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Abstract. With any cryptanalytic time memory tradeoff algorithm,
false alarms pose a major obstacle in accurate assessment of its online
time complexity. We study the size of pre-image set under function iter-
ations and use the obtained theory to analyze the cost incurred by false
alarms. We are able to present the expected online time complexities for
the Hellman tradeoff and the rainbow table method in a manner that
takes false alarms into account. The effect of checkpoints in reducing the
cost of false alarms is also quantified.

1 Introduction

Cryptanalytic time memory tradeoffs were first introduced by Hellman [11] as
an attack on blockciphers. Since then, much progress has been made, with [1, 3–
8, 10, 12, 13, 16] being a very partial list of works contributing to the theoretic
aspects of the tradeoff algorithms. There are also numerous works on their ap-
plications and implementations. Today, the tradeoff algorithms are understood
as techniques for quickly inverting generic one-way functions, and since much of
cryptanalysis can be expressed as the process of inverting an appropriate one-way
function, time memory tradeoff technique is a valuable tool for cryptography.

Any tradeoff algorithm works in two stages. During the pre-computation
phase, the one-way function is iteratively computed and a digest of the com-
putation is stored in tables of total size smaller than the complete dictionary.
When a specific image point to be inverted is given, the online phase algorithm
is supposed to return a pre-image of the target in time shorter than exhaustive
search.

An analysis of the time and storage complexities is provided with any pub-
lished tradeoff algorithm. For example, the tradeoff curve TM2 = N2 gives the
online complexity of the original Hellman tradeoff, where N is the size of space
on which the one-way function is defined. That is, for any T and M satisfying
the tradeoff curve, the Hellman tradeoff algorithm, when run with appropriate
parameters, enables one to finds a pre-image of the inversion target in time T ,
utilizing a pre-computed table of size M .

Tradeoff curves of various tradeoff algorithms are typically true only up to
a small constant factor. This is largely due to the effects of what are called



false alarms, which make it difficult to give an exact expression for the time
complexity T . Most previous analyses of T concentrated on a certain main iter-
ative process of the online phase and the added cost of dealing with false alarms
were either neglected or roughly argued as being relatively small. For example,
the original work by Hellman gave a heuristic argument that false alarms can
increase the online computation by 50% at the most. On the other hand, the
paper presenting the rainbow table method [16], which is the tradeoff method
most widely known to the public, cites experiment results of observing 75% of
cryptanalytic effort spent on false alarms. There, concerning false alarms, only a
heuristic comparison to the distinguished point tradeoff method is given. Thus,
it is apparent that the extra cost incurred by false alarms is not well understood,
and this contributes a certain degree of uncertainty to the tradeoff curve.

The second source of obscurity in understanding the online complexity of a
tradeoff algorithm from its tradeoff curve concerns the size of the pre-computed
table. The value M in the tradeoff curve refers to the number of entries in
the pre-computed table, while in any implementation of a tradeoff algorithm,
the size of real world storage involved, rather than the number of entries, is of
significance.

Table entry count does not translate directly to storage size, since the optimal
storage size per entry is not made clear in any of the tradeoff algorithm analyses.
Depending on the tradeoff algorithm, different storage techniques are applica-
ble and some algorithms allow smaller entries to be used than others. Some of
these storage reduction techniques, such as the use of essentially short inputs,
are rather well understood, but there are less studied techniques that only the
experienced are using. For example, each table entry may simply be truncated
to a certain degree with only a small effect on the overall performance.

Thus we have two obstacles to understanding the exact online complexity
of tradeoff algorithms. Furthermore, the two issues we have mentioned are not
independent of each other. Some techniques for reducing storage, such as table
entry truncation, results in slightly increased online time, and the checkpoint
technique [1] designed to reduce the effects of false alarms requires extra storage.

The lack of understanding of the online complexities makes comparison be-
tween tradeoff algorithms difficult.1 For example, the tradeoff curve for the rain-
bow table method [16] is TM2 = 1

2N2 and this was argued as evidence of
superiority over the Hellman tradeoff by a factor of two in time complexity. But
the later work [4] asserted otherwise, mentioning difference in applicable storage
reduction techniques. So, even though the behaviors of various tradeoff algo-
rithms are known in terms of rough tradeoff curves, as the performance of these
tradeoff algorithms differ mostly by a small factor, a fair comparison between
algorithm performances is not a straightforward task.

1 Contrary to what was said above, this author has experienced through reviews re-
ceived on previous papers concerning the tradeoff technique, that some cryptogra-
phers believe our understanding of the tradeoff algorithms to be rather complete.
Many clear-cut and strong statements on which tradeoff algorithm is better were
received, but these did not point in the same direction.
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As a first step in overcoming this difficulty, in this work, we give a more
accurate assessment of the online time complexity, taking the effects of false
alarms into account. The original Hellman tradeoff and the rainbow table method
are considered. To the best of our knowledge, the only previous attempt at a
rigorous analysis of false alarms appears in [1]. The work concentrates on the
very special case of maximal perfect rainbow tables, which is difficult to use in
practice, due to its high pre-computation cost. The current work will provide a
realistic view of the cost incurred by false alarms and the resulting total online
time complexity.

The rest of the paper is organized as follows. We start with a very brief
review of the main concepts surrounding time memory tradeoffs in the next
section. In Section 3, we consider an image set corresponding to a random input
set under function iterations and study its pre-image size. The results obtained
here are used to analyze the cost of false alarms in Section 4. This is the main
contribution of this paper. Then, in Section 5, we show how the knowledge of
iterated pre-image size can be used to study the effects of checkpoints in reducing
false alarm costs. The final section summarizes this paper and provides comments
on possible future developments of this work.

2 Tradeoff algorithms

A tradeoff algorithm is a method for inverting a generic one-way function. One is
given a one-way function F : N → N , acting on a finite set N , together with an
image point F (x) ∈ N , and is asked to find x. There are also situations where one
is given an image point y ∈ Im(F ) and asked to find an x ∈ N such that F (x) =
y. The difference between the two problems, which has mostly been ignored in
the literature, is whether the objective is to obtain the solution or any solution
to the inversion problem. For example, when attacking a certain password login
system, one may be happy with any pre-image of the target password hash,
but if the same password is suspected of being used in multiple systems with
different hashing functions, the correct pre-image from one of the systems would
be much more useful. In this work, we focus on the first problem, as it appears
more naturally, but the second problem can be treated very similarly.

We shall not explain the explicit tradeoff algorithms and ask readers to refer
to the original papers on Hellman tradeoff [11] and the rainbow tables [16].
Here, to set our working grounds, we will quickly review and fix some of the
basic terminologies. Notation as given in this section will be used throughout
this paper.

A Hellman chain, for a one-way function F : N → N , is of the form

SPi = Xi,0
F−→ Xi,1

F−→ · · · F−→ Xi,t = EPi (1 ≤ i ≤ m). (1)

We omit the reduction functions, as we shall deal with a single Hellman table.
The complete set of m chains, consisting of t + 1 columns and m rows, is a
Hellman matrix. In most cases, the parameters t and m are chosen to satisfy

3



the matrix stopping rule mt2 = |N |. Likewise, we have the notions of a rainbow
chain

SPi = Xi,0
F1−→ Xi,1

F2−→ · · · Ft−→ Xi,t = EPi (1 ≤ i ≤ m), (2)

a rainbow table, and a rainbow matrix. It is usual to take mt = α|N | with α close
to 1. A rainbow table is perfect if all its ending points are distinct. A maximal
perfect rainbow table is one containing the maximal number of possible rows.

If the current end F k+1(x) of the online chain

F (x) F−→ F 2(x) F−→ · · · F−→ F k+1(x)

of length k matches an ending point EPi, we have an alarm. If an alarm involving
EPi shows the property F t−k−1(SPi) 6= x, it is said to be a false alarm. Notice
that this condition checks whether or not the correct x has been found, and is
a weaker condition than F t−k(SPi) 6= F (x). There is a corresponding notion of
false alarms for rainbow tables. False alarms are caused by merges between the
online chain and the pre-computed chain.

Since we now have the basic terminology ready, let us briefly return to the
the correct versus any pre-image versions of the inversion problem, discussed at
the start of this section. The former problem corresponds to looking for x in
the first t columns of the pre-computation matrix, i.e., among all matrix entries
excluding the ending points. The latter problem is solved if y = F (x) is found
among matrix entries excluding the starting points. This difference affects the
overall success probability of the tradeoff algorithm and needs to be kept in mind
for any rigorous analysis of tradeoff algorithms.

Later, we shall deal with checkpoints [1]. This is a technique for resolving false
alarms without regenerating the pre-computed chain, applicable to both Hellman
and rainbow methods. The idea is to choose a fixed, say c-th, column of the pre-
computation matrix and supplement a 1-bit information about Xi,c, for each i,
in the pre-computed table. When an alarm sounds during the online phase, the
corresponding value is computed for the online chain. If the online chain and
the pre-computed chain had merged somewhere between the checkpoint and the
ending point, there is a possibility that a comparison of checkpoint information
will filter out the false alarm.

Throughout this paper, the one-way function to be inverted will always be
written as F : N → N , where N is a set of size N , and any Hellman matrix,
denoted by HM, or a rainbow matrix, denoted by RM, will always consist of t + 1
columns and m rows.

3 Pre-image under function iteration

In this section, we present information concerning the size of a pre-image set
under function iterations. While this paper focuses on time memory tradeoffs,
we expect the results of this section to find other applications.
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3.1 Ratio of i-nodes under function iteration

Given a random mapping F : N → N , let us denote k iterations of F by
F k = F ◦ · · · ◦F . It is well known [9, 15] that if m0-many distinct random inputs
are subject to F t, the expected image size mt can be computed through the
recursion

mk+1

N
= 1− exp

(− mk

N

)
. (3)

For example, using m0 = N , one can state that 1 − 1
e of the total space will

belong to the image space of F . We will use the closed form approximation

mk

N
≈ 1

N/m0 + k/2
, (4)

which can be found2 in [2].
Recall that an i-node is an element of N with exactly i-many pre-images.

For a random mapping F : N → N , it is known [9] that the ratio of i-nodes
among N is expected to be

pi =
1
e
· 1
i!

, (5)

as long as the set size N is large compared to i. Notice that p0 = 1
e is in good

agreement with our previous figure of 1− 1
e for the total image ratio.

For each non-negative integers i and k, let us write

Ri,k(F ) =
{
y ∈ N | y is an i-node under F k

}
, (6)

Di,k(F ) =
{
x ∈ N | F k(x) ∈ Ri,k(F )

}
(7)

to denote the set of i-nodes and pre-images of i-nodes, associated to the map-
ping F k. The characters D and R reflect the role of N as domain and range,
respectively. We shall denote the i-node ratio under F k by

pi,k =
|Ri,k(F )|

N
. (8)

The values of pi,1 has already been stated as pi in (5).

Remark 1. A more technically correct definition for the above would be to ex-
press this as the expectation over all functions F : N → N , but we simply take
F to be a random function and refrain from going into more complicated expres-
sions. Likewise, many of our future statements presenting explicit values should
be understood as expectation over all function F : N → N , or equivalently, for
a random function, rather than for any fixed function.

We now define the formal power series

Pk(x) =
∞∑

i=0

pi,kxi, (9)

2 The statement in the referenced paper contains typographic errors.
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for each non-negative integer k. For now, it is not clear if this is convergent for a
real number input x. To answer this, we start with the following lemma, which
allows an inductive approach.

Lemma 1. The formal power series concerning the various i-node ratios satisfy
the recurrence relation

P0(x) = x, Pk+1(x) = Exp
(Pk(x)− 1

)
,

where Exp(x) is the formal power series
∑∞

i=0
1
i!x

i.

Proof. As F 0 is the identity map, we have

pi,0 =

{
1 if i = 1,
0 otherwise,

(10)

and we have P0(x) = x. One can also substitute pi,1, as given by (5), to obtain
P1(x) = Exp(x− 1), showing our claim to be true for at least the initial k.

To understand the general situation, let us fixed a single j-node for F and
consider its j-many pre-images. If the number of pre-images under F k of these
j-many nodes add up to i, then the original j-node for F is an i-node for F k+1.
In fact, any i-node for F k+1 is some j-node for F , so it should not be too hard
to convince oneself that

pi,k+1 =
∞∑

j=0

pj

( ∑

i1+···+ij=i

pi1,kpi2,k · · · pij ,k

)
,

with appropriate interpretation taken for empty products and the i = 0 case.
Now, notice that the coefficient of xi in Pk(x)j may be expressed as

∑

i1+···+ij=i

pi1,kpi2,k · · · pij ,k,

so that

Pk+1(x) =
∑

i

{ ∑

j

pj

( ∑

i1+···+ij=i

pi1,kpi2,k · · · pij ,k

)}
xi

=
∑

j

pj

∑

i

( ∑

i1+···+ij=i

pi1,kpi2,k · · · pij ,k

)
xi

=
∑ 1

e

1
j!
· Pk(x)j

= Exp
(Pk(x)− 1

)
.

This completes the proof. ut
Recall that, for any real number x, the formal power series Exp(x) converges

to the real value exp(x). Hence the above lemma shows that the formal power
series Pk(x) is convergent for any real number x and non-negative integer k. We
may now view Pk(x) as a function defined on the set of all real numbers.
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Lemma 2. The formal power series Pk(x), seen as a function, can be approxi-
mated as

Pk(x) ≈ 1− 2(1− x)
2 + k(1− x)

,

for x ≤ 1.

Proof. The x = 1 case is trivially valid by Lemma 1. Let us temporarily use the
notation Qk(x) = 1 − Pk(x). Then the recurrence relation of Lemma 1 can be
written as

Q0(x) = 1− x, Qk+1(x) = 1− exp
(−Qk(x)

)
,

and x < 1 implies Qk(x) > 0 for all k.
Comparing this recurrence relation with (3) shows that we can use the ap-

proximation

Qk(x) ≈ 1
1/Q0(x) + k/2

,

as given by (4). The approximation is accurate when 0 < Qk(x) < ε is not
too big, which corresponds to 1 − ε < x < 1. We arrive at our claim by re-
substituting Q0(x) = 1−x and Qk(x) = 1−Pk(x) back into this approximation
and simplifying the result. ut

Thus, we have obtained a closed form approximation for Pk(x), which contains
information about pi,k.

3.2 Equivalence under function iterations

Let us define two points x, x′ ∈ N to be F k-equivalent, if F k(x) = F k(x′), which
is trivially an equivalence relation. As an example use of this notion, recalling the
notation (7), one can say that any point of Di,k(F ) is F k-equivalent to i-many
points, including itself.

In this subsection, we will work out the number of points that are F k-
equivalent to a set of m randomly chosen points. The single point case is rela-
tively easy.

Lemma 3. A random point of N is expected to be F k-equivalent to k+1 points.

Proof. A point of N is F k-equivalent to i-many points if and only if it belongs
to Di,k. Since |Di,k| = i · |Ri,k|, a random point of N belongs to Di,k with
probability i·pi,k. Hence, a single random point is expected to be F k-equivalent
to ∑

i

i(i·pi,k) =
∑

i

i(i− 1)pi,k +
∑

i

ipi,k = P ′′k (1) + P ′k(1) (11)

points.
Now, Lemma 1 shows Pk(1) = 1, for all k, and P ′0(x) = 1. We can also

obtain P ′k+1(x) = P ′k(x) exp
(Pk(x) − 1

)
from the same lemma, which leads to

P ′k(1) = 1, for all k. Differentiation of what we already have shows P ′′k+1(x) =
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(P ′′k (x) + P ′k(x)2
)
exp

(Pk(x)− 1
)
, which implies P ′′k+1(1) = P ′′k (1) + 1. Starting

with P ′′0 (1) = 0, we inductively obtain P ′′k (1) = k. Thus, we have P ′′k (1)+P ′k(1) =
k + 1 and our claim is proved.

The last equality can also be obtained by directly differentiating the approx-
imation for Pk(x), given by Lemma 2. ut

Let x ∈ N be random and consider y = F k(x). By substituting m0 = N
into (4), we can state that the ratio of the complete F k-image space size over
the input space size is 2

k+2 . It is tempting to say that, on average, image point
y will have ( 2

k+2 )−1 = k
2 + 1 pre-images, which implies that x is F k-equivalent

to k
2 + 1 points. This argument disagrees with the k + 1 given by Lemma 3. The

apparent contradiction arises from the careless use of randomness. The random
choice of x leads to non-uniform choice among the image points. Those image
points with larger pre-image sets are more likely to be taken than other image
points. In the above lemma, we computed the pre-image size of a random-input
image. This is different from the pre-image of a random point taken from the
image space.

We may conclude from the above lemma that, for small m, the number of
points F k-equivalent to m random points will be m(k+1). But when m is large,
this is no longer true, as some of the m points will be equivalent to each other.

Lemma 4. Let D ⊂ N be a set of m̄ randomly chosen points. The number of
points F k-equivalent to points of D is expected to be approximately

m̄
(
k +

m̄k2

4N
+ 1

)(
1 +

m̄k

2N

)−2
.

Proof. Let us consider the process of choosing points of the F k-image space
through random selection of points in its domain N . As discussed earlier, since
the probability of an image point being selected will depend on the number of
its pre-images, this will not produce a random distribution of image points. On
the other hand, note that random selection within Di,k will lead to uniform
distribution in the corresponding image space Ri,k.

Since |Di,k|
N = i ·pi, the number of elements belonging to D∩Di,k is expected

to be m̄ · i · pi,k. Modeling F as a random function, we can interpret

F k(D ∩ Di,k) = F k(D) ∩Ri,k

as a set obtained by drawing (m̄ · i · pi,k)-many points from Ri,k, uniformly at
random, with replacements. Thus the size of this image set is expected to be
approximately

|Ri,k|
{

1−
(
1− 1

|Ri,k|
)m̄·i·pi,k

}

≈ Npi,k

{
1−

(
1− 1

Npi,k

)m̄·i·pi,k
}
≈ Npi,k

{
1−

(
1− m̄

N

)i}
.
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To find the total number of points F k-equivalent to D, noting that {Di,k}∞i=0

is a partition of the domain, one sums the number of pre-images of F k(D∩Di,k)
to obtain

∑

i

i ·Npi,k

{
1−

(
1− m̄

N

)i}
= N

{
P ′k(1)− (

1− m̄

N

)P ′k
(
1− m̄

N

)}
.

Now, referring to Lemma 2, one can substitute P ′k(x) ≈ (
2

2+k(1−x)

)2 into this
equation and arrive at our claim after simplification. ut

For applications to time memory tradeoffs, it is more useful to have the above
equivalence count given in terms of the final image space size rather than the
input size.

Proposition 1. Let D ⊂ N be a set of randomly chosen points. If the number
of distinct elements in R = F k(D) is m, then the pre-image of R under F k is
expected to be of size

m
(
1 + k − mk

2N
− mk2

4N

)
.

Proof. The relation (4), giving iterated image sizes, can be rewritten in the form

m0 ≈ N

N/mk − k/2

and interpreted as follows: To obtain mk distinct image points under F k, one
needs to use m0-many distinct random inputs, where m0 is as given by this
equation.

Thus, we are looking for the number of points F k-equivalent to points of D,
with |D| ≈ N

N/m−k/2 . One can now substitute m̄ = N
N/m−k/2 into the equation

of Lemma 4 and simplify to arrive at our claim. ut

We emphasize that the randomness in this proposition refers to the selection of
inputs rather than to the selection within the image space. A much shorter, but
less informative, proof for this proposition is given in Appendix A.

4 Cost of false alarms

Let us use results of the previous section to quantify the effects of false alarms.
We shall show that for the Hellman tradeoff and the perfect rainbow tables
under typical parameters, 14.3% and 25.8%, of the total online time is spent in
resolving false alarms, respectively. Non-perfect rainbow tables are also analyzed.

As with any analysis of tradeoff algorithms, we shall model F as a random
function during our arguments.
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4.1 Hellman tradeoff

Suppose, for the moment, that m0t
2 = αN , with α not very large. Then, ap-

proximation (4) shows

mt ≈ N

N/m0 + t/2
=

m0

1 + α/2t
= m0

{
1− α

2t
+

( α

2t

)2 − · · ·
}
≈ m0, (12)

implying that the number of collisions among ending points is very small com-
pared to the total number of rows. Thus the behavior of the tradeoff algorithm
will depend very little on whether or not we replace the colliding ending points
with new chains. Hence, in our further discussions of the Hellman tradeoff, we
shall assume that the Hellman matrix was created with m0 = m distinct starting
points and that the resulting mt = m ending points are distinct. This insures,
in particular, that all entries within each column of the Hellman matrix are
distinct.

Hellman tradeoff utilizes multiple tables with usually one of these containing
the correct answer. Unless all the tables are processed in parallel, we will end
up producing the full length online chain for most of the Hellman tables that
we start search on. So we shall state our cost claims in terms of single table
processing, rather than for the whole online phase. If needed, one can readily
obtain the expected total cost from the success probability of a single table and
the cost per table.

The following is evident from the Hellman tradeoff algorithm itself.

Proposition 2. Disregarding the effects of false alarms, full online processing
of a single Hellman table requires t− 1 applications of F .

For 0 ≤ k ≤ t, the k-th column of a Hellman matrix HM will be denoted by
HMk = {Xi,k}m

i=1, where Xi,k is as given by (1). We shall write F−j(HMt) for the
set of pre-images under F j of the ending points HMt.

Lemma 5. Let mt2 = αN . For each 0 < k ≤ t, the size of the pre-image set
F−k(HMt) is approximately m(k + 1), when α

t is small.

Proof. Under our conditions, we have

m(1 + k − mk

2N
− mk2

4N
) ≈ m(1 + k − m

4N
− mk

2N
− mk2

4N
)

= m(1 + k)
{

1− m(1 + k)
4N

}
≈ m(1 + k).

According to Proposition 1, our claim is true for at least the k = t case. Dealing
with the k < t case is an exercise in the definition of a random function. Consider
a set of m fixed ending points and let D be the set of random inputs used in
creating the m ending points. Since F t−k(D) is a set of points producing m
distinct points under F k, it suffices to argue that F t−k(D) is a random set of
elements from N . But this randomness is a consequence of F being modeled as
a random function. ut
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It is now possible to compute the extra work incurred by false alarms.

Proposition 3. Let mt2 = αN . During the full online processing of a single
Hellman table, false alarms are expected to cause approximately α

6 t extra appli-
cations of F .

Proof. Let y = F (x) be given as the target image point. For each 0 < k ≤ t,
the k-th iteration of the online phase, i.e., the search of F k−1(y) among the
ending points, causes a false alarm if and only if x ∈ F−k(HMt) but x /∈ HMt−k.
By Lemma 5 and the assumption on ending point distinctness, the probability
of such an incident happening is m(k+1)−m

N .
Each false alarm causes (t − k + 1) iterations of F to be executed before

it can be dismissed. Thus, the expected number of F iterations spent on false
alarm treatment throughout the full processing of a single Hellman table can be
calculated to be

∑

0<k≤t

(t− k + 1)
mk

N
=

t(t + 1)(t + 2)
6

· m

N
.

It now suffices to apply the condition mt2 = αN . ut

We have tested the above claim with small parameters satisfying mt2 = N .
When averaged over multiple tables and multiple inversion targets, the number
of false alarms observed from the (t − k)-th column was linear in k and almost
indistinguishable from our theory.

Note that the relative cost of false alarms is very sensitive to α. Under the
matrix stopping rule mt2 = N , approximately 1

6 t iterations of F are spent on
false alarms per Hellman table. In comparison, Proposition 2 states that the
online chain generation requires approximately t iterations of F per Hellman
table. So if the multiple Hellman tables are processed sequentially, false alarms
will cause 1

6 ≈ 16.7% increase in online time. In other words, 1
7 ≈ 14.3% of the

total online time is related to false alarms.
Notice that (t−k+1)mk

N , the term being summed in the above proof, viewed
as a function of k, attains its maximum value near k = t

2 . So, the effects of false
alarms is at its greatest when the online chain has reached half its full length.
Assuming that the correct answer is found after going through half of the pre-
computed data, this implies that we get the same 1

6 factor increase in online time
due to false alarms, even when all the Hellman tables are processed in parallel.

4.2 Perfect rainbow table

We shall concentrate on analyzing cost from a single perfect rainbow table. At
the end of this subsection, we briefly explain how to work with multiple tables.
The perfect rainbow table is not assumed to (but may) contain the maximal
number of possible rows. While maximal perfect tables are easier to analyze,
building them are very costly so that near maximal tables are used in practice.
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Recall the notation (2). We shall write F? when referring to multiple Fj

without explicitly specifying the indices. To deal with rainbow tables, we redefine
F k = F?+k−1 ◦ · · · ◦F?+1 ◦F? to be any k iterations of consecutive F?. The proof
of Lemma 2 remains valid for this new F k and leads to Proposition 1 being true
for the new F k.

Disregarding the effects of false alarms, the rainbow table method requires
approximately 1

2 t2 applications of F? in fully processing a single table, but as
there could be early exits from the online phase algorithm, which occurs when
the correct answer to the inversion problem is found, we give a measure that
reflects the realistic use of rainbow tables.

Proposition 4. When mt = αN , disregarding the effects of false alarms, online
processing of a single perfect rainbow table is expected to require approximately

{
1− (1 + α)e−α

}( t

α

)2

applications of F? in creating the online chain.

Proof. The inversion target y is in the last column with probability m
N . Checking

for this requires no computation. This fails with probability 1 − m
N , and in the

second iteration, a single application of Ft−1 is required. At the third iteration,
which will be reached with probability (1 − m

N )2, application of Ft−2 ◦ Ft−1, or
two applications of F?, is required.

Thus, the expected number of F? iterations can be written as

∑

0<k≤t

(k − 1)
(
1− m

N

)k−1

. (13)

Simplification of this, using the approximation (1 − m
N )t ≈ exp(−mt

N ) = e−α,
results in

{(
1− α

t

)− (
1− α

t
+ α

)
e−α

}( t

α

)2

.

Collection of the highest terms in t from this equation is the claimed count. ut

We can similarly state the extra work caused by false alarms. The k-th column
of the rainbow matrix is denoted by RMk, and we shall write F−j(RMt) for the set
of pre-images under F j of the ending points.

Proposition 5. When mt = αN , the online processing of a single perfect rain-
bow table is expected to incur approximately

{
(2− α2)e−α − 2(1− α)

}( t

2α

)2

applications of F? in dealing with false alarms.
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Proof. As was noted in the proof of Proposition 4, the k-th (0 < k ≤ t) iteration
is executed with probability (1 − m

N )k−1. As in the proof of Proposition 3, the
k-th iteration sounds a false alarm if and only if x ∈ F−k(RMt) \ RMt−k. As in
the proof of Lemma 5, we may view RMt−k as an F k-image of random inputs.
Then, Proposition 1 can be applied to shows that the above event happens with
probability m

N (k − mk
2N − mk2

4N ). Each verification of whether we are dealing with
a false alarm requires (t− k + 1) iterations of F?.

The expected number of extra F? iterations required to deal with false alarms
is thus ∑

0<k≤t

(t− k + 1) · m

N

(
k − mk

2N
− mk2

4N

)
·
(
1− m

N

)k−1

. (14)

This simplifies to

1
4α2





t2
(− 2(1− α) + (2− α2)e−α

)

+ tα
(
(4− α)− (4 + 2α− α2)e−α

)

+ 2α2
(− 1 + (1 + α)e−α

)





,

when the approximation (1− m
N )t ≈ exp(−mt

N ) = e−α is used. The highest terms
in t from this equation is what our claim states. ut

We have tested the above claim with small parameters, averaging over mul-
tiple tables and multiple inversion targets. The number of false alarms occurring
at each column was almost indistinguishable from our theory. A graph of this is
provided as Figure 2 in Section 5.2.

The proposition shows that the relative cost of false alarms is very sensitive
to α = mt

N . When the parameters satisfy mt = N , iterations stated by Propo-
sition 4 is approximately (1 − 2

e )t2 and the iterations due to false alarms given
by Proposition 5 is approximately 1

4e t2. This translates to 34.8% extra F? iter-
ations due to false alarms. In other words, 25.8% of the online time is spent in
resolving false alarms. More such information can be found in Table 4, given in
Section 5.2.

It is easy to translate results of this section to the case when ` tables are
processed in parallel. To obtain the expected F? iteration counts per table, it
suffices to replace the (1 − m

N )k−1 factors appearing in (13) and (14) with (1 −
m
N )`(k−1). Resulting formulas are no longer simple, but computable. If multiple
tables are processed sequentially, counts for the `-th table may be obtained by
multiplying the factor (1−m

N )t(`−1) ≈ exp(−α(`−1)) to the corresponding values
given for a single table.

4.3 Non-perfect rainbow table

Let us now consider non-perfect rainbow tables, i.e, the case where none of the
colliding pre-computed chains are removed. Partial results for this case, obtained
in a manner different from the current work, appears in [14]. The case where one
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removes only some of the colliding chains is also conceivable, but such a case
does not appear in the literature, and will not be dealt with here.

When a non-perfect rainbow table is in use, the expected number of F?

iterations for online chain creation is

∑

0<k≤t

(k − 1)
k−1∏

j=1

(
1− mt−j

N

)
,

where each mj is given by (3) with m0 = m. When the approximation (4)
is applied to this, we see cancelations within the product term and the above
simplifies into

∑

0<k≤t

(k − 1) · 2N + m(t− k)
2N + m(t− 1)

· 2N + m(t− k − 1)
2N + m(t− 2)

≈ 1
12
· (α2 + 8α + 24) ·

( t

α + 2

)2

,

under the condition mt = αN .
To deal with the cost of false alarms, note that if the current end of the online

chain matches a common ending point of two pre-computed chains, both of them
will have to be recreated for false alarm verification. Thus, for the purpose of
analyzing false alarm costs, we can simply ignore collisions and treat colliding
pre-computed chains as independent chains. So, using Lemma 3, the expected
number of extra F? iterations required to deal with false alarms can be written
as

∑

0<k≤t

(t− k + 1) ·
{m

N

(
1 + k

)− m

N

}
·

k−1∏

j=1

(
1− mt−j

N

)

≈ α

60
· (3α2 + 20α + 40) ·

( t

α + 2

)2

.

where mj are defined as before. The approximation is based on (4) and uses the
notation mt = αN .

Proposition 6. When mt = αN , online processing of a single non-perfect rain-
bow table is expected to require approximately

1
12
· (α2 + 8α + 24) ·

( t

α + 2

)2

applications of F?, in creating the online chain, and

α

60
· (3α2 + 20α + 40) ·

( t

α + 2

)2

.

additional invocations of F?, in resolving false alarms.

Some example values for the above online cost expectations are given in
Table 5 of Section 5.3.
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5 Checkpoints

The previous section provides a complete solution to the online time complexity
of the Hellman tradeoff and the rainbow table method. But since there is a trick
called checkpoints, that can be applied to tradeoff algorithms to reduce the cost
of false alarms, our analysis would not be complete without considering its effect.

We show how to use what we have learned about the pre-image tree structure
of tradeoff tables as a tool for computing the most effective checkpoint positions.
It turns out that, due to the difference in relative cost of false alarms, checkpoints
are more useful on rainbow table method than on the Hellman tradeoffs.

5.1 Hellman tradeoff

Let us first deal with the Hellman tradeoff case. While we can give analysis
for any number of checkpoints, the solutions do not simplify into one uniform
formula, and the content of this section is best explained with examples. Further-
more, our analysis shows that using a large number of checkpoints is uncalled-for
in most situations.

Let us say that y = F (x) is given as the target image point. We assume that
a 1-bit checkpoint has been placed at the (t−c)-th column, i.e., c iterations from
the ending point. We shall write F−j(HMk) for the set of pre-images under F j of
the k-th column HMk of a Hellman matrix.

It is clear that, for k < c, false alarms at the k-th iteration of the online phase
cannot be filtered out with the checkpoint. Since the online chain available to
the tradeoff operator starts from y = F (x), rather than from x, the checkpoint
information becomes useful starting from the (c + 1)-th iteration.

Suppose that we observed an alarm in the (c + d)-th iteration, implying
x ∈ F−(c+d)(HMt). Notice that HMt−(c+d) ⊂ F−d(HMt−c) ⊂ F−(c+d)(HMt). If x ∈
HMt−(c+d), the correct answer has been found. If x ∈ F−d(HMt−c) \ HMt−(c+d), we
have a false alarm, but the online chain starting from x will merge with the pre-
computed Hellman chain before passing over the checkpoint and the checkpoint
information is useless in resolving false alarms. Finally, if x ∈ F−(c+d)(HMt) \
F−d(HMt−c), the 1-bit checkpoint information will resolve false alarms with prob-
ability 1/2. Thus, false alarms which are unresolved by the checkpoint occurs at
the (c + d)-th iteration with probability

1
N

{(|F−d(HMt−c)| − |HMt−(c+d)|
)

+
1
2
(|F−(c+d)(HMt)| − |F−d(HMt−c)|

)}
.

It remains to fill in the various set sizes. Assumed distinctness of ending
points imply |HMc+d| = m and we know from Lemma 5 that |F−(c+d)(HMt)| =
m(c+d+1). Recalling the discussion at the beginning of Section 4.1, we may take
HMt−c to have been obtained through random inputs to F t−c and also believe
that |HMt−c| = m. Hence, once again, Lemma 5 shows |F−d(HMt−c)| = m(d + 1)
to be a good approximation. Finally, the probability of false alarm at the k-th

15



iteration is

ProbFA(k) =

{
mk
N for 1 ≤ k ≤ c,
mk
N − mc

2N for c < k ≤ t.
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Fig. 1. Probability of false alarms for Hellman tradeoff with checkpoints (dashed line:
theory, dots: experiment)

We have tested this, using small parameters. The results are given in Figure 1,
where the (t − k)-th column corresponds to the k-th iteration. The one-way
function used was the key to ciphertext mapping of AES-128 under a fixed
random plaintext. To work with N = 220, the 20-bit input was zero-extended
to a 128-bit key, and the 128-bit ciphertext was truncated to 20 bits. Each
graph was obtained by averaging over 500 Hellman tables, each using a different
input plaintext, and with 1000 random inversion targets per table. Ending point
collisions were not removed during pre-computation and when an online chain
matched the end of a pair of colliding chains, only one of them were tested for
false alarms. The slightly irregular dots give the number of false alarms observed
from each column divided by the total number of tests, i.e., 500000, and the
dashed line, barely visible under the irregular dots, represent our theory.

Using the false alarm probability obtained, we can state that
∑

0<k≤t

(t− k + 1)
mk

N
−

∑

c<k≤t

(t− k + 1)
mc

2N

is the expected number of F iterations caused by false alarms. Let us summarize
what has been discussed.

Example 1. By placing a single 1-bit checkpoint at the (t − c)-th column of a
Hellman matrix, one can expect to remove

∑

c<k≤t

(t− k + 1)
mc

2N
=

m

N

{c(t− c)(t− c + 1)
4

}

of the F applications caused by false alarms, per table. For large t, the maximum
effect is obtained with c ≈ t

3 . When mt2 = αN , extra F iterations caused by
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false alarms, per table, can be reduced from approximately α
6 t to 7

54αt, through
the use of a single 1-bit check point at the optimal position.

One can easily extend the above results to more than one checkpoint. For
example, when 1-bit checkpoints are placed at the (t − c2)-th and (t − c1)-th
columns (c2 > c1), the work induced by false alarms can be written as follows.

∑

0<k≤c1

(t− k + 1)
{
k
}m

N

+
∑

c1<k≤c2

(t− k + 1)
{
(k − c1) +

c1

2
}m

N

+
∑

c2<k≤t

(t− k + 1)
{
(k − c2) +

c2 − c1

2
+

c1

4
}m

N
.

Notice that alarms related to columns situated to the left of both checkpoints
are filtered twice. We summarize this in a simplified form below.

Example 2. By placing 1-bit checkpoints at the (t−c2)-th and (t−c1)-th columns
(c2 > c1) of a Hellman matrix, one can expect to remove

1
8

m

N

{
(2c3

1 − c1c
2
2 + 2c3

2)− (2c2
1 − c1c2 + 2c2

2)(2t + 1) + (c1 + 2c2)(t2 + t)
}
.

of the F iterations caused by false alarms, per table. For large t, this is approx-
imately

1
8

m

N

{
(2c3

1 − c1c
2
2 + 2c3

2)− (2c2
1 − c1c2 + 2c2

2)2t + (c1 + 2c2)t2
}
,

and the maximum effect is obtained by using

c1 ≈ 34− 3
√

46
53

t ≈ 0.2576 t and c2 ≈ 29−√46
53

t ≈ 0.4192 t.

Using these parameters, one can remove about 181+23
√

46
5618 αt ≈ 0.05998 αt of the

α
6 t ≈ 0.1667 αt function iterations related to false alarms.

# of CP 1-st CP 2-nd CP 3-rd CP 4-th CP

1 CP 0.33333

2 CP 0.25760 0.41920

3 CP 0.21166 0.33617 0.48067

4 CP 0.18029 0.28272 0.39601 0.52748

Table 1. Optimal 1-bit checkpoint positions for Hellman tradeoff. (distance from end-
ing point in units of t)
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It is now clear how to approach any number of checkpoints. The computation
will be more complicated, but clearly feasible for anyone that needs the infor-
mation. We have done the computation and some optimal checkpoint positions
are given in Table 1, where the values indicate distance from the ending points
in units of t. Note that the optimal positions are independent of α = mt2/N .

Hellman no CP 1 CP 2 CP 3 CP 4 CP

no CP 0.96825 0.94858 0.93505 0.92512

1 CP 62 0.97969 0.96571 0.95546

2 CP 97 0.98574 0.97527

3 CP 139 0.98938

4 CP 187

Table 2. Relative online cost under different number of checkpoints.

In Table 2 we have listed the ratios for expected total number of F iterations
when checkpoints are placed at the optimal positions. For example, the value
0.97969 in the table states that, compared to using a single checkpoint, using
two checkpoints will result in 2.031% decrease in total online time.

Adding more checkpoints will require more storage space and may make the
reduction in online time meaningless in view of the tradeoff TM2 ∝ N2. The
entries under the diagonal of Table 2 gives the minimum number of bits allocated
to each Hellman table entry that would make the transition to higher number of
checkpoints meaningful. For example, entry 97 means that, theoretically, unless
each of the Hellman table entries took up at least 97 bits, the storage disad-
vantage of increasing the number of checkpoints from 1 to 2 outweighs the time
advantage.

Of course, in practice, storage for checkpoints could essentially come for free
due to properties concerning natural word size of the platform. Also, as discussed
in the introduction, since a change in number of table entries affects the number
of bits needed to store each entry, TM2 ∝ N2 is not strictly true when M is
taken to be the real storage size. So these numbers should be taken only as a
rough guideline.

5.2 Perfect rainbow table

The general line of argument for analyzing the effects of checkpoints on perfect
rainbow tables are exactly the same with the Hellman tradeoff case. We shall
deal only with a single checkpoint on a single perfect rainbow table. Extension
to multiple checkpoints is straightforward.
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If a single checkpoint is placed at the (t− c)-th column, for each k > c, the
probability of meeting a false alarm on the k-th iteration is

1
N

{(|F−(k−c)(RMt−c)| − |RMt−k|
)

+
1
2
(|F−k(RMt)| − |F−(k−c)(RMt−c)|

)}
(15)

=
1
N

{(|F−k(RMt)| − |RMt−k|
)− 1

2
(|F−k(RMt)| − |F−(k−c)(RMt−c)|

)}
. (16)

According to Proposition 1, we have

|F−k(RMt)| = m
(
1 + k − mk

2N
− mk2

4N

)
, (17)

and since perfectness implies |RMt−c| = m, just as was with |RMt| = m, we replace
k in this equation with k − c and state that

|F−(k−c)(RMt−c)| = m
(
1 + (k − c)− m(k − c)

2N
− m(k − c)2

4N

)
(18)

is a reasonable approximation. There are subtle issues to be considered with
this approximation and this is explained in Appendix B. We can now substi-
tute (17) and (18) into (16). The second term within the braces corresponds to
the false alarms that are filtered out, and after multiplying the work factor and
the probability to reach the k-th iteration, we obtain

cm

2N

∑

c<k≤t

(t− k + 1)
(
1− m

N

)k−1(
1 +

m(c− 2)
4N

− m

2N
k
)
, (19)

as the number of F iterations that can be removed through a single 1-bit check-
point at the (t− c)-th column.

α 0.25 0.5 1 1.5 1.8 1.9 1.95 2

optimal c/t 0.3193 0.3049 0.2724 0.2246 0.1827 0.1663 0.1577 0.1489

Table 3. Optimal single 1-bit checkpoint positions for perfect rainbow tables.

Unlike the Hellman tradeoff case, (19) does not simplify into a nice formula,
but we can resort to numerical methods and still find the optimal checkpoint
position. Let mt = αN . It is easy to argue from (4) that, for any choice of
parameters, we always have α < 2. The optimal (t − c)-th column to place a
single 1-bit checkpoint is given by Table 3, for some values of α spread over its
range of interest.

In Table 4, we give the reduction in online iterations a checkpoint brings,
when they are placed at the optimal position. The table lists expected numbers of
total F iterations, iterations due to false alarms, and iterations reduced through
checkpoints, per table. The count values are given in multiples of t2. As the
relative cost of false alarms is high on rainbow tables, the effects of checkpoints
are better here compared to the Hellman tradeoff case.
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α 0.25 0.5 1 1.5 1.8 1.9 1.95 2

total itr 0.4597 0.4222 0.3562 0.3014 0.2734 0.2648 0.2607 0.2566

FA itr 0.0357 0.0614 0.0920 0.1049 0.1076 0.1080 0.1081 0.1081

filtered FA itr 0.0077 0.0128 0.0176 0.0167 0.0136 0.0122 0.0114 0.0106

FA/total 7.77% 14.55% 25.82% 34.80% 39.37% 40.77% 41.45% 42.12%

filtered/total 1.67% 3.03% 4.94% 5.55% 4.98% 4.60% 4.37% 4.13%

Table 4. Iteration counts (unit: t2) and effects of a single 1-bit checkpoint on a perfect
rainbow table. (FA=false alarm, itr=iterations)

Remark 2. We give a word of caution for those interpreting data from Table 4.
The iteration counts are given in multiples of t2, so that, for example, the total
iteration 0.3562t2 for α = 1 being greater than 0.2566t2 for α = 2 does not imply
that the α = 1 parameter takes longer. To the contrary, for the same m, the t
for α = 2 is twice as large as the t for α = 1, and the net result is that α = 2
takes much longer.

That said, this alone does not automatically imply superiority of the param-
eter α = 1 over α = 2, since the two brings about different (easily computable)
success probabilities.
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Fig. 2. Probability of reaching false alarms at each column for a perfect rainbow table.
(lines: theory, dots: experiment)

We tested the theoretic result (19) with small parameters and this is shown
in Figure 2. As with the Hellman tradeoff case, AES-128 was used to construct
the one-way function. Both graphs were created with N = 220 and t = 100.
Rather than fixing the number of collision free rows, we chose to fix m0. The
left hand side graph used m0 = 21020 and the average of mt observed over 30
tables was m = 10471, which translates to α = mt

N ≈ 1.0. The right hand side
graph used m0 = 502418. Average of mt over 30 tables was m = 19902 and
we have α ≈ 1.9. Each of the tables were subject to 5000 random inversion
targets. The graphs give the number of false alarms observed from each column
divided by the number of tests. The smooth solid and dashed lines are what
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our theory claims and the slightly irregular dots are the experiment results. A
single checkpoint was used with each table at the optimal position and the lower
graphs, in dashed lines, correspond to false alarms that remained unresolved
after checkpoint information was utilized.

Our theory and test results for the number of all false alarms occurring at
each column are indistinguishable. The observed number of false alarms that
remained unresolved after checkpoint information use was slightly smaller than
our theory at columns close to the starting points, but the cost (t−k+1) of each
false alarm is smaller there, so these discrepancies will have minimal effect on
the total cost. The cause of this small discrepancy is explained in Appendix B.

5.3 Non-perfect rainbow table

Let us consider the non-perfect rainbow tables. After recalling the arguments
of Section 4.3, one can treat the chains as totally independent and, unlike the
perfect rainbow table case, the subtle issue considered in Appendix B no longer
causes complications here.

The expected number of F iterations reduced through a single checkpoint at
the (t− c)-th column can be computed as

∑

c<k≤t

(t− k + 1) · m

N

c

2
·

k−1∏

j=1

(
1− mt−j

N

)
.

Use of approximation (4) brings about cancelations within the last product term
and the above becomes

m

N

c

2

∑

c<k≤t

(t− k + 1) · 2N + m(t− k)
2N + m(t− 1)

· 2N + m(t− k − 1)
2N + m(t− 2)

≈ α

24
· c

t
· (1− c

t

)2 ·
{

3α2
(
1− c

t

)2 + 16α
(
1− c

t

)
+ 24

}
·
( t

α + 2

)2

,

under the notation mt = αN .

α 0.25 0.5 1 2 5 10 100

optimal c/t 0.3218 0.3117 0.2952 0.2724 0.2410 0.2234 0.2026

total itr 0.4662 0.4443 0.4222 0.4208 0.5170 0.7431 5.2193

FA itr 0.0372 0.0677 0.1167 0.1917 0.3656 0.6250 5.1326

filtered FA itr 0.0082 0.0147 0.0250 0.0403 0.0755 0.1283 1.0512

FA/total 7.98% 15.23% 27.63% 45.54% 70.72% 84.12% 98.34%

filtered/total 1.75% 3.31% 5.91% 9.57% 14.61% 17.27% 20.14%

Table 5. Iteration counts (unit: t2) and effects of a single 1-bit checkpoint at the
optimal position on non-perfect rainbow tables. (FA=false alarm, itr=iterations)

One now has all the tools necessary to compute the optimal position to place
a single 1-bit checkpoint. Table 5 lists the optimal (t− c)-th checkpoint column
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and various iteration counts for a non-perfect rainbow table. Note that the cost
of false alarms quickly dominates the main online chain creation cost as α is
increased.
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Fig. 3. Probability of reaching false alarms at each column for a non-perfect rainbow
table. (lines: theory, dots: experiment)

We tested our claims with small parameters on one-way functions constructed
from AES, and this is shown in Figure 3. Both graphs present data averaged over
30 tables, with 5000 random inversion targets per table. Readers may notice that
the right hand side graph shows total false alarm probability greater than 1 at the
center columns and consider this to be strange. This is an indication of multiple
false alarm being expected in those columns, the effect of colliding ending points.
Our theory and test results clearly agrees very well.

6 Conclusion

Previous analysis of the online time complexity for time memory tradeoff algo-
rithms were usually based on the worst case operation of just the online chain
creation process and the added cost of dealing with false alarms were either
neglected or roughly argued as being relatively small.

In this work, we presented an accurate measure of the expected online time
complexity, for the original Hellman and the rainbow table methods. By studying
the size of pre-image sets under an iterated random function, the cost induced
by false alarms were analyzed and taken into account. We have also analyzed
the workings of the checkpoint method, computed their optimal positions, and
quantified the resulting reduction in false alarm cost. The machinery developed
for this analysis adds to our knowledge of the random function, and we hope it
finds other applications.

For those familiar with the distinguished point method, we remark that more
work needs to be done in order to give an analysis similar to the current work.
There are many complications arising from the existence of distinguished points
within the pre-image tree. In particular, chain length distribution and behavior
of function iteration under domain restriction need to be considered.
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While analyzing the effects of check points, we already experienced how time
complexity may not be completely independent of storage size. The analysis of
the second issue concerning online complexity that was discussed in the intro-
duction, i.e., that of optimal storage size, will not be independent from this work.
Storage reduction through aggressive ending point truncation brings about extra
work in a probabilistic manner, just as with false alarms. Analysis of its effects
and its optimal use will only be possible in conjunction with time complexity
arguments.
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A Another derivation for the equivalence set size

In this section, we present another proof3 for Proposition 1, which gives the
expected size of an F k-equivalence set. The line of argument follows that of [1],
where the special case corresponding to a maximal perfect rainbow table was
considered.4

Given m and k, we set mk = m and recursively define mk−1, . . . , m0, through

mj−1 = −N ln
(
1− mj

N

)
.

This equation is equivalent to (3) and the mj can be interpreted as follows.
Suppose we begin with m0 random starting points D ⊂ N and simultaneously
create m0 chains with iterated F -applications. At length i, the m0 chains will
have merged into mi chains and will eventually end with mk = m distinct ending
points R = F k(D) at length k.

Now, with these chains in place, construct a new chain of the same length,
starting from a random point. That is, we are in the process of defining a ran-
dom function and after the initial random definitions naturally produced chains
ending at m distinct ending points, function definitions giving the last chain is
being made.

With F modeled as a random function, the probability of the new chain not
merging with the pre-constructed chain is

∏k
i=0(1−mi

N ). Notice that the random
starting point of the new chain belongs to the pre-image F−k(R) if and only if
the new chain merges with one of the pre-constructed chain. This shows that
the size of pre-image set F−k(R) is

N
{

1−
k∏

i=0

(
1− mi

N

)}
.

The term inside the braces is the probability for a random point to be a pre-
image point under F k of the m ending points R and the product by N brings
about the pre-image count.

3 While this proof is provided under the belief that the general direction is correct,
the author acknowledges that his understanding is not yet solid enough for himself
to be comfortable with the proof.

4 That the argument of [1] should be valid under more general circumstances was
brought to the author’s attention through an early version of [14].
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It only remains to simplify this expression. Using the approximation (4), one
can derive mk−i

N ≈ 1
N/m−i/2 . When this is substituted into the above, most of

the product terms cancel out. What remains is

N
{

1− (N
m − k

2 − 1)
(N

m − 1
2 )

(N
m − k

2 − 1
2 )

(N
m )

}
= N

{
1−

(
1−

k+1
2

N
m − 1

2

)(
1−

k+1
2
N
m

)}

≈ N
{

1−
(
1− m(k + 1)

2N

)2}
≈ m

(
1 + k − mk

2N
− mk2

4N

)
.

Thus, we have reobtained the explicit polynomial expression of Proposition 1.
Even though the proof given here requires less machinery than the proof in

the main body of this paper, the longer proof shows more of the inner workings
of the rainbow tables. For example, discussions of Appendix B would not have
been possible without the insight obtained through the longer proof.

B Pre-image size of intermediate columns

The purpose of this section is to argue that (18) is a good approximation. In
other words, we shall show that, for indices 0 ≤ s < s+δ ≤ t, the approximation

|F−δ(RMs+δ)| ≈ m
(
1 + δ − mδ

2N
− mδ2

4N

)
, (20)

is reasonable, when s is not too small.

B.1 Experimental evidence

Let us first provide some experiment data that supports our claim. The first set
of graphs are given in Figure 4. We used parameters identical to those used in the
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Fig. 4. Probability of encountering an alarm that corresponds to a chain merge before
reaching the checkpoint. (lines: theory, dots: experiment)

testing of Section 5.2. In particular, the input counts were fixed to m0 = 21020
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and m0 = 502418 for the two diagrams. As before, lines represent our theory and
dots give the average obtained through tests. The graphs give the probability
of reaching an (not necessarily false) alarm, having the property that the online
chain merges with the pre-computed chain before passing over the checkpoint.

The upper graphs in the two boxed diagrams were obtained by going through
the full t iterations of the online phase algorithm, regardless of whether the cor-
rect key was found. Hence these correspond to the actual pre-image sizes of
RMt−c. The lower graphs give the probability that take into account the pre-
liminary exits from the online phase algorithm on discovery of the correct key.
Theoretically, this means that an extra (1 − m

N )t−k−1 term is multiplied at the
k-th column.

The upper graphs show that the actual pre-image sizes is slightly smaller
than what is given by (20), when we are near the starting points, i.e., when s is
small. We can also see that the error is more prominent for the larger α. But, as
is reflected in the lower graphs, the fact that the staring columns are not very
likely to be reached during the online phase minimizes the effects of our error.
Furthermore, the cost of resolving false alarms close to the starting columns are
smaller than that of the ending columns. Hence our slightly large counts are
good enough for the purpose of computing the expected cost of false alarms.
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Fig. 5. Pre-image size of an intermediate column for α = 1.90. (lines: theory, dots:
experiment)

In Figure 5, we give some more experiment results for the α = 1.9 case, which
showed larger error than the α = 1.0 case. Only the full table search graphs,
corresponding to the pre-image sizes or the upper graphs, are provided, with the
checkpoints at various positions. There are almost no error when the checkpoint
is very close to the ending points. Also, regardless of the checkpoint position,
the error is of noticeable size only when s is small.

B.2 Theoretic argument

Let us now give a logical argument showing (20) to be a reasonable approxi-
mation, when s is not too small. We start by explain why this is not implied
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by Proposition 1. Let D0 be any random set that was used to create a rainbow
table. What Proposition 1 gives is the pre-image size of F s+δ(D0), while we are
looking for pre-image size of RMs+δ and because chains were discarded to remove
ending point collisions, the column RMs+δ is only a partial subset of the random
image F s+δ(D0). Hence Proposition 1 can not be used directly.

Now, define Dk = F k(D0), for all k, so that Dk ⊃ RMk = F k(RM0). We are
interested in the effects of selecting RMs+δ from Ds+δ on the pre-image sizes
under F δ. As we will be relating to i-nodes under multiple maps, let us refer to
an i-node under F k as an (F k, i)-node. Since the size of a pre-image set, under
a fixed F δ, is completely determined by the size of the set to be inverted and
the ratio of i-nodes (over all i) in that set, and since we already know

|F−δ(Ds+δ)| ≈ m′(1 + δ − m′δ
2N

− m′δ2

4N

)
,

where m′ = |Ds+δ|, it suffices to show the following.

Claim. When s is not too small, for each i, the ratio of (F δ, i)-nodes within
Ds+δ is approximately equal to that within RMs+δ.

Let us first review the collision removal method used during a rainbow table
creation. The straightforward way to produce a perfect table is to create the
rainbow chains sequentially, discarding any new chain that collides with an older
chain, or replacing the older chain with the newer chain. Another approach is
to create all chains from a random input set and then to randomly choose and
keep a single chain from each group of colliding chains.5 In either of the cases,
within each F t-equivalence class, the selection of RM0 from D0 may be viewed as
being random.

Since RMk = F k(RM0), the selection of RMs+δ within Ds+δ is dictated by the
selection of RM0 within D0. As the selection within each F t-equivalence class of
RM0 ⊂ D0 is random, within each F t−(s+δ)-equivalence class, the probability of
each point of Ds+δ being selected is governed by, for which i, it is an (F s+δ, i)-
node.

Now, let us focus on a single point and consider its property of being an
(F s+δ, i)-node and also an (F δ, i′)-node. When s = 0, we must have i = i′.
Next, when s is small, there will be some correlation between i and i′, i.e., if i is
small, then i′ is likely to be small, and when i is big, i′ is also likely to be big. But
this correlation quickly diminishes as we move to larger s. Furthermore, when
F is modeled as a random function, the F t−(s+δ)-equivalence, which involves
iterations to the right of RMs+δ is independent of any (F δ, i)-node structure,
which involves iterations to the left of RMs+δ.

We have argued that the selection from within Ds+δ is governed by each
point’s (F s+δ, · )-node and F t−(s+δ)-equivalence properties, and that neither of
5 This approach will produce tables of slightly varying sizes, but addition or removal of

small number of chains will have little effect on our analysis. Also, unless hash tables
are used, this approach is much more efficient, as the sorting process automatically
exposes collisions.
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these properties are correlated to the (F δ, · )-node property. Hence the selection
of RMs+δ from Ds+δ is independent of the (F δ, · )-node property, and the above
Claim must hold true. In conclusion, the approximation (18) is valid, unless k is
close to t.
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