
j=1

E(p(j))

[
e−α

P

i S
(j)
i (p(j))xj (1 − p(j))ℓ−xj

]
,

where E(p(j))[·] denotes the expectation value taken over the values p(j) of P.

Now note that
∑

i S
(j)
i = Lxj ,p(j) if yj = 1 and

∑
i S

(j)
i = −Lxj ,p(j) if yj ∈ {0, ?},

where Lx,p = xσ(p) − (ℓ − x)σ(1 − p). Then we have

E(P)

[
e−αSpsumPr(w | P)

]
≤

m∏
j=1

max∗{N0,xj , N1,xj} ,

where

N0,x = E(p)

[
eαLx,ppx(1 − p)ℓ−x

]
, N1,x = E(p)

[
e−αLx,ppx(1 − p)ℓ−x

]
and max∗ takes the first term N0,xj if xj = 0, the second term N1,xj if xj = ℓ,
and the maximum of N0,xj and N1,xj if 1 ≤ xj ≤ ℓ − 1 (this definition of max∗

reflects the Marking Assumption; i.e. yj must be 0 if xj = 0, and 1 if xj = ℓ).
This bound does not depend on y, and both N0,xj and N1,xj depend solely on

17

xj . Thus by substituting it into (8) we have

E
[
e−αSpsum

]
≤

∑
w

m∏
j=1

max∗{N0,xj , N1,xj}

=
∑

x1,...,xm

m∏
j=1

(
ℓ

xj

) m∏
j=1

max∗{N0,xj , N1,xj}

=
m∏

j=1

ℓ∑
xj=0

(
ℓ

xj

)
max∗{N0,xj , N1,xj} =

(
ℓ∑

x=0

(
ℓ

x

)
Mx

)m

,

where M0 = N0,0, Mℓ = N1,ℓ and Mx = max{N0,x, N1,x} for 1 ≤ x ≤ ℓ − 1.
Since |Lx,p| ≤ ℓη for any value p of P and any 0 ≤ x ≤ ℓ, an elementary

analysis shows that e±αLx,p ≤ 1 ± αLx,p + r(αℓη)α2Lx,p
2, respectively, where

r(t) = (et −1− t)/t2 (note that this r(t) is an increasing function, where we put
r(0) = limt→0 r(t) = 1/2). Thus we have

Mx ≤ E(p)

[
px(1 − p)ℓ−x

]
− αE(p)

[
px(1 − p)ℓ−xLx,p

]
+ r(αℓη)α2E(p)

[
px(1 − p)ℓ−xLx,p

2
]
+ 2αRℓ,x

for 1 ≤ x ≤ ℓ − 1 (see Section 4 for the definition of Rℓ,x), while

M0 ≤ E(p)

[
p0(1 − p)ℓ−0

]
+ αE(p)

[
p0(1 − p)ℓ−0L0,p

]
+ r(αℓη)α2E(p)

[
p0(1 − p)ℓ−0L0,p

2
]

and

Mℓ ≤ E(p)

[
pℓ(1 − p)ℓ−ℓ

]
− αE(p)

[
pℓ(1 − p)ℓ−ℓLℓ,p

]
+ r(αℓη)α2E(p)

[
pℓ(1 − p)ℓ−ℓLℓ,p

2
]

.

Note that
∑ℓ

x=0

(
ℓ
x

)
px(1 − p)ℓ−x = 1,

∑ℓ
x=0

(
ℓ
x

)
px(1 − p)ℓ−xLx,p = 0, and∑ℓ

x=0

(
ℓ
x

)
px(1 − p)ℓ−xLx,p

2 = ℓ. Then we have

ℓ∑
x=0

(
ℓ

x

)
Mx ≤ 1 + 2αE(p)

[
p0(1 − p)ℓ−0L0,p

]
+ r(αℓη)α2ℓ + 2α

ℓ−1∑
x=1

Rℓ,x

= 1 − 2αℓE(p)

[
p1/2(1 − p)ℓ−1/2

]
+ r(αℓη)α2ℓ + 2α

ℓ−1∑
x=1

Rℓ,x

= 1 + r(αℓη)α2ℓ − 2αRℓ ≤ B2,ℓ(α) .

Thus we have E
[
e−αSpsum

]
≤ B2,ℓ(α)m, therefore the claim follows.

7.4 Proof of Theorem 4.2

In this subsection, we give a proof of Theorem 4.2 assuming Lemma 7.3. Let
ρ be an arbitrary pirates’ strategy satisfying δ-Marking Assumption, and let
y denote a pirated codeword generated by ρ. Then we define another pirates’
strategy ρ′, whose output is denoted by y′, in the following manner: The j-th
bit y′

j is equal to j-th bit of the codeword of any pirate if the j-th position

18

is undetectable, and y′
j = yj otherwise. Note that this ρ′ satisfies Marking

Assumption, and y and y′ differ in at most mδ positions owing to δ-Marking
Assumption on ρ.

In this proof, let Si denote the score of a user ui determined by y and the
scoring rule (2), and let S′

i denote the score of ui determined by y′ and the rule
(1). Let Simax and S′

imax denote the maximum of Si and of S′
i, respectively,

among the innocent users ui. We define Spmax and S′
pmax similarly for the

pirates instead of innocent users. Then the error probability of our code with
the pirates’ strategy ρ is not more than the probability Pr(Spmax ≤ Simax)
regardless of the way of choosing the output user from the users with the highest
score. Now note that

|S(j)
i − S′

i
(j)| ≤

{
δ′ + η if yj ̸= y′

j ,

δ′ if yj = y′
j ,

therefore |Si − S′
i| ≤ mδ′ + mδη = m∆. Thus we have

Pr(Spmax ≤ Simax) ≤ Pr(S′
pmax ≤ S′

imax + 2m∆) .

Put g1 = S′
imax + 2m∆ and g2 = S′

pmax, both of which are random variables
on the same probability space. Let G(x) = Pr(g2 ≤ x) be the distribution
function of g2, therefore G(x) ≤ 1. Now given a parameter β > 0, define a
function F (x) by

F (x) =

{
B2,ℓ(β)meβℓx if x ≤ Z2 ,

1 if x ≥ Z2 ,

where
Z2 = −m

βℓ
log B2,ℓ(β)

(note that B2,ℓ(β) ≥ 1/2 by Lemma 4.1). Then F (x) is a continuous, weakly
increasing function such that limx→−∞ F (x) = 0, and we have G(x) ≤ F (x) by
Lemma 7.5. Namely, the first condition in Lemma 7.3 is now satisfied.

On the other hand, define another function φ(x) by

φ(x) =

{
NB1(βℓ)me−βℓx+2βℓm∆ if x ≥ Z1 ,

1 if x ≤ Z1 ,

where β is the given positive parameter and

Z1 =
log N + m log B1(βℓ)

βℓ
+ 2m∆

(note that B1(βℓ) > 1 by Lemma 4.1). Then φ(x) is a weakly decreasing
function and φ(x) > 0, and we have Pr(g1 ≥ x | P, y′) ≤ φ(x) for any bias
parameter P and any pirated codeword y′ by Lemma 7.4 (where we put α = βℓ).
Now we give the following lemma:

Lemma 7.6. The second condition in Lemma 7.3 is satisfied.

19

Proof. It suffices to show that, for any finite closed interval I ⊂ R, we have
Pr(g1 ≥ x1 | x1 ≤ g2 < x2) ≤ φ(x1) whenever x1, x2 ∈ I, x1 < x2 and
Pr(x1 ≤ g2 < x2) > 0. Let wp and wi denote the collections of codewords
of the pirates and of the innocent users, respectively. Then for any P , wp, wi

and y′, we have Pr(y′ | P,wi, wp) = Pr(y′ | P,wp) by No Leakage Assumption
(Definition 2.2), and Pr(wi | P,wp) = Pr(wi | P) since users’ codewords are
chosen independently with each other. This implies that

Pr(g1 ≥ x1, x1 ≤ g2 < x2)

=
∑

P,wp,wi,y′; g1≥x1, x1≤g2<x2

Pr(P,wp, wi, y′)

=
∑

P,wp,wi,y′; g1≥x1, x1≤g2<x2

Pr(P)Pr(wp | P)Pr(wi | P)Pr(y′ | P,wp)

=
∑

P,wp,y′; x1≤g2<x2

Pr(P)Pr(wp | P)Pr(y′ | P,wp)
∑

wi; g1≥x1

Pr(wi | P)

=
∑

P,wp,y′; x1≤g2<x2

Pr(P,wp, y′) · Pr(g1 ≥ x1 | P, y′)

≤
∑

P,wp,y′; x1≤g2<x2

Pr(P,wp, y′)φ(x1) = φ(x1)Pr(x1 ≤ g2 < x2)

(recall that Pr(g1 ≥ x1 | P, y′) ≤ φ(x1) by the argument before Lemma 7.6).
Thus we have Pr(g1 ≥ x1 | x1 ≤ g2 < x2) ≤ φ(x1). Hence the claim holds.

By Lemma 7.6, the conditions in Lemma 7.3 are satisfied. Therefore Lemma
7.3 implies that Pr(g2 ≤ g1) ≤

∫
R φ dF , where the right-hand side is the

Lebesgue-Stieltjes integral (see e.g. [4]). Now note that Z1 ≤ Z2 if and only
if NTℓ

m ≤ 1. Thus in the case that NTℓ
m ≤ 1, we have∫

R
φdF =

∫
(−∞,Z1]

dF +
∫

(Z1,Z2]

φdF +
∫

(Z2,∞)

φdF .

Since F is differentiable on the interval (−∞, Z2], F is constant on (Z2,∞),
and limx→−∞ F (x) = 0, it follows from properties of Lebesgue-Stieltjes integral
that ∫

R
φ dF =

∫ Z1

−∞
F ′(x) dx +

∫ Z2

Z1

φ(x)F ′(x) dx + 0

= F (Z1) +
∫ Z2

Z1

βℓNTℓ
m dx

= NTℓ
m + βℓNTℓ

m(Z2 − Z1) = Φ(NTℓ
m) .

Summarizing, the error probability of our codes (under δ-Marking Assumption
and the scoring rule (2)) is not more than Φ(NTℓ

m) if the number of pirates is
ℓ and NTℓ

m ≤ 1.
Now note that Tℓ ≤ Tc for any 1 ≤ ℓ ≤ c (since each of B1(βℓ), B2,ℓ(β) and

e2βℓ∆ is increasing as ℓ is getting larger) and Φ(t) is an increasing function for
0 < t ≤ 1. Thus if Tc ≤ T0 and NT0

m < 1, then whenever the number of the
pirates is ℓ ≤ c, we have NTℓ

m ≤ NT0
m < 1 and the error probability is not

more than Φ(NT0
m). Hence the first part of Theorem 4.2 is proved.

20

From now, we prove the second part of Theorem 4.2. For a given 0 < ε < 1,
we introduce a function Φε(t) = Φ(t) − ε, which is increasing, continuous and
concave up for 0 < t < 1. Since limt→+0 Φε(t) = −ε < 0 and limt→1−0 Φε(t) =
1 − ε > 0, there exists a unique 0 < t0 < 1 such that Φε(t0) = 0. Now if a > 1
and ε ≤ ae1−a, then we have

Φε(ε/a) =
ε

a

(
1 − log

ε

a

)
− ε ≥ ε

a
· a − ε ≥ 0 ,

therefore t0 ≤ ε/a < 1. Moreover, put

t1 =
ε

a
− Φε(ε/a)

Φ′
ε(ε/a)

=
a − 1

a

ε

log(a/ε)
> 0 ,

which is the x-intercept of the tangent line of the curve y = Φε(x) in the x-y
plane at x = ε/a. Since ε/a ≥ t0, and Φε(t) is increasing and concave up,
we have t1 ≤ t0, therefore Φε(t1) ≤ 0. Thus we have Φ(NTc

m) ≤ Φ(t1) ≤ ε
whenever NTc

m ≤ t1, or equivalently, whenever the inequality (3) is satisfied.
Hence the proof of Theorem 4.2 (assuming Lemma 7.3) is concluded.

7.5 Proof of Lemma 7.3

Finally, to complete the proof of Theorem 4.2, we give a proof of Lemma 7.3.
First, we recall the following well-known facts used in our proof:

Proposition 7.7. If φ is a weakly decreasing function on a finite interval in
R, then the number of points of discontinuities of φ is either finite or countably
infinite.

Theorem 7.8. Let (Ω, µ) be a measurable space, {φi}∞i=1 a sequence of mea-
surable functions on Ω, and φ a function on Ω such that limn→∞ φn = φ.

1. (Bounded Convergence Theorem) If µ(Ω) < ∞ and there is a con-
stant M > 0 such that |φn(ω)| < M for any n and any ω ∈ Ω, then φ and
each φn are µ-integrable and limn→∞

∫
Ω

φn dµ =
∫
Ω

φdµ.

2. (Monotone Convergence Theorem) If 0 ≤ φn(ω) ≤ φn+1(ω) for any
n and any ω ∈ Ω, then limn→∞

∫
Ω

φn dµ =
∫
Ω

φdµ (this includes the case
that both terms are ∞).

Our proof of Lemma 7.3 is done by showing the following two properties:

1. Pr(g1 ≥ g2) ≤
∫

R φdG,

2.
∫

R φdG ≤
∫

R φdF .

7.5.1 Proof of the first property

We show that Pr(g1 ≥ g2) ≤
∫

R φdG. We denote the common underlying
probability space for g1 and g2 by Ω, and denote the values of g1 and of g2 at
ω ∈ Ω by g1(ω) and by g2(ω), respectively. First, we have

Pr(g1 ≥ g2) = 1 − Pr(g1 < g2) = 1 − lim
n→∞

Pr(g1 < g2, −n ≤ g2 < n) . (9)

21

Since φ is weakly decreasing, Proposition 7.7 implies that the set An of the
points of discontinuities of φ in the interval [−n, n) is either finite or countably
infinite. Enumerate the elements of An as a

(n)
1 , a

(n)
2 , and so on. Then for each

integer k ≥ 1, we define finite sets D
(n)
k by

D
(n)
k = {−n + i/2k | 0 ≤ i ≤ n2k+1} ∪ {a(n)

i | 1 ≤ i ≤ k}

and enumerate the points in D
(n)
k in increasing order as d

(n)
k,0 < d

(n)
k,1 < · · · <

d
(n)
k,ℓn,k

. Now we have the following properties:

D
(n)
k ⊂ D

(n)
k+1 , d

(n)
k,0 = −n and d

(n)
k,ℓn,k

= n for any k ; (10)

for each k, we have d
(n)
k,i − d

(n)
k,i−1 ≤ 2−k for every i . (11)

Now we use the following lemma:

Lemma 7.9. In this setting, for any n we have

{ω ∈ Ω | g1(ω) < g2(ω), −n ≤ g2(ω) < n}

= lim
k→∞

ℓn,k⊔
i=1

{ω ∈ Ω | g1(ω) < d
(n)
k,i−1 ≤ g2(ω) < d

(n)
k,i } ,

where the symbol ‘⊔’ in the right-hand side means the disjoint union.

Proof. Since each summand in the right-hand side is disjoint with each other
and is contained in the left-hand side by (10), our remaining task is to show that
any element ω in the left-hand side is included in the right-hand side. Choose
M > 0 such that 2−M < g2(ω) − g1(ω). Then for any k ≥ M , it follows from
(11) that D

(n)
k intersects with the interval (g1(ω), g2(ω)], thus there exists an

index i such that g1(ω) < d
(n)
k,i−1 ≤ g2(ω) < d

(n)
k,i . This means that ω belongs to

the set in the right-hand side. Hence the claim holds.

By Lemma 7.9, the right-hand side of (9) is equal to

1 − lim
n→∞

lim
k→∞

ℓn,k∑
i=1

Pr(g1 < d
(n)
k,i−1 ≤ g2 < d

(n)
k,i)

= 1 − lim
n→∞

lim
k→∞

ℓn,k∑
i=1

(
Pr(d(n)

k,i−1 ≤ g2 < d
(n)
k,i)

− Pr(d(n)
k,i−1 ≤ g2 < d

(n)
k,i , g1 ≥ d

(n)
k,i−1)

)
.

(12)

For an interval I = [−n, n] and any ε′ > 0, take a κ > 0 as in the second
condition in the statement of Lemma 7.3. Then by (10) and (11), for any
sufficiently large k, we have d

(n)
k,i−1, d

(n)
k,i ∈ I and d

(n)
k,i − d

(n)
k,i−1 < κ for every i,

therefore the second condition in Lemma 7.3 implies that

Pr(d(n)
k,i−1 ≤ g2 < d

(n)
k,i , g1 ≥ d

(n)
k,i−1) ≤ (φ(d(n)

k,i−1) + ε′)Pr(dn
k,i−1 ≤ g2 < d

(n)
k,i)

22

for every i. Thus the right-hand side of (12) is less than or equal to

1 − (1 − ε′) lim
n→∞

lim
k→∞

ℓn,k∑
i=1

Pr(d(n)
k,i−1 ≤ g2 < d

(n)
k,i)

+ lim
n→∞

lim
k→∞

ℓn,k∑
i=1

φ(d(n)
k,i−1)Pr(d(n)

k,i−1 ≤ g2 < d
(n)
k,i) .

(13)

By (10), the second term in (13) is equal to

(1− ε′) lim
n→∞

lim
k→∞

Pr(−n ≤ g2 < n) = (1− ε′) lim
n→∞

Pr(−n ≤ g2 < n) = 1− ε′ .

Thus the right-hand side of (12) is less than or equal to

ε′ + lim
n→∞

lim
k→∞

ℓn,k∑
i=1

φ(d(n)
k,i−1)Pr(d(n)

k,i−1 ≤ g2 < d
(n)
k,i) . (14)

Since ε′ > 0 is arbitrary, taking the limit ε′ → 0 implies that the right-hand
side of (12) is less than or equal to

lim
n→∞

lim
k→∞

ℓn,k∑
i=1

φ(d(n)
k,i−1)Pr(d(n)

k,i−1 ≤ g2 < d
(n)
k,i) . (15)

Moreover, if µG denotes the measure on R induced by the function G (thus
µG((a, b]) = G(b) − G(a)), then Pr(d(n)

k,i−1 ≤ g2 < d
(n)
k,i) is equal to

lim
t→+0

Pr(d(n)
k,i−1 − t < g2 ≤ d

(n)
k,i − t)

= lim
t→+0

µG

(
(d

(n)
k,i−1 − t, d

(n)
k,i − t]

)
= µG

(
lim

t→+0
(d

(n)
k,i−1 − t, d

(n)
k,i − t]

)
= µG

(
[d(n)

k,i−1, d
(n)
k,i)

)
.

Now define φn,k =
∑ℓn,k

i=1 φ(d(n)
k,i−1)χ[d

(n)
k,i−1,d

(n)
k,i)

for k ≥ 1 (where χA denotes

the characteristic function of a set A), which is a nonnegative, µG-measurable
function on R. Then by the above argument, the right-hand side of (15) is equal
to

lim
n→∞

lim
k→∞

ℓn,k∑
i=1

φ(d(n)
k,i−1)µG

(
[d(n)

k,i−1, d
(n)
k,i)

)
= lim

n→∞
lim

k→∞

∫
R

φn,k dµG . (16)

Now we use the following lemma:

Lemma 7.10. In this setting, we have limk→∞ φn,k = φχ[−n,n).

Proof. Since both functions φn,k and φχ[−n,n) take the value 0 outside the
interval [−n, n), it suffices to show that limk→∞ φn,k(x) = φ(x) for any −n ≤
x < n. First, if −n ≤ x < n and x ∈ An, then x ∈ D

(n)
k for any sufficiently

large k by the definition of D
(n)
k , therefore φn,k(x) = φ(x) for any sufficiently

23

large k by the definition of φn,k (note that x ̸= n = d
(n)
k,ℓn,k

by (10)). Thus the
claim holds in this case.

On the other hand, assume that −n ≤ x < n and x ̸∈ An. Take an arbitrary
λ > 0. Then by the choice of x, there is a κλ > 0 such that |φ(x′) − φ(x)| < λ
whenever −n ≤ x′ < n and |x′ − x| < κλ. Now by an argument similar to the
proof of Lemma 7.9, it follows from (11) that for any sufficiently large k, we
have d

(n)
k,i−1 ≤ x < d

(n)
k,i and x− d

(n)
k,i−1 < d

(n)
k,i − d

(n)
k,i−1 < κλ for some i, therefore

φn,k(x) = φ(d(n)
k,i−1) and |φn,k(x) − φ(x)| = |φ(d(n)

k,i−1) − φ(x)| < λ for this i by
the above argument. This means that limk→∞ φn,k(x) = φ(x). Hence the claim
holds.

Note that µG(R) = 1, and φn,k ≤ φ(−n) since d
(n)
k,0 = −n and φ is weakly

decreasing. Thus limk→∞
∫

R φn,k dµG =
∫

R φχ[−n,n) dµG by Lemma 7.10 and
Bounded Convergence Theorem (Theorem 7.8). Moreover, since φ is non-
negative, we have limn→∞

∫
R φχ[−n,n) dµG =

∫
R φ dµG by Monotone Conver-

gence Theorem (Theorem 7.8). Thus the right-hand side of (16) is equal to∫
R φdµG =

∫
R φdG.

Summarizing, we have Pr(g1 ≥ g2) ≤
∫

R φdG, as desired.

7.5.2 Proof of the second property

From now, we show that
∫

R φdG ≤
∫

R φdF , which concludes the proof of
Lemma 7.3. First, we introduce some notations. We define

R′ = R ∪ {a− | a ∈ R} ∪ {−∞,∞−}

and extend the order < on R to R′ by −∞ < a− < a < b− < ∞− for every
a, b ∈ R such that a < b. Put

(a, b] = {x ∈ R | a < x ≤ b} for any a, b ∈ R′

(for example, we have (a−, b−] = [a, b) in the usual notation for a, b ∈ R).
Moreover, for each H ∈ {F,G}, write H(a−) = limb→a−0 H(b) for any a ∈ R,
H(−∞) = limb→−∞ H(b), and H(∞−) = limb→∞ H(b). Then for any a, b ∈ R
such that a ≤ b, we have µH((a−, b−]) = H(b−) − H(a−) since (a−, b−] =
limt→+0 (a − t, b − t] (note that µH((a, b]) = H(b) − H(a) by the definition of
µH). By similar arguments, it follows that

µH((a, b]) = H(b) − H(a) for any a, b ∈ R′ such that a ≤ b , (17)

where we put H(b) − H(a) = 0 in the case that a = b (even if H(a) = ±∞).
For any n ≥ 1, define In,i = {x ∈ R | i2−n ≤ φ(x) < (i + 1)2−n} for

each 1 ≤ i ≤ 4n − 1, and In,4n = {x ∈ R | φ(x) ≥ 2n}. Then, since φ
is weakly decreasing, each In,i is a (possibly empty or infinite) interval in R.
Moreover, for each n, there exist αn,i ∈ R′ (for 1 ≤ i ≤ 4n + 1) such that
−∞ = αn,4n+1 ≤ αn,4n ≤ · · · ≤ αn,2 ≤ αn,1 and In,i = (αn,i+1, αn,i] for each
1 ≤ i ≤ 4n. We have µH(In,i) = H(αn,i) − H(αn,i+1) for each H ∈ {F,G} by
(17). Now put ψn =

∑4n

i=1 i2−nχIn,i , which is a nonnegative, µF -measurable and
µG-measurable simple function on R. Then for each H ∈ {F,G}, the integral

24

∫
R ψn dµH is equal to

4n∑
i=1

i2−nµH(In,i)

=
4n−1∑
i=1

i2−n(H(αn,i) − H(αn,i+1)) + 2n(H(αn,4n) − H(−∞))

=
4n∑
i=1

H(αn,i)
(

i

2n
− i − 1

2n

)
− 2nH(−∞) =

4n∑
i=1

H(αn,i)
2n

− 2nH(−∞)

(this equality holds even if H(αn,i) = ∞ for an index i, in which case all the
terms are ∞). By the first condition in Lemma 7.3, we have G(αn,i) ≤ F (αn,i)
for every i, and G(−∞) = F (−∞) = 0. Thus we have∫

R
ψn dµG =

4n∑
i=1

G(αn,i)
2n

≤
4n∑
i=1

F (αn,i)
2n

=
∫

R
ψn dµF .

To conclude the proof, we need the following lemma:

Lemma 7.11. We have ψn ≤ ψn+1 for any n, and limn→∞ ψn = φ.

Proof. First we show that ψn(x) ≤ ψn+1(x) for any x ∈ R. Since ψn(x) ≤
2n by definition, it suffices to consider the case that ψn+1(x) < 2n, namely
x ̸∈

∪4n+1

i=22n+1 In+1,i. Now if 2 ≤ i ≤ 22n+1 − 1 and x ∈ In+1,i, then we have
x ∈ In,⌊i/2⌋ and ψn(x) = ⌊i/2⌋2−n ≤ i2−n−1 = ψn+1(x). On the other hand, if

x ̸∈
∪22n+1−1

i=2 In+1,i, then we have φ(x) < 2−n, therefore ψn(x) = 0 ≤ ψn+1(x).
Hence we have ψn ≤ ψn+1.

Secondly, we show that limn→∞ ψn(x) = φ(x) for any x ∈ R. By definition
of ψn, we have 0 ≤ φ(x) − ψn(x) < 2−n whenever φ(x) < 2n. Now for any
x ∈ R and any λ > 0, we have φ(x) < 2n and 2−n < λ for all sufficiently large
n, therefore |φ(x)−ψn(x)| < λ for all these n. This means that ψn(x) converges
to φ(x) when n → ∞. Hence the claim holds.

This lemma and Monotone Convergence Theorem (Theorem 7.8) imply that∫
R

φdG =
∫

R
φdµG = lim

n→∞

∫
R

ψn dµG

≤ lim
n→∞

∫
R

ψn dµF =
∫

R
φ dµF =

∫
R

φdF .

Hence the proof of Lemma 7.3 is concluded.

8 Conclusion

In this article, we proposed a construction of c-secure fingerprinting codes for
every c, which improves recent discrete variants [3, 5, 6] of Tardos’s c-secure
codes [8]. Our security proof was given under an assumption weaker than the
usual Marking Assumption. The ratio of the code length divided by the value
c2 log(N/ε), where N is the number of the users and ε is the error probability,

25

converges to approximately 5.35 when c goes to infinity, and the ratio is further
smaller in some cases for c ≤ 8. Thus we have shown that the lengths of our
codes are significantly shorter than the lengths of c-secure codes in [3, 5, 6, 8],
and also shorter than the lengths of c-secure codes recently proposed by [7] in
the case without the statistical assumption introduced in [7].

Acknowledgements

This study has been sponsored by the Ministry of Economy, Trade and Indus-
try, Japan (METI) under contract, New-generation Information Security R&D
Program. This study has also been supported by 2007 Research Grants of the
Science and Technology Foundation of Japan (JSTF).

References

[1] Blayer, O., Tassa, T.: Improved versions of Tardos’ fingerprinting scheme.
Des. Codes Cryptogr. 48, 79–103 (2008).

[2] Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE
Trans. Inform. Theory 44(5), 1897–1905 (1998).

[3] Hagiwara, M., Hanaoka, G., Imai, H.: A short random fingerprinting code
against a small number of pirates. In: Proceedings of 16th Applied Algebra,
Algebraic Algorithms, and Error Correcting Codes (AAECC-16), LNCS
3857, pp. 193–202 (2006).

[4] Carter, M., van Brunt, B.: The Lebesgue-Stieltjes Integral: A Practical
Introduction. Springer-Verlag, Berlin (2000).

[5] Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimization of Mem-
ory Usage in Tardos’s Fingerprinting Codes. Preprint at arXiv repository,
http://www.arxiv.org/abs/cs/0610036 (2006).

[6] Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimization of Tar-
dos’s fingerprinting codes in a viewpoint of memory amount. In: Proceed-
ings of 9th Information Hiding (IH 2007), LNCS 4567, pp. 279–293 (2007).

[7] S̆korić, B., Katzenbeisser, S., Celik, M.U.: Symmetric Tardos fingerprint-
ing codes for arbitrary alphabet sizes. Des. Codes Cryptogr. 46, 137–166
(2008).

[8] Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of
the 35th Annual ACM Symposium on Theory of Computing (STOC), pp.
116–125 (2003).

26

