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Abstract

In this paper we propose an attack against multivariate hash func-
tions, which is based on higher order differential cryptanalysis. As
a result, this attack can be successful in finding the preimage of the
compression function better than brute force and it is easy to make
selective forgeries when a MAC is constructed by multivariate poly-
nomials. It gives evidence that families of multivariate hash functions
are neither pseudo-random nor unpredictable and one can distinguish
a function from random functions, regardless of the finite field and the
degree of the polynomials.
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1 Introduction

It is well known that hash functions play a fundamental role in data integrity
and message authentication. Hash functions are used for data integrity in
conjunction with digital signature, where a message is usually hashed first,
and then the hash value is signed in place of the original message. Hash func-
tions typically can be split into two classes, unkeyed hash functions(MDCs)
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and Keyed hash functions (MACs). MACs may be viewed as hash functions
which take two inputs, a message and a secret key, and produce a output,
with the design requirement that it be computationally infeasible in practice
to produce the same output without knowledge of the key.

In many cryptographic applications of hash functions, it is desirable
that the only way to produce a valid pair (x, y) is to first choose x, and then
compute y = h(x) by applying the function h to x. Other security require-
ments of hash functions are motivated by their applications in particular
protocols, such as signature schemes. The 3 basic security requirements of
MDCs are well known:

1. Preimage resistance: it is computationally infeasible to find an input
which hashes to a specified output;

2. 2nd-preimage resistance: it is computationally infeasible to find any
second input which has the same output as any specified input.

3. Collision resistance: it is computationally infeasible to find any two
distinct inputs x, x′ which hash to the same output.

MACs usually requires higher security than MDCs. The following security
property will be required when a MAC algorithm is used.

4. Computation resistance: given zero or more text-MAC pairs (xi, hk(xi)),
it is computationally infeasible to compute any text-MAC pair (x, hk(x))
for any new input x 6= xi (including possibly for hk(x) = hk(xi) for
some i).

The reason for why this property is required is that if computation-resistance
does not hold, the MAC algorithm is subject to MAC forgery[12, 13]. The
opponent can predicting the value of MACK(x) for a message x without
initial knowledge of K. If the adversary can do this for a single message,
he is said to be capable of existential forgery. If the adversary is able to
determine the MAC for a message of his choice, he is said to be capable of
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selective forgery. Ideally, existential forgery is computationally infeasible; a
less demanding requirement is that only existential forgery is so. Practical
attacks often require that a forgery is verifiable, i.e., that the forged MAC is
surely known to be correct on before hand. In fact, computation resistance
implies preimage-resistance and collision resistant.

Since the cryptanalytic advances[8, 9] have shown weaknesses of MD5
and SHA-1 that allow collisions to be computed much faster than brute
force, some new hash schemes are proposed to meet the security require-
ment. Multivariate hash functions are one of which based on hard problems
that solving a high degree multivariate equation is hard. Some multivariate
schemes appeared in [2, 3].

This paper exploits higher order differential cryptanalysis [10] to attack
multivariate hash functions. multivariate hash functions is a iterated hash
schemes built upon a function which takes m + n bits input and n bits
output defined as a sequence of multivariate functions. Exactly speaking,
the compression function are constructed by multivariate polynomials.

Our Contribution. We propose a new attack on multivariate hash func-
tions and prove that this type of hash functions are not random oracles.
The attack method is to find relationships between distinct inputs and their
respective outputs using higher order differential. This attack can be suc-
ceed in find preimage of the compression function better than brute force.
It can make selective forgery on MACs build on multivariate hash functions.
Though we focus on the compression function, this attacks can extend to
iterated hash functions.

Organization. The rest of the paper is organized as follows. Section 2
describes the generic model of multivariate hash functions and the high
order derivatives of multivariate polynomials. In section 3, we describe the
attack and shows multivariate hash functions are neither pseudo-random
nor unpredictable. Section 4 analysis the security of MDCs and MACs built
on multivariate hash functions. In section 5 we make some conclusions.
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2 Preliminaries

2.1 Generic Model of Multivariate Hash Functions

Multivariate hash functions was introduced in[2, 3], it is based on a hard
mathematical problem that solving a system of multivariate equations. Be-
fore multivariate polynomials been used in construct hash functions, a num-
ber of asymmetric schemes based on multivariate functions has been proposed[4,
5]. Here we give a generic definition of multivariate hash functions.

Definition (Multivariate Hash Functions) A multivariate hash func-
tion is an iterated hash which the compression function F : Km+n 7→ Kn is
given by

F (x1, · · · , xm, y1, · · · , yn) = (f1(x1, · · · , xm; y1, · · · , yn),

· · · ,

fn(x1, · · · , xm; y1, · · · , yn))

where each fi is a randomly chosen higher order polynomial over the finite
field K and all the coefficients are chosen randomly.
The current chaining state is x = (x1, · · · , xm), and each input message
block is y = (y1, · · · , yn).

The construction MA-HASH by Billet, Robshaw and Peyrin[2] and a
similar construction by Ding and Yang[3] are special case of multivariate
hash functions defined above. MQ-HASH is a quartic (degree 4) system h

using two composed quadratic systems f and g,such that h = g◦f . Ding and
Yang also propose a cubic construction where the system has a degree 3. In
order to improve the efficiency of the system, they use sparse polynomials.
Aumasson and Meier [1] found that multivariate hash functions over GF (2)
of low-degree are neither pseudorandom nor unpredictable and constructions
based on sparse polynomials are vulnerable to trivial collisions and near
collisions. They also claim that NMAC message authentication codes built
on certain cubic multivariate hash functions allow key recovery faster than
by exhaustive search.
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2.2 Higher Order Derivatives

In [10] a definition of higher order derivatives of discrete functions was given
and the concept of higher order differentials was introduced. Later higher or-
der differentials were used to cryptanalysis block ciphers presumably secure
against conventional differential attacks [11].

Definition (Higher order derivatives) Let (S, +) and (T, +) be Abelian
groups. For a function f : S 7→ T , the derivative of f at the point a ∈ S is
defined as

∆af(x) = f(x + a)− f(x).

The i’th derivative of f at the point a1, · · · , ai is defined as

∆(i)
a1,··· ,aif(x) = ∆ai(∆

(i−1)
a1,··· ,ai−1

f(x)).

Proposition 2.1 For any function f : S 7→ T with degree d, the d-th deriva-
tive of f is a constant.

Example For f(x1, x2) = x2
1 + x1x2, xi ∈ GF (3). We compute the 2-nd

derivative at (01, 12).

∆01f(x1, x2) = f(x1 + 0, x2 + 1)− f(x1, x2)

= x1

∆(2)
(01,12)f(x1, x2) = ∆01f(x1 + 1, x2 + 2)−∆01f(x1, x2)

= (x1 + 1)− x1

= 1

3 Attacks Using Higher Order Differentials

In this section we describe how to use higher order derivatives of multivariate
functions to attack the hash function. In fact, the attack is based on the
property that the d-th derivative of a multivariate polynomials f with degree
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d is a constant. Suppose we compute the d-th derivative of multivariate
function f(x) with degree d at point (a1, · · · , ad), we get a constant C,
which is independent of the input x and only depends (a1, · · · , ad).

For example, for a multivariate hash function F with degree 3, it is easy
to compute the 3rd derivative of F at point (a,b, c). If we don’t know the
coefficients of polynomials, then we choose a random input x, then we get

C = ∆(3)
a,b,cF (x)

= {[F (x + c + b + a)− F (x + c + b)]− [F (x + c + a)− F (x + c)]}
−{[F (x + b + a)− F (x + b)]− [F (x + a)− F (x)]}

Since every input x satisfies this equation, and if we have known C and
the F value of 7 variables x + c + b + a,x + c + b, · · · ,x + a where each
variable doesn’t equal to x, then we can compute F (x) according to the
above equation without access F . The following figure describe how it works.

    x+c+b+a

FF F F FFFF

    x     x+a     x+b     x+b+a     x+c     x+c+a     x+c+b

)()1( xFa∆ )()1( bxFa +∆ )()1( bcxFa ++∆)()1( cxFa +∆

)()2(
, xFba∆ )()2(

, cxFba +∆

CxFcba =∆ )()3(
,,

Figure 1: The 3rd derivative of F , while ª means the difference

We have considered the case for degree 3, then we will extended into
higher degrees. Based on the above analysis, we easily get the following
theorem.

Theorem 3.1 For a multivariate hash function F with degree d, the d-th
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derivative of F at point (a1, · · · ,ad) is a constant C satisfies:

C =
∑

εi∈{0,1},1≤i≤d

(−1)ε1+···+εd+1 · F (x + ε1a1 + · · ·+ εdad). (1)

Thus, if ε1a1 + · · · + εdad 6= 0 when ε1 + · · · + εd > 0 , we can get the F

value of a input x by the following equation without access F :

F (x) =
∑

εi∈{0,1},1≤i≤d
ε1+···+εd>0

(−1)ε1+···+εd+1 · F (x + ε1a1 + · · ·+ εdad)− C. (2)

Proof. We prove the result by induction on the degree of F . For d = 1 the
derivative of F at point a1 is C = F (x + a1) − F (x) and satisfies equation
(1). Suppose (1) holds for d− 1. Then

C = ∆(d)
a1,··· ,ad

F (x)

= ∆d−1
a1,··· ,ad−1

(∆ad
F (x))

= ∆d−1
a1,··· ,ad−1

(F (x + ad)− F (x))

=
∑

εi∈{0,1},1≤i≤d−1

(−1)ε1+···+εd−1+1 ·

(F (x + ad + ε1a1 + · · ·+ εd−1ad−1)− F (x + ε1a1 + · · ·+ εd−1ad−1))

=
∑

εi∈{0,1},1≤i≤d

(−1)ε1+···+εd+1 · F (x + ε1a1 + · · ·+ εdad).

Equation 2 can be get directly by equation 1. Note that when ε1 + · · ·+εd >

0, ε1a1 + · · ·+ εdad 6= 0 is required, since if it doesn’t follows this condition,
then we have already known F (x) and we needn’t to do more.

Since a well designed hash function should behavior like a random oracle[7]
and the only efficient way to determine the hash value of a input x is to
actually evaluate the hash function at the value x, it is obvious that mul-
tivariate hash functions can not suffice to this condition. We can compute
F (x) when we get the hash value of input set {x + ε1a1 + · · ·+ εdad | εi ∈
{0, 1}, ε1 + · · ·+εd > 0, 1 ≤ i ≤ d} which has 2d−1 elements. This property
implies multivariate hash functions are neither pseudo-random nor unpre-
dictable [6].If we take the multivariate hash function as a black box and

7



only know the maximum degree d. We don’t know the coefficients of the
polynomials, but can compute the d-th derivative C of function F at point
(a1, · · · ,ad). Then we can distinguish the function from random according
the constant C, since for a random function F , if the value that we get in the
end is not C, then the function is the random one, not the multivariate one.
This implies F is not pseudo-random and obviously it is not unpredictable.
(See [6] for the definition of pseudo-random and unpredictable).

4 On the Security of MDCs and MACs Based on

Multivariate Hash function

In this section we consider the security of MDC and MAC which are con-
structed by multivariate hash functions. We show that find preimages in
this type of MDCs can be attacked better than brute force. And MACs
of this type are not computation-resistance, which make selective forgery
easily.

4.1 Preimage Attack on Compression Functions

For a multivariate compression function F , preimage attack is to find any
preimage x′ such that F (x′) = y when given any y for which a corresponding
input is not known. For a ideal compression function yielding n-bit hash-
values the strength is 2n and for a random x the probability of it is the
preimage of y is 2−n. For a multivariate hash function with degree d, the
attack is as follows:

1. For a multivariate compression function F : Km+n 7→ Kn with degree
d, given a y′ = (y′1, · · · , y′n) to find x′ = (x1, · · · , xm; y1, · · · , yn) that
satisfies F (x′) = y′.

2. Fixed the first part (x1, · · · , xm) of x′, choose a set of elements (a1, · · · ,ad)
where ai = (a1, · · · , an) satisfies the condition that when ε1+· · ·+εd >
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0, ε1a1+ · · ·+εdad 6= 0 where εi ∈ {0, 1}. Compute the d-th derivative
constant C by equation (1).

3. Choose a x while the first part (x1, · · · , xm) is fixed and the remaining
are random. Then F (x) can be computed through equation (2) with-
out access F . Thus we query the F function 2d − 1 times and usually
get 2d distinct hash-values.

4. So the probability of query 2d− 1 times to find a preimage is approxi-
mately 2d

kn , where k is the order of the field K. And this probability is
higher than the ideal probability 2d−1

kn .

For the MQ-HASH [2] with degree 4 while K = GF (2). The probability of
the above attack is 16

2n while the ideal probability is 15
2n . Though this attack

improve the succeed probability such a litter that can be ignored, it exposes
that multivariate hash functions are not ideal and has some weakness.

4.2 MAC Forgeries

It is obviously that the adversary can make selective forgery when multi-
variate hash function has been used. This attack can be extended when the
message authentication codes NMAC and HMAC are built on multivariate
hash functions.

Let F be a multivariate hash function Km+n 7→ Kn of degree d. For an
arbitrary known h ∈ F , we consider a iterated hash function H∗

k : K∗ 7→ Kn

with initial value k ∈ Kn, no padding rule, and no output filter. For x ∈ K∗,
the NMAC construction with secret key (k1, k2), ki ∈ Kn, is describe as
follows:

NMACk1,k2(x) = hk1(H
∗
k2

(x))

and the HMAC construction with key k is defined by

HMACk(x) = H∗
iv(k ⊕OPAD ‖ H∗

iv(k ⊕ IPAD ‖ x)),

with constant OPAD and IPAD long of one message block.
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In fact, both the NMAC and HMAC can be viewed a multivariate
function Fk(x) with higher degree that depends with the message block
length of x. This is because the composite of F (x) is also a multivariate
polynomial function with higher degree. Suppose the block length of x is l,
then the polynomial degree of NMAC is (l + 1)d and the degree of HMAC
is (l + 2)d, which makes MAC forgery feasible.

5 Conclusion

In this paper, we describe a new attack on the multivariate hash functions
,which is based on higher order differential cryptanalysis. As a result, this
attack can be succeed in find preimage of the compression function better
than brute force and it is easy to make selective forgeries when a MAC is
constructed by multivariate polynomials. Since every dedicated hash func-
tion may be write in multivariate boolean functions, it seems the attack can
be succeed when the degree of the function is low.
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