
IEEE P1363.1/D10, July 2008

Copyright © <year> IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1363.1™/D10 1

Draft Standard for Public-Key 2

Cryptographic Techniques Based on 3

Hard Problems over Lattices 4

Prepared by the 1363 Working Group of the 5

C/MSC Committee 6

Copyright © <year> by the Institute of Electrical and Electronics Engineers, Inc. 7
Three Park Avenue 8
New York, New York 10016-5997, USA 9

All rights reserved. 10

This document is an unapproved draft of a proposed IEEE Standard. As such, this document is subject to 11
change. USE AT YOUR OWN RISK! Because this is an unapproved draft, this document must not be 12
utilized for any conformance/compliance purposes. Permission is hereby granted for IEEE Standards 13
Committee participants to reproduce this document for purposes of international standardization 14
consideration. Prior to adoption of this document, in whole or in part, by another standards development 15
organization, permission must first be obtained from the IEEE Standards Activities Department 16
(stds.ipr@ieee.org). Other entities seeking permission to reproduce this document, in whole or in part, must 17
also obtain permission from the IEEE Standards Activities Department. 18

IEEE Standards Activities Department 19
445 Hoes Lane 20
Piscataway, NJ 08854, USA 21

22

IEEE P1363.1/D10, July 2008

Copyright © <year> IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Abstract: Specifications of common public-key cryptographic techniques based on hard problems over 1
lattices supplemental to those considered in IEEE 1363 and IEEE P1363a, including mathematical 2
primitives for secret value (key) derivation, public-key encryption, identification and digital signatures, and 3
cryptographic schemes based on those primitives. Specifications of related cryptographic parameters, 4
public keys and private keys. Class of computer and communications systems is not restricted. 5

Keywords: Public key cryptography, encryption 6
 7

•••• 8

9

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 200X by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published XX Month XXXX. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

PDF: ISBN 978-0-XXXX-XXXX-X STDXXXX
Print: ISBN 978-0-XXXX-XXXX-X STDPDXXXX

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher.

IEEE P1363.1/D10, July 2008

Copyright © <year> IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

This page is left blank intentionally. 1

IEEE P1363.1/D10, July 2008

iv
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Introduction 1

This introduction is not part of IEEE P1363.1/D10, Draft Standard for Public-Key Cryptographic Techniques Based on 2
Hard Problems over Lattices. 3

The P1363 project started as the "Standard for Rivest-Shamir-Adleman, Diffie-Hellman, and Related 4
Public-Key Cryptography" with its first meeting in January 1994, following a strategic initiative by the 5
Microprocessor Standards Committee to develop standards for cryptography. Over the next eight years, the 6
working group produced a broad standard reflecting the state of the art in public key cryptography, 7
including techniques from three major families of hard problems. In addition, the working group drafted an 8
addendum that provides additional techniques from those three major families. A more thorough history of 9
the P1363 working group and its contributions beyond the IEEE Std 1363-2000 are given in the 10
Introduction to IEEE Std 1363-2000. 11

At the same time, new cryptographic research was producing additional families of cryptographic 12
techniques. One of these families was the family of techniques based on hard problems over lattices. These 13
techniques enjoy operating characteristics that make them attractive in certain implementation 14
environments, and thus they have received considerable scrutiny and deployment. 15

As a result, the working group proposed a new project to standardize techniques from this family. This 16
project was approved by the Microprocessor Standards Committee, and this current draft is the result of this 17
project. 18

The following people have contributed to this draft standard: 19

Mark Etzel Daniel Lieman, Editor (2001) Nick Howgrave-Graham
Joseph H. Silverman Ari Singer William Whyte, Editor (2001-)
 20

Notice to users 21

Laws and regulations 22

Users of these documents should consult all applicable laws and regulations. Compliance with the 23
provisions of this standard does not imply compliance to any applicable regulatory requirements. 24
Implementers of the standard are responsible for observing or referring to the applicable regulatory 25
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in 26
compliance with applicable laws, and these documents may not be construed as doing so. 27

Copyrights 28

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and 29
private uses. These include both use, by reference, in laws and regulations, and use in private self-30
regulation, standardization, and the promotion of engineering practices and methods. By making this 31
document available for use and adoption by public authorities and private users, the IEEE does not waive 32
any rights in copyright to this document. 33

IEEE P1363.1/D10, July 2008

v
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Updating of IEEE documents 1

Users of IEEE standards should be aware that these documents may be superseded at any time by the 2
issuance of new editions or may be amended from time to time through the issuance of amendments, 3
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the 4
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether 5
a given document is the current edition and whether it has been amended through the issuance of 6
amendments, corrigenda, or errata, visit the IEEE Standards Association web site at 7
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously. 8

For more information about the IEEE Standards Association or the IEEE standards development process, 9
visit the IEEE-SA web site at http://standards.ieee.org. 10

Errata 11

Errata, if any, for this and all other standards can be accessed at the following URL: 12
http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL 13
for errata periodically. 14

 15

Interpretations 16

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/ 17
index.html. 18

Patents 19

Attention is called to the possibility that implementation of this standard may require use of subject matter 20
covered by patent rights. By publication of this standard, no position is taken with respect to the existence 21
or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying 22
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity 23
or scope of Patents Claims or determining whether any licensing terms or conditions provided in 24
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable 25
or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any 26
patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further 27
information may be obtained from the IEEE Standards Association. 28

Participants 29

At the time this draft standard was completed, the 1363 Working Group had the following membership: 30

William Whyte, Chair 31

Don Johnson, Vice Chair 32

 33
Matt Ball 34 Xavier Boyen 35 Mike Brenner 36

IEEE P1363.1/D10, July 2008

6
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Daniel Brown 1
Mark Chimley 2
Andy Dancer 3
David Jablon 4
Don Johnson 5
Satoru Kanno 6

David Kravitz 7
Michael Markowitz 8
Luther Martin 9
Jim Randall 10
Roger Schlafly 11
Ari Singer 12

Terence Spies 13
Yongge Wang 14
William Whyte 15
 16

 17

The following members of the [individual/entity] balloting committee voted on this standard. Balloters 18
may have voted for approval, disapproval, or abstention. 19
 20
 (to be supplied by IEEE) 21

22

IEEE P1363.1/D10, July 2008

vii
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

CONTENTS 1

1. Overview .. 1 2
1.1 Scope ... 1 3
1.2 Purpose .. 1 4

2. Normative references .. 2 5

3. Definitions .. 2 6

4. Types of cryptographic techniques ..10 7
4.1 General model...10 8
4.2 Schemes ..10 9
4.3 Additional methods ...11 10
4.4 Algorithm specification conventions ..11 11

5. Mathematical conventions ...12 12
5.1 Mathematical notation and abbreviated terms ..12 13

6. Polynomial representation and operations ...15 14
6.1 Introduction ..15 15
6.2 Polynomial representation ..15 16
6.3 Polynomial operations ..15 17

6.3.1 Polynomial multiplication .. 15 18
6.3.2 Reduction of a Polynomial mod q ... 16 19
6.3.3 Inversion in (Z/qZ)[X]/(XN – 1).. 16 20

7. Data Types and Conversions ...18 21
7.1 Bit Strings and Octet Strings ..18 22
7.2 Converting Between Integers and Bit Strings (I2BSP and BS2IP) ...19 23

7.2.1 Integer to Bit String Primitive (I2BSP) ... 19 24
7.2.2 Bit String to Integer Primitive (BS2IP) ... 19 25

7.3 Converting Between Integers and Octet Strings (I2OSP and OS2IP) ..20 26
7.3.1 Integer to Octet String Primitive (I2OSP) ... 20 27
7.3.2 Octet String to Integer Primitive (OS2IP) ... 20 28

7.4 Converting Between Bit Strings and Right-Padded Octet Strings (BS2ROSP and ROS2BSP)21 29
7.4.1 Bit String to Right-Padded Octet String Primitive (BS2ROSP) 21 30
7.4.2 Right-Padded Octet String to Bit String Primitive (ROS2BSP) 21 31

7.5 Converting Between Ring Elements and Octet Strings (RE2OSP and OS2REP)22 32
7.5.1 Ring Element to Octet String Primitive (RE2OSP) ... 22 33
7.5.2 Octet String to Ring Element Primitive (OS2REP) ... 22 34

7.6 Converting Between Ring Elements and Bit Strings (RE2BSP and BS2REP)23 35
7.6.1 Ring Element to Bit String Primitive (RE2BSP) ... 23 36
7.6.2 Bit String to Ring Element Primitive (BS2REP) ... 23 37

8. Supporting algorithms ...24 38
8.1 Overview ..24 39
8.2 Hash Functions ...24 40
8.3 Encoding Methods ..24 41

8.3.1 Blinding Polynomial Generation Methods (BPGM) 25 42
8.4 Supporting Algorithms ...26 43

IEEE P1363.1/D10, July 2008

viii
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

8.4.1 Mask Generation Functions ... 26 1
8.4.2 Index generation function .. 27 2

9. Short Vector Encryption Scheme (SVES) ...30 3
9.1 Encryption Scheme (SVES) Overview ...30 4
9.2 Encryption Scheme (SVES) Operations ...30 5

9.2.1 Key Generation .. 30 6
9.2.2 Encryption Operation ... 31 7
9.2.3 Decryption Operation... 34 8
9.2.4 Key Pair Validation Methods... 35 9
9.2.5 Public-key validation ... 36 10

Annex A (Informative) Security Considerations ...39 11
A.1 Lattice Security: Background ..39 12

A.1.1 Lattice Definitions... 39 13
A.1.2 Hard Lattice Problems .. 40 14
A.1.3 Theoretical Complexity of Hard Lattice Problems ... 40 15
A.1.4 Lattice Reduction Algorithms ... 40 16
A.1.5 The Gaussian Heuristic and the Closest Vector Problem 41 17
A.1.6 Modular Lattices: Definition ... 41 18
A.1.7 Modular Lattices and Quotient Polynomial Rings .. 42 19
A.1.8 Balancing CVP in Modular Lattices ... 42 20
A.1.9 Fundamental CVP Ratios in Modular Lattices ... 43 21
A.1.10 Creating a Balanced CVP for Modular Lattices Containing a Short Vector 43 22
A.1.11 Modular Lattices Containing (Short) Binary Vectors 44 23
A.1.12 Convolution Modular Lattices .. 44 24
A.1.13 Heuristic Solution Time for CVP in Modular Lattices 45 25
A.1.14 Zero-forcing .. 45 26

A.2 Experimental Solution Times for NTRU lattices – full key recovery ..46 27
A.2.1 Experimental Solution Times for NTRU lattices using BKZ reduction 46 28
A.2.2 Alternative Target Vectors .. 47 29

A.3 Combined Lattice and Combinatorial Attacks on LBP-PKE Keys and Messages48 30
A.3.1 Overview ... 48 31
A.3.2 Lattice Strength ... 48 32
A.3.3 Reduced lattices and the “cliff” .. 49 33
A.3.4 Combinatorial Strength ... 52 34
A.3.5 Summary ... 54 35

A.4 Other Security Considerations for LBP-PKE Encryption ..54 36
A.4.1 Entropy Requirements for Key and Salt Generation 54 37
A.4.2 Reduction mod q ... 54 38
A.4.3 Selection of N .. 54 39
A.4.4 Relationship between q and N ... 55 40
A.4.5 Form of q ... 55 41
A.4.6 Leakage of m’(1) ... 55 42
A.4.7 Relationship between p, q and N ... 55 43
A.4.8 Adaptive Chosen Ciphertext Attacks .. 56 44
A.4.9 Invertibility of g in Rq ... 56 45
A.4.10 Decryption Failures ... 56 46

IEEE P1363.1/D10, July 2008

ix
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

A.4.11 OID.. 57 1
A.4.12 Use of Hash Functions by Supporting Functions.. 57 2
A.4.13 Generating Random Numbers in [0, N-1] ... 57 3
A.4.14 Attacks based on variation in decryption times .. 58 4
A.4.15 Choosing to attack r or m .. 58 5
A.4.16 Quantum Computers ... 59 6
A.4.17 Other Considerations... 59 7

A.5 A Parameter Set Generation Algorithm ...59 8
A.6 Possible Parameter Sets ...60 9

A.6.1 Size-Optimized.. 60 10
A.6.2 Cost-Optimized ... 62 11
A.6.3 Speed-Optimized ... 65 12

A.7 Security levels of Parameter Sets ...68 13
A.7.1 Assumed security levels versus current knowledge .. 68 14
A.7.2 Potential research .. 69 15

Annex B (informative) Bibliography...70 16
 17
 18

IEEE P1363.1/D10, July 2008

1

Draft Standard for Public-Key 1

Cryptographic Techniques Based on 2

Hard Problems over Lattices 3

1. Overview 4

1.1 Scope 5

Specifications of common public-key cryptographic techniques based on hard problems over lattices 6
supplemental to those considered in IEEE 1363 and IEEE P1363a, including mathematical primitives for 7
secret value (key) derivation, public-key encryption, identification and digital signatures, and cryptographic 8
schemes based on those primitives. Specifications of related cryptographic parameters, public keys and 9
private keys. Class of computer and communications systems is not restricted. 10

1.2 Purpose 11

The transition from paper to electronic media brings with it the need for electronic privacy and authenticity. 12
Public-key cryptography offers fundamental technology addressing this need. Many alternative public-key 13
techniques have been proposed, each with its own benefits. The IEEE 1363 Standard and P1363a project 14
have produced a comprehensive reference defining a range of common public-key techniques covering key 15
agreement, public-key encryption and digital signatures from several families, namely the discrete 16
logarithm, integer factorization, and elliptic curve families. 17

This project will specify cryptographic techniques based on hard problems over lattices. These techniques 18
may offer tradeoffs in operating characteristics when compared with the methods already specified in IEEE 19
1363-2000 and draft P1363a. It is also intended that this project provide a second-generation framework 20
for the description of cryptographic techniques, as compared to the initial framework provided in 1363-21
2000 and draft P1363a. 22

It is not the purpose of this project to mandate any particular set of public-key techniques or security 23
requirements (including key sizes) for this or any family. Rather, the purpose is to provide: (1) a reference 24
for specification of a variety of techniques from which applications may select, (2) the relevant number-25
theoretic background, and (3) extensive discussion of security and implementation considerations so that a 26
solution provider can choose appropriate security requirements for itself. 27

IEEE P1363.1/D10, July 2008

2

2. Normative references 1

The following referenced documents are indispensable for the application of this document. For dated 2
references, only the edition cited applies. For undated references, the latest edition of the referenced 3
document (including any amendments or corrigenda) applies. 4

FIPS 180-2, Secure Hash Standard, Federal Information Processing Standards Publication 180-2, U.S. 5
Department of Commerce/National Institute of Standards and Technology, National Technical Information 6
Service, Springfield, Virginia, August 26, 2002 (supersedes FIPS PUB 180-1). Available at 7
http://csrc.nist.gov/CryptoToolkit/Hash.html. 8
ISO/IEC 10118-3:1998 Information Technology – Security techniques – Hash-functions – Part 3: 9
Dedicated hash-functions. 10

NOTE 1— The above references are required for implementing some of the techniques in this document, but not all the 11
techniques. 12

NOTE 2— The mention of any standard in this document is for reference only, and does not imply conformance with 13
that standard. Readers should refer to the relevant standard for full information on conformance with that standard. 14

NOTE 3— Bibliography is provided in Annex B. 15

3. Definitions 16

For the purposes of this standard, the following terms and definitions apply. The Authoritative Dictionary 17
of IEEE Standards, Seventh Edition, should be referenced for terms not defined in this clause. 18

3.1 Algorithm: A clearly specified mathematical process for computation; a set of rules which, if 19
followed, will give a prescribed result. 20

3.2 Asymmetric Cryptographic Algorithm: A cryptographic algorithm that uses two related keys, a 21
public key and a private key; the two keys have the property that, given the public key, it is 22
computationally infeasible to derive the private key. 23

3.3 Authentication (of a message): The act of determining that a message has not been changed since 24
leaving its point of origin. The identity of the originator is implicitly verified. 25

3.4 Authentication of Ownership: The assurance that a given, identified party intends to be 26
associated with a given public key. May also include assurance that the party possesses the 27
corresponding private key (see IEEE Std 1363-2000, Annex D.3.2, for more information). 28

3.5 Big Modulus: The big modulus q is used to define the larger polynomial ring. The modulus q can 29
generally be taken to be any value that is relatively prime in the ring to the small modulus p. 30

3.6 Birthday Paradox: For a category size of 365 (the days in a year), after only 23 people are 31
gathered, the probability is greater than 0.5 that at least two people have a common birthday 32
(month and day). The reason is that among 23 people, there are 23*(23-1)/2 = 253 pairs of people, 33
each with a 1/365 chance of having matching birthdays. The chance of no matching birthday is 34
therefore (364/365)253 ~ 0.4995. In general, any case where the criterion for success is to find a 35
collision (two matching values) rather than a hit (one value which matches a pre-selected one) will 36
display this pairing property, so that the size of the space that must be searched for success is 37
about the square root of the size of the space of all possible values. 38

3.7 Bit Length: See: length. 39

IEEE P1363.1/D10, July 2008

3

3.8 Bit String: An ordered sequence of 0's and 1's. The left-most bit is the most-significant bit of the 1
string. The right-most bit is the least-significant bit of the string. A bit and a bit string of length 1 2
are equivalent for all purposes of this standard. 3

3.9 Blinding Polynomial: In this standard, the ciphertext e is generated according to the equation e = 4
r*h + m’, where h is the public key, m’ is the message representative, and r is a pseudorandomly 5
generated “blinding polynomial” 6

3.10 Blinding Polynomial Generation Methods: In the encryption schemes in this document, a 7
blinding polynomial generation method (LBP-BPGM) is used to generate a blinding polynomial r 8
from the padded message pm in order to provide plaintext awareness. 9

3.11 Blinding Polynomial Space: The space that a LBP-BPGM selects from. Usually defined 10
implicitly by the definition of the LBP-BPGM. 11

3.12 Certificate: The public key and identity of an entity together with some other information 12
rendered unforgeable by signing the certificate with the private key of the certifying authority, 13
which issued that certificate. 14

3.13 Ciphertext: The result of applying encryption to a message. Contrast: plaintext. See also: 15
encryption. 16

3.14 Composite: An integer which has at least two prime factors. 17

3.15 Confidentiality: The property that information is not made available or disclosed to unauthorized 18
individuals, entities, or processes. 19

3.16 Conformance Region: a set of inputs to a primitive or a scheme operation for which an 20
implementation operates in accordance with the specification of the primitive or scheme operation 21

3.17 Cryptographic Family: A set of cryptographic techniques in similar mathematical settings. For 22
example, this standard presents a single family of techniques based on the underlying hard 23
problems of finding a short vector and a close vector in a lattice. 24

3.18 Cryptographic Hash Function: See hash function. 25

3.19 Cryptographic Key (Key): A parameter that determines the operation of a cryptographic function 26
such as: the transformation from plain text to cipher text and vice versa; synchronized generation 27
of keying material; digital signature computation or validation. 28

3.20 Cryptography: The discipline which embodies principles, means and methods for the 29
transformation of data in order to hide its information content, prevent its undetected modification, 30
prevent its unauthorized use or a combination thereof. 31

3.21 Data Integrity: A property whereby data has not been altered or destroyed. 32

3.22 Decrypt: To produce plaintext (readable) from ciphertext (unreadable). Contrast: encrypt. See 33
also: ciphertext; encryption; plaintext. 34

3.23 Dimension: The dimension N identifies the dimension of the convolution polynomial ring used. 35
The dimension of the associated lattice problem is 2N. Elements of the ring are represented as 36
polynomials of degree N – 1. 37

IEEE P1363.1/D10, July 2008

4

3.24 Domain Parameters: a set of mathematical objects, such as fields or groups, and other 1
information, defining the context in which public/private key pairs exist. More than one key pair 2
may share the same domain parameters. Not all cryptographic families have domain parameters. 3
See also: public/private key pair; valid domain parameters. 4

3.25 Domain Parameter Validation: the process of ensuring or verifying that a set of domain 5
parameters is valid. See also: domain parameters; key validation; valid domain parameters. 6

3.26 Encrypt: to produce ciphertext (unreadable) from plaintext (readable). Contrast: decrypt. See 7
also: ciphertext; encryption; plaintext. 8

3.27 Encryption Primitives: The encryption primitive is the fundamental building block for the 9
encryption operation. In public key cryptography, an encryption primitive scrambles data using a 10
public key such that only the holder of the private key can directly perform the unscrambling 11
operation; in other words, it provides security against ciphertext-only attacks by passive attackers. 12

3.28 Encryption Scheme: A means for providing encryption, based on an encryption primitive, that is 13
secure against both active and passive attackers. A secure encryption scheme will typically 14
provide semantic security (an attacker who knows that one of two messages has been encrypted 15
will find it computationally infeasible to determine which) against an attacker who can make 16
polynomially many queries to a decryption oracle. 17

3.29 Entity: A participant in any of the schemes in this standard. The words “entity” and “party” are 18
used interchangeably. This definition may admit many interpretations: it may or may not be 19
limited to the necessary computational elements; it may or may not include or act on behalf of a 20
legal entity. The particular interpretation chosen will not affect operation of the key agreement 21
schemes. 22

3.30 Exclusive OR: A mathematical bit-wise operation, symbol ⊕ , defined as: 23
 0 ⊕ 0 = 0, 24
 0 ⊕ 1 = 1, 25
 1 ⊕ 0 = 1, and 26
 1 ⊕ 1 = 0. 27
Equivalent to binary addition without carry. May also be applied to bit strings: the XOR of two bit 28
strings of equal length is the concatenation of the XORs of the corresponding elements of the bit 29
strings. 30

3.31 Family: See: cryptographic family. 31

3.32 Field: A setting in which the usual mathematical operations (addition, subtraction, multiplication, 32
and division by nonzero quantities) are possible and obey the usual rules (such as the 33
commutative, associative, and distributive laws). 34

3.33 Finite Field: a field in which there are only a finite number of quantities. 35

3.34 First Bit: the leading bit of a bit string or an octet. For example, the first bit of 0110111 is 0. 36
Contrast: last bit. Syn: most significant bit; leftmost bit. See also: bit string; octet. 37

3.35 First Octet: the leading octet of an octet string. For example, the first octet of 1c 76 3b e4 is 1c. 38
Contrast: last octet. Syn: most significant octet; leftmost octet. See also: octet; octet string. 39

IEEE P1363.1/D10, July 2008

5

3.36 Hash Function: A function which maps a bit string of arbitrary length to a fixed-length bit string 1
and satisfies the following properties: 2
 It is computationally infeasible to find any input which maps to any pre-specified output; 3
 It is computationally infeasible to find any two distinct inputs which map to the same 4
output. 5

3.37 Hash Value: The result of applying a hash function to a message. 6

3.38 Index Generation Function: An IGF is a function that is seeded once, can be called multiple 7
times, and produces statistically independent integers on each call. 8

3.39 Key: See cryptographic key. 9

3.40 Key Confirmation: The assurance of the legitimate participants in a key establishment protocol 10
that the intended recipients of the shared key actually posses the shared key. 11

3.41 Key Derivation: The process of deriving one or more session keys from a shared secret and 12
(possibly) other, public information. Such a function can be constructed from a one-way hash 13
function such as SHA-1. 14

3.42 Key Encrypting Key (KK): A key used exclusively to encrypt and decrypt keys. 15

3.43 Key Establishment: A protocol that reveals a secret key to its legitimate participants for 16
cryptographic use. 17

3.44 Key Generation Primitive: A method used to generate a key pair. 18

3.45 Key Management: The generation, storage, secure distribution and application of keying material 19
in accordance with a security policy. 20

3.46 Key Pair: When used in public key cryptography, a private key and its corresponding public key. 21
The public key is commonly available to a wide audience and can be used to encrypt messages or 22
verify digital signatures; the private key is held by one entity and not revealed to anyone--it is used 23
to decrypt messages encrypted with the public key and/or produce signatures that can verified with 24
the public key. A public/private key pair can also be used in key agreement. In some cases, a 25
public/private key pair can only exist in the context of domain parameters. See also: digital 26
signature; domain parameters; encryption; key agreement; public-key cryptography; valid key; 27
valid key pair. 28

3.47 Key Transport: A key establishment protocol under which the secret key is determined by the 29
initiating party. 30

3.48 Key Validation: the process of ensuring or verifying that a key conforms to the arithmetic 31
requirements for such a key in order to thwart certain types of attacks. See also: domain parameter 32
validation; public/private key pair; valid key; valid key pair. 33

3.49 Keying Material: The data (e.g., keys, certificates and initialization vectors) necessary to 34
establish and maintain cryptographic keying relationships. 35

3.50 Known-Key Security: Known-key security for Party U implies that the key agreed upon will not 36
be compromised by the compromise of the other session keys. If each ephemeral key is used only 37
to compute a single session key, then known-key security may be achieved. 38

3.51 Last Bit: The trailing bit of a bit string or an octet. For example, the last bit of 0110111 is 1. 39
Contrast: first bit. Syn: least significant bit; rightmost bit. See also: first bit; octet. 40

IEEE P1363.1/D10, July 2008

6

3.52 Last Octet: The trailing octet of an octet string. For example, the last octet of 1c 76 3b e4 is e4. 1
Contrast: first octet. Syn: least significant octet; rightmost octet. See also: octet; octet string. 2

3.53 Lattice Based Polynomial Public Key Encryption: The encryption mechanisms described in this 3
standard. 4

3.54 Least Significant: See: last bit; last octet. 5

3.55 Leftmost Bit: See: first bit. 6

3.56 Leftmost Octet: See: first octet. 7

3.57 Length: (1) Length of a bit string is the number of bits in the string. (2) Length of an octet string 8
is the number of octets in the string. (3) Length in bits of a nonnegative integer n is log2 (n + 1) 9
(i.e., the number of bits in the integer’s binary representation). (4) Length in octets of a 10
nonnegative integer n is log256 (n + 1) (i.e., the number of digits in the integer’s representation 11
base 256). For example, the length in bits of the integer 500 is 9, and its length in octets is 2. 12

3.58 Mask Generation Function: An MGF is a construction built around a hash function that 13
produces an arbitrary-length output string, possibly longer than the output of the underlying hash 14
function. 15

3.59 Message Authentication Code (MAC): A cryptographic value which is the results of passing a 16
financial message through the message authentication algorithm using a specific key. 17

3.60 Message Length Encoding Length: In SVES, the length of the message that is to be encrypted is 18
encoded in the padded message. The length of the field that represents the length of the message, 19
called the message length encoding length, is represented by the parameter lLen. For all 20
parameter sets in this document lLen is set to 1. 21

3.61 Message Representative: A mathematical value for use in a cryptographic primitive, computed 22
from a message that is input to an encryption or a digital signature scheme and uniquely linked to 23
that message. See also: encryption scheme; digital signature scheme. 24

3.62 Modular Lattice: A lattice in which (among other things) all values are integers reduced mod q. 25

3.63 Most Significant: See: first bit; first octet. 26

3.64 Norm: A measure of the “size” of a vector or polynomial. 27

3.65 Octet: A bit string of length 8. An octet has an integer value between 0 and 255 when interpreted 28
as a representation of an integer in base 2. An octet can also be represented by a hexadecimal 29
string of length 2, where the hexadecimal string is the representation of its integer value base 16. 30
For example, the integer value of the octet 10011101 is 157; its hexadecimal representation is 9d. 31
Also commonly known as a byte. See also: bit string. 32

3.66 Octet String: An ordered sequence of octets. See also: octet. 33

3.67 Owner: The entity whose identity is associated with a key pair. 34

3.68 Parameters: See: domain parameters. 35

3.69 Plaintext: A message before encryption has been applied to it; the opposite of ciphertext. 36
Contrast: ciphertext. See also: encryption. 37

IEEE P1363.1/D10, July 2008

7

3.70 Polynomial Index Generation Constant: A value used when generating a random number in the 1
range [0, N-1], to eliminate bias without impacting efficiency. 2

3.71 Prime Number: An integer that is greater than 1 and divisible only by 1 and itself. 3

3.72 Primitives: Cryptographic primitives used in the SVES encryption scheme include key generation 4
primitives, encryption primitives and decryption primitives. 5

3.73 Private Key: The private element of the public/private key pair. See also: public/private key pair; 6
valid key. 7

3.74 Private Key Space: The space from which a key generation primitive selects the private key. 8

3.75 Public Key: The public element of the public/private key pair. See also: public/private key pair; 9
valid key. 10

3.76 Public-key Cryptography: methods that allow parties to communicate securely without having 11
prior shared secrets through the use of public/private key pairs. Contrast: symmetric cryptography. 12
See also: public/private key pair. 13

3.77 Public Key Space: The space from which a key generation primitive selects the public key. 14

3.78 Public Key Validation: See key validation. 15

3.79 Public/Private Key Pair: See key pair. 16

3.80 Salt Size: In this standard, the salt size db is the number of random bits that shall be used to pad 17
the message during encryption, to provide for semantic security. 18

3.81 Rightmost Bit: See: last bit. 19

3.82 Rightmost Octet: See: last octet. 20

3.83 Ring: a setting in which addition, subtraction, and multiplication are possible, and division by a 21
given nonzero quantity may or may not be possible. A field is a special case of a ring. See also: 22
field. 23

3.84 Ring Element: in general, an element in a ring. In the context of this standard, a binary N-ring 24
element refers to an element in the ring (Z/2Z)[X]/(XN – 1), which is to say a binary polynomial of 25
degree N-1 or an array of N binary elements. A (q, N)-ring element refers to an element in the ring 26
(Z/qZ)[X]/(XN – 1), which is to say a polynomial of degree N-1 with coefficients reduced mod q or 27
an array of N elements each taken mod q. 28

3.85 Scheme Options: Scheme options consist of parameters and algorithms that do not affect the key 29
space (i.e. that are not domain parameters), but that must be agreed upon in order to implement the 30
encryption scheme. 31

3.86 Secret Key: a key used in symmetric cryptography; needs to be known to all legitimate 32
participating parties involved, but cannot be known to an adversary. Contrast: public/private key 33
pair. See also: key agreement; shared secret key; symmetric cryptography. 34

3.87 Secret Value: a value that can be used to derive a secret key, but typically cannot by itself be used 35
as a secret key. See also: secret key. 36

IEEE P1363.1/D10, July 2008

8

3.88 Shared Secret Key: a secret key shared by two parties, usually derived as a result of a key 1
agreement scheme. See also: key agreement; secret key. 2

3.89 Shared Secret Value: a secret value shared by two parties, usually during a key agreement 3
scheme. See also: key agreement; secret value. 4

3.90 Signature: See: digital signature. 5

3.91 Small Modulus: In LBP-PKE, the small modulus p is used for key generation and for modular 6
reduction during decryption. 7

3.92 Statistically Unique: For the generation of n-bit quantities, the probability of two values 8
repeating is less than or equal to the probability of two n-bit random quantities repeating. More 9
formally, an element chosen from a finite set S of n elements is said to be "statistically unique" if 10
the process that governs the selection of this element provides a guarantee that, for any integer L ≤ 11
n, the probability that all of the first L selected elements are different is no smaller than the 12
probability of this happening when the elements are drawn uniformly randomly from S. The latter 13
probability is equal L)!nL .to n!(n 14

3.93 SVES: Short Vector Encryption Scheme – the encryption scheme defined in this document. 15

3.94 Symmetric Cryptographic Algorithm: A cryptographic algorithm that uses one shared key, a 16
secret key. The key must be kept secret between the two communicating parties. The same key is 17
used for both encryption and decryption. 18

3.95 Symmetric Cryptography: Methods that allow parties to communicate securely only when they 19
already share some prior secrets, such as the secret key. Contrast: public-key cryptography. See 20
also: secret key. 21

3.96 Symmetric Key: A cryptographic key that is used in symmetric cryptographic algorithms. The 22
same symmetric key that is used for encryption is also used for decryption. 23

3.97 User: A party that uses a public key. 24

3.98 Valid Domain Parameters: a set of domain parameters that satisfies the specific mathematical 25
definition for the set of domain parameters of its family. While a set of mathematical objects may 26
have the general structure of a set of domain parameters, it may not actually satisfy the definition 27
(for example, it may be internally inconsistent) and thus not be valid. See also: domain 28
parameters; public/private key pair; valid key; valid key pair; validation. 29

3.99 Valid Key: a key (public or private) that satisfies the specific mathematical definition for the keys 30
of its family, possibly in the context of its set of domain parameters. While some mathematical 31
objects may have the general structure of keys, they may not actually lie in the appropriate set (for 32
example, they may not lie in the appropriate subgroup of a group or be out of the bounds allowed 33
by the domain parameters) and thus not be valid keys. See also: domain parameters; public/private 34
key pair; valid domain parameters; valid key pair; validation. 35

3.100 Valid Key Pair: a public/private key pair that satisfies the specific mathematical definition for the 36
key pairs of its family, possibly in the context of its set of domain parameters. While a pair of 37
mathematical objects may have the general structure of a key pair, the keys may not actually lie in 38
the appropriate sets (for example, they may not lie in the appropriate subgroup of a group or be out 39
of the bounds allowed by the domain parameters) or may not correspond to each other; such a pair 40
is thus not a valid key pair. See also: domain parameters; public/private key pair; valid domain 41
parameters; valid key; validation. 42

IEEE P1363.1/D10, July 2008

9

3.101 Validation: See: domain parameter validation; key validation. 1

3.102 Verify: In relation to a Digital Signature means to determine accurately: (1) that the Digital 2
Signature was created during the operational period of a valid Certificate by the private key 3
corresponding to the public-key listed in the Certificate; and (2) the message has not been altered 4
since its Digital Signature was created. 5

6

IEEE P1363.1/D10, July 2008

10

4. Types of cryptographic techniques 1

4.1 General model 2

As stated in Clause 1, the purpose of this standard is to provide a reference for specifications of a variety of 3
common public-key cryptographic techniques from which applications may select. Different types of 4
cryptographic techniques can be viewed abstractly according to the following three-level general model. 5

 Primitives – basic mathematical operations. Historically, they were discovered based on number-6
theoretic hard problems. Primitives are not meant to achieve security just by themselves, but they 7
serve as building blocks for schemes. 8

 Schemes – a collection of related operations combining primitives and additional methods (Clause 9
4.4). Schemes can provide complexity-theoretic security which is enhanced when they are 10
appropriately applied in protocols. 11

 Protocols – sequences of operations to be performed by multiple parties to achieve some security 12
goal. Protocols can achieve desired security for applications if implemented correctly. 13

From an implementation viewpoint, primitives can be viewed as low-level implementations (e.g., 14
implemented within cryptographic accelerators, or software modules), schemes can be viewed as medium-15
level implementations (e.g., implemented within cryptographic service libraries), and protocols can be 16
viewed as high-level implementations (e.g., implemented within entire sets of applications). 17

This standard contains only specifications of schemes. 18

4.2 Schemes 19

The following types of schemes are defined in this standard: 20

 Encryption Schemes (ES), in which any party can encrypt a message using a recipient’s public key, 21
and only the recipient can decrypt the message by using its corresponding private key. Encryption 22
schemes may be used for establishing secret keys to be used in symmetric cryptography. 23

Schemes in this standard are presented in a general form based on certain primitives and additional 24
methods. For example, the encryption scheme defined in this standard is based on a key generation 25
primitive, a decryption primitive, and a blinding polynomial generation method. 26

Schemes also include key management operations, such as selecting a private key or obtaining another 27
party’s public key. For proper security, a party needs to be assured of the true owners of the keys and 28
domain parameters and of their validity. Generation of domain parameters and keys needs to performed 29
properly, and in some cases validation also needs to be performed. While outside the scope of this 30
standard, proper key management is essential for security. 31

An Encryption Scheme is specified by providing the following: 32

 Name 33

 Type (e.g. Asymmetric Public-key Encryption Scheme) 34

 Options (Key Type, Primitives, Parameters) 35

 Operations 36

IEEE P1363.1/D10, July 2008

11

 Key Pair Generation 1

 Key Pair Validation 2

 Public Key Validation 3

 Encryption Operation 4

 Input 5

 Output 6

 Decryption Operation 7

 Input 8

 Output 9
 10

An encryption scheme specification may also include the following: 11

 Security Considerations 12

 Implementation Considerations 13

 Related Standards 14
 15

The specifications are functional specifications, not interface specifications. As such, the format of inputs 16
and outputs and the procedure by which an implementation of a scheme is invoked are outside the scope of 17
this standard. See Annex E for more information on input and output formats. 18

4.3 Additional methods 19

This standard specifies the following additional methods: 20

 Blinding Polynomial Generation Methods, which are components of encryption schemes. 21

 Auxiliary Functions, which are building blocks for other additional methods. 22

 Index generation functions 23

 Mask Generation Functions 24

 Hash Functions, which are used as the core of Index generation functions and of Mask 25
Generation Functions. 26

The specified additional methods are required for conformant use of the schemes. The use of an inadequate 27
message encoding method, key derivation function, or auxiliary function may compromise the security of 28
the scheme in which it is used. Therefore, any implementation which chooses not to follow the 29
recommended additional methods for a particular scheme should perform its own thorough security 30
analysis of the resulting scheme. 31

4.4 Algorithm specification conventions 32

When specifying an algorithm or method, this standard uses four parts to specify different aspects of the 33
algorithm. They are as follows: 34

IEEE P1363.1/D10, July 2008

12

Components, such as choice of IGF, are parameters that are specified before the beginning of the operation 1
and that are not specific to the particular algorithm call. Components tend to be kept fixed for multiple 2
users and multiple instances of the algorithm call and need not be explicitly specified if they are 3
implicitly known (e.g. if they are defined within a selected object identifier (OID)). 4

Inputs, such as keys and messages, are values that must be specified for each algorithm call. 5

Outputs, such as ciphertext, are the result of transformations on the inputs. 6

Operations specify the transformations that are performed on the data to arrive at the output. Throughout 7
the standard, the operations are defined as a sequence of steps. A conformant implementation may 8
perform the operations using any sequence of steps that always produces the same output as the 9
sequence in this standard. Caution should be taken to ensure that intermediate values are not revealed, 10
however, as they may compromise the security of the algorithms. 11

5. Mathematical conventions 12

5.1 Mathematical notation and abbreviated terms 13

When referring to mathematical objects and data objects in this standard, the following notation is used. 14
Throughout the document, numbers at the end of variable names are used to distinguish different, but 15
related values (e.g. df1, df2, df3 or Dmin1, Dmin2, etc.). 16

 17

0 Denotes the integer 0, the bit 0, or the additive identity (the element zero) of a ring

1 Denotes the integer 1, the bit 1, or the multiplicative identity (the element one) of a
ring

* Indicates the convolution product of two polynomials and is also used to indicate
multiplication of integers

⊕ or XOR Exclusive OR function

|| Concatenation. A||B is the concatenation of the octet strings A and B where the
leading octet of A is the leading octet of A||B and the trailing octet of B is the
trailing octet of A||B.

:= Initialization. a := b means initialize or set the value of a equal to the value of b.

A Lower-bound decryption coefficient, used in decryption process to reduce into
correct interval

BRE2OSP Binary Ring Element to Octet String Conversion Primitive

BS2IP Bit String to Integer Conversion Primitive

BS2REP Bit String to Ring Element Conversion Primitive

BS2ROSP Bit String to Right-padded Octet String Conversion Primitive

IEEE P1363.1/D10, July 2008

13

BPGM Blinding Polynomial Generation Method

ceil[.] or . Ceiling function (i.e. the smallest integer greater than or equal to the contents of [.])

db The number of random bits used as input for encryption

df An integer specifying the number of ones in the polynomials that comprise the
private key value f (also specified as df1, df2, and df3, or as dF)

dg An integer specifying the number of ones in the polynomials that comprise the
temporary polynomial g (often specified as dG)

DP Decryption Primitive

dr An integer specifying the number of ones in the blinding polynomial r in SVES.
(also specified as dr1, dr2, and dr3)

e Encrypted message representative, a polynomial, computed by an encryption
primitive

E Encrypted message, an octet string.

ES (Asymmetric) encryption scheme.

f Private key in SVES.

F In SVES, a polynomial that is used to calculate the value f when f=1+pF.

floor[.] or . Floor function (i.e. the largest integer less than or equal to the contents of [.])

g In SVES, a temporary polynomial used in the key generation process.

GCD(a, b) Greatest Common Divisor of two non-negative integers a and b.

h Public key

Hash() A cryptographic hash function computed on the contents of ()

hLen Length in octets of a hash value.

i An integer

I2BSP Integer to Bit String Conversion Primitive

I2OSP Integer to Octet String Conversion Primitive

IGF() An index generation function seeded with the contents of ()

IGF-MGF1 An index generation function based on the MGF1 construction.

k Security level in bits.

KGP Key Generation Primitive

IEEE P1363.1/D10, July 2008

14

LBP-BPGM1 Blinding polynomial generation method for generating binary blinding polynomials

LBP-BPGM2 Blinding polynomial generation method for generating product-form blinding
polynomials

LBP-DP1 Decryption primitive for use with lattice based polynomial public key decryption

LBP-KGP1 Random Key Generation Primitive

LBP-KGP2 Random Low Hamming Weight Key Generation Primitive

LBP-PKE Lattice-Based Polynomial Public Key Encryption

m The message, an octet string, which is encrypted in SVES.

M In SVES, the padded and formatted message representative octet string used during
encryption and decryption.

m’ The message representative polynomial which is submitted to the encryption
primitive in the SVES encryption scheme.

MAC Message authentication code.

MGF() A mask generation function seeded with the contents of ()

MGF1 A mask generation function based on hashing a seed concatenated with a counter.

mod q Used to reduce the coefficients of a polynomial into some interval of length q

mod p Used to reduce a polynomial to an element of the polynomial ring mod p

MPM Message Padding Method

MRGM Message Representative Generation Method

N Dimension of the polynomial ring used (i.e. polynomials are up to degree N-1)

OS2BREP Octet String to Binary Ring Element Conversion Primitive

OS2IP Octet String to Integer Conversion Primitive

OS2REP Octet String to Ring Element Conversion Primitive

p “Small” modulus, an integer or a polynomial

q “Big” modulus, usually an integer

r In LBP-PKE, the encryption blinding polynomial (generated from the hash of the
padded message M in SVES)

RE2BSP Ring Element to Bit String Conversion Primitive

RE2OSP Ring Element to Octet String Conversion Primitive

IEEE P1363.1/D10, July 2008

15

ROS2BSP Right-padded Octet String to Bit String Conversion Primitive

SVDP Short Vector Decryption Primitive

SVES Short Vector Encryption Scheme

x The integer input to or output from integer conversion primitives

X The indeterminate used in polynomials

Z The ring of integers

Zq The ring of integers mod q.

 1

6. Polynomial representation and operations 2

6.1 Introduction 3

The cryptographic techniques specified in this standard require arithmetic in quotient polynomial rings, 4
also called convolution polynomial rings. Intuitively, these algebraic objects consist of polynomials with 5
integer coefficients. Manipulation of these ring elements is accomplished by polynomial arithmetic 6
modulo a fixed polynomial: XN – 1 in this standard. 7

6.2 Polynomial representation 8

Typically in mathematical literature, a polynomial a in X is denoted a(X). In this standard, when the 9
meaning is clear from the context, polynomials a in the variable X will simply be denoted a. Further, all 10
polynomials used in this standard have degree N – 1, unless otherwise noted. In addition, given a 11
polynomial a, a variable denoted ai, where i is an integer, represents the coefficient of a of degree i. In 12
other words, the polynomial denoted a represents the polynomial a(X) = a0 + a1X + a2X

2 + a3X
3 + …+ aiX

i + 13
… + aN–1 X

N–1, unless otherwise specified. 14

6.3 Polynomial operations 15

6.3.1 Polynomial multiplication 16

Let Z be the ring of integers. The polynomial ring over Z, denoted Z[X], is the set of all polynomials with 17
coefficients in the integers. The convolution polynomial ring (over Z) of degree N is the quotient ring 18
Z[X]/(XN – 1). The product c of two polynomials a,b ε Z[X]/(XN – 1) is given by the formula 19

)(*)()(XbXaXc = with ∑
≡+

=
)(modNkji

jik bac . 20

All multiplications of polynomials a and b, represented as a*b, are taken to occur in the ring Z[X]/(XN – 1) 21
unless otherwise noted. 22

IEEE P1363.1/D10, July 2008

16

6.3.2 Reduction of a Polynomial mod q 1

Throughout the document, polynomials are taken mod q, where q is an integer. To reduce a polynomial 2
mod q, one simply reduces each of the coefficients independently mod q into the appropriate (specified) 3
interval. 4

6.3.3 Inversion in (Z/ qZ)[X]/(XN – 1) 5

For certain cryptographic operations such as key generation, it is necessary to take the inverse of a 6
polynomial in (Z/qZ)[X]/(XN – 1). This clause describes the algorithms necessary for inversion in this ring. 7

6.3.3.1 The Polynomial Division Algorithm in Z p[X] 8

This algorithm divides one polynomial by another polynomial in the ring of polynomials with integer 9
coefficients modulo a prime p. All convolution operations occur in the ring Zp[X] in this algorithm (i.e. 10
there is no modular reduction of the powers of the polynomials). 11

Algorithm 1 – Polynomial Division Algorithm in Z p[X]
Input: A prime p, a polynomial a in Zp[X] and a polynomial b in Zp[X] of degree N-1 whose
leading coefficient bN is not 0.

Output: Polynomials q and r in Zp[X] satisfying a = b * q + r and deg r < deg b.

Operation: Polynomial Division Algorithm in Zp[X] shall be computed by the following or an
equivalent sequence of steps;

a) Set r := a and q := 0

b) Set u := bN
–1 mod p

c) While deg r >= N do

1) Set d := deg r(X)

2) Set v := u* rd*X(d–N)

3) Set r := r – v * b

4) Set q := q + v

d) Return q, r

 12

 13

6.3.3.2 The Extended Euclidean Algorithm in Z p[X] 14

The Extended Euclidean Algorithm finds a greatest common divisor d (there may be more than one that are 15
constant multiples of each other) of two polynomials a and b in Zp[X] and polynomials u and v such that 16
a*u + b*v = d. All convolution operations occur in the ring Zp[X] in this algorithm (i.e. there is no modular 17
reduction of the powers of the polynomials). 18

Algorithm 2 – Extended Euclidean Algorithm in Z p[X]

IEEE P1363.1/D10, July 2008

17

Algorithm 2 – Extended Euclidean Algorithm in Z p[X]
Input: A prime p and polynomials a and b in Zp[X] with a and b not both zero.

Output: Polynomials u, v, d in Zp[X] with d = GCD(a, b) and a*u + b*v = d.

Operation: Extended Euclidean Algorithm in Zp[X] shall be computed by the following or an
equivalent sequence of steps;

a) If b = 0 then return (1,0,a)

b) Set u := 1

c) Set d := a

d) Set v1 := 0

e) Set v3 := b

f) While v3 ≠ 0 do

1) Use the division algorithm (6.3.3.1) to write d = v3*q + t3 with deg t3 < deg v3

2) Set t1 := u – q*v1

3) Set u := v1

4) Set d := v3

5) Set v1 := t1

6) Set v3 := t3

g) Set v := (d – a*u)/b [This division is exact, i.e., the remainder is 0]

h) Return (u,v,d)

 1

6.3.3.3 Inverses in Z p[X]/(XN – 1) 2

The Extended Euclidean Algorithm may be used to find the inverse of a polynomial a in Zp[X]/(XN – 1) if 3
the inverse exists. The condition for the inverse to exist is that GCD(a, XN – 1) should be a polynomial of 4
degree 0 (i.e. a constant). All convolution operations occur in the ring Zp[X]/(XN – 1) in this algorithm. 5

Algorithm 3 – Inverses in Z p[X]/(XN – 1)
Input: A prime p, a positive integer N and a polynomial a in Zp[X]/(XN – 1).

Output: A polynomial b satisfying a*b = 1 in Zp[X]/(XN – 1) if a is invertible in Zp[X]/(XN – 1),
otherwise FALSE.

Operation: Inverses in Zp[X]/(XN – 1) shall be computed by the following or an equivalent
sequence of steps;

a) Run the Extended Euclidean Algorithm (6.3.3.2) with input a and (XN – 1). Let (u, v, d)
be the output, such that a*u + (XN – 1)*v = d = GCD(a, (XN – 1)).

b) If deg d = 0

IEEE P1363.1/D10, July 2008

18

Algorithm 3 – Inverses in Z p[X]/(XN – 1)

c) Return b = d–1 (mod p) * u

d) Else return FALSE

 1

6.3.3.4 Inverses in Z p^r[X]/(XN – 1) 2

For key generation in this standard it is necessary to calculate inverses in Za[X]/(XN – 1), where q is a power 3
of 2. In this case, the Inversion Algorithm (6.3.3.3) may be used to find the inverse of a(X) in the quotient 4
ring (R/2R)[X]/(M(X)). Then the following algorithm may be used to lift it to an inverse of a(X) in the 5
quotient ring (R/peR)[X]/(M(X)) with higher powers of the prime 2 (or any prime p). 6

Algorithm 4 – Inverses in Zp[X]/(XN – 1)
Input. A prime p in a Euclidean ring R, a monic polynomial M(X) ε R[X], a polynomial a(X) ε
R[X], and an exponent e.

Output. An inverse b(X) of a(X) in the ring (R/peR)[X]/(M(X)) if the inverse exists, otherwise
FALSE.

a) Use the Inversion Algorithm 6.3.3.4 to compute a polynomial b(X) ε R[X] that gives an
inverse of a(X) in (R/pR)[X]/(M(X)). Return FALSE if the inverse does not exist. [The
Inversion Algorithm may be applied here because R/pR is a field, and so (R/pR)[X] is a
Euclidean ring.]

b) Set n � 2

c) While e > 0 do

d) b(X) � 2*b(X) – a(X)*b(X)2 (mod M(X)), with coefficients computed modulo pn

e) Set e � e/2

f) Set n � 2*n

g) Return b(X) mod M(X) with coefficients computed modulo pe.

 7

7. Data Types and Conversions 8

7.1 Bit Strings and Octet Strings 9

As usual, a bit is defined to be an element of the set {0, 1}. A bit string is defined to be an ordered array 10
of bits. A byte (also called an octet) is defined to be a bit string of length 8. A byte string (also called an 11
octet string) is an ordered array of bytes. The terms first and last, leftmost and rightmost, most 12
significant and least significant, and leading and trailing are used to distinguish the ends of these 13
sequences (first, leftmost, most significant and leading are equivalent; last, rightmost, least significant 14
and trailing are equivalent). Within a byte, we additionally refer to the high-order and low-order bits, 15
where high-order is equivalent to first and low-order is equivalent to last. 16

IEEE P1363.1/D10, July 2008

19

Note that when a string is represented as a sequence, it may be indexed from left to right or from right to 1
left, starting with any index. For example, consider the octet string of two octets: 2a 1b. This corresponds to 2
the bit string 0010 1010 0001 1011. No matter what indexing system is used, the first octet is still 2a, the 3
first bit is still 0, the last octet is still 1b, and the last bit is still 1. The high-order bit of the second octet is 0; 4
the low-order bit of the second octet is 1. 5

When a bit string or a octet string is being encoded into a polynomial with coefficients reduced mod q (a 6
“ring element”), where q is usually either 128 or 256, the integer coefficients are mapped individually to bit 7
or octet strings, which are then concatenated. This mapping and its reverse are described in the conversion 8
primitives OS2REP, BS2REP, RE2OSP and RE2BSP in 7.5 and 7.6. 9

This standard does not specify a single algorithm for converting from bit/octet strings to trinary 10
polynomials in an unbiased and reversible fashion. Instead, the standard uses two algorithms, which are 11
defined inline in the techniques that use them. One algorithm is reversible but biased; the other is unbiased 12
but non-reversible. 13

7.2 Converting Between Integers and Bit Strings (I2 BSP and BS2IP) 14

7.2.1 Integer to Bit String Primitive (I2BSP) 15

I2OSP converts a nonnegative integer to a bit string of a specified length. 16

 17

Algorithm 5 – I2BSP
Input: i, nonnegative integer to be converted; bLen, intended length of the resulting bit string

Output: B, corresponding bit string of length bLen

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If x ≥ 2 xLen, output “integer too large” and stop.

b) Write the integer x in its unique xLen-bit representation in base 2:

 x = xxLen–1 · 2 xLen–1 + xxLen–2 · 2 xLen–2 + … + x1 · 2 + x0
where xi = 0 or 1 (note that one or more leading bits will be zero if x is less than 2 xLen–

1).

c) Output the bit stringxxLen–1 xxLen–2 … x1 x0.

 18

7.2.2 Bit String to Integer Primitive (BS2IP) 19

BS2IP converts a bit string to a nonnegative integer. 20

Algorithm 6 – BS2IP
Input: B, bit string to be converted (bLen is used to denote the length of B)

Output: x, corresponding nonnegative integer

IEEE P1363.1/D10, July 2008

20

Algorithm 6 – BS2IP
Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If B is of length 0, output 0.

b) Let bbLen–1 bbLen–2 … b1 b0 be the bits of B from leftmost to rightmost.

c) Let x = bbLen–1 · 2 bLen–1 + bbLen–2 · 2 bLen–2 + … + b1 · 2 + b0.

d) Output x.

7.3 Converting Between Integers and Octet Strings (I2OSP and OS2IP) 1

7.3.1 Integer to Octet String Primitive (I2OSP) 2

I2OSP converts a nonnegative integer to an octet string of a specified length. 3

Algorithm 7 – I2OSP
Input: x, nonnegative integer to be converted; oLen, intended length of the resulting octet
string

Output: O, corresponding octet string of length oLen

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If x ≥ 256 oLen, output “integer too large” and stop.

b) Write the integer x in its unique oLen-digit representation in base 256:

 x = ooLen–1 · 256 oLen–1 + ooLen–2 · 256 oLen–2 + … + o1 · 256 + o0

where 0 ≤ oi < 256 (note that one or more leading digits will be zero if o is less than
256oLen–1).

c) For for 1 ≤ x ≤ oLen, let the octet Oi be the concatenation of the bits in the integer
representation of ooLen-i , where left-most bit of the octet is the high order bit of the
binary representation. Output the octet string
 O = O1 O2 … OoLen .

NOTE—As an example, the integer 944 has the three-digit representation 944 = 0 · 256 2 + 3 · 256 + 178. The 4
corresponding octet string, expressed in integer values, is 0 3 178; as binary values, it is 5

 00000000 00000011 10110010 6

and in hexadecimal it is 00 03 b2. 7

7.3.2 Octet String to Integer Primitive (OS2IP) 8

OS2IP converts an octet string to a nonnegative integer. 9

Algorithm 8 – OS2IP
Input: x, nonnegative integer to be converted; oLen, intended length of the resulting octet
string

IEEE P1363.1/D10, July 2008

21

Algorithm 8 – OS2IP
Output: O, corresponding octet string of length oLen

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If O is of length 0, output 0.

b) Let O1 O2 … OoLen be the octets of O from first to last, and let ooLen–j be the integer value
of the octet Oj for 1 � j � oLen, where the integer value is represented as an octet (x.e.,
an eight-bit string) most significant bit first.

c) Output x = ooLen–1 · 256 oLen–1 + ooLen–2 · 256 oLen–2 + … + o1 · 256 + o0.

7.4 Converting Between Bit Strings and Right-Padded Octet Strings (BS2ROSP 1
and ROS2BSP) 2

This clause gives the primitives used to convert between bit strings and right-padded octet strings. 3

7.4.1 Bit String to Right-Padded Octet String Primi tive (BS2ROSP) 4

Algorithm 9 – BS2ROSP
Input: B: bit string to be converted; oLen: intended length of the resulting octet string

Output: O, corresponding octet string of length oLen

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) Set bLen equal to the length of x in bits.

b) If bLen > 8*oLen, output “input too long” and stop.

c) Append (8*oLen – bLen) zero bits to the end of x.

d) Let b0 b1 … bxLen–2 bxLen–1 be the bits of B from first to last. For 0 ≤ i < oLen – 1, let the
octet Oi = b8i b8i+1 … b8i+7. Output the octet string
 O = O0 O1 … OoLen-1 .

7.4.2 Right-Padded Octet String to Bit String Primi tive (ROS2BSP) 5

ROS2BSP converts an octet string to a bit string of a specified length. 6

Algorithm 10 – ROS2BSP
Input: O: octet string to be converted; bLen: intended length of the resulting bit string

Output: B: corresponding bit string of length bLen

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) Set oLen equal to the length of O in octets.

b) If bLen > 8*oLen, output “input too short” and stop.

c) For 0 ≤ i < oLen – 1, consider the octet Oi to be the bits b8i b8i+1 … b8i+7.

IEEE P1363.1/D10, July 2008

22

Algorithm 10 – ROS2BSP

d) If any of the bits bbLen -1 … b8*oLen –1 are non-zero, output “non-zero bits found after end
of bit string” and stop.

e) Output the bit string
 B = b0 b1 … bbLen-1 .

7.5 Converting Between Ring Elements and Octet Stri ngs (RE2OSP and OS2REP) 1

This clause gives the primitives for converting between ring elements and octet strings. 2

7.5.1 Ring Element to Octet String Primitive (RE2OS P) 3

RE2OSP converts a ring element to an octet string. 4

Algorithm 11 – RE2OSP
Input: a: ring element to be converted, equal to a0 + a1 X + a2 X

2 + … + aN-1 X
N-1; N: dimension

of ring; q: larger modulus: all coefficients of the ring element are between 0 and q-1.

Output: O: corresponding octet string

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) For j = 0 to N-1:

1) Set Aj equal to the smallest positive representation of aj mod q.

2) Set Oj = I2OSP (Aj, ceil[log256 q]). If any of the calls to I2OSP output an error,
output that error and stop.

b) Output the octet string
 O = O0 O1 … ON-1.

 5

NOTE—As an example, if q=128 and N=5, the polynomial 6

a[X] = 45 + 2X + 77 X2 + 103 X3 + 12 X4 7

is represented by the octet string 2d 02 4d 67 0c. 8

7.5.2 Octet String to Ring Element Primitive (OS2RE P) 9

OS2REP converts an octet string to a ring element. 10

Algorithm 12 – OS2REP
Input: O: octet string to be converted; N: dimension of ring; q: larger modulus: all coefficients
of the ring element are between 0 and q-1.

Output: a: resulting ring element, equal to a0 + a1 X + a2 X
2 + … + aN-1 X

N-1

IEEE P1363.1/D10, July 2008

23

Algorithm 12 – OS2REP
Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If the length of O is not equal to N * ceil[log256 q], output “octet string incorrect length”
and stop.

b) Consider O to be the series of octet strings O = O0 O1 … ON-1., where each Oj is of
length ceil[log256 q] octets.

c) For j = 0 to N-1, set aj = OS2IP (Oj). If aj >= q or if OS2IP outputs an error, output
“error”.

d) Output a = a0 + a1 X + a2 X
2 + … + aN-1 X

N-1.

7.6 Converting Between Ring Elements and Bit String s (RE2BSP and BS2REP) 1

While octet string representation may be most convenient for ring element arithmetic in a microprocessor, 2
ring elements may be more compactly stored and transmitted as bit strings. This clause provides the 3
appropriate conversion primitives. 4

7.6.1 Ring Element to Bit String Primitive (RE2BSP) 5

RE2OSP converts a ring element to a bit string. 6

Algorithm 13 – RE2BSP
Input: a: ring element to be converted, equal to a0 + a1 X + a2 X

2 + … + aN-1 X
N-1; N: dimension

of ring; q: larger modulus: all coefficients of the ring element are between 0 and q-1.

Output: B: resulting bit string.

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) For j = 0 to N-1:

b) Set Aj equal to the smallest positive representation of aj mod q.

c) Set Bj = I2BSP (Aj, ceil[log2 q]). If any of the calls to I2BSP output an error, output that
error and stop.

d) Output the bit string
 B = B0 B1 … BN-1.

 7

NOTE—As an example, if q=128 and N=5, the polynomial 8

a[X] = 45 + 2X + 77 X2 + 103 X3 + 12 X4 9

is represented by the bit string 0101101 0000010 1001101 1100111 0001010. (If this were subsequently to be 10
converted to an octet string using BS2ROSP, it would become first the bit string 0101 1010 0000 1010 0110 1110 0111 11
0001 0100 0000, and then the octet string 5a 0a 6e 71 40). 12

7.6.2 Bit String to Ring Element Primitive (BS2REP) 13

BS2REP converts a bit string to a ring element. 14

IEEE P1363.1/D10, July 2008

24

Algorithm 14 – BS2REP
Input: B: bit string to be converted; N: dimension of ring; q: larger modulus: all coefficients of
the ring element are between 0 and q-1.

Output: a: resulting ring element, equal to a0 + a1 X + a2 X
2 + … + aN-1 X

N-1

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If the length of B is not equal to N * ceil[log2 q], output “bit string incorrect length” and
stop.

b) Consider B to be the series of bit strings B = B0 B1 … BN-1., where each Bj is of length
ceil[log2 q] bits.

c) For j = 0 to N-1, set aj = BS2IP (Bj). If BS2IP outputs an error, output “error”.

d) Output a = a0 + a1 X + a2 X
2 + … + aN-1 X

N-1.

8. Supporting algorithms 1

8.1 Overview 2

In order to perform the operations securely, implementers shall choose supporting algorithms that satisfy 3
the security needs of the schemes. The security level of the supporting algorithm typically depends on the 4
desired security level of the scheme (e.g. for a desired security level of 80 bits, the SHA-1 hash algorithm is 5
typically chosen). This clause defines the algorithms that shall be used to meet this standard. 6

8.2 Hash Functions 7

Hash functions are used in two distinct situations in this standard: as the core of a mask generation 8
function, and as the core of a pseudo-random bit generator. For security purposes, the hash function should 9
be chosen at a strength commensurate to the desired security level. The recommended parameter sets in this 10
document specify hash functions appropriate to their security levels. 11

The only currently supported hash functions for use within this standard are SHA-1 and SHA-256 [FIP95, 12
NIST-SHA-2]. 13

All hash functions in this standard take an octet string as an input and produce an octet string as an output. 14
For compatibility with other standards which specify input and output as bit strings, the conversion 15
primitives ROS2BSP and BS2ROSP (clauses 7.4.1 and 7.4.2) may be used. 16

8.3 Encoding Methods 17

Before a message is encrypted, it must be processed to guarantee certain desirable security properties such 18
as semantic security. In this clause, the auxiliary methods for manipulating data for the encryption scheme 19
are listed. These currently consist of specific methods for generating the blinding polynomial r. 20

IEEE P1363.1/D10, July 2008

25

8.3.1 Blinding Polynomial Generation Methods (BPGM) 1

In order to provide plaintext awareness, a blinding polynomial generation method (BPGM) shall be used to 2
generate a blinding polynomial r from the padded message pm. This clause contains two BPGMs. The first 3
utilizes the standard polynomial convolution method, and the second utilizes the optimized polynomial 4
convolution method. 5

8.3.1.1 lbp-bpgm-3 6

The blinding polynomial r shall be generated deterministically from the message m and the random value b 7
using a pseudo-random number generator. 8

Algorithm 15 – Blinding Polynomial Generation From dr
Components: The parameters N and dr, the chosen index generation function IGF(), the hash
function Hash() chosen to parameterize IGF(), the polynomial index generation constant c, and the
minimum number of hash calls for the IGF to make, minCallsR.

Input: The seed, which is an octet string seed

Output: The blinding polynomial, which is a polynomial r.

Operation: The blinding polynomial shall be computed by the following or an equivalent
sequence of steps:

a) Call the IGF with hash function Hash() and input seed, N, c, minCallsR to obtain the IGF
state s.

b) Set r := 0

c) Set t := 0

d) While t < dr do

1) Call the IGF with input s to obtain an integer i mod N.

2) If r i = 0

i) Set r i := 1

ii) Set t := t + 1

e) Set t := 0

f) While t < dr do

1) Call the IGF with input s to obtain an integer i mod N and the updated state s. If the
IGF outputs “error”, output “error”.

2) If r i = 0

i) Set r i := -1

ii) Set t := t + 1

g) Return r

 9

IEEE P1363.1/D10, July 2008

26

8.4 Supporting Algorithms 1

In order to perform the operations securely, implementers shall choose supporting algorithms that satisfy 2
the security needs of the schemes. The security level of the supporting algorithm typically depends on the 3
desired security level of the scheme (e.g. for a desired security level of 80 bits, the SHA-1 hash algorithm is 4
typically chosen). This clause defines the algorithms that shall be used to meet this standard. 5

8.4.1 Mask Generation Functions 6

Mask Generation Functions (MGFs) are functions similar to hash functions, except that instead of 7
producing a fixed-length output they produce an output of arbitrary length. 8

All mask generation functions are parameterized by the choice of a core hash function. The only hash 9
functions supported for use with the MGFs in this standard are SHA-1 and SHA-256 [FIP95, NIST-SHA-10
2]. 11

This standard only permits the use of one mask generation function, MGF-TP-1. This function takes as 12
input an octet string and the desired degree of the output, and produces a trinary polynomial of the 13
appropriate degree. The only hash functions supported for use with this mask generation function are SHA-14
1 and SHA-256 [FIP95, NIST-SHA-2]. 15

8.4.1.1 Mask Generation Function for Trinary Polyno mials (MGF-TP-1) 16

Algorithm 16 – Mask Generation Function for Trinary Polynomials (MGF-TP-1)
Components: A hash function Hash with output length hLen octets.

Input: an octet string seed of length seedLen octets; the degree N, an integer; an argument
hashSeed, taking the values "yes" or "no"; and the minimum number of calls minCallsMask, an
integer

Output: An polynomial i of degree N-1; or “error”.

Operation: The integer and state shall be produced by the following or an equivalent sequence of
steps:

a) If seedLen+4 exceeds any input length limitation on the hash function Hash, output
“error” and exit

b) If minCallsMask exceeds 232, output “error” and exit.

c) Check the value of hashSeed.

1) If hashSeed = "yes", set the octet string Z to Hash(seed) and the integer zLen to
hLen.

2) If hashSeed = "no", set the octet string Z to seed and the integer zLen to seedLen.

d) Initialize the octet string buf to be a zero-length octet string.

e) Initialize counter:= 0.

f) Initialize N and c with the provided values. Set cLen = ceil (c/8).

g) While counter < minCallsR do

1) Convert counter to an octet string C of length 4 octets using I2OSP.

IEEE P1363.1/D10, July 2008

27

2) Compute Hash(Z || C) with the selected hash function to produce an octet string H of
length hLen octets.

3) Let buf = buf || H.

4) Increment counter by one.

h) Initialize i to be the null polynomial and cur, a pointer to the current coefficient of i, to be
0.

i) For each octet o in buf:

1) Convert o to an integer O.

2) If O >= 243 (= 35) discard O, move to the next octet, and go to step d)1).

3) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3.

4) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3.

5) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3.

6) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3.

7) Set icur = O; if cur = N output i; set cur = cur + 1

j) If cur < N:

1) Convert counter to an octet string C of length 4 octets using I2OSP.

2) Compute Hash(Z || C) with the selected hash function to produce an octet string H of
length hLen octets.

3) Let buf = H.

4) Increment counter by one.

5) return to step i).

k) Output i.

 1

8.4.2 Index generation function 2

The term “index generation function”, as used in this standard, applies to functions which are initialized 3
with a seed in the form of an octet string and may then be called repeatedly, producing an integer in a 4
specified range on each call. 5

An IGF may be deterministic or non-deterministic. A deterministic IGF is parameterized by a hash 6
function; the only hash functions supported for use with the IGFs in this standard are SHA-1, SHA-256, 7
SHA-384, and SHA-512. On initialization, it takes as input a seed, which is an octet string; a modulus N; 8
an index generation constant c; and the desired minimum number of calls to the underlying hash function, 9
minCallsR. It outputs an integer in the range [0, N-1] and the internal state s. On subsequent calls, it takes 10
as input the current state s and outputs an octet string of length oLen and the updated internal state s. 11

This standard permits the use of a deterministic index generation function based on a hash function and a 12
nondeterministic index generation function based on a random bit generator. 13

IEEE P1363.1/D10, July 2008

28

8.4.2.1 Index generation function (IGF-2) 1

Algorithm 17 – Index generation function (IGF-2)

Components: A hash function Hash with output length hLen octets.

Input:

EITHER: an octet string seed of length seedLen octets; the modulus N, an integer; an argument
hashSeed, taking the values "yes" or "no"; the index generation constant c, an integer; and the
minimum number of calls minCallsR, an integer

OR: the state s.

Output: An integer i and the state s; or “error”.

Operation: The integer and state shall be produced by the following or an equivalent sequence of
steps:

a) If s is not provided:

1) If seedLen+4 exceeds any input length limitation on the hash function Hash, output
“error” and exit

2) If minCallsR exceeds 232, output “error” and exit.

3) Check the value of hashSeed.

i) If hashSeed = "yes", set the octet string Z to Hash(seed) and the integer zLen to
hLen.

ii) If hashSeed = "no", set the octet string Z to seed and the integer zLen to
seedLen.

4) Initialize totLen to 0. Intialize remLen to 0.

5) Initialize the bit string buf to be a zero-length bit string.

6) Initialize counter:= 0.

7) Initialize N and c with the provided values.

8) While counter < minCallsR do

i) Convert counter to an octet string C of length 4 octets using I2OSP.

ii) Compute Hash(Z || C) with the selected hash function to produce an octet string
H of length hLen octets.

iii) Let buf = buf || OS2BSP(H).

iv) Increment counter by one.

9) Set remLen = totLen = minCallsR * 8*hLen.

b) Otherwise (if s is provided):

1) Extract the values Z, totLen, remLen, buf, counter, N, c from the state s. (The details
of how they are stored in s may be determined by the implementer).

c) Set totLen:=totLen + c.

d) If totLen exceeds hLen × 8 × 232, output “error” and exit.

IEEE P1363.1/D10, July 2008

29

Algorithm 17 – Index generation function (IGF-2)

e) If remLen < c

1) Let the bit string M be the trailing remLen bits in buf.

1) Let tmpLen:=c – remLen.

2) Let cThreshold = counter + ceil[tmpLen/hLen].

3) While counter < cThreshold do

i) Convert counter to an octet string C of length 4 octets using I2OSP.

ii) Compute Hash(Z || C) with the selected hash function to produce an octet string
H of length hLen octets.

iii) Let M = M || OS2BSP(H).

iv) Increment counter by one. If tmpLen > 8*hLen, decrement tmpLen by 8*hLen.

4) Set remLen:=8*hLen – tmpLen. Set buf:=H.

f) else

1) Set M equal to the trailing remLen bits of buf.

2) Set remLen:=remLen – c.

g) Set the bit string b to the leading c bits in M,

h) Convert b to an integer i using OS2IP.

i) If i >= 2c - (2c mod N) go back to step 3.

j) Store the values Z, totLen, remLen, counter, N, cLen and c in the state s. (The details of
how they are stored in s may be determined by the implementer).

k) Output i mod N and s.

 1

8.4.2.2 Index generation function (IGF-RBG) 2

This IGF is based on any approved random bit generator 3

Algorithm 18 – Index generation function (IGF-RBG)

Components: An Approved random bit generator RBG

Input: The modulus N, an integer; the index generation constant c, an integer.

Output: An integer i

Operation: The integer i shall be produced by the following or an equivalent sequence of steps:

1. Set cLen = ceil (c/8).
2. Obtain a bit string b of length 8*cLen bits from RBG.
3. Convert b to an octet string o using BS2OSP.
4. Set the leftmost 8cLen - c bits of o to 0.
5. Convert o to an integer i using OS2IP.
6. If i >= 2c - (2c mod N) go back to step 3.

IEEE P1363.1/D10, July 2008

30

Algorithm 18 – Index generation function (IGF-RBG)

7. Output i mod N.

9. Short Vector Encryption Scheme (SVES) 1

The following clause defines the supported encryption schemes. The only encryption scheme currently 2
supported is SVES. SVES stands for Short Vector Encryption Scheme (see for more information). 3

9.1 Encryption Scheme (SVES) Overview 4

The general encryption scheme is a sequence of operations that are performed based on the choices of the 5
parameters, primitives, encoding functions and supporting algorithms. In order to perform all of the SVES 6
encryption scheme operations, all of the Components must be specified. 7

9.2 Encryption Scheme (SVES) Operations 8

The SVES encryption scheme consists of the five operations key generation, key pair validation, public key 9
validation, encryption and decryption. These operations are defined generally in this clause without 10
assuming any specific choices of the Components listed in Clause 9.1 Encryption Scheme (SVES) 11
Overview. 12

9.2.1 Key Generation 13

A key pair shall be generated using the following or a mathematically equivalent set of steps. Note that the 14
algorithm below outputs only the values f and h. In some applications it may be desirable to store the values 15
f –1 and g as well. This standard does not specify the output format for the key as long as it is unambiguous 16

Algorithm 19 – Random Key Generation Primitive kgp- 3
Components: The parameters N, q, p, dF, dg; EITHER an Approved random number generator
capable of generating unbiased output in the range (0, N-1) OR an index generation function IGF
that takes an Approved random bit generator RBG and the polynomial index generation constant
c used by the IGF.

Input: None

Output: An key pair consisting of the private key f and the public key h

Operation: The key pair shall be computed by the following or an equivalent sequence of steps:

a) Set the polynomial F := 0.

b) Set t := 0

c) While t < dF do

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i
,mod N.

IEEE P1363.1/D10, July 2008

31

2) If Fi = 0

i) Set Fi := 1

ii) Set t := t + 1

d) Set t:=0 While t < dF do

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod
N.

2) If Fi = 0

i) Set Fi := -1

ii) Set t := t + 1

e) Compute the polynomial f := 1 + p*F in (Z/qZ)[X]/(XN – 1)

f) Compute the polynomial f –1 (i.e. the polynomial f –1 such that f –1* f = f* f –1 = 1) in
(Z/qZ)[X]/(XN – 1). If f –1 does not exist, go to step 1.

g) Set the polynomial g := 0.

h) Set t := 0

i) While t < dg do

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod
N.

2) If gi = 0

i) Set gi := 1

ii) Set t := t + 1

j) Set t := 0

k) While t < dg do

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod
N.

2) If gi = 0

i) Set gi := -1

ii) Set t := t + 1

l) Check that g is invertible mod q. If it is not, go back to step 8.

m) Compute the polynomial h := f –1*g*p in (Z/qZ)[X]/(XN – 1)

n) Output f, h

9.2.2 Encryption Operation 1

This clause defines the Encryption operation. Note that within the definition of the spaces may be 2
definitions of additional variables (e.g. when defining Dr, the values dr1, dr2 and dr3 may be specified as 3
well as the appropriate method of combining them). 4

 5

Algorithm 20 – Encryption Operation

IEEE P1363.1/D10, July 2008

32

Algorithm 20 – Encryption Operation
Components:

 The length of the encoded length lLen.

 The number of bits of random data db, which must be a multiple of 8.

 The chosen Mask Generation Function and associated parameters.

 The chosen Blinding Polynomial Generation Method and the associated parameters

 The OID, an octet string

 The number of bits of public key to hash, pkLen.

 The minimum message representative weight, dm0.

 The minimum number of calls to generate the masking polynomial, minCallsMask.

 The maximum message length maxMsgLenBytes

 The minimum number of calls to generate the blinding polynomial, minCallsR.

 The length of the encoding buffer, bufferLenBits

Inputs:

 The message m, which is an octet string of length l octets

 The public key h

Output: The ciphertext e, which is a ring element, or "message too long"

Operation: The ciphertext e shall be calculated by the following or an equivalent sequence of
steps:

a) Calculate octL = the lLen-octet-long encoding of the message length l.

b) If l > maxLen, output "message too long" and stop.

c) Randomly select an octet string b of length bLen using a random number generator with
at least 8*bLen bits of entropy content.

d) Form the octet string p0, consisting of the 0 byte repeated (maxMsgLenBytes + 1 - l)
times.

e) Form the octet string M of length bufferLenBits/8 as
 b || octL || m || p0.

f) Convert M to a bit string Mbin using OS2BSP.

g) If Mbin is not a multiple of three bits long, append 0 bits to bring it up to a multiple of
three.

h) Convert Mbin to a trinary polynomial of degree N-1 as follows. Treat Mbin as a
concatenation of 3-bit quantities. Convert each three-bit quantity to two trinary
coefficients as follows, and concatenate the resulting trinary quantities to obtain Mtrin.

 {0, 0, 0} -> {0, 0}

 {0, 0, 1} -> {0, 1}

 {0, 1, 0} -> {0, -1}

 {0, 1, 1} -> {1, 0}

IEEE P1363.1/D10, July 2008

33

Algorithm 20 – Encryption Operation

 {1, 0, 0} -> {1, 1}

 {1, 0, 1} -> {1, -1}

 {1, 1, 0} -> {-1, 0}

 {1, 1, 1} -> {-1, 1}

i) Convert the public key h to a bit string bh using RE2BSP (7.6.1). Form the bit string
bhTrunc by taking the first pkLen bits of bh. Convert bhTrunc to the octet string
hTrunc, of length pkLen/8 using BS2OSP. Form sData as the octet string
 OID || m || b || hTrunc

j) Use the chosen blinding polynomial generation method with the seed sData and the
chosen parameters to produce r. IF the blinding polynomial generation method outputs
“error”, output “error”.

k) Calculate R = r*h mod q.

l) Calculate R4 = R mod 4.

m) Convert R4 to the octet string oR4 using BE2OSP.

n) Generate a masking polynomial mask by calling the given MGF with inputs (oR4, N,
minCallsMask)

o) Form m' by polynomial addition of M and mask mod p.

p) If the number of 1s, or -1s, or 0s in m’ is less than dm0, discard m’ and return to step 3.

q) Calculate the ciphertext as e = R + m’ mod q.

r) Output e.

 1

Graphically, the encryption operation may be represented as follows: 2

MGFXOR

+

e

BVGM

r

mb

m’

r*h

mLen 00… ID

OS2BEP

RE2OSP

 3

IEEE P1363.1/D10, July 2008

34

Figure 1: Encryption Operation 1

9.2.3 Decryption Operation 2

This clause defines the decryption operation. Note that within the definition of the spaces may be 3
definitions of additional variables (e.g. when defining Dr, the values dr1, dr2 and dr3 may be specified as 4
well as the appropriate method of combining them). 5

Algorithm 21 – Decryption Operation
Components:

 The LBP-PKE decryption primitive to use

 The length of the encoded length lLen.

 The number of bits of random data db, which must be a multiple of 8.

 The chosen Mask Generation Function and Hash Function.

 The chosen Blinding Polynomial Generation Method and the associated parameters

 The OID, an octet string

 The number of bits of public key to hash, pkLen.

 The lower bound A

 The minimum message representative weight dm0

 The maximum message length maxMsgLenBytes

Inputs:

 The ciphertext e, which is a polynomial of degree N-1.

 The private key f or (f, fp).

 The public key h

Output: The message m, which is an octet string, or "fail".

Operation: The message m shall be calculated by the following or an equivalent sequence of
steps:

a) Calculate:

1) nLen = ceil [N/8], the number of octets required to hold N bits.

2) bLen = db/8, the length in octets of the random data

3) maxLen = nLen - 1 - lLen - bLen, the maximum message length.

b) Decrypt the ciphertext e using the selected NTRU decryption primitive with inputs e
and f to get the candidate decrypted polynomial ci.

c) If the number of 1s, or -1s, or 0s in ci is less than dm0, set “fail” to 1.

d) Calculate the candidate value for r*h, cR = e - ci.

e) Calculate cR4 = cR mod 4.

f) Convert cR4 to the octet string coR4 using BE2OSP.

g) Generate a masking polynomial mask by calling the given MGF with inputs (coR4, N,

IEEE P1363.1/D10, July 2008

35

Algorithm 21 – Decryption Operation
minCallsMask)

h) Form cMtrin by polynomial subtraction of cm’ and mask mod p.

i) Convert cMtrin to a bit string as follows. Treat cMtrin as a concatenation of
polynomials each containing 2 trinary coefficients. Convert each set of two trinary
coefficients to three bits as follows, and concatenate the resulting bit quantities to obtain
cMbin

 {0, 0} -> {0, 0, 0}

 {0, 1} -> {0, 0, 1}

 {0, -1} -> {0, 1, 0}

 {1, 0} -> {0, 1, 1}

 {1, 1} -> {1, 0, 0}

 {1, -1} -> {1, 0, 1}

 {-1, 0} -> {1, 1, 0}

 {-1, 1} -> {1, 1, 1}

 {-1, -1} -> set "fail" to 1 and set bit string to {1, 1, 1}

j) If cMbin is not a multiple of 8 bits long, remove the final (length – length mod 8) bits.

k) Convert cMbin to an octet string cM using BS2OSP.

l) Parse cM as follows.

m) The first bLen octets are the octet string cb.

n) The next lLen octets represent the message length. Convert the value stored in these
octets to the candidate message length cl. If cl > maxMsgLenBytes, set fail = 1 and set cl
= maxL.

o) The next cl octets are the candidate message cm. the remaining octets should be 0. If
they are not, set fail = 1.

p) Convert the public key h to a bit string bh using RE2BSP (7.6.1). Form the bit string
bhTrunc by taking the first pkLen bits of bh. Convert bhTrunc to the octet string
hTrunc, of length pkLen/8 using BS2OSP. Form sData as the octet string
 OID || m || b || hTrunc

q) Use the chosen blinding polynomial generation method with the seed sData and the
chosen parameters to produce r.

r) Calculate cR' = h * cr mod q.

s) If cR' != cR, set fail = 1

t) If fail = 1, output "fail". Otherwise, output cm as the decrypted message m.

9.2.4 Key Pair Validation Methods 1

A key pair validation method determines whether a candidate LBP-PKE public-key/private-key pair meets 2
the constraints for key pairs produced by a particular key generation method. 3

IEEE P1363.1/D10, July 2008

36

9.2.4.1 kpv3: Key Pair Validation for Trinary Keys 1

This key validation method corresponds to the key generation operation in 9.2.1. 2

Algorithm 22 – kpv3, Key Pair Validation for Trina ry Keys
Components: The parameters N, q, dF, dg,

Input: The private key component F and the public key h.

Output: “valid” or “invalid”.

Operation:

a) Check that F and h are polynomials of degree no greater than N-1. If either of them has
greater degree, output “invalid” and stop.

b) Check that all of the coefficients of h lie in the range [0, q-1]. If any coefficients lie
outside this range, output “invalid” and stop.

c) Check that F is trinary with exactly dF 1s and dF -1s. If it is not, output “invalid” and
stop.

d) Set f = 1 + 3F mod q.

e) Set g = f*h*3-1 mod q.

f) Check that g is trinary with exactly dg 1s and dg -1s. If it is not, output “invalid” and stop.

g) Output “valid”.

9.2.5 Public-key validation 3

9.2.5.1 Full public-key validation 4

A full public-key validation method determines whether a candidate public key satisfies the definition of a 5
public key and meets any additional constraints imposed by a given key pair generator. Such methods 6
provide the highest assurance to a relying party. For example, for keys generated using the key generation 7
operation in 9.2.1, full public-key validation would prove that h = f-1g mod q, where f = 1+pF and F, g have 8
dF, dg 1s respectively. Currently there are no known methods that provide full public-key validation for the 9
LBE-PKE schemes in this standard. 10

9.2.5.2 Partial public-key validation and plausibil ity tests 11

9.2.5.2.1 Overview 12

A partial public-key validation method determines, with some level of assurance, whether a candidate 13
public key meets some of the properties of a public key. As with full public-key validation methods, partial 14
public-key validation methods may be interactive or non-interactive. This standard supports only non-15
interactive methods. 16

Non-interactive methods for LBP-PKE public keys that do not require a witness are called plausibility tests. 17
The name reflects the fact that while examining only the public key, the tests only determine whether the 18

IEEE P1363.1/D10, July 2008

37

public key is plausible, not necessarily whether it is valid. Plausibility tests can detect unintentional errors 1
with reasonable probability, though not with certainty. (See Note.) 2

This is still an active research area; further methods may be described in future versions of this Standard. 3

NOTE—There are other ways to detect unintentional errors; a checksum on the key will detect storage and 4
transmission errors, and the signature on a certificate will likely fail if the public key is modified. The checks in this 5
clause provide an additional level of assurance beyond the other methods, or an alternative when they are not available. 6

9.2.5.2.2 Example suite of plausibility tests 7

The following is an example of a plausibility test, corresponding to the the key generation operation in 8
9.2.1. 9

a) Check that h(1) = g(1)/(1 + pF(1)) mod q. (For binary polynomials, F(1) = dF; for product-form 10
polynomials, F(1) = df1*df2+df3. In both cases, g(1) = dg). If it is not, output “invalid” and stop. 11

b) For t = 0 to q-1: 12

1) Reduce h into the range [t, t+q-1]. 13

c) Calculate the centered norm ||h|| for h reduced into this range. 14

d) Set ||h||min equal to the minimum value of ||h|| obtained in the previous step. 15

e) Set ||r|| = √ [r(1)*(N-r(1))/N]. (For binary polynomials, r(1) = dr; for product-form polynomials, 16
r(1) = dr1*dr2+dr3). 17

f) If ||h||min > q (√N) / (3 ||r||), output “plausible public key” and stop. Otherwise, output “invalid” and 18
stop. 19

Steps 2-4 are motivated by the considerations of A.4.2: for a valid public key h, the calculation of h*r mod 20
q will involve a large number of reductions mod q. The test checks that ||h* r|| > q√(N)/2, in other words that 21
the centered norm of h*r is with high likelihood greater than the centered norm of a polynomial consisting 22
of N/2 coefficients with the value q/2 and N/2 coefficients with the value –q/2 (this calculation uses the 23
pseudo-multiplicative property of the centered norm defined in A.1.1). For genuine h, the typical value of 24
||h||min will be slightly under q √(N/12). For binary polynomials, the centered norm ||r|| will be √(dr (N-25
dr)/N), which is considerably greater than √(3) for all parameter sets in this standard. A valid h will 26
therefore pass this test with high probability. For product-form polynomials, the value of ||r|| will vary, but 27
its minimum value will be √(d (N-d)/N), where d= dr1*dr2+dr3. This will also be considerably greater than 28
√(3) for all parameter sets in this standard, and a valid h will pass this test with high probability. 29

IEEE P1363.1/D10, July 2008

38

1

IEEE P1363.1/D10, July 2008

39

Annex A (Informative) Security Considerations 1

A.1 Lattice Security: Background 2

This section provides an overview of the properties of lattices, as a necessary preliminary to considering the 3
security of cryptosystems based on hard lattice problems. 4

A.1.1 Lattice Definitions 5

A lattice is of dimension n is a maximal discrete subgroup of real n-dimensional space Rn. A lattice L may 6
be specified by a spanning set of n linearly independent vectors {b1,…,bn} called a basis for L, in which 7
case L is the set of vectors 8

L = { x1b1 + … + xnbn : x1,…,xn ε Z }. 9

A lattice has many bases. A lattice is called integral if it is contained in Zn and it is called rational if it is 10
contained in Qn. A (row) matrix for L is a matrix whose rows form a basis for L. The discriminant of L, 11
denoted Disc(L), is the determinant of any matrix for L; the value is independent of the choice of basis. The 12
discriminant is also characterized as the volume of a fundamental domain for the quotient space Rn/L, so it 13
is also sometimes called the volume (really co-volume) of L. 14

The L2-norm and the centered L2-norm of a vector a are given by the respective formulas 15

∑
−

=

=
1

0

2
2||)(||

N

i
iaXa and

21

0

1

0

2
,2

1
||)(||

−= ∑∑
−

=

−

=

N

i
i

N

i
ictr a

N
aXa . 16

Let aavg be the vector whose coordinates are all equal to (a0+a1+…+aN–1)/N, the average of the coordinates 17
of a. Then the centered L2-norm of a may also be defined by ||a||2,ctr = ||a – aavg||2. 18

A vector a is said to be centered if a0+a1+…+aN–1 = 0, that is, if the average of its coordinates is 0. (If the 19
vectors a and b represent polynomials, the sum a(X)+b(X) and the product a(X)*b(X) of centered 20
polynomials a(X) and b(X) are themselves centered). 21

The L2-norm of the (convolution) product of two independent centered polynomials a(X) and b(X) may be 22
estimated by the formula 23

||a(X) * b(X)||2 ≈ ||a(X)||2 * ||b(X)||2. 24

This is known as the pseudo-multiplicative property of the centered norm. 25

The first minimum of L, denoted λ(L) or λ1(L), is the length of the smallest nonzero vector in L. More 26
generally, for each 1 ≤ i ≤ n, the i th successive minimum of L, denoted λi(L), is the infimum of all numbers λ 27
such that L contains i linearly independent vectors of length at most λ. Hermite’s constant γn is the 28
infimum of the ratio λ1(L)2/Disc(L)2/n as L runs over all lattices of dimension n. It is known that γn θ(n), 29
although the exact value of γn is only known for 1 ≤ n ≤ 8. 30

Let a ε Rn. The distance from a to L, denoted λ(L,a), is the distance from a to the closest vector in L. 31

IEEE P1363.1/D10, July 2008

40

A.1.2 Hard Lattice Problems 1

The shortest vector problem (SVP) for a lattice L is to find a vector v ε L satisfying ||v|| = λ1(L), that is, to 2
find a vector of shortest nonzero length. The approximate short vector problem (apprSVP) is to find a 3
vector v ε L satisfying ||v|| ≤ f(n)λ1(L) for some (slowly growing) function f of the dimension n. 4

The closest vector problem (CVP) for a lattice L and vector a ε Rn is the problem of finding a vector v ε L 5
satisfying ||v – a|| = λ(L,a), i.e., minimizing the distance ||v – a||. The approximate closest vector problem 6
(apprCVP) is to find a vector v ε L satisfying ||v – a|| ≤ f(n)λ(L,a) for some (slowly growing) function f of 7
the dimension n. 8

The smallest basis problem (SBP) for a lattice L has many different formulations depending on how one 9
measures the “smallness” of a basis. A common definition is to minimize the length of the longest element 10
of the basis. Another common definition is to minimize the product of the lengths of the elements in the 11
basis. 12

A.1.3 Theoretical Complexity of Hard Lattice Proble ms 13

It is known that SVP is NP-hard under randomized reductions Annex B, and the same is true for apprSVP 14
with approximating factor √2 [B75]. It is known that CVP is NP-hard [B21]. Although CVP appears to be 15
somewhat harder than SVP, it is known that an algorithm to solve apprSVP with approximating function 16
f(n) can be used to solve apprCVP with approximating function n3/2f(n) [B60], so the two are polynomially 17
equivalent. In practice, a CVP in dimension n can often be solved by transforming it into an SVP in 18
dimension n+1. In the other direction, it is very unlikely that apprSVP or apprCVP is NP-hard for the 19
approximating function f(n) ≈ (n/log n)1/2 [B24]. 20

A.1.4 Lattice Reduction Algorithms 21

Let L be an integral (or rational) lattice of dimension n. An exhaustive search can be used to solve SVP or 22
CVP, with expected running time exponential in n. There are algorithms for solving apprSVP and apprCVP 23
with polynomial (in n) running time and (slightly better than) exponential approximating factor f(n). More 24
precisely, the LLL algorithm [B69] runs in polynomial time and is guaranteed to return a nonzero vector 25
v ε L satisfying ||v|| ≤ 2n/2λ1(L); the approximating factor can be improved to 2O(n(log log n)2/log n) [B89]. More 26
generally, [B89][B90][B91] describe block variants of the LLL algorithm called BKZ-LLL whose running 27
time and approximating factor depend on the choice of a block size β. Larger values of β lead to better 28
results and longer running times. The BKZ-LLL algorithm with block size β is guaranteed to find a nonzero 29
vector v ε L satisfying 30

||v|| ≤ (2.45β)n/β λ1(L) in time at most O(n2(ββ/2+o(β) + n2)). 31

Thus in order to obtain a provable polynomial approximation factor, the block size β must be proportional 32
to the dimension n, in which case the running time is (at least) exponential in the dimension. 33

In practice, the LLL algorithm and its BKZ-LLL variants tend to return answers that are somewhat better 34
than the upper bounds given by theory. However, also in practice, the shortest vector returned by BKZ-LLL 35
tends to be considerably longer than λ1(L) until the block size β is an appreciable fraction of the dimension 36
n. Also in practice, the running time of BKZ-LLL is (at least) exponential in the block size β. In other 37
words, even in practice, BKZ-LLL is unlikely to find a vector as short as cn/β in time less than O(n2ββ/2). 38

Recent research [B92] suggests another block-based algorithm known as Random Sampling Reduction 39
(RSR), which is guaranteed to find a nonzero vector v ε L satisfying 40

||v|| ≤ (k/6)n/2k λ1(L) in time approximately O(n3(k/6)k/4). 41

IEEE P1363.1/D10, July 2008

41

For exact solutions to SVP and CVP, there are superexponential algorithms [B59][B61] with running time 1
2O(n log n) and a more recent algorithm with exponential running time [B3]. Other lattice reduction 2
algorithms are described in [B68][B101][B13][B82]. The review [B39] considers known lattice attacks and 3
concludes that no better attack is currently known than straightforward BKZ. 4

For solving a CVP of dimension n, the best method in practice is to embed it into an SVP of one higher 5
dimension [B25][B80]. Let (L,a) be a CVP. Then one takes a basis {b1,…,bn} for L, forms the lattice L* in 6
Rn+1 with basis {[b1,0],…,[bn,0],[a,c]} for an appropriate constant c and hopes that a shortest vector in L* 7
has the form [u,c], in which case the vector a+u is in L and is likely to be a closest vector to a. 8

A.1.5 The Gaussian Heuristic and the Closest Vector Problem 9

Let L be a lattice and let a ε Rn be a vector. The Gaussian heuristic says that all other things being equal, 10
the distance from a to the closest vector in L is probably approximately equal to the value of R specified by 11
following condition: 12

Volume of a ball of radius R around a > Discriminant of L. 13

The intuition underlying the Gaussian heuristic is that all of Rn can be covered by disjoint n-dimensional 14
parallelopipeds of volume Disc(L) centered at the points of L, so any nicely shaped region with the same 15
volume is likely to contain a point of L. Using the formula πn/2/(n/2)! for the volume of an n dimensional 16
ball (n even) and using Stirling’s formula to approximate factorials as k! ≈ (k/e)k(2πk)1/2, the Gaussian 17
heuristic says that in a lattice of large dimension n, the critical radius is given by 18

Rcrit(L) = (n/2πe)1/2 Disc(L)1/dim(L). 19

If R is somewhat larger than Rcrit(L), then the Gaussian heuristic predicts that there will be many vectors of 20
L that are within a distance R of a; while if R is smaller than Rcrit(L), then the Gaussian heuristic predicts 21
that there will be few or no vectors of L that are within a distance R of a. 22

Let L be a lattice of dimension n and let a ε Rn. In many situations of cryptographic interest, one hides a 23
vector v ε L that is a known (short) distance δ from the known vector a. Thus the lattice L, the vector a, and 24
the distance δ are public knowledge, while the vector v is the private information. The Gaussian heuristic 25
can be used to predict if v is likely to be a closest vector to a, in which case recovery of the private 26
information is probably equivalent to solution of the CVP for (L,a). More precisely, the Gaussian heuristic 27
says that if δ = ||v – a|| is significantly smaller than (n/2πe)1/2 Disc(L)1/n, say less than ½ or ⅓ of this 28
quantity, then v is probably a solution to the CVP for (L,a) and δ = λ(L,a). 29

A.1.6 Modular Lattices: Definition 30

A Modular Lattice (ML) with dimension parameter n = 2N and modulus parameter q is a lattice of 31
dimension n generated by the rows of an n-by-n matrix of the form 32

q

q
hh

hh

b

b

NNN

N

L

MOM

L

L

MOM

L

L

MOM

L

L

MOM

L

0

0

00

00
0

0

1

111

 33

IEEE P1363.1/D10, July 2008

42

The entries of the ML matrix are integers. Without loss of generality, it may be assumed that the integers hij 1
all satisfy |hij| ≤ q/2, since this may be achieved by subtracting appropriate multiples of the bottom N rows 2
from the top N rows. The integer b is called the balancing constant. It is selected to balance the two halves 3
of the target vector. 4

It is often convenient to write an ML matrix in abbreviated form as

qI

hbI

0
, where I denotes an N-by-N 5

identity matrix, 0 denotes an N-by-N zero matrix, and h denotes an N-by-N matrix with integer entries. 6

A.1.7 Modular Lattices and Quotient Polynomial Ring s 7

It is convenient to identify a polynomial F(X) = F0 + F1X + F2X
2 + … + FN–1X

N–1 of degree less than N with 8
its vector of coefficients F = [F0, F1, F2, …, FN–1]. If F(X) and G(X) are two polynomials, let [F, G] be the 9
vector of dimension 2N formed by concatenating their coefficients. 10

Let M(X) ε Zq[X] be a monic polynomial of degree N. Then each polynomial h(X) in the quotient ring 11
Zq[X]/(M(X)) can be used to form a modular lattice Lh as follows: 12

Lh = { [F, G] : F(X) * h(X) = G(X) in Zq[X]/(M(X)) }. 13

In other words, the lattice Lh is formed from all polynomials F(X),G(X) ε Z[X] satisfying 14

F(X) * h(X) ≡ G(X) (modulo q and M(X)). 15

The i th row of the N-by-N upper righthand block of the matrix for Lh is formed from the coefficients of the 16
remainder when Xih(X) is divided by M(X). In the important case that M(X) = XN – 1, this block is the 17
circulant matrix formed from the coefficients of h(X) (See A.1.12). 18

The following procedure will create a modular lattice containing a preselected vector [f, g]. Choose h(X) to 19
satisfy h(X) ≡ f(X)–1 * g(X) (modulo q and M(X)). [This assumes that f(X) has an inverse in the ring 20
Zq[X]/(M(X)).] 21

A.1.8 Balancing CVP in Modular Lattices 22

Let (L,a) be a closest vector problem in a modular lattice L and let v ε L be a solution. Write a as a = 23
[a1,a2], so a1 and a2 each have N coordinates, and similarly write v as v = [v1,v2]. If the balancing constant b 24
(see A.1.8) in the matrix of L is replaced by a new balancing constant bnew to form a new modular lattice 25
Lnew, then the closest vector problem (Lnew,anew) has the solution vnew, where anew = [(bnew/b)a1,a2] and vnew = 26
[(bnew/b)v1,v2]. (More precisely, vnew will be very close to anew and the Gaussian heuristic can be used to 27
verify that it is likely to be a closest vector.) Thus for any given modular lattice closest vector problem 28
(L,a), one solves the problem by choosing a balancing constant b and modified lattice and vector a that 29
make the problem easiest, 30

In practice, it is easiest to solve a modular lattice closest vector problem (L,a) if the two halves of the 31
problem have approximately equal length. A ML CVP is said to be balanced if a solution v = [v1,v2] ε L to 32
the CVP satisfies 33

|| v1 – a1 || ≈ || v2 – a2 ||. 34

It is often possible to use general knowledge about the form of the solution vector v to determine a 35
balancing constant that makes the problem balanced. (For example, one might know that v1 is a binary 36

IEEE P1363.1/D10, July 2008

43

vector with d1 ones and that v2 is a binary vector with d2 ones.) Thus in analyzing the difficulty of solving 1
the CVP, it is advisable to always assume that the attacker knows how to balance the problem. 2

An equivalent definition of a balanced closest vector problem says that among all choices of balancing 3
constant b, the ratio of the target distance ||v – a|| to the root-discriminant Disc(L)1/dim(L) = (bq)1/2 is 4
minimized. Thus in order to balance a closest vector problem, it is only necessary to know (approximately) 5
the distance from a closest vector to a. It is not necessary to actually know a closest vector. 6

A.1.9 Fundamental CVP Ratios in Modular Lattices 7

If the lattice L were to have a basis consisting of n equal length, pairwise orthogonal vectors, then those n 8
basis vectors would each have length equal to the root-discriminant Disc(L)1/dim(L). Lattices that have such a 9
basis are particularly easy to work with. For a closest vector problem (L,a) in which the target vector is 10
quite close to a (i.e., closer than predicted by the Gaussian heuristic), the ratio of the root-discriminant to 11
the target distance is one measure of the difficulty of solving the problem. This ratio is denoted by 12

ρ = ρ (L,a) = λ(L,a)/Disc(L)1/dim(L) . 13

In general, the smaller the value of ρ (L,a), the easier it will be to find a closest vector to a. This is true 14
because a small value of ρ means that the target vector v is probably much closer to a than it is to any other 15
vector in L, so a lattice search algorithm will have an easier time distinguishing v from the other vectors 16
in L. 17

Experimentally [B36], we observe that a more useful quantity to hold constant as the dimension increases is 18
not σ, but the related quantity 19

c = ρ * √(2N). 20

Let L be a modular lattice L of dimension n = 2N and modulus q. A second quantity that affects the 21
difficulty of solving a closest vector problem in L is the ratio of the dimension to the modulus. This ratio is 22
denoted by 23

a = a(L) = N/q. 24

Experiments have suggested that holding a constant and increasing c increases lattice breaking times 25
considerably, and that holding c constant and increasing a decreases lattice breaking times very slightly. 26

A.1.10 Creating a Balanced CVP for Modular Lattices Containing a Short Vector 27

A typical problem of cryptographic interest is to find a short target vector v = [v1,v2] in a given modular 28
lattice L of dimension 2N, modulus q, and balancing constant b = 1. Assuming that v is actually a shortest 29
vector in L, it can be found by solving the SVP for L, but one frequently knows some additional 30
information about v1 and v2 that allows an easier CVP to be solved. 31

Write v1 = [v11,v12,…,v1N] and v2 = [v21,v22,…,v2N]. In many situations one knows (or can approximate) the 32
quantities 33

γ1 = v11 + v12 + … + v1N , δ1 = v11
2 + v12

2 + … +v1N
2, 34

γ2 = v21 + v22 + … + v2N , δ2 = v21
2 + v22

2 + … +v2N
2. 35

Example. If v1 and v2 are binary vectors with a specified number of zeros and ones, then it is easy to 36
compute γ1,δ1,γ2,δ2.] The length ||v|| is larger than the distance from v to the known vector 37

IEEE P1363.1/D10, July 2008

44

d = [d1,a2] = [γ1/N, γ1/N, …,γ1/N, γ2/N, γ2/N, …,γ2/N], 1

so it will generally be easier to find v by solving the CVP for (L,d) than it will be by solving SVP for L. The 2
precise formulas for the relevant distances are 3

||v||2 = δ1 + δ2 and ||v – d||2 = δ1 – γ1
2/N + δ2 – γ2

2/N. 4

In order to balance the problem, one uses the balancing constant b = ||v2 – d2||/||v1 – d1|| for L. Then the 5
closest vector to [bd1,d2] will probably be the vector [bv1,v2]. The ρ parameter for this balanced CVP is 6

ρ = [2(δ1 – γ1
2/N)1/2(δ2 – γ2

2/N)1/2/q]1/2. 7

The Gaussian heuristic predicts that the balanced CVP will have a unique solution (up to obvious 8
symmetries of the lattice) provided that the value of ρ is significantly smaller than (N/2πe)1/2, which implies 9
that the value of c is significantly smaller than N/√(πe). 10

A.1.11 Modular Lattices Containing (Short) Binary V ectors 11

Let 12

BN(d) = { binary vectors of dimension N with d ones and N – d zeros }. 13

For example, B4(2) = { [0,0,1,1], [0,1,0,1], [0,1,1,0], [1,0,0,1], [1,0,1,0], [1,1,0,0] }. In general the set BN(d) 14
has N!/d!(N-d)! elements. 15

Let L be a modular lattice of dimension 2N and modulus q and balancing constant b = 1, and suppose that it 16
is known that L contains a vector v = [v1,v2] with v1 ε BN(d1) and v2 ε BN(d2). Then it is known that 17

γ1 = d1, δ1 = d1, γ2 = d2, δ2 = d2. 18

The best method to search for v is to solve a balanced CVP with fundamental ratios 19

ρ = (2/q)1/2(d1(1 – d1/N)d2(1 – d2/N))1/4 and a = N/q. 20

If d1 = d2 = d, then the CVP is already balanced and the formulas for the fundamental ratios simplify to 21

ρ = (2d(1 – d/N)/q)1/2 and a = N/q. 22

A.1.12 Convolution Modular Lattices 23

A Convolution (or Circulant) Modular Lattice (CML) is a modular lattice in which the matrix h is a 24
circulant matrix, that is, h is a matrix of the form 25

h =

−−

−

021

201

110

hhh

hhh

hhh

NN

N

L

MOMM

L

L

, 26

where h0,…,hN-1 are integers, taken without loss of generality to satisfy |hi| ≤ q/2. 27

IEEE P1363.1/D10, July 2008

45

A simple way to generate a convolution modular lattice containing a short vector of a specified length is to 1
use the convolution ring Rq = Zq[X]/(XN–1). First choose two polynomials f(X),g(X) ε Rq whose vectors of 2
coefficients are short. For example, f(X) might have binary coefficients with d1 ones and g(X) might have 3
binary coefficients with d2 ones. Then find a solution h(X) ε Rq to the equation f(X)*h(X) = g(X). A solution 4
will generally exist provided gcd(h(1),q) = 1; and if a solution exists, it is easily computed using the 5
Euclidean algorithm and (if q is composite) the Chinese Remainder Theorem and Hensel’s Lemma. If the 6
coefficients of h(X) = h0+h1X+h2X

2+…+hN-1X
N-1 are used as the upper righthand quadrant of a convolution 7

modular lattice Lh, then the lattice Lh contains the vector 8

[f0, f1, f2, …, fN–1, g0, g1, g2, …, gN–1] ε BN(d1) × BN(d2). 9

The cyclic nature of a convolution lattice L means that for every vector 10

v = [a0, a1, a2, …, aN-1, b0, b1, b2, …, bN-1] ε L, 11

all of the vectors obtained by cyclically shifting the two halves of v are in L. In other words, the vectors 12

[ak, ak+1, ak+2, …, ak–1, bk, bk+1, bk+2, …, bk–1], k = 1, 2, 3, …, N–1, 13

are also in L. 14

A.1.13 Heuristic Solution Time for CVP in Modular L attices 15

Let L be a modular lattice of dimension n = 2N and modulus q, and let (L,v) be a balanced closest vector 16
problem. Then experimental evidence [B36] [B44] suggests that the average time T to solve the closest 17
vector problem (L,a) is exponential in the dimension, with constants depending on the quantities c(L,a) and 18
a(L) introduced in A.1.9. In other words, 19

log(T) ≈ α N + β, 20

where α = α(c, a) and β = β(c, a) depend on c = c(L, v) and a = a (L). 21

This heuristic allows experimental determination of the constants α and β for given values of c and a. After 22
α and β are determined, then the formula log(T) ≈ α N + β can be used to extrapolate the time needed to 23
solve a balanced closest vector problem (L*,v*) whose dimension 2N* is too large to solve directly. Thus 24
the following steps can be used to estimate the time to solve a modular lattice CVP: 25

a) Replace (L*,a*) by an associated balanced CVP if it is not already balanced. 26

b) Compute the c and a constants c* = c(L* ,v*) and µ* = µ(L*) for the given CVP. 27

c) Perform experiments to solve many balanced ML CVPs (L,v) whose c and a constants satisfy c(L,a) 28
= c* and a(L) = a*. Do this for many different problems in each of many different dimensions 2Ni, i 29
= 1,2,3,…. Record the average time Ti to solve the problems in each dimension. 30

d) Plot the points (Ni,log(Ti)), i = 1,2,3,…, and compute the regression line Y = α X + β. 31

e) Extrapolate the solution time T* for the original problem by the formula log(T*) ≈ α N* + β. 32

A.1.14 Zero-forcing 33

If f or g have a large number of zero entries, then the zero-forcing algorithms of May and Silverman [B72] 34
[B73] for modular convolution lattices may allow reduction of the lattice dimension. In the case that f 35
has d1s and N-d 0s, the speedup in performing an r-fold zero-force is approximately 36

IEEE P1363.1/D10, July 2008

46

() 2/
1

0

2111 r

Nd

i
iN

r α

 −−− ∏
−

=
− 1

where the running time for the given class of lattices is T ≈ 2αN + β. The optimal value of r may be 2
determined using this formula. If g has more 0s than f, an attacker may invert h mod q and attempt zero-3
forcing in the lattice defined by h-1 to recover (g, f). For all the parameter sets in this standard, f has more 0s 4
than g, so this approach will not advantage the attacker. 5

A.2 Experimental Solution Times for NTRU lattices – full key recovery 6

A.2.1 Experimental Solution Times for NTRU lattices using BKZ reduction 7

A private key consists of a pair of (f(X),g(X)). The associated LBP-PKE public key h(X) is formed via the 8
relation 9

f(X) * h(X) ≡ p * g(X) (mod q) 10

The associated CML CVP formed from the coefficients of h(X)/p mod q has target vector v = [v1,v2] formed 11
from the coefficients of [f(X),g(X)]. The selection of f(X) and g(X) should follow the guidelines described in 12
this Annex for the selection of target vectors for ML CVPs. In the case that f(X) has the form f0(X) + 13
p*F(X) for a known polynomial f0(X) (e.g., f0(X) = 1), then the CML CVP target vector is the vector 14
[F(X),g(X)]. The security must be computed using the smaller norm bound associated to [F(X),g(X)]. 15

The CML formed using the coefficients of the public key h(X) may also be used to formulate a CVP in 16
which the target vector v = [v1,v2] is formed from the coefficients of [r(X),m(X)]. This lattice problem can 17
also be described in terms of the values a and c. For the parameter sets given in this standard, the message-18
recovery lattice problem is slightly easier than the key-recovery lattice problem. 19

Table 1gives the relationship between N and lattice security levels in bits as determined experimentally for 20
convolution modular lattices. Experiments were run using Victor Shoup’s NTL library [B95]. Lattices with 21
the given values of c and a were successfully reduced at low dimension, and the figures given below were 22
obtained by a least-squares fit to the points corresponding to the values of N that required more than 35 bits 23
of effort to reduce (this value varied depending on c and a). It was observed that holding a constant and 24
increasing c increased lattice breaking times considerably, and that holding c constant and increasing a 25
decreased lattice breaking times very slightly. Here, 26

c = √(4e ||F|| ||g|| / q). 27

The experiments were run on 400 MHz Celeron machines, and the time in seconds converted to the time in 28
MIPS-years by first multiplying by 400 (to account for the 400 MHz machines) and then dividing by 29
31557600, which is the number of seconds in a year. Breaking times were converted to bit security using 30
the identification of 80-bit security with 1012 MIPS-years [B70]. 31

Table 1 – Lattice Security
c a Bit Security

1.73 0.53 0.3563N - 2.263
2.6 0.8 0.4245N - 3.440
3.7 2.7 0.4512N + 0.218
5.3 1.4 0.6492N - 5.436

 32

IEEE P1363.1/D10, July 2008

47

 1

Figure 4: Lattice Breaking Times and Linear Extrapo lations 2

There is some variation among published estimates of running time due to the particular definition of a 3
MIPS-Year and to the difficulty of estimating actual processor utilization. (How many arithmetic 4
instructions a modern processor performs in a second when running an actual piece of code depends 5
heavily not only on the clock rate, but also on the processor architecture, the amount and speeds of caches 6
and RAM, and the particular piece of code.) Thus, the estimates given here may differ from others in the 7
literature, although the relative order of growth remains the same. We note that the current estimates of 8
lattice strength allow a large margin for error and for improvements in lattice reduction techniques. 9

NOTE—The strength of any cryptographic algorithm relies on the best methods that are known to solve the 10
hard mathematical problem that the cryptographic algorithm is based upon. The discovery and analysis of 11
the best methods for any hard mathematical problem is a continuing research topic. Users of LBP-PKE 12
should monitor the state of the art in lattice reduction, as it is subject to change. 13

A.2.2 Alternative Target Vectors 14

Examination of the NTRU decryption process reveals that any sufficiently small (f’ , g’), with the property 15
that f’ · h = p · g’ mod q, will allow decryption. [B19] observes that, with slightly longer vectors, it might 16
be possible to decrypt with sufficient accuracy to allow an attacker to complete the decryption by brute 17
force. Neither of these attacks appears to be feasible. Although NTRUSign [B32] makes use of the 18
existence of short vectors that are linearly independent of f and g, it has been observed experimentally 19
[B30][B36] that lattice reduction techniques that find any vector shorter than q will in fact terminate with 20
(f, g) or one of its trivial “rotations” (f · Xk, g · Xk). Thus, there is not currently known to be an attacker who 21
can mount an attack based on slightly longer short vectors but does not know the short vectors themselves. 22

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

N

c = 1.73, a = 0.53

c = 2.6, a = 0.8

c ~= 3.7, a ~ = 2.7

c = 5.3, a = 1.4

Linear (c = 2.6, a = 0.8)

Linear (c = 5.3, a = 1.4)

Linear (c ~ = 3. 7, a ~ = 2.7)

Linear (c = 1.73, a = 0.53)

IEEE P1363.1/D10, July 2008

48

A.3 Combined Lattice and Combinatorial Attacks on L BP-PKE Keys and Messages 1

A.3.1 Overview 2

[B39] presents a method for combining lattice reduction and combinatorial attacks. We refer to this attack 3
as a “hybrid” attack. In this approach, an attacker performs a certain amount of work to reduce the central 4
part of an NTRU lattice. Following the reduction, rows 1 to y1 -1, y1 < N, are unreduced, rows y1 to y2, N 5
< y2 < 2N, are reduced, and rows y2+1 to 2N are unreduced. Let K = 2N-y2 be that part of the lattice 6
containing the private key f that remains unreduced. The attacker can perform a combinatorial search for 7
the part of the key containined in the K-dimensional subspace. The attacker guesses the coefficients of the 8
part of f in this subspace and sums the lower K rows of the lattice to construct a 2N-dimensional vector.If 9
the guess is correct, the first y2 entries in the vector will be very close to a point in the y2-dimensional 10
transformed lattice that was output by the original reduction process. 11

The attack thus has two stages: the lattice reduction stage and the combinatorial stage. The total time for the 12
attack is the sum of the time for these stages. This standard requires that for a security level k, both of these 13
stages shall take more than k bits of work. 14

A.3.2 Lattice Strength 15

In a hybrid attack, the lattice is not completely reduced. Instead, the attacker selects a sublattice of the main 16
lattice and applies a lattice reduction algorithm to that sublattice. This sublattice will, with high probability, 17
not include any vector with length shorter than the Gaussian value discussed in A.1.5. The lattice running 18
times given in A.2 are for full key recovery; in this case, a short vector is present, and this reduces lattice 19
reduction times. In the hybrid case, where no short vector is present, the experiments of A.2 no longer 20
apply and, rather than measuring the running times necessary to recover the short vector, the new 21
experiments measure the amount of reduction that can be performed in a given amount of time. In this case, 22
the amount of reduction is measured by the number of diagonal entries bi in the lattice that can be altered 23
by the reduction process so they take a value other than q or 1. 24

Figure 5 presents the results of a number of lattice experiments for q = 2048, also presented in [B30]. The 25
experimental results fall into three clusters corresponding to three different experimental techniques: 26
standard BKZ, given by the points in the bottom left corner; the isodual technique described in [B39], given 27
by the points in the top half of the graph around the middle; and a refinement of the isodual technique in 28
which the output from each blocksize (where blocksize is a fundamental tuning parameter) is used as the 29
input into the next blocksize rather than running each blocksize on the original, unreduced lattice [B30]. As 30
demonstrated by Figure 5, this final technique is the best one known to date. 31

 32

IEEE P1363.1/D10, July 2008

49

 1

Figure 5: Time to remove x q vectors by different lattice reduction 2
techniques, experimentally determined. 3

Based on this data, it appears the running time t to remove a given number Nq of q-vectors using the best 4
currently known method is given by 5

t = 0.9501Nq – 3 ln (2 Nq) – 123.58 6

A.3.3 Reduced lattices and the “cliff” 7

A.3.3.1 Running time to obtain a given profile 8

An attacker’s chance of successfully recovering the private key depends on the values on the diagonal 9
entries of the reduced lattice. We refer to the set of the logs of these values as the lattice’s “profile”. For 10
convenience we take logs base q, so a profile goes from 1 to 0. Figure 6 presents a set of reduced profiles. 11
If a profile does not go continuously to 0, we say it has a “cliff” of height α. 12

The running time to obtain a slope δ if there is no cliff can be related straightforwardly to the time to 13
remove Nq q-vectors: if there is no cliff, the reduction is symmetric about N (in order to keep the 14
determinant constant) so the slope δ = 1/(y2 – y1) = 1/2Nq. 15

The time to obtain a cliff of height α, occurring at location N < y2 < 2N in the profile, is related to the time 16
to obtain a slope δ with no cliff as follows [B30]: if 17

cmt ++=)/1ln(3/)(log2 δδ , where in this case t = 0.4750/ δ + 3 ln (1/ δ) – 123.58, 18

then 19

IEEE P1363.1/D10, July 2008

50

cyy
Ny

mt +−+
−

−
=)ln(3

)1(

)(
2)(log 122

2
2 α

 . 1

Since lattice attacks are continually improving, the parameter sets in this standard are generated by 2
assuming the following extrapolation line: 3

t = 0.2/ δ – 3 ln (1/ δ) - 50. 4

This grants the attacker considerably more power than they are currently known to have. 5

A.3.3.2 The cliff height α and p s 6

For a given amount of work, the attacker may choose from a range of (y2, α) pairs. 7

 8

Figure 6 Lattice Profiles 9

Having performed the reduction, the attacker has the view of the lattice shown in Figure 7. The middle 10
section of the lattice contains some rotation of a part of g and a part of f. The attacker will mount an attack 11
consisting of an enumeration through the substring of f in the unreduced part of the lattice on the right, 12
combined with reduction against the reduced part of the lattice in the middle and the unreduced part on the 13
left. The enumeration of the substring of f is speeded up using meet-in-the-middle techniques. 14

IEEE P1363.1/D10, July 2008

51

 1

Figure 7 The attacker's view of the lattice followi ng reduction 2

If the attacker has correctly guessed f’ and f’’ such that f’ + f’’ makes up the part of the key f that lies in the 3
unreduced section y2 < i < 2N, they can confirm this guess by reducing against the rest of the lattice, 0 < i < 4
y2. The most efficient way of carrying out this reduction is by using Babai’s method [B9], which has a 5
running time of about N2. However, this reduction method has a chance of failing: if any term in the part of 6
the key that lies in the reduced area is greater than the corresponding diagonal term, the Babai reduction 7
will not be successful. Figure 8 gives an example where the Babai reduction will fail. This illustrates that if 8
there is a “cliff” in the profile, the Babai reduction is much more likely to succeed. 9

 10

Figure 8: A case where Babai reduction will not be successful 11

IEEE P1363.1/D10, July 2008

52

The probability of success at this stage, given an f’ and and f’’ that should make f, is denoted by ps. This 1
value ps depends on N, q, the height of the cliff α, and the boundaries of the reduced area (y1, y2), and is 2
given by [B30]: 3

, 4

where 5

 6

A.3.4 Combinatorial Strength 7

This section considers the effort that the attacker must expend in the combinatorial phase of the combined 8
attack. 9

A.3.4.1 Combinatorial Attacks on LBP-PKE Keys and M essages 10

An exhaustive search algorithm tries all allowable values for v1, computes the value of v2 = v1*h, and 11
checks if v2 is an allowable value. Let S1 denote the sample space for v1. The exhaustive search method has 12
average running time ½|S1| for general modular lattices and average running time (1/2N)|S1| for convolution 13
modular lattices (since a convolution modular lattice will generally have N target vectors). An exhaustive 14
search algorithm has no storage requirements. 15

A collision search algorithm of Odlyzko is described in [B43][B44]. 16

If S1 = BN(d) is the space of binary vectors of dimension N with d ones, then the running time of the 17
collision search method is approximately d1/2C(N/2,d/2) operations. (Here C(n,k) = n!/k!(n–k)! is the usual 18
combinatorial symbol.) The storage requirement is approximately 2C(N/2,d/2). 19

If S1 = TN(d) is the space of trinary vectors of dimension N with d 1s and d -1s, then the running time of the 20
collision search method is approximately d1/2C(N,d) operations. The storage requirement is approximately 21
2C(N,d). 22

It is not known if there is a collision search method that does not require substantial storage, but it is 23
recommended that security be computed under the assumption that storage requirements are not an issue (a 24
contrary view is given in [B99]). 25

A.3.4.2 Combinatorial Strength in the hybrid case 26

In the hybrid case the attacker is searching a space of size K for a trinary polynomial with c1 +1s and c2 -1s. 27
The amount of work the attacker must do to search this space using a standard collision search method is: 28

IEEE P1363.1/D10, July 2008

53

 −

=

2/2/

2/

2/

2/

2

2

1

1

2

1

1

c

c

c

c

c

cK

c

K

Wsearch
. 1

Wagner’s generalized birthday paradox search [B102] presents an attack that may potentially improve the 2
running time of this stage to 3

 −

=

2/2/

2/

2/

2/

2

2

1

1

2

1

1

c

c

c

c

c

cK

c

K

Wsearch
. 4

It is not clear exactly how this attack would be implemented against the current form of LBP-PKE. 5
Nevertheless, the parameter sets presented in this standard for a given security level k assume the attacker 6
can mount this generalized birthday paradox attak and so use the second form for Wsearch. 7

Wsearch contributes to the full security level of the combinatorial search phase. Two additional contributions 8
to this security level are: first, the chance that the search is not successful; second, the cost of performing 9
the reduction against the rest of the lattice. 10

The chance that the search is not successful depends on two quantities: 11

The chance that the lattice reduction allows a correct guess to be confirmed, p_s. The value for p_s is given 12
above. For the standard attack, the search work becomes Wsearch / √p_s. For the generalized attack, the 13
search work becomes Wsearch/p_s. We express the total search work as Wsearch*Wp_s. 14

The chance that the attacker has guessed the right values for c1, c2, Psplit(c1, c2; N, K, d1, d2). Here the 15
analysis is complicated by the fact that the lattice in fact contains N rotations of the private key. The chance 16
that the attacker has guessed the right values for c1 and c2 for a single rotation of the key is 17

 −

 −

⋅

−
−−−

−
−

=

2

1

1

2

1

122

11

11
1,

)(

c

cN

c

N

c

cK

c

K

cd

cdKN

cd

KN

Psplit
 18

If the attacker can take advantage of the fact that the lattice contains N rotations of the key, Psplit improves 19
to become 20

Psplit,N = 1 – (1 – Psplit,1)
N. 21

It is currently believed that the form of the private key, f = 1 = pF, requires the attacker to solve a CVP 22
problem that “locks in” a single rotation of the key, and so the appropriate measure of Psplit is Psplit, 1. 23
However, for safety against an improved reduction algorithm that would let an attacker search against all 24
rotations of the key, the parameters in this standard were generated with Psplit = Psplit, N. 25

Finally, in the specific setting of the hybrid attack, the reduction using Babai’s method involves multiplying 26
by a 2Nx2N transformation matrix; experimentally it is found that this multiplication has bit security about 27

Wreduction = N2/21.06 . 28

IEEE P1363.1/D10, July 2008

54

Since the matrix is the same in all cases, this security level can probably be optimized, and for purposes of 1
estimating security it is taken to have the value 2

Wreduction = N/21.06 . 3

This time must be multiplied by the search time of the meet-in-the-middle part of the attack to obtain the 4
full running time of this phase of the hybrid attack. 5

The total expected work of this phase for a given choice of c1, c2, given the values K, α, y1, and y2 that 6
resulted from the lattice reduction phase, is therefore 7

Wmitm (c1, c2) = Wreduction * Wsearch * Wp_s / Psplit. 8

Finally, the security level due to this phase is taken to be 9

Wmitm = minc1, c2 Wmitm (c1, c2). 10

A.3.5 Summary 11

A hybrid attack involves the lattice reduction work, Wlatt, and the meet-in-the-middle work, Wmitm. The 12
attacker will attempt to balance these two phases so that they take equal amounts of time. A parameter set 13
has a strength of greater than k bits if, for all profiles produced by performing k bits of lattice reduction, the 14
value of Wmitm > k. 15

A.4 Other Security Considerations for LBP-PKE Encry ption 16

A.4.1 Entropy Requirements for Key and Salt Generat ion 17

The security of a parameter set will be less than the claimed level if an attacker can guess either the key or 18
the random padding with less effort than a brute-force search. One means of doing this would be for the 19
attacker to guess the internal state of the random number generator used in key generation and salt 20
generation. These RNGs must be seeded with the appropriate amount of entropy, which is k+64 for a 21
claimed security level k. 22

A.4.2 Reduction mod q 23

If the calculation of rh mod q involves little or no reduction mod q, an attacker can attempt to use their 24
knowledge of h to solve e = rh + m’ using linear algebra. For the parameter sets in this standard, it is 25
vanishingly unlikely that this will occur if h is a valid public key. The public key partial validation method 26
given in 9.2.5.2.2 checks that it is highly likely that the calculation of r*h will involve significant reduction 27
mod q. 28

A.4.3 Selection of N 29

It is required that the security parameter N be prime (i.e., the dimension n of the lattice be twice a prime). 30
If N is highly composite (e.g., if N is a power of 2), then Gentry [B23] has shown that a folding method 31
allows the private key and plaintext to be recovered from a lattice of dimension much smaller than N. 32

IEEE P1363.1/D10, July 2008

55

A.4.4 Relationship between q and N 1

It is recommended that for each prime divisor q0 of q, the polynomial XN – 1 modulo q0 should have no 2
factors of small degree (aside from the obvious factor X – 1). If N is prime, then XN – 1 modulo q0 factors as 3
(X – 1)A1(X)…Ae(X), where each Ai(X) has degree equal to the multiplicative order of q0 modulo N. If h(X) 4
or r(X) is zero in the field mod Ai(X), it will leak the value of m’(X) in this field. If Ai(X) has degree t, the 5
probability that h(X) or r(X) is divisible by Ai(X) is presumably 1=qt. To avoid attacks based on the 6
factorization of h or r, we will require that for each prime divisor P of q, the order of P (mod N) must be N-7
1 or (N-1)/2. This requirement has the useful side-effect of increasing the probability that a randomly 8
chosen f will be invertible in Rq. 9

A.4.5 Form of q 10

So long as the factors of q have sufficient order mod N (A.4.5), there are no known security issues with the 11
form of q: it may be chosen to be either prime or composite. This standard selects q to be 2l for some l to 12
increase the efficiency of the modular reduction operations. 13

A.4.6 Leakage of m’(1) 14

Because XN-1 is always divisible by X-1, the mapping f(X) � f(1) is a ring homomorphism, i.e 15

(f*g) (1) = f(1)g(1). 16

Note that f(1) is simply the sum of the coefficients of f. Since an attacker will be able to calculate h(1), and 17
since r(1) is part of the parameter set, this means that an attacker can recover m’(1) from e=r*h+m’. The 18
attacker could potentially distinguish between two m’s by their Hamming weight. This is addressed by the 19
masking process, which ensures that m’(1) does not leak information about m(1); see A.4.8 for further 20
details. 21

For binary keys, m'(1) reveals the number of 1s in m'. Since lattice and combinatorial attacks on (r, m’) get 22
easier as m’ gets more unbalanced (in other words, as the number of 1s gets further and further from N/2), 23
an attacker can select (r, m’) pairs that are more vulnerable to these attacks based on the revealed value of 24
m’(1). However, for trinary keys and messages (including product-form trinary keys), m'(1) is simply the 25
number of 1s minus the number of -1s and does not directly reveal information about more versus less 26
vulnerable message representatives. 27

A.4.7 Relationship between p, q and N 28

If the smaller modulus p divides the large modulus q, then reduction modulo p of an expression p* r*h + m 29
modulo q will immediately recover m. More generally, if p and q are not relatively prime in the ring 30
Z[X]/(XN – 1), then reduction modulo a common factor will reveal information about m. For this reason it is 31
required that the large modulus q and the smaller modulus p be relatively prime in the ring Z[X]/(XN – 1). 32
This is equivalent to the condition that the three quantities q, p, and XN – 1 must generate the unit ideal in 33
the ring Z[X]. 34

The large modulus q is required to be in Z, but the smaller modulus p need not be in Z. For example, if N is 35
odd and if q is a power of 2, then p could equal X + 2 or X – 2, since the three quantities XN – 1, 2k, and X ± 36
2 generate the unit ideal in the ring Z[X]. 37

IEEE P1363.1/D10, July 2008

56

A.4.8 Adaptive Chosen Ciphertext Attacks 1

If the same r is used to encrypt two different message representatives m’1 and m’2 under the same key, then 2
the difference of the two ciphertexts e1 – e2 ≡ m’1 – m’2 (mod q) will reveal a large portion of m’1 and m’2. 3
With the encryption schemes in this standard, m’ = M ⊕ MGF(r*h) = M + MGF(r*h) mod 2, so e1 – e2 4
(mod q)(mod 2) = M1 ⊕ M2. With the key establishment schemes in this standard, there are two ways that 5
an r could be repeated: 6

a) The same message m could be encrypted twice with the same salt b. 7

b) Two different (m, b) pairs could produce the same r. 8
If the same message m is encrypted twice with the same salt b, an attacker will know that this has happened 9
but will not obtain any additional information about m or b. Since this standard is a key establishment 10
standard and the m should therefore be chosen at random for each message sent, the chance that an (m, b) 11
pair will be used twice should be the chance of a collision in the entire (m, b) space, which requires the 12
sending of about 2N/2 messages. 13

The chance that two different (m, b) pairs will produce the same r is the chance of a collision when 14
selecting from the space of all possible blinding polynomials, Dr. In order to have a significant chance of a 15
collision, the attacker must observe about √(# Dr) messages, or √(C(N,d)/N), where C is the usual 16
combinatorial symbol. For the parameter sets in this document, this number of messages is always greater 17
than the number of operations an attacker must perform to mount a combinatorial attack against a key or 18
ciphertext (see A.3.4.1). 19

A single message element m(X) should not be encrypted using two different blinding elements. If m(X) is 20
encrypted using r1(X) and r2(X), then the quantity 21

(ph(X))–1(e1(X) – e2(X)) ≡ r1(X) – r2(X) (mod q) 22

will reveal a large portion of r1(X) and r2(X). (Even if h(X)–1 mod q does not exist, one may still gain 23
considerable information using a partial inverse). 24

In general, as with all public-key cryptosystems, the LBP-PKE primitives must be within an appropriate 25
encryption scheme to provide security against chosen plaintext, chosen ciphertext and adaptive chosen 26
ciphertext attacks [B37] [B45] [B57] [B81]. The scheme used in this standard has a proof of security in the 27
random oracle model presented in [B45]. In this model, the salt b that is added to the message before 28
encryption is not vulnerable to birthday paradox-type attacks, but only to exhaustive search-type attacks. 29
For a k-bit security level, it is therefore appropriate to take the salt length db to be k bits. 30

A.4.9 Invertibility of g in Rq 31

The proof of security in [B45] requires h, and therefore g, to be invertible in Rq. This is the reason for the 32
check in step j) of the key generation operation in 9.2.1. There are no specific known attacks that apply 33
only if g is not invertible. Note that, even if h is not invertible, there will often be a “pseudo-inverse” which 34
plays the same role [B81]; this is not taken into account in the proof in [B45]. 35

A.4.10 Decryption Failures 36

On decryption, the decryptor calculates 37
a = f*e mod q 38

= prg + m’ + pFm’ mod q 39

IEEE P1363.1/D10, July 2008

57

Decryption depends on this equality holding over the integers, not simply mod q. Presentations of LBP-1
PKE in other fora in the past have used parameter sets for which the value of q or the mod q reduction 2
method would not always make it possible to satisfy this equality. Therefore, decryption would 3
occasionally fail. An attacker who observed decryption failures could recover the private key [B41] [B57] 4
[B74] [B85] [B97] even if the underlying encryption scheme was CCA2-secure in the absence of 5
decryption failures. 6

For trinary polynomials with d +1s and the same number of -1s, the chance of a decryption failure is given 7
by [B30]: 8

Prob(q, d, N)(Decryption fails) = P(d, N)((q-2)/6) 9

Where 10

P(d, N)(c) = N * erfc (c / (σ√[2N])) 11

and 12

σ(d, N) = √(8d/3N) 13

A.4.11 OID 14

The OID is included in step j) of encryption and step q) of decryption to give an assurance that encrypters 15
are using the encryption scheme specified in this document. This protects against modified parameter 16
attacks [B42], in which an attacker persuades an encrypter to encrypt with an encryption scheme other than 17
the one the decrypter specifies use with that key. Under certain circumstances, modified parameter attacks 18
can recover information about the ciphertext. The inclusion of the OID ensures that a message will only 19
decrypt correctly if it was encrypted with the exact parameter set expected by the receiver. 20

A.4.12 Use of Hash Functions by Supporting Function s 21

The security requirements on a hash function when used as the core of a random bit string generator are 22
different from those on a fixed-length hash function. This standard follows common practice in using SHA-23
1 in Random Bit Generators at security levels up to k=128, and SHA-256 at security levels up to k=256. 24

A.4.13 Generating Random Numbers in [0, N-1] 25

The BPGM method (8.3.1.1) converts a random bit or byte stream to a series of integers. These integers 26
must be uniformly distributed in the range [0, N-1]. If they were not, an attacker could exploit the bias to 27
speed up an attack based on guessing r. The method given in this document ensures that the numbers are 28
unbiased by: 29

 selecting a set of bits; 30

 converting the bits to an integer; 31

 only reducing the integer mod N if it falls into a range [0, kN-1] for some parameter-set-specific 32
value k, and otherwise selecting a fresh set of r random bits. 33

The output of the random bit string generator must be statistically random; there should be no simple (eg 34
linear) relationship between the sets of bits chosen for reduction. 35

IEEE P1363.1/D10, July 2008

58

The number of bytes chosen pre-reduction is the minimum number necessary to hold N. The number of bits 1
chosen from these bytes (denoted by c in the parameter sets) is selected to give the minimum value of (2c 2
mod N). There are no known security implications to the choice of c, so long as 2c > N. 3

A.4.14 Attacks based on variation in decryption tim es 4

The paper [B98] demonstrates that a naïve implementation of the BPGMs in this standard (without the 5
minimum IGF output parameter minCallsR) leaks private key information because the decryption time 6
depends on the ciphertext. To prevent these attacks, it is necessary to ensure that decryption takes constant 7
time (or at least that variations in time occur with negligible probability). 8

The paper [B98] suggests that effectively constant decryption times can be obtained by choosing oLenMin 9
such that the chance that more than oLenMin octets of output are needed is less than 2-k, where k is the 10
security parameter and oLenMin = minCallsR * hLen, hLen the length in octets of output from the hash 11
function. The chance that greater than oLenMin individual octets are needed is given by 12

∑
<<

−
'/

,,2
),'/(1

coLenMinddr
nN

dcoLenMinP c
 13

where PC,N,N(L,d) is determined by the recursive formula 14

 −−⋅−+

 +−⋅−−=
C

dNn
dLP

C

dNn
dLPdLP nNCnNCnNC

)(
1),1(

)1(
)1,1(),(,,,,,,

, 15

0),(,, =dLP nNC if L < d, 16

L

nNC C

nN
LP

 −= 1)0,(,,
, 17

and 18

C = 2c, c’ = ceil[c/8]. 19

minCallsR should be taken to be the smallest integer such that the chance that more than oLenMin octets of 20
output are needed is less than 2-k. 21

A.4.15 Choosing to attack r or m 22

An attacker may choose to mount an attack on a ciphertext to recover either r or i; recovering one of these 23
trivially recovers the other. The attacker will choose to attack whichever is thinner. Since i is chosen at 24
random from the space of trinary polynomials, if r is thick (as is the case for the size-optimized parameters 25
in this standard), i will in general be thinner and may be easier to recover than the intended security level. 26

To mitigate this risk, the encryption scheme in this standard requires that an sender discards an encrypted 27
message if the message representative i has fewer than dr +1s, -1s, or 0s. If the sender generates such a 28
message representative, they must discard that message representative and restart the encryption process 29
with a different salt b. If the receiver receives a ciphertext that decrypts to a message representative i with 30
fewer than dr +1s, -1s, or 0s, the receiver must treat the decryption as having failed (though the receiver 31
should complete all the stages of decryption in order to avoid leaking timing information about the cause of 32
the decryption failure). 33

IEEE P1363.1/D10, July 2008

59

A.4.16 Quantum Computers 1

All cryptographic systems based on the problems of integer factorization, discrete log, and elliptic curve 2
discrete log are potentially vulnerable to the development of an appropriately sized quantum computer, as 3
algorithms for such a computer are known that can solve these problems in time polynomial in the size of 4
the inputs. For LBP-PKE [B71], proposes a quantum lattice reduction algorithm that may improve 5
reduction speeds while remaining exponential-time, and [B86][B100][B66][B87][B46] consider potential 6
sub-exponential algorithms for certain lattice problems. 7

A.4.17 Other Considerations 8

The private-key representation does not affect security in general, although the effectiveness of physical 9
attacks may vary according to the representation. The private key should be stored securely, and the 10
encryption blinding polynomial should be erased after use. The domain parameters should be protected 11
from unauthorized modification. 12

A.5 A Parameter Set Generation Algorithm 13

This section describes an algorithm that may be used to generate parameter sets with a desired level of 14
security. 15

a) Set a desired security level k 16

b) Set q = 2048. 17

c) Choose a performance metric. Possible metrics include size = N* log2(q); operation time = N*d; or 18
some combination of the two, such as speed2*size. 19

d) Set N equal to the first prime greater than k such that the order of 2 mod N is (N-1) or (N-1)/2 and 20
enter the following loop 21

1) For each d, 1 < d < N/3: 22

i) For each possible N < y2 < 2N: 23

i) For each 0 < y1 < N: 24

i) Calculate the profile produced by k bits of lattice reduction for that y2 y1. 25

ii) If such a profile exists, calculate Wmitm using the formula given in A.3.4.2 26

iii) If Wmitm < k, that value of d does not give sufficient security. Increment d by 27
one and re-enter the y2 loop. 28

ii) We have now obtained the minimum value of d for the given N that gives k bits of 29
security. Check that the value of d in question has a decryption failure probability of < 2-30
k using the formula given in A.4.10. 31

iii) If the decryption failure probability is > 2-k, increase N to the next prime such that the 32
order of 2 mod N is (N-1) or (N-1)/2 and re-enter the d loop 33

iv) Return d. 34

2) Calculate the “goodness” of the parameter set (N, d, q) using the chosen metric. 35

3) Increase N to the next prime such that the order of 2 mod N is (N-1) or (N-1)/2 and re-enter 36
the d loop 37

e) Output the stored (N, d, q) that give the best score under the chosen metric. 38

IEEE P1363.1/D10, July 2008

60

The parameter sets in this standard were generated to minimize running time and to minimize size. With 1
this parameter generation algorithm it is possible to generate parameters that satisfy arbitrary performance 2
criteria, such as “the fastest operations with a key size of less than 5000 bits”. 3

A.6 Possible Parameter Sets 4

This section defines specific sets of parameters for the encryption scheme (SVES) that give a specific level 5
of security according to the metrics in this standard. 6

A.6.1 Size-Optimized 7

These parameter sets are optimized for size at a given security level. 8

A.6.1.1 ees401ep1 9

This parameter set is suitable for use at the 112-bit security level 10

Table 2 – ees401ep1
N = 401
p = 3
q = 2048
Key generation: KGP-3 with
 df = 113
 dg = 133
lLen = 1
db = 112
maxMsgLenBytes = 60
bufferLenBits = 600
bufferLenTrits = 400
dm0 = 113
MGF-TP-1 with
 SHA-1 (MGF)
BPGM2 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 113
 c = 11
 minCallsR = 32
 minCallsMask = 9
OID = 00 02 04
pkLen = 114

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 11
happening with a legimitately generated m’ is 0.023276. 12

A.6.1.2 ees449ep1 13

This parameter set is suitable for use at the 128-bit security level 14

Table 3 – ees449ep1

IEEE P1363.1/D10, July 2008

61

Table 3 – ees449ep1
N = 449
p = 3
q = 2048
Key generation: KGP-3 with
 df = 134
 dg = 149
lLen = 1
db = 128
maxMsgLenBytes = 67
bufferLenBits = 672
bufferLenTrits = 448
dm0 = 134
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 134
 c = 9
 minCallsR = 31
 minCallsMask = 9
OID = 00 03 03
pkLen = 128

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 1
happening with a legimitately generated m’ is 0.10411. 2

A.6.1.3 ees653ep1 3

This parameter set is suitable for use at the 192-bit security level 4

Table 4 – ees653ep1
N = 653
p = 3
q = 2048
Key generation: KGP-3 with
 df = 194
 dg = 217
lLen = 1
db = 192
maxMsgLenBytes = 97
bufferLenBits = 976
bufferLenTrits = 652
dm0 = 194
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 194
 c = 11
 minCallsR = 34
 minCallsMask = 9
OID = 00 05 03
pkLen = 192

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 5
happening with a legimitately generated m’ is 0.043282. 6

IEEE P1363.1/D10, July 2008

62

A.6.1.4 ees853ep1 1

This parameter set is suitable for use at the 256-bit security level 2

Table 5 – ees853ep1
N = 853
p = 3
q = 2048
Key generation: KGP-3 with
 df = 268
 dg = 284
lLen = 1
db = 256
maxMsgLenBytes = 126
bufferLenBits = 1272
bufferLenTrits = 852
dm0 = 268
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 268
 c = 10
 minCallsR = 42
 minCallsMask = 11
OID = 00 06 03
pkLen = 256

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 3
happening with a legimitately generated m’ is 0.22669. 4

A.6.2 Cost-Optimized 5

These parameter sets are optimized to give the lowest value of (operation time)2*size. 6

A.6.2.1 ees541ep1 7

This parameter set is suitable for use at the 112-bit security level 8

Table 6 – ees541ep1

IEEE P1363.1/D10, July 2008

63

Table 6 – ees541ep1
N = 541
p = 3
q = 2048
Key generation: KGP-3 with
 df = 49
 dg = 180
lLen = 1
db = 112
maxMsgLenBytes = 86
bufferLenBits = 808
bufferLenTrits = 540
dm0 = 49
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGT-MGF-1 with SHA-1 (IGF)
 dr = 49
 c = 12
 minCallsR = 15
 minCallsMask = 11
OID = 00 02 05
pkLen = 112

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 1
happening with a legimitately generated m’ is 2-133.39. 2

A.6.2.2 ees613ep1 3

This parameter set is suitable for use at the 128-bit security level 4

Table 7 – ees613ep1
N = 613
p = 3
q = 2048
Key generation: KGP-3 with
 df = 55
 dg = 204
iLen = 1
db = 128
maxMsgLenBytes = 97
bufferLenBits = 912
bufferLenTrits = 612
dm0 = 55
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 55
 c = 11
 minCallsR = 16
 minCallsMask = 13
OID = 00 03 04
pkLen = 128

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 5
happening with a legimitately generated m’ is 2-151.78. 6

IEEE P1363.1/D10, July 2008

64

A.6.2.3 ees887ep1 1

This parameter set is suitable for use at the 192-bit security level 2

Table 8 – ees887ep1
N = 887
p = 3
q = 2048
Key generation: KGP-3 with
 df = 81
 dg = 295
iLen = 1
db = 192
maxMsgByteLen = 141
bufferLenBits = 1328
bufferLenTrits = 886
dm0 = 81
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 81
 c = 10
 minCallsR = 13
 minCallsMask = 12
OID = 00 05 04
pkLen = 192

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 3
happening with a legimitately generated m’ is 2-214.25. 4

A.6.2.4 ees1171ep1 5

This parameter set is suitable for use at the 256-bit security level 6

Table 9 – ees1171ep1

IEEE P1363.1/D10, July 2008

65

Table 9 – ees1171ep1
N = 1171
p = 3
q = 2048
Key generation: KGP-3 with
 df = 106
 dg = 390
lLen = 1
db = 256
maxMsgLenBytes = 186
bufferLenBits = 1752
bufferLenTrits = 1170
dm0 = 106
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 106
 c = 10
 minCallsR = 20
 minCallsMask = 15
OID = 00 06 04
pkLen = 256

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 1
happening with a legimitately generated m’ is 2-283.49. 2

A.6.3 Speed-Optimized 3

These parameter sets are optimized for speed at a given security level. 4

A.6.3.1 ees659ep1 5

This parameter set is suitable for use at the 112-bit security level 6

Table 10 – ees659ep1

IEEE P1363.1/D10, July 2008

66

Table 10 – ees659ep1
N = 659
p = 3
q = 2048
Key generation: KGP-3 with
 df = 38
 dg = 219
lLen = 1
db = 112
maxMsgLenBytes = 108
bufferLenBits = 984
bufferLenTrits = 658
dm0 = 38
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 38
 c = 11
 minCallsR = 11
 minCallsMask = 14
OID = 00 02 06
pkLen = 112

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 1
happening with a legimitately generated m’ is 2-219.63. 2

A.6.3.2 ees761ep1 3

This parameter set is suitable for use at the 128-bit security level 4

Table 11 – ees761ep1
N = 761
p = 3
q = 2048
Key generation: KGP-3 with
 df = 42
 dg = 253
lLen = 1
db = 128
maxMsgLenBytes = 125
bufferLenBits = 1136
bufferLenTrits = 760
dm0 = 42
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 42
 c = 12
 minCallsR = 13
 minCallsMask = 16
OID = 00 03 05
pkLen = 128

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 5
happening with a legimitately generated m’ is 2-258.64. 6

IEEE P1363.1/D10, July 2008

67

A.6.3.3 ees1087ep1 1

This parameter set is suitable for use at the 192-bit security level 2

Table 12 – ees1087ep1
N = 1087
p = 3
q = 2048
Key generation: KGP-3 with
 df = 63
 dg = 362
lLen = 1
db = 192
maxMsgLenBytes = 178
bufferLenBits = 1624
bufferLenTrits = 1086
dm0 = 63
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 63
 c = 13
 minCallsR = 13
 minCallsMask = 14
OID = 00 05 05
pkLen = 192

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 3
happening with a legimitately generated m’ is 2-357.90. 4

A.6.3.4 ees1499ep1 5

This parameter set is suitable for use at the 256-bit security level 6

Table 13 – ees1499ep1

IEEE P1363.1/D10, July 2008

68

Table 13 – ees1499ep1
N = 1499
p = 3
q = 2048
Key generation: KGP-3 with
 df = 79
 dg = 499
lLen = 1
db = 256
maxMsgLenBytes = 247
bufferLenBits = 2240
bufferLenTrits = 1498
dm0 = 79
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 79
 c = 13
 minCallsR = 17
 minCallsMask = 19
OID = 00 06 05
pkLen = 256

NOTE— If a message representative m’ has fewer than dm0 1s, -1s, or 0s, it must be rejected. The chance of this 1
happening with a legimitately generated m’ is 2-440.09. 2

A.7 Security levels of Parameter Sets 3

A.7.1 Assumed security levels versus current knowle dge 4

These security considerations have noted several places where the assumptions used to generate the 5
parameter sets are more cautious than the best attacks that are currently known. As a result of this, the 6
parameter sets given in this standard for use with a certain security level k would in fact have a security 7
level k’ >k against an attacker using the best techniques known in July 2008. This section summarizes the 8
assumptions that have been made that favour the attacker, and compares the known July 2008 security 9
levels of the parameter sets with the security levels for which those parameter sets are recommended. 10

 11

IEEE P1363.1/D10, July 2008

69

Area Current experimental strength Assumed strength
Lattice reduction time t = 0.4750/ δ + 3 ln (1/ δ) – 123.58 t = 0.2/ δ + 3 ln (1/ δ) – 50
Combinatorial search
time for c1 1s, c2 -1s
in a space of size K

 −

2/2/

2/

2/

2/

2

2

1

1

2

1

1

c

c

c

c
p

c

cK

c

K

s

 −

2/2/

2/

2/

2/

2

2

1

1

2

1

1

c

c

c

c
p

c

cK

c

K

s

Time to perform Babai
reduction

N2 N

Psplit

 −

 −

⋅

−
−−−

−
−

=

2

1

1

2

1

122

11

11
1,

)(

c

cN

c

N

c

cK

c

K

cd

cdKN

cd

KN

Psplit

Psplit,N = 1 – (1 – Psplit,1)
N.

Table 14 Assumptions used to generate parameters in this 1
standard vs current best known attacks 2

Parameter set N q df Known strength Recommended security
level

ees401ep1 401 2048 113 154.88 112
ees541ep1 541 2048 49 141.766 112
ees659ep1 659 2048 38 137.861 112
ees449ep1 449 2048 134 179.899 128
ees613ep1 613 2048 55 162.385 128
ees761ep1 761 2048 42 157.191 128
ees653ep1 653 2048 194 276.736 192
ees887ep1 887 2048 81 245.126 192
ees1087ep1 1087 2048 63 236.586 192
ees853ep1 853 2048 268 376.32 256
ees1171ep1 1171 2048 106 327.881 256
ees1499ep1 1499 2048 79 312.949 256

Table 15 Strengths of recommended parameter sets in this 3
standard vs best current attacks 4

A.7.2 Potential research 5

As detailed above, the parameter sets in this standard are designed to be secure against incremental 6
improvements in attack techniques. As these improvements occur, future versions of the standard will track 7
the “current known” strength of each parameter set as it descends towards the recommended security level. 8

There are potential breakthroughs in research that have not been considered in generating these parameter 9
sets, because it is not clear that these breakthroughs will ever come. Such breakthroughs, which would 10
require an in-depth re-evaluation of the security of the algorithm, include: 11

 Improvement in lattice reduction techniques for the hybrid case beyond the current extrapolation 12
line 13

 A sub-exponential or otherwise massively improved attack on the whole NTRU lattice 14

 An improvement in the reduction step of the meet-in-the-middle phase of the hybrid attack that 15
would allow an attacker to significantly increase p_s. 16

IEEE P1363.1/D10, July 2008

70

Annex B 1

(informative) 2

Bibliography 3

[B1] M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reductions, in Proc. of 30th 4
STOC, ACM, 1998. 5

[B2] M. Ajtai, C. Dwork, A public-key cryptosystem with worst case/average case equivalence. In Proc. 6
29th ACM Symposium on Theory of Computing, 1997, 284-293. 7

[B3] M. Ajtai, R. Kumar, D. Sivakumar, A sieve algorithm for the shortest lattice vector problem, 33rd 8
ACM Symposium on Theory of Computing, 2001. 9

[B4] ANSI INCITS 4-1986 (R2002), Information Systems — Coded Character Sets — 7-Bit American 10
National Standard Code for Information Interchange (7-Bit ASCII). 11

[B5] ANS X9.42-2001, Public Key Cryptography for the Financial Services Industry: Agreement of 12
Symmetric Keys Using Discrete Logarithm Cryptography. 13

[B6] ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation. 14

[B7] ANS X9.63-2002, Public Key Cryptography for the Financial Services Industry: Key Agreement and 15
Key Transport Using Elliptic Curve Cryptography. 16

[B8] ANS X9.71-2000, Keyed Hash Message Authentication Code (MAC). 17

[B9] L. Babai, On Lovasz lattice reduction and the nearest lattice point problem, Combinatorica, vol.~6, 18
1986, 1--13 19

[B10] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among Notions of Security for 20
Public-Key Encryption Schemes. In H. Krawczyk, editor, Advances in Cryptology – Crypto ’98, pp. 26 – 21
45. Springer Verlag, 1998. 22

[B11] S. Blake-Wilson and Alfred Menezes. Authenticated Diffie-Hellman key agreement protocols 23
Proceedings of the 5th Annual Workshop on Selected Areas in Cryptography (SAC '98), Lecture Notes in 24
Computer Science, 1556 (1999), 339-361. 25

[B12] J. Blömer, J.-P. Seifert, On the Complexity of Computing Short Linearly Independent Vectors and 26
Short Bases in a Lattice, STOC '99 27

[B13] J. Buchmann, C. Ludwig, Cryptology ePrint Archive Report 2005/072: Practical Lattice Basis 28
Sampling Reduction. 29

[B14] J.-Y. Cai, Some recent progress on the complexity of lattice problems, in Proc. FCRC, 1999. 30

[B15] J.-Y. Cai, The complexity of some lattice problems, in Algorithmic Number Theory – Proceedings 31
of ANTS IV, Leiden, W. Bosma, ed., Lecture Notes in Computer Science, Springer-Verlag. 32

[B16] J.-Y. Cai, T.W. Cusick, A lattice-based public key cryptosystem, Information and Computation 151 33
(1999), 17-31. 34

[B17] J.-Y. Cai, A.P. Nerukar, An improved worst-case to average-case reduction for lattice problems, 35
Proc. 38th Symposium on Foundations of Computer Science, 1997, 468-477 36

[B18] Consortium for Efficient Embedded Security, Efficient Embedded Security Standard (EESS) #1 37
(http://www.ceesstandards.org). 38

[B19] D. Coppersmith, A. Shamir, "Lattice Attacks on NTRU", Advances in Cryptology — Eurocrypt '97, 39
Lecture Notes in Computer Science 1233, Springer-Verlag, 1997, 52-61. 40

IEEE P1363.1/D10, July 2008

71

[B20] Dinur, G. Kindler, S. Safra, Approximating CVP to within almost-polynomial factors is NP-hard, 1
Proc. 39th Symposium on Foundations of Computer Science, 1998, 99-109 2

[B21] P. van Emde Boas, Another NP-complete problem and the complexity of computing short vectors in 3
a lattice, Technical Report, Mathematische Instuut, University of Amsterdam, 1981. 4

[B22] Roger Fischlin, Jean-Pierre Seifert. Tensor-based trapdoors for CVP and their applications to public 5
key cryptography, in Cryptography and Coding, Lecture Notes in Computer Science 1746, Spring-Verlag, 6
1999, 244-257. 7

[B23] C. Gentry, Key Recovery and Message Attacks on NTRU-Composite, Proc. EUROCRYPT 2001, 8
Lecture Notes in Computer Science, Springer-Verlag, 2001 9

[B24] O. Goldreich, S. Goldwasser, On the limits of non-approximability of lattice problems, Proc. 39th 10
Symposium on Foundations of Computer Science, 1998, 1-9 11

[B25] O. Goldreich, S. Goldwasser, S. Halvei, Public-key cryptography from lattice reduction problems. In 12
Proc. CRYPTO'97, Lect. Notes in Computer Science 1294, Springer-Verlag, 1997, 112-131. 13

[B26] O. Goldreich, D. Micciancio, S. Safra, J.-P. Seifert, Approximating shortest lattice vectors is not 14
harder than approximating closest lattice vectors, Electronic Colloquium on Computational Complexity, 15
TR99-002, 1999 16

[B27] M. Gruber, C.G. Lekkerkerker, Geometry of Numbers, North-Holland, 1987. 17

[B28] J. Håstad. Solving Simultaneous Modular Equations of Low Degree. SIAM Journal of Computing, 18
17, pp. 336 – 341. 1988. 19

[B29] C. Heckler, L. Thiele, Complexity analysis of a parallel lattice basis reduction algorithm, Siam J. 20
Comput. 27 (1998), 1295-1302. 21

[B30] P. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, W. Whyte, Hybrid 22
Lattice reduction and Meet in the Middle Resistant Parameter Selection for NTRUEncrypt, preprint. 23

[B31] J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryptosystem, 24
Algorithmic Number Theory (ANTS III), Portland, OR, June 1998, Lecture Notes in Computer Science 25
1423, J.P. Buhler (ed.), Springer-Verlag, Berlin, 1998, 267—288 26

[B32] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J.H. Silverman, W. Whyte, NTRUSign: Digital 27
Signatures in the NTRU Lattice, CT-RSA 2003. 28

[B33] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J.H. Silverman, W. Whyte, Hybrid lattice reduction 29
and meet-in-the-middle resistant parameter selection for NTRU. Preprint, available from 30
http://grouper.ieee.org/groups/1363/lattPK/submissions.html#2007-02. 31

[B34] J. Hoffstein, J.H. Silverman, Optimizations for NTRU, Public-Key Cryptography and Computational 32
Number Theory (Warsaw, September 11-15, 2000), DeGruyter, to appear. 33

[B35] J. Hoffstein, J.H. Silverman, Random Small Hamming Weight Products with Applications to 34
Cryptography, Com2MaC Workshop on Cryptography (Pohang, Korea, June 2000), Discrete Mathematics, 35
to appear. 36

[B36] J. Hoffstein, J. Silverman, W. Whyte, NTRU Technical Report #12, v2, Estimating Breaking Times 37
for NTRU Lattices. Available from http://www.ntru.com/cryptolab/tech_notes.htm#012. 38

[B37] J. Hong, J. W. Han, D. Kwon, D. Han, Chosen-Ciphertext Attacks on Optimized NTRU, available 39
from http://eprint.iacr.org/2002/188/. 40

[B38] N. Howgrave-Graham, A Hybrid lattice reduction and meet-in-the-middle-attack against NTRU. 41
Crypto 2007. 42

[B39] N. Howgrave-Graham, Isodual Reduction of Lattices. Preprint, available from 43
http://eprint.iacr.org/2007/105 44

IEEE P1363.1/D10, July 2008

72

[B40] N. Howgrave-Graham, J. Hoffstein, J. Pipher, W. Whyte, On estimating the lattice security of 1
NTRU, available from http://www.ntru.com/cryptolab/articles.htm and http://eprint.iacr.org/2005/104. 2

[B41] N. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. Proos, A. Singer, W. Whyte, The Impact of 3
Decryption Failures on the Security of NTRU Encryption, available from 4
http://www.ntru.com/cryptolab/articles.htm 5

[B42] N. Howgrave-Graham, J.H. Silverman, A. Singer, W. Whyte, Modified Parameter Attacks: Practical 6
Attacks Against CCA2 Secure Cryptosystems, and Countermeasures. Preprint available from 7
http://eprint.iacr.org. 8

[B43] N. Howgrave-Graham, J.H. Silverman, W. Whyte, A meet-in-the-middle attack on an NTRU private 9
key, NTRU Technical Report 004, version 2, 2003. Available from 10
http://www.ntru.com/cryptolab/tech_notes.htm#004. 11

[B44] N. Howgrave-Graham, J.H. Silverman, W. Whyte, Choosing Parameter Sets for NTRUEncrypt with 12
SVES-3 and NAEP, CT-RSA 2005. 13

[B45] N. Howgrave-Graham, J.H. Silverman, A. Singer, W. Whyte, Decryption Failures and Provability: 14
SAEP+, NAEP and NTRU, available from http://www.ntru.com/cryptolab/articles.htm 15

[B46] Richard Hughes, Gary Doolen, David Awschalom, Carlton Caves, Michael Chapman, Robert Clark, 16
David Cory, David DiVincenzo, Artur Ekert, P. Chris Hammel, Paul Kwiat, Seth Lloyd, Gerard Milburn, 17
Terry Orlando, Duncan Steel, Umesh Vazirani, Birgitta Whaley, David Wineland, "A Quantum 18
Information Science and Technology Roadmap, Part 1: Quantum Computation", Report of the Quantum 19
Information Science and Technology Experts Panel, Version 2.0, April 2, 2004, Advanced Research and 20
Development Activity, http://qist.lanl.gov/pdfs/qc_roadmap.pdf 21

[B47] IEEE Std 1363-2000, Standard Specifications for Public Key Cryptography. IEEE, 2000. 22

[B48] IEEE Std 1363a-2004, Standard Specifications for Public Key Cryptography: Additional 23
Techniques. IEEE, 2004. 24

[B49] ISO/IEC 8824-1:2002. Information technology — Abstract Syntax Notation One (ASN.1): 25
Specification of basic notation. Also published as ITU-T Recommendation X.680 (2002). 26

[B50] ISO/IEC 8824-2:2002, Information technology — Abstract Syntax Notation One (ASN.1): 27
Information object specification. Also published as ITU-T Recommendation X.681 (2002). 28

[B51] ISO/IEC 8824-3:2002, Information technology — Abstract Syntax Notation One (ASN.1): Constraint 29
specification. Also published as ITU-T Recommendation X.682 (2002). 30

[B52] ISO/IEC 8824-4:2002, Information technology — Abstract Syntax Notation One (ASN.1): 31
Parameterization of ASN.1 specifications. Also published as ITU-T Recommendation X.683 (2002). 32

[B53] ISO/IEC 8825-1:2002, Information technology — ASN.1 encoding rules: Specification of Basic 33
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER). Also 34
published as ITU-T Recommendation X.690 (2002). 35

[B54] ISO/IEC 8825-2:2002, Information technology — ASN.1 encoding rules: Specification of Packed 36
Encoding Rules (PER). Also published as ITU-T Recommendation X.691 (2002). 37

[B55] ISO/IEC 8825-3:2002, Information technology — ASN.1 encoding rules: Specification of Encoding 38
Control Notation (ECN). Also published as ITU-T Recommendation X.692 (2002). 39

[B56] ISO/IEC 8825-4:2002, Information technology — ASN.1 encoding rules: XML Encoding Rules 40
(XER). Also published as ITU-T Recommendation X.693 (2002). 41

[B57] É. Jaulmes, A. Joux, “A chosen-ciphertext attack against NTRU”, Advances in Cryptology-CRYPTO 42
2000, Lecture Notes in Computer Science, Springer-Verlag, 2000 43

[B58] A. Joux, J. Stern, Lattice reduction: A toolbox for the cryptanalyst, J. of Cryptology 11 (1998), 161-44
185. 45

IEEE P1363.1/D10, July 2008

73

[B59] R. Kannan, Improved algorithms for integer programming and related lattice problems, in Proc. of 1
15th STOC, 1983, ACM, 193-206. 2

[B60] R. Kannan, Algorithmic geometry of numbers, Annual review of computer science 2 (1987), 231-3
267. 4

[B61] R. Kannan, Minkowski’s convex body theorem and integer programming, Math. Oper. Res. 12 5
(1987), 415-440. 6

[B62] P. Klein, Finding the closest lattice vector when it’s unusually close, in Proc. of SODA 2000, ACM-7
SIAM, 2000. 8

[B63] H. Koy, C.P. Schnorr, Segment LLL-reduction of lattice bases, Proceedings of Cryptography and 9
Lattices Conference (CaLC 2001), Lecture Notes in Computer Science, Springer-Verlag. 10

[B64] H. Koy, C.P. Schnorr, Segment LLL-reduction with floating point orthogonalization, Proceedings of 11
Cryptography and Lattices Conference (CaLC 2001), Lecture Notes in Computer Science, Springer-Verlag. 12

[B65] H. Krawczyk, M. Bellare and R. Canetti. IETF RFC 2104: HMAC: Keyed-Hashing for Message 13
Authentication. February 1997. 14

[B66] Greg Kuperberg, "A sub-exponential-time quantum algorithm for the dihedral hidden subgroup 15
problem?", 2003, http://arxiv.org/abs/quant-ph/0302112 16

[B67] J. Lagarias, H.W. Lenstra, C.P. Schnorr, Korkin-Zolotarev bases and successive minima of a lattice 17
and its reciprocal lattice, Combitorica 10 (1990), 333-348 18

[B68] B. LaMacchia, PhD Thesis, MIT, 1996. 19

[B69] A.K. Lenstra, H.W. Lenstra, L. Lovasz, "Factoring polynomials with polynomial coefficients", 20
Math. Annalen 261 (1982) 515-534 21

[B70] A.K. Lenstra, E.R. Verheul, Selecting Cryptographic Key Sizes, Journal of Crytology vol. 14, no. 4, 22
2001, 255-293. 23

[B71] C. Ludwig: A Faster Lattice Reduction Method Using Quantum Search, TU-Darmstadt 24
Cryptography and Computeralgebra Technical Report No. TI-3/03, revised version published in Proc. of 25
ISAAC 2003 26

[B72] A. May, Auf Polynomgleichungen basierende Public-Key-Kryptosysteme, Johann Wolfgange 27
Goethe-Universitat, Frankfurt am Main, Fachbereich Informatik. (Masters Thesis in Computer Science, 4 28
June, 1999; Thesis advisor, Dr. C.P. Schnorr) Available at: www.mi.informatik.uni-29
frankfurt.de/research/mastertheses.html 30

[B73] A. May, J.H. Silverman, ‘Dimension reduction methods for convolution modular lattices”, 31
Cryptography and Lattices Conference (CaLC 2001), Lecture Notes in Computer Science 2146, Springer-32
Verlag, 2001 33

[B74] T. Meskanen, A. Renvall, A Wrap Error Attack Against NTRUEncrypt, University of Turku 34
Technical Report TUCS 507, available from 35
http://www.tucs.fi/Research/Series/techreports/techrep.php?year=2003 36

[B75] D. Miciancio, The shortest vector in a lattice is NP-hard to approximate to within some constant, 37
Proc. 39th Symposium on Foundations of Computer Science, 1998, 92-98. 38

[B76] M. Naslund, I. Shparlinski, W. Whyte, On the Bit Security of NTRUEncrypt, Proc. Intern. 39
Workshop on Public Key Cryptography, PKC'03, Miami, USA, 2003, Lect. Notes in Comp. Sci., Springer-40
Verlag, Berlin, 2003, v.2567, 62-70. Available from http://www.ntru.com/cryptolab/articles.htm#004. 41

[B77] National Institute of Standards and Technology (NIST). AES Key Wrap Specification. Draft, 42
December 3, 2001. Available at http://csrc.nist.gov/encryption/kms/key-wrap.pdf. 43

[B78] National Institute of Standards and Technology (NIST). Special Publication 800-57, 44
Recommendation for Key Management, Part 1: General Guideline. Draft, January 2003. Available from 45
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html. 46

IEEE P1363.1/D10, July 2008

74

[B79] National Institute of Standards and Technology (NIST). Special Publication 800-56: 1
Recommendation on Key Establishment Schemes. Draft 2.0, January 2003. Available from 2
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html. 3

[B80] P. Nguyen, Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto '97, 4
Advances in Cryptology - Proceedings of CRYPTO '99, (August 15-19, 1999, Santa Barbara, California), 5
M. Wiener (ed.), Lecture Notes in Computer Science, Springer-Verlag. 6

[B81] P. Nguyen, D. Pointcheval, Analysis and Improvements of NTRU Encryption Paddings, Proc. 7
CRYPTO 2002, Lecture Notes in Computer Science, Springer-Verlag 2002. 8

[B82] P. Nguyen, D. Stehle, Floating-point LLL Revisited, Proc. of EUROCRYPT ’05. 9

[B83] P. Nguyen, J. Stern, Lattice Reduction in Cryptology: An Update, Conference on Lattices and 10
Cryptography (CaLC 2001), Lecture Notes in Computer Science 2146, Springer-Verlag 11

[B84] P. Nguyen, J. Stern, The orthogonal lattice: A new tool for the cryptanalyst, preprint 2001. 12

[B85] J. Proos, Imperfect Decryption and an Attack on the NTRU Encryption Scheme, available from 13
http://eprint.iacr.org/2003/002/. 14

[B86] O. Regev, "Quantum computation and lattice problems?", Proceedings of the 43rd Annual 15
Symposium on the Foundations of Computer Science, (IEEE Computer Society Press, Los Alamitos, 16
California, USA, 2002), pp. 520?-530. http://citeseer.ist.psu.edu/regev03quantum.html 17

[B87] O. Regev, "A Sub-Exponential Time Algorithm for the Dihedral Hidden Subgroup Problem with 18
Polynomial Space?", June 2004, http://arxiv.org/abs/quant-ph/0406151 19

[B88] J. Roch, G. Villard, Parallel gcd and lattice basis reduction, in Proc. CONPAR92, Lyon, Lecture 20
Notes in Computer Science 634, Springer-Verlag, 1992, 557-564. 21

[B89] C.-P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoretical 22
Computer Science 53 (1987), 201-224. 23

[B90] C.P. Schnorr , M. Euchner, Proc. Fundamentals of computation theory, LNCS 529, pages 68-85, 24
1991 25

[B91] C.P. Schnorr, H.H. Hoerner, "Attacking the Chor-Rivest crypto-system by improved lattice 26
reduction", Proc. Eurocrypt 1995, LNCS 921, 1-12, 1995 27

[B92] C.P. Schnorr, “Lattice Reduction by Random Sampling and Birthday Methods”, Proceedings 28
STACS 2003, Eds. H. Alt, M. Habib, Springer-Verlag, LNCS 2607, pages 145-156 29

[B93] V. Shoup. OAEP Reconsidered. In J. Kilian, editor, Advances in Cryptology – Crypto 2001, pp. 239 30
– 259. Springer Verlag, 2001. 31

[B94] V. Shoup. A Proposal for an ISO Standard for Public Key Encryption (Version 2.1). Manuscript, 32
December 20, 2001. Available from http://shoup.net/papers/. 33

[B95] V. Shoup, NTL: a Number Theory Library, available from http://www.shoup.net. 34

[B96] J.H. Silverman, Invertibility in truncated polynomial rings, NTRU Technical Report 009, 1998, 35
http://www.ntru.com. 36

[B97] J. H. Silverman, W. Whyte, Estimating Decryption Failure Probabilities for NTRUEncrypt, available 37
from http://www.ntru.com/cryptolab/articles.htm 38

[B98] J. H. Silverman, W. Whyte, Timing Attacks on NTRUEncrypt via variation in the number of hash 39
calls, NTRU Technical Report 021, 2007, available from http://www.ntru.com/cryptolab/articles.htm. 40

[B99] R.D. Silverman. A Cost-Based Security Analysis of Symmetric and Asymmetric Key Lengths. RSA 41
Laboratories’ Bulletin No. 13, April 2000. Available from http://www.rsasecurity.com.rsalabs/bulletins/. 42

[B100] Tsukiji Tatsuie, Kamiyama Hiroaki, "Efficient algorithm for the unique shortest lattice vector 43
problem using quantum oracle?", IEIC Technical Report (Institute of Electronics, Information and 44
Communication Engineers), VOL.101;NO.44(COMP2001 5-12);PAGE.9-16(2001). 45

IEEE P1363.1/D10, July 2008

75

[B101] G. Villard, Parallel lattice basis reduction, in Proc. International Symposium on Symbolic and 1
Algebraic Computation, Berkeley, ACM Press, 1992, 269-277. 2

[B102] D. Wagner, A Generalized Birthday Problem. In Proceedings of Crypto 2002. Avaialble from 3
http://www.cs.berkeley.edu/~daw/papers/genbday.html 4

