
Unique Shortest Vector Problem for max norm is NP-hard

Than Quang Khoat and Nguyen Hong Tan

Faculty of Information Technology, Thai Nguyen University,
Thai Nguyen city, Vietnam

{tqkhoat, tannh}@ictu.edu.vn

Abstract. The unique Shortest vector problem (uSVP) in lattice theory plays a crucial role in many
public-key cryptosystems. The security of those cryptosystems bases on the hardness of uSVP. However,
so far there is no proof for the proper hardness of uSVP even in its exact version. In this paper, we show
that the exact version of uSVP for `∞ norm is NP-hard. Furthermore, many other lattice problems
including unique Subspace avoiding problem, unique Closest vector problem and unique Generalized
closest vector problem, for any `p norm, are also shown to be NP-hard.

Keyword. Unique shortest vector problem, unique closest vector problem, unique subspace avoiding
problem, Lattice, NP-hard, Lattice-based cryptosystems.

1 Introduction

Lattices are useful tools for both mathematicians and computer scientists in solving many prob-
lems. Recently, applying results in lattice theory to solving problems has been very active, especially
in cryptology. Many public-key cryptosystems based on the hardness of lattice problems were pro-
posed. Opening the door to this line is the one in [1] by Ajtai and Dwork. Next, many improvements
and new cryptosystems were proposed, such as [2], [3], [4], [5], [6]. Besides, many other cryptographic
schemes were sequentially generated, see [7], [8], [9], [10].

In [1], Ajtai and Dwork proposed a cyptosystem for which the security bases on on the equiva-
lence between the average-case and worst-case of lattice problems. This is the first known cryptosys-
tem that relies on the hardness in the worst case of a computational problem. More specifically, the
security of Ajtai-Dwork cryptosystem heavily relies on the hardness in the worst case of n8-uSVP.1

Although n8-uSVP is not known to be hard, but this cryptosystem attracts considerable attentions
from cryptologists. Next, Cai and Cusick [3] also proposed a new one related to the hardness of
n4+ε-uSVP; still, the security has not been proven to be based on the worst-case hardness of the
problem. Another cryptosystem related to uSVP is by Regev [5]. In the security aspect, Regev’s
cryptosystem has more advantages than the one of Ajtai and Dwork [1] because its security bases
on the hardness in the worse-case of n1.5-uSVP. Nonetheless, its practical implementation does not
improve the one of Ajtai-Dwork due to the fact that the key size is quite big, O(n4), and the length
of the ciphertext is much larger than the one of the plaintext.

From the disadvantages of these cryptosystems, many cryptographic schemes have been pro-
posed to improve the key size, implementation time and the ciphertext’s length. The scheme pro-
posed by Regev in [6] bases on the hardness of n2.5-SVP for quantum algorithms; more concretely,
its security relies on the hardness of Learning with errors (LWE), which is not easier than n2.5-SVP

1 In f(n)-uSVP, given an n dimensional lattice L for which the shortest vector is shorter than any non-parallel lattice
vector at least a factor f(n), we are asked to find the shortest vector v ∈ L.

2

for quantum algorithms.2 The key size of this cryptosystem is O(n2). Recently, Micciancio [10]
improved greatly the key size and implementation time to almost linear in n. However, the one-way
function in [10] bases on the hardness of n1+ε-SIVP on cyclic lattices; we note that, up to now,
every problem on cyclic lattices has no proof for its hardness even for randomized reductions or
quantum reductions. There are, on the other hand, many other cryptographic schemes related to
lattice problems such as [8], [7], [9].

Let us return to our consideration on uSVP. So far, there is no proof for its proper hardness. The
first author considered this problem is Ajtai [12]; he showed that the worst-case and the average-case
of nc-uSVP, for some large constant c, are equivalent. Following this breakthrough result, Kumar
and Sivakumar [13] established that uSVP is NP-hard for randomized reductions; however, we note
that, in their proof, they proposed a randomized reduction from SVP to uSVP, and that SVP for
`2 norm was shown to be NP-hard for randomized reductions. This result is a strong evidence for
the hardness of uSVP. On the other hand, Cai [14] made the issue more attractive by showing
that n1/4-uSVP cannot be NP-hard unless the polynomial hierarchy collapses. In addition, Regev
[11] claimed that Θ(n2.5)-uSVP cannot be harder than the Subset sum problem (SSP) for quantum
reductions; that is, there exists a quantum algorithm for Θ(n2.5)-uSVP if SSP is solvable by a
certain (quantum) algorithm. Also he showed that the Dihedral coset problem in quantum theory
cannot be easier than Θ(

√
n)-uSVP for quantum algorithms. In a recent experimental result [15],

Gama and Nguyen suggest that uSVP may be easier than SVP for `2 norm.
Almost all results listed above clearly does not imply either the proper hardness or the ease

of uSVP. The result of Kumar and Sivakumar in [13] gives a strong evidence for the hardness of
uSVP; however, it is not the proof for the proper NP-hardness of the problem. For this reason and
the important role of uSVP in cryptography, we have studied the complexity of uSVP and other
lattice problems, and obtain the following results.

Our contribution in this paper:

– We prove that uSVP for `∞ norm is NP-hard,
– SAP, GCVP, SVP′ and CVP under the assumption that the number of solutions (regardless of

sign) is at most 1, for any `p norm, p ≥ 1, are also NP-hard. To our best knowledge, this is the
first result on the hardness of these problems with the given assumption.

The technique: To obtain the hardness result for uSVP, we present a deterministic polynomial
time reduction from 0-1 Knapsack Optimization Problem (KOP) to SVP. The reduction has the
property that if KOP has unique solution, then SVP has exactly two solutions which are parallel
together; if KOP has no solution, it is easy to check this fact from the solution to SVP. Hence we
obtain the main result if KOP having at most one solution is NP-hard. Note that the NP-hardness
of KOP having at most one solution was clearly proven in [16]. We remark that the reduction works
only for `∞ norm, and results in a quite complicated lattice.

For SAP, we use the same technique as the one for SVP, with some suitable modifications.
However, the lattice of the new SAP is simpler than the one of SVP. To reveal the working of the
reduction for any `p norm, p ≥ 1, some careful observations on the lattice are necessary. Since SAP
is a special case of GCVP, we have the result for GCVP. For SVP′ and CVP, we need a result of
Micciancio in [17].
2 Here by saying LWE is not easier than n2.5-SVP for quantum algorithms we mean that if there is a (quantum)

algorithm for LWE, then n2.5-SVP can be solved by a certain quantum algorithm. Sometime we may say that
LWE is quantum reducible to n2.5-SVP. For more discussion, see [11].

3

The paper is organized as follows: Section 2 presents some definitions in lattice theory and some
problems on which we work. Section 3 is dedicated to presenting the main results. The reduction
from KOP to SVP is presented in Section 4. Section 5 presents the reduction from KOP to SAP.

2 Some definitions

Given m linearly independent vectors b1, ..., bm in Rn, the lattice L generated by these vectors is
the set of all integer linear combinations of them.

L = {z1b1 + · · ·+ zmbm|zi ∈ Z, i = 1,m}

{b1, ..., bm} are said to form a basis of L; in other words, the lattice L is generated by an n ×m
basis matrix B = (b1, ..., bm). Any vector x ∈ L can be expressed as x = Bz , where z ∈ Zm. If
m = n, then L is called a full-dimensional lattice. The Euclidean length of a vector x = (x1, ..., xn)
for `p norm (p ≥ 1) is a real number ‖x‖p = p

√
|x1|p + · · ·+ |xn|p. In this paper, we denote by [n]

the set {1, 2, ..., n}. If x is a vector, then the ith component of x is denoted by xi. The length of a
vector or the distance between two vectors in the following problems is for `p norm.

Definition 1 (SVPp). Given a lattice L, the Shortest Vector Problem is to find the shortest non-
zero vector in L.

Definition 2 (SVP′
p). Given a lattice L generated by a basis B, and an index i, we are asked to

find the shortest vector among all lattice vectors of the form Bz, where zi 6= 0.

Definition 3 (CVPp). Given a lattice L and a target vector t in Rn, the Closest Vector Problem
is to find the closest lattice point to t.

Definition 4 (GCVPp). Given a lattice L, an affine space A and a target vector t in Rn, the
Generalized Closest Vector Problem is to find a vector in L\A closest to t.

Definition 5 (SAPp). Given a lattice L and a subspace S in Rn, the Subspace Avoiding Problem
is to find the shortest vector in L\S.

Besides, if there is an additional assumption that the number of solutions regardless of sign is
at most one, then we denote SVPp by uSVPp. We define uSVP′p, uCVPp, uGCVPp, and uSAPp in
the same manner.

Another problem on which we work is the 0-1 Knapsack Optimization Problem (KOP). If KOP
has at most one solution, it is called Unique 0-1 Knapsack Optimization Problem (uKOP).

Definition 6 (KOP). Find a vector x ∈ Zn satisfying





f(x) = c1x1 + · · ·+ cnxn → max
a1x1 + · · ·+ anxn = b
x ∈ {0; 1}n

(1)

Where the coefficients are positive integers.

4

3 Main results

The following theorem on uKOP was proven in [16].3

Theorem 1. uKOP is NP-hard.

In Section 5, we present a reduction from KOP to SAP for any `p norm, p ≥ 1. The reduction
has an important property that if KOP has solutions, then the number of solutions to SAPp is as
twice as the one to KOP. In particular, if KOP has unique solution, then SAPp has exactly two
parallel solutions; and we can easily check whether KOP has no solution by using the solution to
SAPp. This property implies that we have a reduction from uKOP to uSAPp. Hence, combining
this fact with Theorem 1 yields the following.

Theorem 2. For any p ≥ 1, uSAPp is NP-hard.

It is easy to see that SAPp is a special case of GCVPp, where the input of GCVPp consists of a
linear subspace and a target vector t = 0. Consequently, any hardness result for SAPp is applicable
to GCVPp.

Corollary 1. For any p ≥ 1, uGCVPp is NP-hard.

Recently, Micciancio presents in [17] an efficient reduction from SAPp to SVP′p. To establish
this reduction, he uses a collection C of SVP′p instances. He then solves all these instances to get a
collection of vectors, and chooses the shortest one in the collection as the output. Assume that the
SAPp instance in Micciancio’s reduction has unique solution. Then it is easy to see that there exists
a SVP′p instance such that its solution is the output of the reduction, and it has unique solution.
Furthermore, in his reduction, all members in C must be solved. These observations implies solving
uSVP′p is at least as hard as solving uSAPp.

Corollary 2. For any p ≥ 1, uSVP′p is NP-hard.

Now we consider the closest vector problem. It is known that CVPp is a special case of GCVPp.
However, the hardness of uCVPp cannot be directly derived from the one of uGCVPp. To show the
result for uCVPp, we use the reduction from SVP′p to CVPp in [17]. The argument is similar to the
one above, and hence we obtain

Corollary 3. For any p ≥ 1, uCVPp is NP-hard.

The last problem considered in this paper and behaving hard to be shown its hardness is uSVP.
Here we are only able to show its hardness for `∞ norm by presenting a reduction from KOP to
SVP. See the reduction in Section 4.

Theorem 3. uSVP∞ is NP-hard.

3 In fact, the result is for the Unique Knapsack Minimization Problem. However, we can easily adapt the proof for
uKOP. For example, see the Appendix.

5

4 Reduction from KOP to SVP

In [18], Khoát presents a reduction from the Bounded integer programming (BKP) to SAP∞. The
reduction yields a lattice generated by a quite complex basis. Although SVP is a special case of
SAP, but we cannot obtain any hardness result for SVP from the one of SAP. The lattice resulted
from the reduction in [18] has the properties that a solution for SAP∞ may not be the shortest
vector in the lattice, and the shortest vector of the lattice may not lead to any solution to the
original BKP. As a result, with that lattice, we cannot have the reduction from BKP to SVP. Here,
we introduce a more complicated lattice.

Overview of the reduction: It is well-known that KOP is easily reducible to the problem of
finding a vector x in {x ∈ {0; 1}n : a · x = b, c · x ≥ f̂}, where a = (a1, ..., an), c = (c1, ..., cn). So
we will solve KOP by the following procedure. Let fmax >

∑n
j=1 cj be the upper bound for f(x),

f0 = 0,x ∗ = 0.

Step 1. we use SVP∞ oracle to find the shortest vector ŷ in the lattice L described below for fc =
d(f0 + fmax)/2e.

Step 2. check whether (|ŷ1|, ..., |ŷn|) is a solution to the problem of finding a vector x in {x ∈ {0; 1}n :
a · x = b, c · x ≥ fc}. If the answer is YES, we set f0 := fc,x

∗ = (|ŷ1|, ..., |ŷn|). Otherwise, we
set fmax := fc − 1.

Step 3. if fmax > f0, then go to Step 1. Otherwise, we can have the answer for KOP: if x ∗ 6= 0, then
return x ∗ as the solution of KOP. Otherwise, we conclude that KOP has no solution.

Note that the above procedure bases on binary technique. The upper bound fmax is easily found,
and thus the number of calls to SVP∞ oracle is a polynomial in the length of the input of KOP.
This implies KOP is reducible to SVP∞. However, the question is whether (|ŷ1|, ..., |ŷn|) is always a
solution to pKOP, which denotes the problem in Step 2, in case it has solutions. This question will
be answered in the next analyzing on L. From these observations, we know that the last problem
we must consider is the reduction from pKOP to SVP∞.

We now illustrate the reduction from pKOP to SVP∞. Assume that we are given pKOP. Without
loss of generality, we assume that ai ≤ b,∀i ∈ [n], and

∑n
i=1 ai 6= 2b. (The later assumption can

be easily guaranteed, for example, see the Appendix). Then the new lattice L is generated by the
following basis:

B =




I n 0 0 0 0 0 0 0
s0a −s0b 0 0 0 0 0 0
0 0 I n 0 0 0 0 0

s1D s1λ
n s1D −s1γ 0 0 0 0

0 0 0 0 I n 0 0 0
s2s4I n 0 −s2s4I n 0 −s2s4I n s3s4I n 0 0

0 0 0 0 0 0 1
fmax−fc

0
−s5s6c s5s6fmax 0 0 0 0 −s5s6 s5s7




where I n is an identity matrix of size n; sj and λ are optional integers satisfying sj > n2 for j ∈
{0, 1, 2, 3, 4, 5, 6}, s7 ≥ fmaxn

2b, gcd(s2, s3) = 1, gcd(s6, s7) = 1, and λ > n3; D = (1, λ, ..., λn−1),
and γ = 1 + λ + · · ·+ λn.

The following lemma presents the first properties of L.

6

Lemma 1. For any vector y = Bz ∈ L, if y does not satisfy one of the following conditions

yn+1 = y2n+2 = y3n+2+i = y4n+4 = 0, ∀i ∈ [n] (2)

yi + yn+1+i = zn+1, ∀i ∈ [n] (3)

yi − yn+1+i = y2n+2+i, ∀i ∈ [n] (4)

y4n+3 =


−

n∑

j=1

cjyj + fmaxzn+1


 1

fmax − fc
(5)

then y has at least one component with magnitude not less than Θ(p), where p = min{s0, s1, s2, s3,
s4, s5, s6, s7/nfmax, λ/n}.

Proof. The claims (2) and (3) can be proven as the one in Lemma 5 in [18]. The remainder is to
prove (4) and (5).

Assuming that y satisfies both (2) and (3), then we have y3n+2+i = y4n+4 = 0, ∀i ∈ [n]. This
means

s2(yi − yn+1+i − y2n+2+i) = −s3z3n+2+i, ∀i ∈ [n].

Remembering that gcd(s2, s3) = 1, if yi − yn+1+i − y2n+2+i 6= 0, then yi − yn+1+i − y2n+2+i is a
non-zero multiple of s3; therefore, either |yi| or |yn+1+i| or |y2n+2+i| is not less than Θ(s3). As a
consequence, if y does not satisfy (4), then it has at least one component with magnitude at least
Θ(p).

Since y satisfies (2), we have y4n+4 = 0. This means s6

(
−∑n

j=1 cjzj + fmaxzn+1 − z4n+3

)
+

s7z4n+4 = 0, that is,

s6


−

n∑

j=1

cjyj + fmaxzn+1 − (fmax − fc)y4n+3


 + s7z4n+4 = 0.

If z4n+4 = 0, we have −∑n
j=1 cjyj + fmaxzn+1 − (fmax − fc)y4n+3 = 0, and thus (5) follows.

We now consider the case that y does not satisfy (5). This implies z4n+4 6= 0; consequently,
−∑n

j=1 cjyj + fmaxzn+1 − (fmax − fc)y4n+3 is a non-zero multiple of s7, due to gcd(s6, s7) = 1. In
this case, either

∑n
j=1 cjyj or fmaxzn+1 or (fmax − fc)y4n+3 is of magnitude at least Θ(s7).

If |(fmax − fc)y4n+3| ≥ Θ(s7), we have |y4n+3| ≥ Θ(p), and therefore we obtain the claim of the
lemma. Now assuming that |fmaxzn+1| ≥ Θ(s7), we have |zn+1| ≥ Θ(s7/fmax). Note that yn+1 = 0,
since y satisfies (2). That is, we have the equation

n∑

j=1

ajyj = bzn+1. (6)

Since aj ≤ b,∀j ∈ [n], it is not hard to see that every solution to (6) has at least one component
with magnitude not less than Θ(zn+1/n). This means y has at least one component with magnitude
at least Θ(s7/(nfmax)).

If |∑n
j=1 cjyj | ≥ Θ(s7), we easily derive the claim of the lemma, since cj ≤ fmax, ∀j ∈ [n]. This

completes the proof of the lemma. ut

7

Another property of L is presented in the next lemma. This is the key observation for the proof
of Theorem 3.

Lemma 2. Suppose that pKOP has solutions. For every non-zero vector y∗ ∈ L, either (y∗1, ..., y
∗
n)

or −(y∗1, ..., y
∗
n) is a solution to pKOP if ‖y∗‖∞ ≤ 1.

Proof. Combining the hypothesis ‖y∗‖∞ ≤ 1 with Lemma 1, y∗ = Bz satisfies (2), (3), (4) and
(5). Then we immediately have

n∑

j=1

ajy
∗
j = bzn+1, (7)

y∗i + y∗n+1+i = zn+1,∀i ∈ [n]. (8)

We now prove the lemma by combining the following facts.

Fact 1. if
∑n

j=1 ajy
∗
j 6= 0, then either (y∗1, ..., y

∗
n) or −(y∗1, ..., y

∗
n) is a solution to pKOP.

Proof. Combining the hypothesis
∑n

j=1 ajy
∗
j 6= 0 with (7) yields zn+1 6= 0. From (8), it is not hard

to see that if |zn+1| > 2, then either |y∗i | > 1 or
∣∣y∗n+1+i

∣∣ > 1. This means ‖y∗‖∞ > 1, contrarily.
Consequently, the remainder of the proof is to consider the case 0 < |zn+1| ≤ 2.

Assume that zn+1 = 2. (The case zn+1 = −2 can be dealt with by the same way.) Then we
have y∗i + y∗n+1+i = 2, ∀i ∈ [n]. An immediate observation is that if y∗i = y∗n+1+i = 1, ∀i ∈ [n], then
we have

∑n
j=1 aj = 2b, being contrary to the assumption

∑n
j=1 aj 6= 2b. Hence, there exists r ∈ [n]

such that either |y∗r | > 1 or
∣∣y∗n+1+r

∣∣ > 1. This leads to ‖y∗‖∞ > 1, contrarily. These observations
imply 0 < zn+1 ≤ 1.

If zn+1 = 1, then we have
∑n

j=1 ajy
∗
j = b and y∗i + y∗n+1+i = 1, ∀i ∈ [n]. From this fact, we

remark that if there exists r ∈ [n] such that y∗r < 0, then y∗n+1+r > 1. This means ‖y∗‖∞ > 1,
contrarily. Consequently, 0 ≤ y∗i ≤ 1, ∀i ∈ [n]. That is, (y∗1, ..., y

∗
n) satisfies

n∑

j=1

ajy
∗
j = b, (y∗1, ..., y

∗
n) ∈ {0; 1}n. (9)

Furthermore, y∗ also satisfies y∗4n+3 =
(
−∑n

j=1 cjy
∗
j + fmax

)
1

fmax−fc
due to (5). It is easy to see

that if
∑n

j=1 cjy
∗
j < fc, then y∗4n+3 > 1; hence, ‖y∗‖∞ > 1, contrarily. This suggests that

n∑

j=1

cjy
∗
j ≥ fc. (10)

Note that if
∑n

j=1 cjy
∗
j > fmax, there exists r such that y∗r > 1. This implies ‖y∗‖∞ > 1, contrarily.

Thus we must have
∑n

j=1 cjy
∗
j ≤ fmax. Combining this with (9) and (10) leads to the fact that

(y∗1, ..., y
∗
n) is a solution to pKOP.

By the same argument we can show that if zn+1 = −1, then −(y∗1, ..., y
∗
n) is a solution to pKOP.

The proof is completed. ut

8

Fact 2. if
∑n

j=1 ajy
∗
j = 0, then ‖y∗‖∞ > 1.

Proof. Since y∗ satisfies (3), (4) and (7), we have zn+1 = 0, and thus,

y∗i + y∗n+1+i = 0, ∀i ∈ [n], (11)

y∗i − y∗n+1+i = y∗2n+2+i, ∀i ∈ [n]. (12)

Assume that y∗i = 0,∀i ∈ [n]. Then y∗n+1+i = y∗2n+2+i = 0, ∀i ∈ [n]. Moreover, y∗4n+3 = 0, since
zn+1 = 0. This means y∗ = 0, contrarily. Consequently, there exists at least an index i ∈ [n] such
that y∗i 6= 0. By (11) we have y∗n+1+i = −y∗i 6= 0. Note that y∗i ∈ Z, and thus |y∗n+1+i| = |y∗i | ≥ 1.
Combining these facts with (12) implies |y∗2n+2+i| ≥ 2. The claim of Fact 2 is clear. ut

Combining Fact 1 with Fact 2 yields the proof of Lemma 2. ut

From the property of L revealed in Lemma 2, we remark that the shortest vectors in L for
`∞ norm should have length not greater than 1, provided pKOP has solutions. Indeed, a careful
observation reveals that if x̂ is a solution to pKOP, then ŷ = (x̂ , 0, e−x̂ , 0, 2x̂−e , 0.e , fmax−f(x̂)

fmax−fc
, 0)

is a vector in L, and ‖ŷ‖ ≤ 1.4 Therefore, ‖y∗‖∞ ≤ ‖ŷ‖∞ ≤ 1 if y∗ is the shortest vector in L for
`∞ norm. These facts quickly leads to the following corollary.

Corollary 4. Suppose that pKOP has solutions. If y∗ is the shortest vector in L for `∞ norm, then
either (y∗1, ..., y

∗
n) or −(y∗1, ..., y

∗
n) is a solution to pKOP.

We note that x̂ cannot be the zero vector, thus ‖ŷ‖∞ = 1. It is not hard to see that every
shortest vector in L has this length, provided that pKOP has solutions, and that if y∗ is the
shortest vector in L, then so is −y∗. These facts mean the following lemma is straightforward.

Lemma 3. Suppose that pKOP has solutions. The number of shortest vectors in L is as twice as
the number of solutions to pKOP.

From the above observations, the claim of theorem 3 is easily proven.

Proof (Proof of Theorem 3). Notice that Corollary 4 implies a reduction from pKOP to SVP∞.
Moreover, any parameters in constructing the lattice L can be chosen in time polynomial in the size
of the input of pKOP. Thus, the reduction is deterministic polynomial time. Furthermore, if pKOP
has unique solution, so is SVP∞ up to a sign. As a consequence, combining these observations with
the procedure at the beginning of this section, we have the reduction from uKOP to uSVP∞. The
proof of Theorem 3 is completed. ut

5 Hardness of uSAP for any `p norm

The reduction from KOP to SAP can be similarly constructed to the one in Section 4. However,
some suitable modifications are needed to obtain the desired result. Hence, we will present the
reduction in a high level, not be detail in some claims if unnecessary.

4 Here e = (1, 1, ..., 1) ∈ Rn.

9

Assume that we are given a pKOP instance. Then the subspace we deal with is S = {y ∈
Z2n+4 : a1y1 + · · ·+ anyn = 0}. Consider the lattice L1 generated by the following basis:

B1 =




I n 0 0 0 0 0
s0a −s0b 0 0 0 0
0 0 I n 0 0 0

s1D s1λ
n s1D −s1γ 0 0

0 0 0 0 1
fmax−fc

0
−s5s6c s5s6fmax 0 0 −s5s6 s5s7




,

where the parameters are chosen as in Section 4, except fmax > n2
∑n

j=1 cj .
For this lattice, we have the first properties as follows.

Lemma 4. For any vector y = B1z ∈ L1, if y does not satisfy one of the following conditions

yn+1 = y2n+2 = y2n+4 = 0,∀i ∈ [n] (13)

yi + yn+1+i = zn+1, ∀i ∈ [n] (14)

y2n+3 =


−

n∑

j=1

cjyj + fmaxzn+1


 1

fmax − fc
(15)

then y has at least one component with magnitude not less than Θ(p), where p = min{s0, s1, s5,
s6, s7/nfmax, λ/n}.

The proof of the lemma is the same as the one of Lemma 1, thus we omit it here. The next
lemma is the key observations to prove Theorem 2.

Lemma 5. Suppose that pKOP has solutions. If y∗ is the shortest vector in L1\S for `p norm,
p ≥ 1, then either (y∗1, ..., y

∗
n) or −(y∗1, ..., y

∗
n) is a solution to pKOP.

Proof. A careful observation yields the fact that if x̂ is a solution to pKOP, then ŷ = (x̂ , 0, e −
x̂ , 0, fmax−f(x̂)

fmax−fc
, 0) is a vector in L1\S. Since x̂ ∈ {0; 1}n and fmax − f(x̂) ≤ fmax − fc, we have

ŷj ∈ {0; 1}, ∀j 6= 2n + 3, and 0 ≤ ŷ2n+3 = fmax−f(x̂)
fmax−fc

≤ 1. Therefore, ‖ŷ‖p = p

√
n + (fmax−f(x̂)

fmax−fc
)p ≤

p
√

n + 1. This suggests that ‖y∗‖p ≤ ‖ŷ‖p = p
√

n + 1. Combining this fact with Lemma 4, y∗ must
satisfy (13), (14) and (15).

Since y∗ ∈ L1, there is an integer vector z ∗ such that y∗ = B1z
∗. It is not hard to see that

y∗i = z∗i , y∗n+1+i = z∗n+1+i, ∀i ∈ [n], y∗2n+3 =
z∗2n+3

fmax−fc
. Since y∗ satisfies (13), (14) and (15), we have∑2n+4

i=1 y∗i =
∑n

i=1(y
∗
i + y∗n+1+i) + y∗2n+3 = nz∗n+1 + y∗2n+3. On the other hand, by the hypothesis

y∗ /∈ S and y∗n+1 = s0(
∑n

j=1 ajz
∗
j − bz∗n+1) = 0, z∗n+1 must be non-zero. Furthermore, if |z∗n+1| ≥ 2,

then ‖y∗‖p ≥ p
√

2n; this means ‖y∗‖p > ‖ŷ‖p, contrarily. Hence, the remainder of the proof is to
consider the case |z∗n+1| = 1.

Assume that z∗n+1 = 1. Then we immediately have y∗i + y∗n+1+i = 1, ∀i ∈ [n], y∗2n+3 = (fmax −∑n
j=1 ajy

∗
j)

1
fmax−fc

and
∑n

j=1 ajy
∗
j = b. From this fact, the equation

∑2n+4
j=1 y∗j = n + y∗2n+3 follows.

Noting that y∗i = z∗i , ∀i ∈ [n], every component of y∗ is integral, except y∗2n+3.

10

We now make some more careful observations on y∗. If there exists i ∈ [n] such that y∗i < 0, then
y∗n+1+i ≥ 2. This implies

∑2n+4
j=1 |y∗j | =

∑2n+2
j=1 |y∗j |+|y∗2n+3| ≥ n+1+|y∗2n+3| > n+1.5 As a result, we

obtain ‖y∗‖p > p
√

n + 1 ≥ ‖ŷ‖p, contrarily. Also if ∃i ∈ [n], y∗i > 1, then ‖y∗‖p > ‖ŷ‖p, contrarily.
In short, 0 ≤ y∗i ≤ 1, ∀i ∈ [n]; that is, y∗ satisfies (y∗1, ..., y

∗
n) ∈ {0; 1}n and

∑n
j=1 ajy

∗
j = b.

From the above observations, we note that ‖y∗‖p = p

√
n + |y∗2n+3|p ≤ p

√
n + 1. This implies

|y∗2n+3| ≤ 1; and thus, fmax −
∑n

j=1 cjy
∗
j ≤ fmax − fc, or equivalently, fc ≤

∑n
j=1 cjy

∗
j ≤ fmax. As a

consequence, (y∗1, ..., y
∗
n) is a solution to pKOP.

For the case z∗n+1 = −1, we can easily show that −(y∗1, ..., y
∗
n) is a solution to pKOP. This

completes the proof of the lemma. ut
Proof (Proof of Theorem 2). Notice that Lemma 5 implies a reduction from pKOP to SAPp, p ≥ 1.
Moreover, any parameters in constructing the lattice L1 can be chosen in time polynomial in the
size of the input of pKOP. Thus, the reduction is deterministic polynomial time. Furthermore, if
pKOP has unique solution, so is SAPp up to a sign. As a consequence, combining these observations
with the procedure being similar to the one at the beginning of Section 4, we have the reduction
from uKOP to uSAPp. The proof of Theorem 2 is completed. ut

Conclusion

We have discussed the hardness of uSVP. However, the proof works only for `∞ norm. For other
norm, this technique may not be applied. Still, we believe that uSVP for other norm is hard even
in its approximating version. This paper presents the hardness results for various other lattice
problems for any `p norm, such as uCVP, uGCVP, and uSAP. For the approximating versions of
these problems, we cannot applied the technique in this paper, and thus the hardness of them is still
open. We believe that approximating uSVP, uCVP, uGCVP, and uSAP with any constant factor
are hard.

Appendix: the assumption
∑n

j=1 aj 6= 2b
Assume now that the original pKOP satisfying

∑n
j=1 aj = 2b. Then we reduce it to the new one

satisfying our desire. The new pKOP is as follows:
Find a vector x ∈ Zn+1 satisfying





a′1x1 + · · ·+ a′n+1xn+1 = b′

c1x1 + · · ·+ cnxn ≥ fc

x ∈ {0; 1}n+1
(16)

Where a′j = aj, for all j ≤ n, a′n+1 = (n + 1)b, b′ = b + (n + 1)b.
It is not hard to see that solving the new pKOP (16) is equivalent to solving the original pKOP.

Indeed, if (x1, ..., xn, 1) is a solution to (16), then a1x1 + · · ·+ anxn = b and c1x1 + · · ·+ cnxn ≥ fc.
This implies that (x1, ..., xn) is a solution to the original pKOP. Moreover, (x1, ..., xn, 0) cannot be
a solution to (16) due to the fact that a1x1 + · · ·+ anxn = b′ means a contrary to the assumption
aj < b,∀j ≤ n. These observations imply that (x1, ..., xn, xn+1) is a solution to (16) if and only if
(x1, ..., xn) is a solution the original pKOP.

Note that (16) satisfies
∑n+1

j=1 a′j 6= 2b′. This means the new pKOP satisfies our desired assump-
tion.
5 We have the last inequality because of the fact that if y∗2n+3 = 0, then fmax =

∑n
j=1 cjy

∗
j , and hence, there exists

y∗j with magnitude at least Θ(n2) due to the definition of fmax.

11

Appendix: hardness of uKOP
To make the paper self-contained, we include the proof for the hardness of uKOP. This proof is

similar to the one for the hardness of the general Knapsack problem in [16]. Now we consider the
search version of the 0-1 Knapsack problem:

Find a vector x ∈ Zn satisfying {
a · x = b
x ∈ {0; 1}n (17)

where the coefficients are positive integers.
It is not hard to see that (17) is NP-hard. We are going to reduce (17) to KOP, which has at

most one solution. The new KOP is as follows:
Find a solution x to

f(x) = d1x1 + · · ·+ dnxn → min{
a · x = b
x ∈ {0; 1}n

(18)

where di’s are optional integers such that:
+ d1 > 0,
+ di > w

∑i−1
j=1 dj , w = max

k
{db/ake}, i > 1

It is clear that if x 0 is a solution to (18), then x 0 is also a solution to (17); if (18) has no
solution, then neither has (17). Moreover, (18) has at most one solution. Indeed, assume that x 1

and x 2 are different solutions to (18). There exists j, x1
j 6= x2

j . Let r be the greatest index such
that x1

r 6= x2
r. Without loss of generality, we assume that x1

r < x2
r. Then we have:

f(x 1) = d · x 1 =
∑

j<r djx
1
j + drx

1
r +

∑
k>r dkx

1
k,

f(x 2) = d · x 2 =
∑

j<r djx
2
j + drx

2
r +

∑
k>r dkx

2
k

= f(x 1) +
∑

j<r djx
2
j + dr(x2

r − x1
r)−

∑
j<r djx

1
j

Note that 0 ≤ x1
j ≤ w,∀j. Thus

∑
j<r djx

1
j < w

∑
j<r dj < dr (due to the hypothesis on di’s).

Combining this with the fact that x 1,x 2 ∈ Zn
+ would lead to

∑
j<r djx

1
j < dr(x2

r − x1
r). Therefore,

from the above representation of f(x 2), we conclude that f(x 1) < f(x 2). That is, (18) has at most
one solution.

Theorem 4. Any 0-1 knapsack problem can be polynomial-computationally reduced to a 0-1 knap-
sack optimization problem having at most one solution.

Note that 0-1 KP is NP-complete. Thus we obtain the following.

Corollary 5. uKOP is NP-hard.

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of
the 29th annual ACM symposium on Theory of Computing, ACM (1997) 284–293

2. Micciancio, D.: Improving lattice based cryptosystems using the hermite normal form. In: CaLC’01: Revised
Papers from the International Conference on Cryptography and Lattices, London, UK, Springer-Verlag (2001)
126–145

12

3. Cai, J.Y., Cusick, T.W.: A lattice-based public-key cryptosystem. Information and Computation 151(1-2) (1999)
17–31

4. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Pro-
ceedings of the 17th Annual International Cryptology Conference on Advances in Cryptology, London, UK,
Springer-Verlag (1997) 112–131

5. Regev, O.: New lattice-based cryptographic constructions. Journal of the ACM 51(6) (2004) 899–942
6. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th

annual ACM symposium on Theory of computing, ACM (2005) 84–93
7. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In:

Theory of Cryptography, Third Theory of Cryptography Conference - TCC, Springer (2006) 145–166
8. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of the 40th Annual

ACM Symposium on Theory of Computing, ACM (2008) 187–196
9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions.

In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing. (2008) 197–206
10. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Computational

Complexity 16(4) (2007) 365–411
11. Regev, O.: Quantum computation and lattice problems. SIAM J. Computing 33(3) (2004) 738–760
12. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of the 37th annual

ACM symposium on Theory of computing. (1996) 99–108
13. Kumar, R., Sivakumar, D.: A note on the shortest lattice vector problem. In: IEEE Conference on Computational

Complexity. (1999) 200–204
14. Cai, J.Y.: A relation of primal-dual lattices and the complexity of shortest lattice vector problem. Theorietical

Computer Sciences 207(1) (1998) 105–116
15. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Advances in Cryptology - EUROCRYPT 2008, 27th

Annual International Conference on the Theory and Applications of Cryptographic Techniques. (2008) 31–51
16. Khoát, T.Q.: Relation between the hardness of a problem and the number of its solutions. To appears in Acta

Mathematica Vietnamica (2008)
17. Micciancio, D.: Efficient reductions among lattice problems. In: Proc. of the 19th annual ACM-SIAM Symposium

on Discrete Algorithms -SODA. (2008) 84–93
18. Khoát, T.Q.: On the bounded integer programming. In: Proceedings of the 2008 IEEE International Conference

on Research, Innovation & Vision for the Future - RIVF, Ho Chi Minh city, Vietnam, IEEE (July 2008) 23–28

