
Using Commutative Encryption to Share a Secret

Saied Hosseini Khayat∗

August 18, 2008

Abstract

It is shown how to use commutative encryption to share a secret. Suppose Alice wants to
share a secret with Bob such that Bob cannot decrypt the secret unless a group of trustees agree.
It is assumed that Alice, Bob and the trustees communicate over insecure channels. This paper
presents a scheme that uses modular exponentiation and does not require key exchange. The
security of the scheme rest of the difficulty of the discrete logarithm problem.

Key words: secret sharing, commutative cryptography.

1 Introduction

Suppose Alice has a secret (e.g., a bank password) and wants to share it securely with Bob such
that Bob cannot decrypt the secret without the consent of a group of trustees. In addition,
consider the following assumptions:

1. Alice, Bob and the trustees can communicate only over insecure public channels.

2. The secret is not to be revealed to the trustees, nor to anyone but Bob.

3. The involved parties can be trusted in following a prescribed protocol.

The above problem can arise in commercial, corporate or military settings, and can be
solved by means of the well-known secret sharing schemes (as described in Section 4), such as
the Shamir threshold scheme [4]. In those schemes, the shareholders must “pool” their shares
securely in order to unlock the secret. If the parties are remotely located, that normally requires
a key exchange before execution of the protocol. In a distributed application, avoiding the hassle
of secure key distribution prior to a secret sharing scheme is a worthwhile goal. In this paper, we
show how a commutative encryption function, such as the modular exponentiation operation,
can be used to create a keyless scheme that solves the stated problem. The security of this
scheme rests on the intractability of the discrete logarithm problem. This paper is organized
as follows: Section 2 describes the key idea of this paper. In Section 3, our proposed scheme is
presented and its correctness and security is shown. In Section 4, the merits of the proposed
scheme are discussed, and in the last section, the contribution of the paper is summarized.

∗Electrical Engineering Department, Ferdowsi University of Mashhad, Iran. Email: shk@alum.wustl.edu

1



2 Key Idea

This paper presents a secret sharing scheme that is inspired by Shamir’s keyless secret commu-
nication [3, pp.500], which utilizes the commutative property of modular exponentiation. The
idea, however, works with any commutative encryption function meeting certain conditions.
Shamir in [5] explored the power of commutativity in cryptography. References [1] and [2],
respectively, use commutative cryptography for information sharing across databases, and for
privacy in distributed data mining. The topic has received much recent fundamental consider-
ation in [6].

In our proposed scheme, commutativity plays an important role: it allows the secret owner
to undo her encryption after the trusted parties have encrypted the secret. It also allows the
trusted parties to join or leave the group in any order without the sharing procedure having to
be restarted.

Definition 1 Let M be denote a message space and K denote a key space. A commutative
encryption function is a family of bijections f :M×K →M such that for a given m ∈ M
we have fa ◦ fb(m) = fb ◦ fa(m), for any a, b ∈ K.

It is an easy exercise to show that modular exponentiation under certain conditions is a
commutative encryption function.

Fact 1 Fix a prime p. Define fa(m) def= ma (mod p). Let m ∈ Zp and a ∈ Zp−1, such that

gcd(a, p− 1) = 1. Then

a) fa(m) is a bijection. Proof: There exists b ∈ Zp−1 such that fb ◦ fa(m) = m. This is easily

seen as follows: Given that a ∈ Zp−1 and gcd(a, p − 1) = 1, we can find b ∈ Zp−1 (using

the extended Euclid algorithm) such that ab = 1 (mod p− 1). As a result:

fb ◦ fa(m) = mab (mod p) = m1+k(p−1) (mod p) = m,

where we have used the Fermat’s theorem (if m ∈ Zp, then m(p−1) = 1 (mod p)).

b) fa(m) is commutative. Proof: For all positive integers a, b,m, we have

fa ◦ fb(m) = mab (mod p) = fb ◦ fa(m).

The above fact is the key to the correctness of our keyless secret sharing scheme.

3 Proposed Scheme

3.1 Description

The proposed algorithm uses the assumption that a large prime p has been made publicly known
to all (even adversaries). The prime can be made part of a technical standard for this type of
applications and then be published to the world. As a result, the prime p is assumed to be
accessible to everyone in an authenticated way.

In what follows, for convenience, the secret owner (Alice) is denoted by P0. The trustees are
denoted by P1, P2, · · · , Pn−1. Finally, Pn denotes the recipient of the secret (Bob). We also use
the word “lock” to mean “encrypt.”

2



Our protocol has three phases: (1) Setup, (2) Locking, and (3) Unlocking. The phases are
described as follows:

Setup: A large prime p made public. A secret s ∈ Zp owned by party P0. Each party Pi, for i =
0, 1, · · · , n, has his/her own private key pair (ai, bi) such that ai, bi ∈ Zp, gcd(ai, p−1) = 1,
and aibi = 1 (mod p− 1).

Locking: In this phase, the secret is locked by all parties in a cascaded manner, in the following
way:

1. The secret owner, P0 (Alice), locks the secret s by doing c0 = sa0 (mod p), and then
sends c0 to P1.

2. For i = 1, 2, · · · , n− 1, the party Pi locks the secret by doing ci = cai
i−1 (mod p), and

then sends the secret ci to Pi+1.

3. Pn locks the secret by doing cn = can
n−1 (mod p), and then sends cn to P0.

4. The secret owner P0 now removes her lock from the secret. The result is the shared
secret s′ = cb0

n (mod p). She sends s′ to Pn (Bob).

Unlocking: In this phase, the secret is first unlocked by all trustees (one after another in an
arbitrary order), and then in last step by Pn, in the following way:

1. Pn sets di = s′ and sends di to a trustee Pi, i ∈ {1, 2, · · · , n− 1}.
2. Each trustee Pi, in {P1, P2, · · · , Pn−1} (in an arbitrary sequential order), removes his

lock from the shared secret by doing dbi
i (mod p), and then sends the result to the

next trustee. The last trustee in {P1, P2, · · · , Pn−1} removes his lock from the shared
secret and sends the result to Pn.

3. At this point, Pn unlocks the secret by doing s = dbn
n (mod p). Since at this point no

one has locked the secret s. Bob (Pn) finds out the secret.

The execution of the above protocol results in the transfer of a secret from a secret owner
to a second party under unanimous consent of a group of trustees, in a distributed way.

3.2 Correctness

The correctness of the scheme can be easily established by using Fact 1, as follows: At the end
of a locking phase, the shared secret s′ is

s′ = sa0a1a2···anb0 (mod p) = sa1a2···an (mod p),

and at the end of the unlocking phase we have:

s′(b1b2···bn) (mod p) = s(a1a2···an)(b1b2···bn) (mod p) = s.

As can be seen, the commutativity of modular exponentiation makes the order of unlocking
operations unimportant. The secret s at the end is obtained by Pn.

3.3 Security

The security of the scheme rests on the computational difficulty of discrete logarithm problem
(DLP). An adversary may pursue one of the following goals in breaking the scheme:

3



• Total break: He finds out the secret, thereby bypassing the unanimous consent requirement
altogether.

• Partial break: He finds out the private keys (ai or equivalently bi) of one or more of the
parties. This enables him to play the part of some trustees, stealing their right to consent.

The following arguments can establish the security of the scheme:

a) In the first locking hop, from P0 to P1, the secret owner has locked the secret s (c0 = sa0

mod p) before sending it to P1. Note that the adversary has two unknowns to search
for: a0 and s. The private keys are chosen from a huge space (ai, bi ∈ Zp), therefore an
exhaustive search is infeasible. The adversary has no way of guessing s without knowing
a0.

b) In the subsequent hops, the adversary can eavesdrop and read ci−1 in transit from Pi−1 to
Pi, and he can read ci in transit from Pi to Pi+1. To find out ai, the adversary has to solve
a DLP (ci = cai

i−1 mod p), which is infeasible. If he succeeds, he could then compute bi,
which is one of the keys necessary for unlocking the shared secret s′. He has to solve DLP
for all hops in order to obtain all bi’s. On the other hand, if the adversary determines any
of the bi’s, he can take the role of the corresponding parties and conspire for unauthorized
unlocking of the secret. Since solving DLP is computationally hard, the above possibilities
are vanishingly improbable.

c) In the last locking hop, s′ is sent to Pn. The adversary now knows cn and s′. But again
he has to solve a DLP (s′ = cb0

n mod p) in order to find out b0.

e) The same type of arguments are valid in the unlocking phase: The shared secret is always
locked by at least one party when in transit.

f) There is a nonzero possibility that the private keys are by chance selected such that

a0a1 = 1 (mod p− 1), or

a0a1a2 = 1 (mod p− 1), or

· · · = · · ·

a0a1 · · · an = 1 (mod p− 1)

This will result in having ci = s for some i. In that case, the secret s is exposed in transit
from Pi to Pi+1. However, given the fact that the keys must be chosen from a huge space,
the probability of any of the above events is vanishingly small.

Therefore, the security of the scheme was shown to rely on DLP, as claimed in the introduc-
tion.

4 Discussion

The proposed scheme has several merits.

a) It requires no keys—private or public—to be exchanged prior to the protocol. This is the
main advantage of this scheme because otherwise the same goal (i.e., transfer of a secret
under group consent) can be achieved using the well-known secret sharing schemes such
as Shamir’s, in the following way:

4



Alice uses the secret to produce as many shares as there are trustees. Then she
encrypts all shares with the same private key K and sends the encrypted shares
to her trustees. She also sends K to Bob. When Bob needs to unlock the secret,
and when all the trustees agree, the trustees will send the encrypted shares to
Bob. He then decrypts all the shares and uses the associated pooling algorithm
to calculate the secret.

In the above protocol, the channel from Alice to Bob needs to be either private-key en-
crypted, or public-key encrypted. The scheme proposed in this paper requires only authen-
ticated channels—to make sure the adversary cannot impersonate a party to take part in
the protocol. (An adversary’s attempt to modify messages in transit is not a concern here
because that can easily be detected at the end if the secret is given a special structure.)

b) The group of trustees can be dynamic, i.e., trusted parties may join or leave the group
without a need to restart the scheme. The commutative property of modular exponenti-
ation allows one to lock or unlock the secret independent of others. The shared secret s′

needs to be sent to the party who is joining (leaving) so that he can lock (unlock) it in
exactly the same way as the other parties.

c) The security of the scheme relies upon the DLP which is believed to be more difficult than
factoring. As a result, the scheme is expected to be more secure than a scheme using, for
example, the Shamir threshold scheme together with RSA (for the private link between
Alice and Bob).

d) Choosing who will receive the secret (i.e. choosing who will play Bob) can be delayed until
after the locking phase. In that case, the recipient can be chosen from amongst the people
we call trustees. The scheme remains essentially unchanged.

5 Conclusion

It was shown how to use the commutative property of the modular exponentiation operation
to transfer a secret securely from one party to another under unanimous consent of a group
of trustees. The main advantage of the proposed scheme is the lack of requirement for a pre-
exchanged key. The scheme is expected to offer good security because it relies on the discrete
logarithm problem.

References

[1] Agrawal, R., Evfimievski, A., and Srikant, R., “Information sharing across private
databases,” International Conference on Management of Data (ACM SIGMOD), ACM
Press, 2003.

[2] Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., and Zhu, M. Y. “Tools for privacy pre-
serving distributed data mining,” SIGKDD Explorations 4, 2, January 2003.

[3] Menezes, A., Oorschot, P., Vanstone, S., Handbook of Applied Cryptography, CRC Press,
1997.

[4] Shamir, A., “How to Share a Secret,” Communications of The ACM, Vol. 22, No. 11, Novem-
ber 1979.

5



[5] Shamir, A., “On the Power of Commutativity in Cryptography,” ICALP80, July 1980.

[6] Weis, Stephen A., New Foundations for Efficient Authentication, Commutative Cryptogra-
phy, and Private Disjointness Testing, MIT PhD Dissertation, May 2006.

6


