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Abstract

Dutta and Mukhopadhyay have recently proposed some very efficient self-healing key distribution

schemes with revocation. The parameters of these schemes contradict some results (lower bounds)

presented by Blundo et al. In this paper different attacks against the schemes of Dutta and Mukhopadhyay

are explained: one of them can be easily avoided with a slight modification in the schemes, but the

other one is really serious. The conclusion is that the results of Dutta and Mukhopadhyay are wrong.
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I. INTRODUCTION

Self-healing key distribution schemes enable large and dynamic groups of users of an unre-

liable network to establish group keys for secure communication in different sessions. Every

session group of users is established by a group manager, by joining or revoking users from the

initial group. The common key of the group is provided by the group manager using broadcast

packets, which must be combined by the group members with some private information that

they have received in the setup phase of the scheme. The goal of this kind of schemes is well

captured by the self-healing property: if during a certain session a user loses some broadcast

packet, he is still able to recover the group key of the session simply by using a packet received

during a previous session and a packet received in a subsequent one, without having to request
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any additional transmission to the group manager. Thanks to the self-healing property, these key

distribution schemes are very useful in several Internet-related and wireless settings.

Different parameters are considered to evaluate the efficiency of self-healing schemes. With

respect to the length of the secret information that each user receives from the group manager

in the setup phase, Dutta and Mukhopadhyay [1], [2] have recently proposed the most efficient

self-healing key distribution schemes up to date. After looking at their proposals, we observed

that the schemes were too efficient in terms of the length of the secret information of each user,

because the achieved efficiency contradicts some theoretical results that have been proved by

Blundo et al. [3], [4]. For this reason, we studied the proposals of [1], [2] in more detail and

we found some explicit attacks against their security. The conclusion is that the schemes of

Dutta and Mukhopadhyay are not secure at all, and that previous proposals already achieved the

optimal efficiency in terms of the length of the secret information that each user must store.

Organization. In Section II we review the notion of a self-healing key distribution scheme, the

required properties and one of the specific proposals of Dutta and Mukhopadhyay (the other ones

are very similar). In Section III we argue why the security of this proposal would contradict

some theoretical results, and then we explain our explicit attacks against the security of the

scheme. The conclusions of our work are given in Section IV.

II. SELF-HEALING KEY DISTRIBUTION WITH REVOCATION

Self-healing key distribution schemes were introduced by Staddon et al. [5]. After that, many

papers have appeared which generalize and/or modify the original definitions, give lower bounds

to the resources required for such schemes, and propose some efficient constructions. See [3],

[4], [6], [7] for some relevant papers on self-healing key distribution schemes. Typically a self-

healing key distribution scheme consists of the following algorithms.

In the Setup phase, the group manager gives to every user Ui in the first session group G0

his secret information Si.

In the Broadcast phase, for session j ∈ {1, . . . ,m}, the group manager makes public some

information Bj , which usually depends on the set Rj of revoked users in session j.

In a Join action, the group manager gives to a new user Ui, who joins the group in session

j, his secret information Si which allows him to compute session keys from session j on.
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The Computation of the session key Kj by a user Ui /∈ Rj is performed by using his own

secret information Si and the broadcast packet Bj . The self-healing property of these schemes

gives an alternative way to compute the key Kj , by means of the broadcast messages Bj1 , Bj2 ,

where 1 ≤ j1 < j < j2 ≤ m and Ui /∈ Rj1 ∪Rj2 .

These schemes usually support t-revocation for some threshold t, meaning that the maximum

number of users who can be revoked at the same time is t. With respect to security, forward and

backward secrecy are properties required to a self-healing scheme with t-revocation. Forward

secrecy means that a set R with |R| ≤ t users who are revoked before session j cannot obtain

any information about the session keys Kj, Kj+1, . . . , Km from their secret information {Si}Ui∈R

and all the broadcast messages B1, . . . , Bm. Backward secrecy means that a set J with |J | ≤ t

users who join the group after session j cannot obtain any information about the session keys

K1, . . . , Kj from their secret information {Si}Ui∈J and all the broadcast messages B1, . . . , Bm.

Most of the existing papers on self-healing key distribution are mainly focused on uncondi-

tionally secure schemes: the schemes must achieve forward and backward secrecy even under

the attack of an adversary with unlimited computational resources.

A. A Scheme of Dutta and Mukhopadhyay

In [1], [2], Dutta and Mukhopadhyay have proposed the most efficient self-healing key distri-

bution schemes with revocation up to date, with respect to the length of the secret information

Si that users must store. We quickly review the protocols of one of these schemes, in [1] (the

schemes in [2] are very similar).

Setup. The group manager, GM, chooses a finite field Fq (for some prime number q) and a

random bivariate t-degree polynomial Ψ(x, y) = a0,0 + a1,0x+ a0,1y + . . .+ at,tx
tyt in Fq[x, y].

GM chooses also a one-way permutation f : Fq → Fq and an initial value α0 ∈ Fq. Each user

Ui ∈ G0 receives as secret information the value α0 and the polynomial Si(y) = Ψ(i, y) (i.e.,

the total information that each user must secretly store consists of (t+ 2) log q bits). The group

manager finally chooses at random a secret value K0 ∈ Fq.

Broadcast. In the j-th session, for j = 1, . . . ,m, the group manager computes αj = f(αj−1),

stores αj and erases αj−1. Then the group manager GM chooses at random βj ∈ Fq and computes

Kj = εβj
(Kj−1), for some secret-keyed permutation ε over Fq. Let Rj = {U`1 , . . . , U`wj

} be the

set of revoked users at session j, satisfying |Rj| = wj ≤ t. The group manager broadcasts Bj =
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Rj, φj(x), εKj

(β1), εKj
(β2), . . . , εKj

(βj)
}
, where φj(x) = Λj(x)Kj + Ψ(x, αj) and Λj(x) =

(x− `1) · . . . · (x− `wj
).

Join. When a new user Uk joins the group at some session j, the group manager GM privately

sends to him the polynomial Sk(y) = Ψ(k, y) and the value αj .

Computation of the session key. If a non-revoked user Ui /∈ Rj correctly receives the

broadcast message Bj for session j, he can compute Kj by first computing αj (as αj = f(αj−1)

if Ui was already in the group at session j − 1), and then evaluating Si(αj) = Ψ(i, αj), φj(i)

and Λj(i) 6= 0. Finally, Ui computes

Kj =
φj(i)−Ψ(i, αj)

Λj(i)
.

Intuitively, the revoked users U`s ∈ Rj cannot compute Kj because Λj(`s) = 0, for all s =

1, . . . , wj .

Alternatively, a user Ui who correctly receives Bj1 and Bj2 , where 1 ≤ j1 < j2 ≤ m and Ui

is not revoked in session j2, can still recover the secret session key Kj , for all j ∈ {j1, . . . , j2},

as follows. From Bj2 , the user Ui can recover Kj2 (as explained just above) and from this key

Kj2 and the last values in B2, he can also recover the values β1, β2, . . . , βj2 . From Bj1 , the user

can recover Kj1 . After that, the user just computes Kj = εβj
(Kj−1), for j = j1 + 1, . . . , j2 − 1,

obtaining in this way all the intermediate keys, between sessions j1 and j2.

Dutta and Mukhopadhyay claim that this scheme is an unconditionally secure self-healing

key distribution scheme with t-revocation, in particular achieving both forward and backward

secrecy (see Theorem 4.2 of [1]).

III. FLAWS IN THE SCHEME OF DUTTA AND MUKHOPADHYAY

In this section we show that the schemes of Dutta and Mukhopadhyay [1], [2], do not satisfy

some of the security requirements for self-healing key distribution schemes. For simplicity, we

concentrate on the scheme of [1], described in the previous section; but all the attacks that we

explain can also be applied to the (similar) schemes in [2].

A first mistake in the statement of their security results is easily detectable. They assert that

the security of their schemes is unconditional, meaning that the schemes resist attacks even from

computationally unlimited adversaries. However, since the schemes involve the use of a one-way

permutation f : Fq → Fq, it is easy to find an attack against the backward secrecy property,
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executed by an unlimited adversary who can invert the permutation f . This adversary controls a

user Ui who joins the group at some session j > 1. In the Join phase, he receives αj along with

his secret information Si. If he has unlimited computational resources, he can invert the one-way

permutation f and obtain αj−1 = f−1(αj), αj−2 = f−1(αj−1) and so on, until he obtains all the

values α0, α1, . . . , αj . Combining these values with his secret information Si and the previous

broadcast messages B1, . . . , Bj−1, this user can easily compute all the previous session keys

K1, . . . , Kj−1. Therefore, the security (in particular, the backward secrecy) of the schemes can,

at most, be computational.

Furthermore, the schemes of Dutta and Mukhopadhyay are surprisingly efficient, in the sense

that the length of the secret information Si received by any user is quite smaller than in previous

proposals of self-healing key distribution schemes. Actually, this length contradicts the lower

bound that Blundo et al. [3], [4] have given for the length of secret information to be stored in

a secure self-healing key distribution scheme with t-revocation.

Specifically, Theorem 5.2 of [3] (and similarly, Theorem 4.1 of [4]) states that, for any user Ui

belonging to the group since session j, it holds H(Si) ≥ (m− j+1) log q, where operator H is

the Shannon entropy and Si denotes the random variable representing the secret information of

user Ui. In other words, a user Ui has to store at least as many bits of secret information as the

sum of the bits of all the session keys that Ui might compute as member of the group. However,

in the considered scheme of Dutta and Mukhopadhyay [1], each user receives (t+ 2) log q bits

of secret information, independently of the number of session keys (up to m) that this user may

want to compute. According to the result in [3], a user who wants to recover all the session keys

Kj ∈ Fq, 1 ≤ j ≤ m, in the scheme of [1] should store a secret information of at least m log q

bits.

Summing up, we have a contradiction between Theorem 5.2 of [3] and the security of the

scheme of Dutta and Mukhopadhyay [1]. In the following sections, we solve this contradiction

by providing explicit attacks against the backward and forward secrecy properties of the scheme

of Dutta and Mukhopadhyay.

A. A (Fixed) Attack against Backward Secrecy

Actually, the scheme does not achieve even computational backward secrecy, because of the

following simple attack. The adversary controls a user Ui who joins the group at some session
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j > 1. Once he has Si and αj , he can compute the session key Kj from the broadcast packet

Bj . Now, he can obtain the values β1, . . . , βj by combining Kj with the last elements in the

broadcast packet; he must apply the inverse permutation of εKj
(·).

From this point on, and due to the fact that Kj = εβj
(Kj−1), it is clear that Ui can recover

Kj−1 by inverting εβj
, and also the other previous keys Kj−2, . . . , K1, by iterating this process.

This flaw can be fixed, in the following way. The group manager GM chooses values β1, . . . , βm

and γ1, . . . , γm at the same time, in the Setup phase. Later, in the Broadcast phase of the j-

th session, he defines Kj = εβj+γj
(Kj−1)) and defines the last elements of the broadcast Bj

to be {εKj
(β`)}`=j+1,...,m and {εKj

(γ`)}`=1,...,j−1. It is quite easy to see that the self-healing

scheme resulting from this slight modification resists the above-mentioned attack, and that it

satisfies the self-healing and backward secrecy properties, of course in a computational (not in

an unconditional) way, because of the aforementioned argument.

B. A (Serious) Attack against Forward Secrecy

Finally, we present a more serious attack against the forward secrecy property of the scheme

of Dutta and Mukhopadhyay. Let us assume t+ 1 < m and let us consider a user Ui ∈ G0 who

remains non-revoked during r sessions, where t < r < m. Without loss of generality, we can

assume the r sessions are the t+ 1 first ones.

Then, he knows the keys K1, . . . , Kt+1 and the values α1, . . . , αt+1 for the first t+1 sessions.

In particular, Ui can use the key Kj and the broadcast information φj(x), Rj in Bj to compute

ψ(x, αj) = φj(x)− Λj(x)Kj , for every j = 1, . . . , t+ 1.

Therefore, Ui has t+ 1 tuples of the form (α1, ψ(x, α1)), . . . , (αt+1, ψ(x, αt+1)). Thus, since

the polynomial ψ has degree t in the second variable, Ui can interpolate (for example, by using

Lagrange interpolation) and he gets the complete bivariate polynomial ψ(x, y). Once Ui obtains

the polynomial ψ(x, y) he is able to compute keys for future sessions, even if he is revoked for

those sessions, contradicting the forward secrecy property of the scheme, asserted by the authors

in [1].

For simplicity, let us assume that user Ui is revoked in session t + 2 ≤ m and we will

show how he can compute Kt+2. The key point for that computation is that, since user Ui

has been able to compute ψ(x, y), he can calculate ψ(i∗, y) = Si∗(y) for any user Ui∗ non-

revoked in the (t + 2)-th session. Furthermore, Ui can also compute αt+2 = f(αt+1) and so
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the value Si∗(αt+2) = ψ(i∗, αt+2). Then, when the group manager broadcasts in the (t + 2)-th

session the information Bt+2 =
{
Rt+2, φt+2(x), εKt+2(β1), εKt+2(β2), . . . , εKt+2(βt+2)

}
, where

φt+2(x) = Λt+2(x)Kt+2 + Ψ(x, αt+2), user Ui can easily compute the key Kt+2 for the session

t+ 2 as follows:

Kt+2 =
φt+2(i

∗)−Ψ(i∗, αt+2)

Λt+2(i∗)
.

Note that Λt+2(i
∗) 6= 0 as we are assuming the user Ui∗ is not in the list Rt+2 of revoked users

for that session.

IV. CONCLUSION

The self-healing key distribution schemes by Dutta and Mukhopadhyay [1], [2] are the most

efficient ones with respect to the length of the secret information held by each user. In this paper

we have explained why this ‘short’ length contradicts some well-known theoretical bounds on

the efficiency of self-healing schemes. After that, we have shown some explicit attacks which

completely break the security of the considered schemes. Although one of the attacks can be

fixed, the other one cannot be avoided without decreasing the efficiency of the scheme, due to

the theoretical results in [3], [4].

Our personal conclusion is that the efficiency of previous self-healing schemes could not be

substantially (and securely) improved, in the case of unconditionally secure schemes, because the

schemes proposed up to 2006 already achieve the optimal theoretical bounds for the efficiency

parameters. Therefore, the future work on efficiency improvements for self-healing schemes

should focus on computationally secure ones.

REFERENCES

[1] R. Dutta and S. Mukhopadhyay, “Improved self-healing key distribution with revocation in wireless sensor network,” Proc.

WCNC, 2007, pp. 2963–2968.

[2] R. Dutta and S. Mukhopadhyay, “Designing scalable self-healing key distribution schemes with revocation capability,” Proc.

ISPA, 2007, Lecture Notes in Computer Science, vol. 4742, pp. 419–430.

[3] C. Blundo, P. D’Arco, A. De Santis and M. Listo, “Design of self-healing key distribution schemes,” Designs, Codes and

Cryptography, vol. 32, pp. 15–44, 2004.

[4] C. Blundo, P. D’Arco and A. De Santis, “On self-healing key distribution schemes,” IEEE Transactions on Information

Theory, vol. 52 (12), pp. 5455–5467, 2006.

[5] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin and D. Dean, “Self-healing key distribution with revocation,”

Proc. IEEE S&P, 2002, pp. 241–257.

September 28, 2007 DRAFT



8

[6] D. Liu, P. Ning and K. Sun, “Efficient self-healing key distribution with revocation capability,” Proc. CCS, 2003, ACM

Press, pp. 231–240.
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