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Abstract. In this paper, we introduce a new class of PRSGs, called par-
titioned pseudorandom sequence generators(PPRSGs), and propose an
RFID authentication protocol using a PPRSG, called S-protocol. Since
most existing stream ciphers can be regarded as secure PPRSGs, and
stream ciphers outperform other types of symmetric key primitives such
as block ciphers and hash functions in terms of power, performance and
gate size, S-protocol is expected to be suitable for use in highly con-
strained environments such as RFID systems. We present a formal proof
that guarantees resistance of S-protocol to desynchronization and tag-
impersonation attacks. Specifically, we reduce availability of S-protocol
to pseudorandomness of the underlying PPRSG, and the security of the
protocol to the availability. Finally, we give a modification of S-protocol,
called S∗-protocol, that provide mutual authentication of tag and reader.
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1 Introduction

Low-cost RFID tags are rapidly becoming pervasive in our daily life. Well known
applications include electronic passports, contactless payments, product tracking
and building access control, to name a few. However, the small programmable
chips that passively respond to every reader have raised concerns among re-
searchers about privacy and security breaches. A considerable body of research
has been focused on providing RFID tags with cryptographic functionality, while
scarce computational and storage capabilities of low-cost RFID tags make the
problem challenging. Typically, RFID tags can only store hundreds of bits and
have 1000-10000 logic gates, with 200-2000 budgeted specifically for security. In
such an environment, cryptographic primitives should be implemented with low
clock frequency since a tag derives its power from a reader in a short period of
time.

In this paper, we focus on the issue of authentication. Our work begins with
the observation that stream ciphers are more efficient cryptographic primitives
than block ciphers and hash functions. In general, stream ciphers require lower



computational resource among traditional cryptographic primitives including
block ciphers and hash functions in terms of power, performance, and gate
size [8]. However, there is no known authentication protocols directly constructed
from stream ciphers. In order to capture the properties of existing stream ci-
phers useful in the construction of authentication protocols, we introduce a new
class of pseudorandom sequence generators, called partitioned pseudorandom se-
quence generators(PPRSGs). Informally speaking, a PPRSG is a pseudorandom
sequence generator that consists of two functions, respectively called an updating
function and a filtering function. Most existing stream ciphers can be regarded
as PPRSGs as seen in the next section. Using a secure PPRSG, we construct
an authentication protocol, called S-protocol, that provides resistance to desyn-
chronization and tag-impersonation attacks. We also present a modification of
S-protocol, called S∗-protocol, that provides mutual authentication of tag and
reader.

Contribution. The advantages of S-protocol are summarized as follows.

– S-protocol is mainly targeted at the use of stream ciphers. Based on a secure
stream cipher, S-protocol outperforms most existing authentication proto-
cols using hash functions or block ciphers, in terms of power, performance,
and gate size. Furthermore, S-protocol does not require key initialization
process of the underlying stream cipher, since each tag’s secret information
can be initialized as the internal state of the stream cipher, obtained after
key initialization process with a random secret key.

– Using a same stream cipher, we can construct S-protocols of various security
levels against online attacks. If a stream cipher outputs m′ bits in one clock,
then we can define PPRSGs associated with the stream cipher in a flexible
way, so that the filtering function outputs m = lm′ bits for any positive
integer l. As seen later, the parameter m determines the security level of the
S-protocol against online attacks. On the other hand, block ciphers or hash
functions always output fixed-size blocks. The block size might be unneces-
sarily large as compared to the security requirement of the basing protocol.
Then it would result in computational overload on the tag-side.

– Availability and security of S-protocol is established by a formal proof. In
the proof, we assume a prevention-based model where the adversary has
unfettered access to oracles for a tag and a reader. The proof is not based on
the use of truly random numbers on the tag-side. Thus S-protocol does not
require any physical random number generator or an independent PRSG be
equipped with a tag devcie.

We also point out some drawbacks of S-protocol.

– S-protocol does not provide untraceable identification. General-purpose au-
thentication protocols may or may not have support for untraceability, while
untraceability is considered as a core requirement of authentication protocols
for certain RFID applications.



– Since each tag’s secret information is updated every session, the back-end
databases of the system, if multiple, should be connected in real-time so as
to maintain synchronized with the tags.

Related work. The majority of authentication protocols for RFID are still
based on hash functions or block ciphers [2, 5, 6, 11, 16, 18–20]. Those works are
mainly focused on providing untraceable authentication protocols for RFID.
Lightweight implementation of existing block ciphers as well as new constructions
are widely studied [7, 12, 17]. As another direction, there have been a number of
protocols proposed based on new cryptographic primitives, among which a series
of HB-protocols are drawing a lot of attention due to their efficiency and prov-
able security [9, 13, 14]. In [15], the authors proposed an RFID protocol based on
a PRSG. We note that, if a stream cipher being used as a PRSG for their proto-
col, an independent random number is required at each generation of a message.
The requirement would result in additional gate complexity or computational
overload for each tag.

Organizations. In the next section, we define a partitioned pseudorandom
sequence generator, and present some examples of PPRSGs. In Section 3, we
describe S-protocol in two steps. First, we define a tag and a reader as message-
driven deterministic algorithms. Based on the algorithms, we illustrate how they
exchange messages in each session. In Section 4, we prove the availability and
the security of S-protocol. In Section 5, we slightly modify S-protocol to present
S∗-protocol that provides mutual authentication of tag and reader. Section 6
concludes.

2 Partitioned pseudorandom sequence generator

In this section, we define a new class of pseudorandom sequence generators called
partitioned pseudorandom sequence generators. We first begin with the definition
of a pseudorandom sequence generator (in a concrete model).

Definition 2.1. Let d and L be positive integers such that d < L. A function
G : {0, 1}d → {0, 1}L is called a (t, ε)-pseudorandom sequence generator(PRSG)
if for every probabilistic Turing machine D of runtime ≤ t we have

|Pr
R

$←{0,1}L
[D (R) ⇒ 1]− Pr

K
$←{0,1}d

[D (G (K)) ⇒ 1]| ≤ ε.

Definition 2.2. Let d, m and L be positive integers such that m|L and d < L.
A (t, ε, L)-partitioned pseudorandom sequence generator(PPRSG) is a pair S =
(Up, F) of functions Up : {0, 1}d → {0, 1}d and F : {0, 1}d → {0, 1}m such that

GS : {0, 1}d −→ {0, 1}L

K 7−→
(
F(K)||F ◦Up(K)|| . . . ||F ◦Up( L

m−1)(K)
) (1)

is a (t, ε)-pseudorandom sequence generator. Functions Up and F are called an
update function and a filtering function, respectively.



Example 2.1. Let h : {0, 1}∗ → {0, 1}m be a secure hash function. Then S =
(Up, F) such that

Up : {0, 1}d −→ {0, 1}d

K 7−→ (K + 1 mod 2d),

and
F : {0, 1}d −→ {0, 1}m

K 7−→ h(K),

can be regarded as a PPRSG.

Example 2.2. Let E : {0, 1}k×{0, 1}m → {0, 1}m be a secure block cipher. Then
S = (Up, F) such that

Up : {0, 1}k × {0, 1}m −→ {0, 1}k × {0, 1}m

(K, M) 7−→ (K, M + 1 mod 2m),

and
F : {0, 1}k × {0, 1}m −→ {0, 1}m

(K, M) 7−→ E(K, M),

can be regarded as a PPRSG. Output feedback mode and counter mode of a
block cipher are also PPRSGs.

Example 2.3. Let f : {0, 1}d → {0, 1}d × {0, 1}m be a secure PRSG, denoted
f(K) = (f1(K), f2(K)) for K ∈ {0, 1}d. Then S = (Up,F) such that

Up : {0, 1}d −→ {0, 1}d

K 7−→ f1(K),

and
F : {0, 1}d −→ {0, 1}m

K 7−→ f2(K),

can be regarded as a PPRSG.

Example 2.4. Stream ciphers F-FCSR-H [1], Mickey [3], Trivium [4] and Grain [10],
finalized as the eSTREAM portfolio, can be regarded as PPRSGs, if an update
function and a filtering function are appropriately defined. For example, Grain-1
consists of a function that updates 160 bits of an internal state and a filtering
function that xors certain bits selected from the state. Here we assume that a
key initialization process fills the internal state of a stream cipher with uniform
random bits.

3 Description of S-protocol

3.1 Main idea

Let S = (Up,F) be a PPRSG and let a tag T and a reader R store variables
ST and SR, respectively, both initialized as a secret key K ∈ {0, 1}d. We can
consider a naive approach to the construction of an authentication protocol as
follows.



1. R sends “query” to T .
2. T sends M1 ← F(ST ) to R.
3. If M1 = F(SR), then R sends M2 ← F(Up(SR)) to T .
4. If M2 = F(Up(ST )), then T updates ST ← Up2(ST ) and sends M3 ← F(ST )

to R.
5. If M3 = F(Up2(SR)), then R updates SR ← Up2(SR) and accepts T .

In the above protocol, T and R alternately transmit F(Upi(K)), i = 0, 1, 2 . . . ,
over sessions, and ends up with a state of ST = SR for a successful session. Note
that T and R should exchange at least four messages in a session, in order to
prevent trivial replay attacks. However, the above protocol is still vulnerable to
a replay attack. An adversary might block message M3 transmitted from T to
R, and use messages M1 and M3 to impersonate T . If the adversary does not
mount an impersonation attack on R, then the blocking of message M3 would
lead to desynchronization of T and R. Therefore, we introduce two additional
flags rev and add on the reader-side to indicate the possibility of replay and
desynchronization attacks and control communications. R sets flag rev to one
once R has transmitted F(Up(SR)) for the current value of SR. If R fails to
authenticate T and a new session is initiated, then R sets flag add to one and
makes one more round in the session, in order to prevent replay attacks. Now
we are ready to present a formal description of S-protocol.

3.2 Formal description

For simplicity, we treat a reader and a back-end database as a single entity.
Thus we consider an RFID system that consists of one reader R and a multiple
number of tags, say Ti, i = 1, . . . , n. We model tag and reader functionalities as
deterministic Turing machines that store and update variables as follows.

– Each tag Ti, i = 1, . . . , n, stores a d bit variable STi , which is initialized with
a random secret key Ki ∈ {0, 1}d.

– A reader R stores a variable SR,i and two auxiliary flags revi and addi for
each tag Ti. SR,i is initialized with the same key Ki as tag Ti, while revi

and addi are both initialized with “0” for every i = 1, . . . , n.

Focusing on a 1-1 communication between R and Ti, we simplify the notations
as T = Ti, SR = SR,i, ST = STi , rev = revi and add = addi. We now present a
specific description of tag and reader algorithms in Figure 1. The “int” message
can be regarded as an external signal or ID claim from a tag that initiates a new
session within a reader R. “rev = 1” indicates that the reader R has revealed
F (SR) for the current value of SR. “add = 1” requires that the reader R authen-
ticate the tag with an additional round of message exchange. We assume that the
special types of messages “init”, “query” and “accept” are distinguished from
any m bit binary sequence. We call the set of variables S = (ST , SR, rev, add)
the state of T and R, and define synchronization states as follows.

Definition 3.1. Tag T and reader R are said to be in a synchronization state
if their state satisfies F(SR) 6= F(Up2(SR)), F(Up2(SR)) 6= F(Up4(SR)), and one
of the following three conditions:



1: if A = “query” then
2: output F(ST )
3: else if A = F(Up(ST )) then
4: ST ← Up2(ST )
5: output F(ST )

(a) T on an incoming message A

1: if B = “init” then
2: if rev = 1 then add ←− 1
3: output “query”
4: else if B = F(SR) then
5: rev ←− 1
6: output F(Up(SR))
7: else if B = F(Up2(SR)) then
8: SR ←− Up2(SR)
9: rev ←− 0

10: if add = 0 then
11: “accept”
12: else
13: add ←− 0
14: rev ←− 1
15: output F(Up(SR))

(b) R on an incoming message B

Fig. 1. Tag algorithm T and reader algorithm R

– Type 1: ST = SR and rev = 0
– Type 2: ST = SR and rev = 1
– Type 3: ST = Up2(SR) and rev = 1

In the next section, we prove that a tag and a reader remain in a synchroniza-
tion state except with a negligible probability even though a certain number of
oracle queries are made to the tag and the reader. This property guarantees the
completeness of S-protocol, together with the following theorem. The proof is
straightforward.

Theorem 3.1. Suppose that tag T and reader R are in a synchronization state
and R opens a new session on the message “init”. Then the session is completed
with the signal “accept” within 4 or 6 passes as seen in Figure 2. At the end of
the session, R and T reach a synchronization state of type 1.

4 Availability and security of S-protocol

4.1 Security against a desynchronization attack

We model a desynchronization-adversary A = A(q, t) as a probabilistic Turing
machine of run time t that makes total q queries to T and R. The goal of
desynchronization-adversary is to make the reader and tag’s states satisfy one
of the following three conditions.

– Type 1: SR = Up2(ST )
– Type 2: ST = Up4(SR) or (ST = Up2(SR) and rev = 0)
– Type 3: F(SR) = F(Up2(SR)) or F(Up2(SR)) = F(Up4(SR))



T (ST ) R(SR)
oo
“query”

// SR ← Up2(SR)

F (ST )
ST ← Up2(ST ) oo

F (Up(SR))
// SR ← Up2(SR)

F (ST ) “accept”

ST ← Up2(ST ) oo
F (Up(SR))

// SR ← Up2(SR)
F (ST ) “accept”

Fig. 2. Message flow of S-protocol. The boxed statement is executed only if T and
R are in a synchronization state of type 3. The last two flows are executed only if T
and R are in a synchronization state of type 2, in which case the reader does not send
“accept” message as a response of the fourth flow.

We call the above states desynchronization states. For simplicity of analysis, we
assume that the reader R reveals at each query whether or not the variable SR
and rev are updated. It allows us to assume that A stops updating the tag and
reader’s states once the states come into a desynchronization state of type 1 or 2.
In this way, the desynchronization states cover all the situations such that T and
R are not in a synchronization state (i.e., we do not need to consider the case
SR = Upi(ST ) for i > 2 or ST = Upi(SR) for i > 4 as desynchronization states).
When AT ,R ends up with a desynchronication state, we say that A succeeds in
a desynchronization attack against T and R.

Now we would like to use a desynchronization-adversary A with a success
probability

δ = Pr
K

$←{0,1}d
[A succeeds in a desynchronization attack against T and R],

(2)
for the construction of a distinguisher that determines whether a given (2q+3)m
bit sequence M = (M0, . . . ,M2q+2) is generated by a PPRSG S or truly at
random. We describe the distinguisher D using a game G(M) defined in Figure
3. The game G(M) is parameterized by the sequence M and includes procedures
that simulate tag and reader interfaces up to q queries by referring to M. The
variables cT and cR of the game G(M) record, respectively, the numbers of
updates of tag-side and reader-side internal states. (i.e., cT and cR, respectively,
correspond to ST and SR.) In procedure Finalize, G(M) returns the value 1 if
the current state, represented by cT and cR, is in a desynchronization state.



Game G(M)

procedure Initialize

1: cT , cR, rev, add, X ← 0

procedure T (A)

1: if A = “query” then
2: output McT

3: else if A = McT +1 then
4: cT ← cT + 2
5: output McT

procedure Finalize

1: if McR = McR+2 or McR+2 = McR+4 then
2: X ←− 1
3: else if cR = cT + 2 then
4: X ←− 1
5: else if cT = cR + 4 then
6: X ←− 1
7: else if cT = cR + 2 and rev = 0 then
8: X ←− 1
9: return X

procedure R(B)

1: if B = “init” then
2: if rev = 1 then add ←− 1
3: output “query”
4: else if B = McR then
5: rev ←− 1
6: output McR+1

7: else if B = McR+2 then
8: cR ←− cR + 2
9: rev ←− 0

10: if add = 0 then
11: “accept”
12: else
13: add ←− 0
14: rev ←− 1
15: output McR+1

Fig. 3. Parameterized game G(M)

The distinguisher D consists of A and G(·) as illustrated in Figure 4. On the
input sequence M, D runs A and responds to A’s queries by using procedures T
and R of the game G(M). At the end of execution, D outputs the value returned
in procedure Finalize of G(M). From the construction, the following estimate is
obvious.

Pr
K

$←{0,1}d
[G(GS(K))A ⇒ 1] = Pr

K
$←{0,1}d

[D(GS(K)) ⇒ 1] = δ. (3)

On the other hand, let us assume that M is a truly random L bit sequence
for L = (2q + 3)m. Let

P1 = PrM $←{0,1}L
[G(M)A sets cR = cT + 2], (4)

P2 = PrM $←{0,1}L
[G(M)A sets (cT = cR + 4) or (cT = cR + 2 ∧ rev = 0)], (5)

and

P3 = PrM $←{0,1}L
[G(M)A sets McR = McR+2 or McR+2 = McR+4]. (6)

Then we have

PrM $←{0,1}L
[D(M) ⇒ 1] = PrM $←{0,1}L

[G(M)A ⇒ 1] ≤ P1 + P2 + P3. (7)



Fig. 4. Distinguisher with game G(·)

Now the following lemma provides the estimation of P1, P2 and P3.

Lemma 4.1. Let P1, P2 and P3 be the probabilities, respectively defined by (4),
(5) and (6). Then we have P1 ≤ q/2m, P2 ≤ q/2m and P3 ≤ 2q/2m.

Proof. As for the probability P3, we have

P3 = PrM $←{0,1}L
[G(M)A sets McR = McR+2 or McR+2 = McR+4]

≤
q−1∑

i=0

(
PrM $←{0,1}L

[M2i = M2i+2] + PrM $←{0,1}L
[M2i+2 = M2i+4]

)
=

2q

2m
.

In order to estimate the probability P1, we modify the game G(M) to define
G2 as shown in Figure 5. In G2, the parameter M is randomized in procedure
Initialize. Each index i ∈ I is associated with a set Zi that is used to record
every attempt of setting the counters cT and cR to the desynchronization state
of cR = cT + 2 = i. Note that procedures T (·) and R(·) of G2 compute exactly
the same responses as those of game G(M) for a random sequence M $← {0, 1}L,
with the only exception being that procedure of R(·) of G2 stores any message
it receives in the set ZcR (without any response) if the condition cT = cR holds.
Suppose that a desynchronization-adversary A sets cj

R = cj
T +2 on the j-th query

for the first time. Then the previous state should be such that cj−1
R = cj−1

T = cj
T

and the j-th query should be the message Mcj−1
R +2 transmitted to R(·). When

A interacts with game G2 in the same way (in terms of the random coins), the
j-th query Mcj−1

R +2 would be stored in Zcj−1
R +2 and procedure Finalize return

“1”. With this observation, we obtain the equality

PrM $←{0,1}L
[G(M)A sets cR = cT + 2] = Pr[GA2 ⇒ 1].

From now on, we fix every random coin of A. When a message B ∈ {0, 1}m

is added to Zi for i ∈ I, it holds that cT = cR = i − 2, which means proce-
dures T (·) and R(·) have not referred to the message block Mi. Note that the



procedure Initialize

1: cT , cR, rev, add ← 0
2: Zi ← ∅ for i ∈ I = {2, 4, . . . , 2q}
3: M $← {0, 1}L

procedure T (A)

1: if A = “query” then
2: output McT

3: else if A = McT +1 then
4: cT ← cT + 2
5: output McT

procedure Finalize

1: if ∃ i ∈ I such that Mi ∈ Zi then
2: return 1
3: else
4: return 0

procedure R(B)

1: if B = “init” then
2: if rev = 1 then add ←− 1
3: output “query”
4: else if cT = cR then

5: ZcR+2 ←− ZcR+2 ∪ {B}
6: else if B = McR then
7: rev ←− 1
8: output McR+1

9: else if B = McR+2 then
10: cR ←− cR + 2
11: rev ←− 0
12: if add = 0 then
13: “accept”
14: else
15: add ←− 0
16: rev ←− 1
17: output McR+1

Fig. 5. Game G2. The boxed statement records every attempt of setting the counters
cT and cR to the desynchronization state of (cR = cT + 2)

reference of Mi in the line 9 of R(·) with cT < cR never happens in game G2.
Therefore it follows that each set Zi, i ∈ I, is determined by M0, . . . ,Mi−1,
denoted Zi(M0, . . . , Mi−1). Let

u = |{(Mi)i∈[0,2q+2] ∈ {0, 1}(2q+3)m : ∃ i ∈ I such that Mi ∈ Zi}|

be the number of sequences (Mi)i∈[0,2q+2] that result in an desynchronization
state of cR = cT + 2. Then we have the estimate

u ≤ 22qm
∑

(M0,M1)∈{0,1}2m

|Z2(M0, M1)|+ 2(2q−2)m
∑

(M0,...,M3)∈{0,1}4m

|Z4(M0, . . . , M3)|

+ . . . + 22m
∑

(M0,...,M2q−1)∈{0,1}2qm

|Z2q(M0, . . . , M2q−1)|

= 22m
∑

(M0,...,M2q−1)∈{0,1}2qm

(|Z2(M0, M1)|+ . . . + |Z2q(M0, . . . ,M2q−1)|)

≤ q2(2q+2)m, (8)

since the summand “|Z2(M0,M1)|+ . . . + |Z2q(M0, . . . , M2q−1)|” is not greater
than the number of queries. Therefore, we have

Pr[GA2 ⇒ 1] ≤ max
C

u

2(2q+3)m
≤ q2(2q+2)m

2(2q+3)m
=

q

2m
,



procedure Initialize

1: cT , cR, rev, add ← 0
2: Zi ← ∅ for i ∈ J = {1, 3, 5, . . . , 2q − 1}
3: M $← {0, 1}L

procedure T (A)

1: if A = “query” then
2: output McT

3: else if cT > cR then

4: ZcT +1 ← ZcT +1 ∪ {A}
5: else if cT = cR and rev = 0 then

6: ZcT +1 ← ZcT +1 ∪ {A}
7: else if A = McT +1 then
8: cT ← cT + 2
9: output McT

procedure Finalize

1: if ∃ i ∈ J such that Mi ∈ Zi then
2: return 1
3: else
4: return 0

procedure R(B)

1: if B = “init” then
2: if rev = 1 then add ←− 1
3: output “query”
4: else if B = McR then
5: rev ←− 1
6: output McR+1

7: else if B = McR+2 then
8: cR ←− cR + 2
9: rev ←− 0

10: if add = 0 then
11: “accept”
12: else
13: add ←− 0
14: rev ←− 1
15: output McR+1

Fig. 6. Game G3. The boxed statements record every attempt of setting the counters
cT and cR and the flag rev to the desynchronization state of (cT = cR + 4) or (cT =
cR + 2 and rev = 0)

where C denotes the set of the random coins of A. The inequality for the proba-
bility P2 can be proved in a similar way, by using the modified game G3 defined
in Figure 6, where J = {1, 3, 5, . . . , 2q − 1}. ¤

Now we can prove the following theorem.

Theorem 4.1. Let S = (Up, F) be a (t, ε, L)-PPRSG for L = (2q + 3)m. For a
desynchronization-adversary A(t, q), we have

Pr
K

$←{0,1}d
[A succeeds in a desynchronization attack ] ≤ 4q

2m
+ ε.

Proof. From the inequalities (3), (7) and Lemma 4.1, we can construct a distin-
guisher D such that

Pr
K

$←{0,1}d
[D(GS(K)) ⇒ 1] = δ,

and
PrM $←{0,1}L

[D(M) ⇒ 1] ≤ 4q

2m
.

Since the advantage of the distinguisher D is not greater that ε, we have

δ ≤ 4q

2m
+ ε,



which completes the proof. ¤

Remark 4.1. Our security proof is easily extended to a multi-tag setting, where
an adversary makes oracle queries to a multiple number of tags as well as a
reader.

4.2 Security against a tag-impersonation attack

We model a tag-impersonation-adversary A = A(q, t) as a probabilistic Turing
machine of run time t that makes total q queries to T and R. The execution of
A with T and R yields a transcript

T = (S0,T1,S1, . . . ,Sq−1,Tq,Sq)

of query-response pairs and states, where

Si = (Si
T , Si

R, revi, addi)

represents the state of T and R determined by the i-th query of A for 0 ≤ i ≤ q,
and

Ti = (M i
Q,M i

R, xi)

represents the query-response pair of the i-th query for 1 ≤ i ≤ q. Here M i
Q, M i

R

and xi ∈ {T ,R}, respectively, represent a query message, a response message
and the interface that the adversary made the query to.

Now suppose that the transcript T satisfies the following condition.

– There exist 1 ≤ i < j ≤ q such that Ti = (“init”, ∗,R), Tj = (∗, “accept”,R)
and xh = R for every i < h < j.

Then we say that A succeeds in a tag-impersonation attack against T and R.
The above condition implies that the adversary A opened a new session with
“init” message, and derived “accept” message from the reader R without any
interaction with the tag T . Now we show that a tag-impersonation-adversary
succeeding in a tag-impersonation attack results in a desynchronization state
between T and R. Suppose that the transcript T satisfies the above condition,
and Sj−1 is a synchronization state. Then we have two possible cases as follows.

Case 1. Let Sj−1
T = Sj−1

R . The “accept” message of Tj implies that the state
SR is updated on the j-th query. The update results in a desynchronization state
with

Sj
R = Up2(Sj−1

R ) = Up2(Sj−1
T ) = Up2(Sj

T ).



Case 2. Let Sj−1
T = Up2(Sj−1

R ). Since there is no query made to the tag T
from the i-th query to the j-th query, we have Si−1

T = Sj−1
T . Suppose that

the state Si−1 is a synchronization state of type 1 or 2, i.e., Si−1
T = Si−1

R . If
Sj−1
R = Upu(Si−1

R ) for some u ≥ 2, then we have

Si−1
T = Sj−1

T = Up2(Sj−1
R ) = Upu+2(Si−1

R ),

which is a desynchronization state of type 2 for Si−1. If Sj−1
R = Si−1

R , then we
have

Up2(Sj−1
R ) = Sj−1

T = Si−1
T = Si−1

R = Sj−1
R ,

which is a desynchronization state of type 3 for Sj−1. Finally, suppose that Si−1

is a synchronization state of type 3, i.e., Si−1
T = Up2(Si−1

R ) and revi−1 = 1.
Since revi−1 = 1, we have addi = 1. Since the “accept” message is returned
only if add = 0, we have addj−1 = 0, which implies that the variable SR has
been updated before the (j−1)-th query. Since the j-th query results in another
update of SR, we can find j′ ∈ [i + 1, j] such that

Sj′

R = Up4(Si−1
R ) = Up2(Si−1

T ) = Up2(Sj′

T ).

To summarize, we can construct a desynchronization adversary of success
probability at least δ from a tag-impersonation-adversary of success probability
δ. By Theorem 4.1, we obtain the following theorem.

Theorem 4.2. Let S = (Up, F) be a (t, ε, L)-PPRSG for L = (2q + 3)m. For a
tag-impersonation-adversary A(t, q), we have

Pr
K

$←{0,1}d
[A succeeds in a tag-impersonation attack ] ≤ 4q

2m
+ ε.

5 S∗-protocol: modification for mutual authentication

Certain RFID systems might require reader authentication. In this section, we
slightly modify our protocol so that the resulting protocol, called S∗-protocol,
provides mutual authentication of tag and reader. As seen in Figure 7, there are
only two differences in tag and reader algorithms as compared to S-protocol.
One is that each tag stores and updates an auxiliary flag addT , and the other is
that a reader always set flag add to zero on an “init” message. Then a session
of S∗-protocol is completed within 6 passes of messages as seen in Figure 8.
The same technique used for S-protocol applies to S∗-protocol, providing resis-
tance against desynchronization and tag-impersonation attacks. Now we model
a reader-impersonation-adversary A = A(q, t) as a probabilistic Turing machine
of run time t that makes total q queries to T and R. Let

T = (S0,T1,S1, . . . ,Sq−1,Tq,Sq)

be a transcript obtained from the execution of A with T and R. Here

Si = (Si
T , addi

T , Si
R, revi, addi)



1: if A = “query” then
2: addT ←− 1
3: output F(ST )
4: else if A = F(Up(ST )) then
5: ST ← Up2(ST )
6: if addT = 0 then
7: “accept”
8: else
9: addT ←− 0

10: output F(ST )

(a) T on an incoming message A

1: if B = “init” then
2: add ←− 1
3: output “query”
4: else if B = F(SR) then
5: rev ←− 1
6: output F(Up(SR))
7: else if B = F(Up2(SR)) then
8: SR ←− Up2(SR)
9: rev ←− 0

10: if add = 0 then
11: “accept”
12: else
13: add ←− 0
14: rev ←− 1
15: output F(Up(SR))

(b) R on an incoming message B

Fig. 7. Tag algorithm T and reader algorithm R for mutual authentication

represents the state of T and R determined by the i-th query of A for 0 ≤ i ≤ q,
and

Ti = (M i
Q,M i

R, xi)

represents the query-response pair of the i-th query for 1 ≤ i ≤ q, as in the
previous section. If the transcript T satisfies the following condition, then we
say that A succeeds in a reader-impersonation attack against T and R.

– There exist 1 ≤ i < j ≤ q such that Ti = (“query”, ∗, T ), Tj = (∗, “accept”, T )
and xh = T for every i < h < j.

The above condition implies that the adversary A has transmitted “query” mes-
sage, and derived “accept” message from the tag T without any interaction
with the reader R. Now we show that an adversary succeeding in a reader-
impersonation attack results in a desynchronization state between T and R.
Suppose that the transcript T satisfies the above condition, and Si is a syn-
chronization state such that Si

T = Upv(Si
R) for v = 0 or 2. Since addi

T = 1
and addj−1

T = 0, we have Sj−1
T = Upu(Si

T ) for some u ≥ 2. From the message
M j

R = “accept”, we see that the state Sj−1
T is updated on the j-th query, i.e.,

Sj
T = Up2(Sj−1

T ). Then we obtain a desynchronization state

Sj
T = Upu+2(Si

T ) = Upv+u+2(Si
R) = Upv+u+2(Sj

R),

where the last equality is followed from the observation that there is no query
made to the reader from the i-th query to the j-th query. To summarize, we can
construct a desynchronization adversary of success probability at least δ from
a reader-impersonation-adversary of success probability δ. By Theorem 4.1, we
obtain the following theorem.



T (ST ) R(SR)
oo
“query”

// SR ← Up2(SR)

F (ST )
ST ← Up2(ST ) oo

F (Up(SR))
// SR ← Up2(SR)

F (ST )
ST ← Up2(ST ) oo
“accept” F (Up(SR))

// SR ← Up2(SR)
F (ST ) “accept”

Fig. 8. Message flow of S∗-protocol. The boxed statement is executed only if T and R
are in a synchronization state of type 3.

Theorem 5.1. Let S = (Up, F) be a (t, ε, L)-PPRSG for L = (2q + 3)m. For a
reader-impersonation-adversary A(t, q), we have

Pr
K

$←{0,1}d
[A succeeds in a reader-impersonation attack ] ≤ 4q

2m
+ ε.

6 Conclusion

In this paper, we have proposed S-protocol, an authentication protocol based on
a special class of PRSGs. We also have presented a formal proof of availability
and security of our protocol. Since most existing stream ciphers can be used as
a building block of S-protocol, S-protocol is expected to be suitable for use in
highly constrained environments such as RFID systems. We now pose two open
problems. One is to provide S-protocol with untraceability, as required in many
RFID applications. The other is to reduce the number of rounds of S-protocol
for more efficient communication. As a partial answer to the first question, we
might consider an approach where a tag does not claim its ID in an explicit way,
but a reader identifies the tag in a back-end data base by using the keystream
block transmitted in response to query message.
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