
Unconditionally Reliable Hypergraphs

Kannan Srinathan2 Arpita Patra1 Ashish Choudhary1∗ C. Pandu Rangan1

1 Department of Computer Science and Engineering
Indian Institute of Technology Madras

Chennai India 600036
{arpita,ashishc}@cse.iitm.ernet.in, rangan@iitm.ernet.in

2 Center for Security, Theory and Algorithmic Research
International Institute of Information Technology

Gachibowli, Hyderabad India
srinathan@iiit.ac.in

Abstract

We study the problem of unconditionally reliable message transmission (URMT), where two non-
faulty players, the sender S and the receiver R are part of a synchronous network modeled as a directed
hypergraph, a part of which may be under the influence of an adversary having unbounded computing
power. S intends to transmit a message m to R, such that R should correctly obtain S’s message with
probability at least (1 − δ) for arbitrarily small δ > 0. However, unlike most of the literature on this
problem, we assume the adversary modeling the faults is threshold mixed, and can corrupt different
set of nodes in Byzantine, passive and fail-stop fashion simultaneously. The main contribution of this
work is the complete characterization of URMT in directed hypergraph tolerating such an adversary.
Working out a direct characterization of URMT over directed hypergraphs tolerating threshold mixed
adversary is highly un-intuitive. So we first propose a novel technique, which takes as input a di-
rected hypergraph and a threshold mixed adversary on that hypergraph and outputs a corresponding
digraph, along with a non-threshold mixed adversary, such that URMT over the hypergraph tolerat-
ing the threshold mixed adversary is possible iff a special type of URMT is possible over the obtained
digraph, tolerating the corresponding non-threshold mixed adversary. We then characterize URMT in
arbitrary digraphs tolerating non-threshold mixed adversary and modify it to obtain the characteriza-
tion for special type of URMT over digraphs tolerating non-threshold mixed adversary. This completes
the characterization of URMT over the original hypergraph. Surprisingly, our results indicate that
even passive corruption, in collusion with active faults, substantially affects the reliability of URMT
protocols! This is interesting because it is a general belief that passive corruption (eavesdropping)
does not affect reliable communication.

1 Introduction

Consider a synchronous network, modeled as a directed hypergraph D = (P, E) where P is the set of
nodes and E ⊂ P×2P is the set of directed hyperedges. Some of the nodes in the network D are controlled
by an adaptive1 threshold mixed adversary A(tb,tp,tf) which possesses unbounded computing power and
can corrupt disjoint set of tb, tp and tf nodes in Byzantine, passive and fail-stop fashion respectively. In
Unconditionally Reliable Message Transmission (URMT) problem over D, a sender S ∈ P wishes to send
a message m, chosen from a finite field F to the receiver R ∈ P (we assume that S and R are non-faulty),
such that R recovers m with probability at least (1 − δ), for arbitrarily small δ > 0. If δ = 0, then
the problem is called perfectly reliable message transmission (PRMT), where R should output m with
probability one. Since URMT problem assumes the adversary to have unbounded computing power, it
cannot be solved using public key cryptography, hash functions, digital signatures, etc which are based on
the assumption that adversary has bounded computing power. Directed hypergraph is the most generic

∗Financial Support from Infosys Technology India Acknowledged.
1An adaptive adversary corrupts the nodes dynamically during the protocol execution. The nodes to be corrupted may

depend upon the information obtained by the adversary so far during the protocol execution.

1

network model with the facility of multicasting. In certain scenarios, private one-to-one channels may not
exist. Typical examples include Radio transmission and LAN network. Also in many practical scenarios,
a base station can broadcast to a set of receivers, but the other way around communication might not
be possible. In these cases, directed hypergraph is the only way to model the network.

One of the largest “consumers” of URMT protocols is the field of distributed randomized algorithms [8].
Unlike the need to simulate an error free communication channel between a mutually distant pair of nodes
in a network, an important basic primitive in any distributed randomized algorithm is URMT protocol.
Intuitively, the allowance of a small probability of error in the transmission should result in improvements
in the fault tolerance of reliable message transmission protocols. What exactly is the improvement? We
answer this question, considering the most generic network model namely directed hypergraph. The
most natural, intriguing and interesting questions that can be posed in the context of URMT over
directed hypergraphs are: (a) Possibility: What is the necessary and sufficient condition that a given
directed hypergraph D should satisfy for the possibility of URMT from S to R tolerating A(tb,tp,tf)?
(b) Does allowing a small probability of error in the reliability of message transmission improves fault
tolerance in the network? (c) A directed hyperedge may be visualized as ”bunching up” a set of directed
(simple) edges. So given a directed hypergraph D, a digraph G can be obtained from D by replacing
each hyperedge with the corresponding ”bunch” of directed edges. Now the natural question is: Does
there exists a directed hypergraph D such that URMT is possible over D but impossible over G tolerating
A(tb,tf ,tp)? More precisely, do hyperedges possess some special property/power in the context of URMT?
While the first question is the heart of this paper and answered in the next sections, the next two questions
posed above are answered affirmatively little later in this section itself (subsection 1.3).

1.1 Existing work

The problem of URMT was first defined and solved by Franklin et. al. [5] over undirected graphs,
tolerating threshold Byzantine adversary Atb . As one of the key results, they proved that over undirected
graphs, URMT tolerating Atb is possible iff PRMT (which is URMT with δ = 0) tolerating Atb is
possible. Subsequent works on URMT include [12, 2, 3]. Most recently, Srinathan et.al. [11] and Shankar
et.al [10] has given the complete characterization for URMT in an arbitrary directed graph tolerating
non-threshold and threshold Byzantine adversary respectively.

Considering hypergraph as underlying network model is not quite common in literature. The problem
of secure communication against Atp in directed hypergraphs has been studied by Franklin et. al. [6].
Later Desmedt et.al. [2] has given the characterization for PRMT over hypergraphs tolerating Atb .

1.2 Hypergraph Network Model and Threshold Mixed Adversary

In this work, we follow the hypergraph network model as in [6]. A directed hypergraph is denoted by
D = (P, E). A typical directed hyperedge e can be written as e = (v, S), where v ∈ P, S ⊆ (P \ v). We
call v as the source node and the nodes in S as the destination nodes of e. The hyperedge e enables node v
to send message to the nodes in S, identically. Even if v is corrupted and modifies (stops) the information
passing through it, every node in S identically receive the modified information (no information). The
hyperedge e is directed since only v can send messages to the nodes in S but the nodes in S cannot
communicate among themselves or to v using e. However a node va in S can communicate with some
other node vb in S through other hyperedge in E , with va as the source and vb as one of the destination
nodes. Also a node can be source/destination of many hyperedges. The hyperedge e is secure in the
sense that any node outside the set S ∪ {v} learns nothing about the information sent over e.

We consider an adaptive threshold mixed adversary A(tb,tp,tf), who possesses unbounded computing
power and controls at most tb, tp and tf nodes in D in Byzantine, passive and fail-stop fashion respectively.
The choice of the nodes which are under the control of A(tb,tp,tf) is decided dynamically during the
protocol execution and may depend upon the information obtained by the adversary so far. Once a
node is corrupted, it remains so throughout the protocol. If a node P is fail-stop corrupted by A(tb,tp,tf),
then the adversary can force P to crash at will at any time during the execution of the protocol but can
not access its internal data and can not force its behaviour to deviate from the protocol. So till P is
alive, it honestly follows the protocol. Also once P is crashed, it never becomes alive again. If a node

2

P is passively corrupted by A(tb,tp,tf), then P honestly follows the protocol but the adversary has full
access to internal data of P. If a node P is Byzantine corrupted by A(tb,tp,tf), then the adversary has full
access to the internal data of P and can force P to deviate from the protocol arbitrarily. We assume
that A(tb,tp,tf) acts in a ”centralized” fashion and colludes among different corrupted nodes through
“back channels”. So, A(tb,tp,tf) can listen information from at most (tb + tp) nodes and can pool all
the information observed/obtained at these tb + tp nodes in any manner in its local computation. The
adversary can stop communication through at most tb + tf nodes and can change information passing
though at most tb nodes.

Why to Study Mixed Adversary: In a typical large network, certain nodes may be strongly protected
and few others may be moderately/weakly protected. An adversary may fail-stop(/eavesdrop in) a
strongly protected node, while he may affect in a Byzantine fashion a weakly protected node. Thus,
we may capture the abilities of an adversary in a more realistic manner using three parameters tb, tp, tf
where tb, tp, tf are the number of nodes under the influence of Byzantine, passive and fail-stop adversary,
respectively. Also it is better to grade different kinds of disruption done by adversary and consider them
separately rather than treating every kind of fault as Byzantine fault as this is an “overkill”. Even in
practical scenario, when a hacker takes control of a router, it can disrupt the communication in variety
of ways. Thus, we need to model the adversary as a mixed adversary.

1.3 Our Contribution, Significance and Impact

In this paper, we completely characterize URMT over an arbitrary directed hypergraph D tolerating
A(tb,tp,tf). Working out a direct characterization of URMT over D, tolerating A(tb,tp,tf) is highly un-
intuitive. Hence, we follow the following framework to solve the problem:

Contribution 1 We propose a method which takes a directed hypergraph D, along with A(tb,tp,tf) and
outputs a corresponding digraph Dunder, which we call as ”underlying digraph” of D, along with a non-
threshold mixed adversary Aunder, such that URMT over D tolerating A(tb,tp,tf) is possible iff there exists
a “special type of URMT” protocol in Dunder tolerating Aunder. So to obtain characterization of URMT
over directed hypergraph tolerating a threshold mixed adversary, we require the characterization for a
“special type of URMT” in the “underlying digraph” tolerating a non-threshold mixed adversary.

Contribution 2 We then characterize URMT in Dunder tolerating Aunder and give modifications on it
to arrive at the characterization of special type of URMT on Dunder. This along with Contribution 1
completes the characterization of URMT on D, tolerating A(tb,tp,tf).

In the sequel we provide affirmative answers to all the following questions in order by demonstrating
examples: (a) Does randomization helps in more fault tolerance? (b) Does hyperedges helps in the pos-
sibility of URMT? (c) Does passive corruption affects reliable communication? Consider the hypergraph
D in Fig. 1 under the influence of A(1,0,0), where tb = 1 and tp = tf = 0. We can say the following
regarding D which essentially shows the power of randomization:

• From [2], PRMT (URMT with δ = 0) over D tolerating A(1,0,0) is impossible.

• URMT over D tolerating A(1,0,0) is possible and feasible.

Claim 1 URMT over D tolerating A(1,0,0) is possible and feasible.

Proof: Consider the following protocol over D. A selects three random values (keys) from finite field F,
say K1,K2, and K3. A sends the keys to S and R through the hyperedge (A, {S,R}). Since (A, {S,R})
is a hyperedge, both S and R receive the same set of keys or get nothing. If S receives the keys, he
authenticates the message m by computing a two tuple (K1 +m,K2(K1 +m)+K3) and sends it through
the path (S, B,R). S also sends the message m over both the paths (S, B,R) and (S, A,R). Now if R
does not receive any key from A, he detect A to be faulty and accept the message from path (S, B,R).
Otherwise, R receives the authenticated tuple say (c, d) over path (S, B,R) and the keys from A with
which R checks d

?= K2c +K3. If the test passes he takes c−K1 as the message, else R knows node B is

3

faulty and accept the message from path (S, A,R). The proof of correctness of the protocol is similar to
the information checking protocol of [9]. It can be shown that except with probability δ = 1

|F| , R outputs
m′ = m. This is so because B does not know the keys. So the only way he can forge an incorrect message
is to correctly guess K2 or K3. Now by setting the field size |F| to be arbitrarily large, we can reduce the
error probability to an arbitrarily small quantity. 2

Next we show that unlike PRMT, hyperedges do help in the possibility of URMT. A very straight-forward
implication that can be drawn from the characterization of PRMT in directed hypergraph against Atb ,
stated in [2], is that, replacing every hyperedge of a hypergraph by a collection of underlying simple
directed edges does not affect the possibility of PRMT over the hypergraph. This means there does
not exist a hypergraph such that PRMT is possible on it but is impossible in the digraph obtained
from the hypergraph. However consider the hypergraph D in Figure 1 and its corresponding directed
graph G, which is obtained from D by replacing each hyperedge by its underlying simple directed edges.
From Claim 1, URMT is possible in D tolerating A(1,0,0). However, from [10], URMT is impossible in G
tolerating A(1,0,0). Thus we conclude that hyperedges do help in the possibility of URMT but not PRMT.

AA

S

B

RS

B

R

D = (P , E) P = {S, A, B, R}

E = {(S, {A}), (A, {R}), (A, {S, R}, (S, {B}),

G: Obtained from D by replacing the six hyperedges
by corresponding directed edges.

(B, {R}), (B, {S, R})}

Figure 1: Example of network illustrating the power of hyperedges with
respect to URMT.

One of the long-standing
and intuitive belief is that
“passive corruption does not
affect reliable communica-
tion”. We contradict the be-
lief by an example for URMT
in directed hypergraph. In
Figure 1, let D be under the
control of A(1,1,0), where tb =
tp = 1 and tf = 0. Let A
be passive corrupted and B
be Byzantine corrupted; then
the protocol in Claim 1 will not work. The reason is that adversary always gets the keys which A sends
to S and R (by eavesdropping A). Specifically A(1,1,0) can use the information he eavesdrop at A, to
corrupt the values appropriately at B, in such a way that the tuple along the path (S, B,R) passes the
authentication test. Thus an adversary can very effectively use the information obtained from the pas-
sively corrupted nodes at the nodes which he is controlling in a Byzantine fashion and affect the reliability
of the protocol.

1.4 Digraph Network Model and Non-threshold Adversary

We now give few definitions related to digraph network model and non-threshold adversary, which are
used in subsequent sections. A directed network is modeled as a digraph N = (P,E) where P is the set of
nodes and E denotes the set of arcs in the digraph. The network is assumed to be synchronous, that is,
the protocol is executed in a sequence of rounds wherein in each round, a node can send messages to it’s
out-neighbors, receive the messages sent in that round by it’s in-neighbors and perform some computation
on the received messages, in that order. A non-threshold adversary structure is an enumeration of all the
possible “snapshots” of faults in the network. A single snapshot can be described by an ordered triple
(B, E, F), where B, E, F ⊆ P and B, E and F are pairwise disjoint, and denotes the set of Byzantine,
passive and fail-stop corrupted nodes. Thus, an adversary structure is a collection of such triples. More
precisely, we denote the adversary structure by A, where A ⊆ 2P×P×P. The adversary structure is
monotone in the sense that if (B1, E1, F1) ∈ A , then ∀(B2, E2, F2) such that B2 ⊆ B1 and E2 ⊆ E1 and
F2 ⊆ F1, (B2, E2, F2) ∈ A. During the execution of the protocol, any one set from A would be active and
the nodes from that set will be under the control of the adversary throughout the protocol execution.
A threshold mixed adversary A(tb,tp,tf) is a special type of non-threshold adversary where size of B, E
and F are bounded by tb, tp and tf respectively. Note that A can be uniquely represented by listing the
elements in its maximal basis which we define below:

Definition 1 (Maximal Basis of A) For any monotone adversary structure A, its maximal basis Ā is
defined as Ā = {(B,E, F)|(B, E, F) ∈ A, and 6 ∃(X,Y, Z) ∈ A such that (X, Y, Z) 6= (B,E, F) where

4

X ⊇ B, Y ⊇ E and Z ⊇ F}.

Definition 2 (Strong Path) A sequence of vertices (v1, v2, v3, . . . , vk) is said to be a strong path from
v1 to vk in digraph N = (P,E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E. We assume that (vi,vi) is a strong
path from vi to itself.

Definition 3 (Semi-Strong Path) A sequence of vertices (v1, v2, v3, . . . , vk) is said to be a semi-strong
path from v1 to vk in digraph N = (P,E) if there exists j, 1 ≤ j ≤ k such that the sequence vj to v1 as well
as the sequence vj to vk are both strong paths in the network. Vertex vj is called the head of the semi-
strong path. Any strong path can be viewed as a semi-strong path. For example, the path (S, XV ir

e5
,R) in

graph Dunder in Fig. 2 is a semi-strong path between S and R, where XV ir
e5

is the head.

Definition 4 (Authentication Function) Let F be a finite field, K1,K2,K3 ∈ F−{0} be three random
keys and m ∈ F be a message. Then auth(m,K1,K2,K3) = (K1 + m,K2(K1 + m) +K3).

Suppose a random triplet (K1,K2,K3) ∈ F3 − {(0, 0, 0)} is correctly established between S and R. For
a message m, let S computes auth(m,K1,K2,K3) and sends it to R through a strong path, over which
some of the nodes could be under the control of the adversary. If the adversary does not know m,K1,K3

and K3 in advance, then auth satisfies the following two important properties: (a) Even if adversary
learns auth(m,K1,K2,K3), m will remain information theoretic secure. (b) If the adversary changes
auth(m,K1,K2,K3) to some other value, then except with an error probability of at most 1

|F| , R will be
able to detect it. The proof of both the properties is similar to the proof of information checking protocol
of [9] and hence is omitted.

2 Characterization for URMT in Directed Hypergraph

Here we characterize URMT on arbitrary directed hypergraphs tolerating A(tb,tp,tf).

Definition 5 (Underlying Digraph) Given a directed hypergraph D = (P, E) we define the underlying
digraph Dunder = (P ′, E ′) of the hypergraph D as follows: P ′ = (P ∪V) is the set of nodes (real nodes and
virtual nodes). We replace each hyperedge e = (v, {vj1 , vj2 , . . . , vjα}) ∈ E, α ≥ 1, with a virtual player
XV ir

e ∈ V and the arcs (v, XV ir
e), (XV ir

e , vj1), (XV ir
e , vj2), . . . , and (XV ir

e , vjα) in E ′. Thus, |V| is the
number of hyperedges in D. It is clear that every virtual player has an unique in-neighbor which belongs
to P. Also the out-neighbors of each virtual player belongs to only P. Note that two virtual players can
never be adjacent to each other.

A hypergraph, along with its corresponding digraph Dunder is given in Fig. 2. The intuition behind
our definition is that for every hypergraph D influenced by a threshold mixed adversary A(tb,tp,tf), there
exists a corresponding digraph Dunder and non-threshold mixed adversary Aunder, such that URMT over
D tolerating A(tb,tp,tf) is possible iff a “special type of URMT” over Dunder tolerating Aunder is possible.
We begin by defining this special kind of URMT protocol, denoted as URMTspecial.

Definition 6 (URMTspecial) A URMT protocol over a digraph Dunder = (P ∪ V, E ′) (which is the un-
derlying digraph of the directed hypergraph D = (P, E)) is called as special, denoted by URMTspecial, if
in that protocol, the programs delegated to each of the virtual players (i.e., the players in V) is known to
all and is deterministic i.e., the players in V do not use any internal random coins in the protocol.

Definition 7 (Aunder) Let D = (P, E) be a arbitrary directed hypergraph under the influence of A(tb,tp,tf).
Also let Dunder = (P ′, E ′) be the underlying digraph of D. The non-threshold mixed adversary Aunder over
Dunder, corresponding to A(tb,tp,tf) in D is defined as:

Aunder =

(B, E, F)

∣∣∣∣∣∣

|B ∩ P| ≤ tb, (B ∩ V) = ∅, |F ∩ P| ≤ tf , (F ∩ V) = ∅,
E = Ereal ∪ Evir, |Ereal ∩ P| ≤ tp, (Evir ∩ P) = ∅,
Evir =

{
ν ∈ V

∣∣∣∣
there exists a player x ∈ (B ∪ Ereal) such that either (x, ν) or (ν, x) is
an arc in Dunder

}

5

From the definition of Aunder, it is clear that every disjoint selection of tb, tp and tf nodes from the
set of nodes in D corresponds to an element in Aunder. To construct an element (B, E, F) ∈ Aunder,
we first select a possible combination of disjoint set of tb, tp and tf nodes from P (set of physical
nodes) and assign them to B, Ereal and F respectively. Now Evir is constructed by adding the virtual
nodes XV ir

e corresponding to hyperedge e = (v, {vj1 , vj2 , . . . , vjα}) such that at least one of the nodes
v, vj1 , vj2 , . . . , vjα ∈ (B∪Ereal). Finally E = Ereal∪Evir. Modeling the hypergraph D with directed graph
Dunder and extending the adversary to Aunder allows to work on a comparatively simpler digraph model.
Consider the hypergraph D shown in Fig. 2 under the influence of A(1,1,0). The corresponding Aunder in
Dunder (shown in the same figure) is represented by its maximal basis Aunder = {(B1, E1, F1), (B2, E2, F2)}
where (B1, E1, F1) = ({A}, {B, XV ir

e1
, XV ir

e1
, XV ir

e2
, XV ir

e3
, XV ir

e4
, XV ir

e5
, XV ir

e6
}, ∅) and (B2, E2, F2) =

({B}, {A,XV ir
e1

, XV ir
e1

, XV ir
e2

, XV ir
e3

, XV ir
e4

, XV ir
e5

, XV ir
e6
}, ∅).

Theorem 1 A URMT protocol from S to R in a directed hypergraph D = (P, E) tolerating A(tb,tp,tf) is
possible iff URMTspecial from S to R over Dunder is possible tolerating Aunder.

A

S

B

R S

A

R

BHypergraph D = (P , E), where P = {S, A, B, R}

and E = {e1, e2, e3, e4, e5, e6}

with e1 = (S, {A}), e2 = (A, {R}),

e3 = (S, {B}), e4 = (B, {R}),

e5 = (A, {S, R}), e6 = (B, {S, R})

Dunder = (P ′, E ′),P ′ = P ∪ V ,

V = {XV ir
e1

, XV ir
e2

, XV ir
e3

, XV ir
e4

, XV ir
e5

, XV ir
e6

}

denotes virtual nodes from the set V

XV ir
e2

XV ir
e4

XV ir
e3

XV ir
e1

XV ir
e6

XV ir
e5

Figure 2: A directed hypergraph D and it’s corresponding Dunder

Proof: If part: Let Π′ be a
URMTspecial protocol from S
to R over Dunder tolerating
Aunder. We now construct a
URMT protocol Π in D toler-
ating A(tb,tp,tf), using Π′. In
protocol Π′, the virtual play-
ers run a deterministic pro-
gram. Thus, if in Π′ some
message m is sent by v ∈ P to
XV ir

e ∈ V who then forwards
the respective outputs to all
his out-neighbors, the same
may be exactly simulated by
v just using m and the code of XV ir

e to compute the outputs of all the out-neighbors of XV ir
e , say

µ1, µ2, . . . , µk (if there are k out-neighbors of XV ir
e) and respectively sending µj to the jth out-neighbor

routed through XV ir
e (this kind of simulation is possible since the code run by XV ir

e is deterministic
and known to all). This in turn is equivalent to the real player v sending all the respective outputs
µ1, µ2, . . . , µk to all the out-neighbors via the hyperedge in D and each out-neighbor picking-up only
what is due to him. Note that this step works because of the way in which we have defined the adversary
structure Aunder — we said that if adversary can read the memory of either the source node or one of the
destination nodes of e = (v, {vj1 , vj2 , . . . , vjk

}), then the adversary can also read XV ir
e ’s memory itself.

Consequently, we may assume that all data in XV ir
e ’s memory may be safely sent to all his out-neighbors

without affecting the correctness of the simulation. It is evident that the view of the adversary as well
as the out-neighbors is the same in both the original and the simulated versions. Thus, we can easily
design URMT protocol Π.

Only if part: This is much easier. Suppose there exists a URMT protocol Π in the directed hypergraph
D. We now show that a URMTspecial protocol Π′ in the digraph Dunder exists. This can be seen as
follows — we simulate a send of a value m along a hyperedge e = (v, {{vj1 , vj2 , . . . , vjk

}) in the protocol
Π over D by sending the value m first from v to the virtual player corresponding to the hyperedge e,
namely, XV ir

e , who then forwards it to the receivers vj1 , vj2 , . . . , and vjk
in the protocol Π′ over the

network Dunder. Hence the theorem holds. 2

So according to Theorem 1, our next concern is to characterize URMTspecial over Dunder tolerating
Aunder. For that, in the next section, we first characterize URMT in arbitrary digraphs tolerating non-
threshold mixed adversary. This gives the necessary and sufficient condition for the existence of a URMT
protocol over Dunder tolerating Aunder. Now, the only reason why a URMT protocol may exist in Dunder

but a URMTspecial protocol does not exist is that in Dunder there are some virtual players which can not
act as a physical node (e.g. can not do random coin toss etc.). The modification required to obtain the

6

characterization of URMTspecial in arbitrary digraphs (Dunder) from the characterization of URMT in
arbitrary digraphs (Dunder) is described in section 7. This will complete the characterization of URMT
in D tolerating A(tb,tp,tf).

3 URMT in Digraphs Tolerating Non-Threshold Adversary

We now characterize URMT in an arbitrary synchronous directed graph N tolerating an arbitrary non-
threshold adversary A. Working out a direct characterization of URMT tolerating entire A is highly
complex and non-intuitive. Rather it is easy to think of a characterization tolerating small sized subsets
from A. We now show that URMT tolerating an arbitrary non-threshold adversary A is possible iff
URMT is possible tolerating every subset A of A, with maximal basis Ā of size two.

Theorem 2 URMT in a digraph N tolerating a non-threshold adversary A is possible iff URMT is
possible in N tolerating any A ⊆ A with maximal basis Ā of size two.

Proof (sketch): Necessity is obvious. For sufficiency, we show that if URMT is possible inN tolerating
any A ⊆ A with maximal basis Ā of size two, then URMT is also possible in N tolerating any A ⊆ A
with maximal basis of size three. Then using induction, we show that it is possible to design URMT in
N which tolerates the entire adversary structure A. For complete proof, see APPENDIX A. 2

Remark 1 The protocol given in Theorem 2 is an inductive protocol and is exponential in the size of A.
Designing an efficient URMT protocol tolerating A is left as an open problem.

Theorem 2 shows that in order to get a complete characterization of URMT tolerating the entire adversary
structure A, it is enough if we characterize URMT tolerating every A ⊆ A with maximal basis Ā of size
two. This is our main concern in the rest of the paper.

4 A Sufficient Condition for URMT Tolerating A ⊆ A with |Ā| = 2

We now give a sufficiency condition for the existence of URMT in N tolerating A ⊆ A with |Ā| = 2.

Theorem 3 Let N = (P,E) be a digraph under the influence of A with maximal basis A = {(B1, E1, F1),
(B2, E2, F2)}. Suppose N is such that for each α ∈ {1, 2}, there exists a strong path (not necessarily
distinct) pα from S to R, avoiding nodes from (Bα ∪ Fα). Furthermore, there exists a strong path q (not
necessarily distinct from pα’s) from S to R in N which avoids nodes from (B1 ∪ B2 ∪ (F1 ∩ F2)). Then
there exists an URMT protocol tolerating A.

Proof: According to the conditions of the theorem, there exists three strong paths p1, p2 and q (not
necessarily distinct) from S to R in N , such that p1 avoids nodes from (B1 ∪ F1), p2 avoid nodes from
(B2 ∪ F2) and P avoid nodes from (B1 ∪B2 ∪ (F1 ∩ F2)). To reliably transmit a message m, S sends m
along p1, p2 and q. Each intermediate node u along these paths forwards the message that it received
to the corresponding neighbor. If nothing is received by the time something should have been received
(since the network is synchronous, strict time-out conditions are feasible) then it forwards a new message
namely “Null-from-u” to its neighbor. R now recovers m as follows: If R receives a valid message x along
path q then x = m because q is free from both B1 and B2. If a “Null-from-u” message is received along
q, then if u’s predecessor node in q belongs to F1, then R outputs the message that is (guaranteed to
be) received along path p1. Else if u’s predecessor node in q belongs to F2, then R outputs the message
that is (guaranteed to be) received along path p2. However, if nothing is received along path q and if
the R’s predecessor in q belongs to F1, then R outputs the message that is (guaranteed to be) received
along path p1, else R outputs the message that is (guaranteed to be) received along path p2. 2

Definition 8 We call the USMT protocol given in Theorem 3 as protocol Π.

7

4.1 Relaxing the Sufficiency Condition of Theorem 3

In the previous section, we have seen that if the paths p1, p2 and q are present in a network N , then
URMT is possible over N . Now the question is whether the physical presence of the paths are necessary
in N ? Well, the presence of p1 and p2 is obviously necessary for URMT in N . Otherwise, the adversary
can strategize to block all the strong paths from S to R, thus preventing any kind of communication
from S to R. However, the physical presence of q in N is not necessary for URMT from S to R! Here,
we show that even in the absence of q, one can design URMT over N tolerating Ā, provided the effect
of q can be simulated over N . This is possible provided N satisfies certain conditions with respect to Ā.

Example 1: Consider the network N shown in Fig. 3, along with the adversary structure Ā. In N ,

B
A

S R

C

H I K

D

E

F

ML

B1 F1 E2

F1

E2 F1

B2 F2

F2

E1

A = {(B1, E1, F1), (B2, E2, F2)}

Network N under the influence of A

B1 = {H}, E1 = {F}, F1 = {I, C, D}

B2 = {L}, E2 = {K, B}, F2 = {E, M}

H

A

D

E

F

R

B

C

I KS

F2

E1

F1E2

F1

Subportion of network N

B1 F1 E2

Figure 3: A network for Example 1

path p1 = (S, L, M,R) is free from the nodes in (B1 ∪ F1), and path p2 = (S,H, I,K,R) is free from
the nodes in (B2 ∪ F2). However, there does not exist any strong path q which is free from the nodes in
(B1 ∪B2 ∪ (F1 ∩ F2)). So N does not completely satisfy all the conditions of Theorem 3 with respect to
the Ā. However, the effect of q can be simulated in N .

Consider the sub-portion ofN with strong path (S,H, I, K,R) and semi-strong path (S, C, B,A, D, E, F,R)
(with head A), as shown in the second picture (drawn in red color) in Fig 3. Now consider the following
sub-protocol called Πsim

1 executed over this sub-portion to send a value s ∈ F from S to R: First, A sends
three random secret keys K1,K2,K3 ∈ F to S via the strong path (A,B,C,S). If A does not receive all
the keys, he uses three random keys of his own choice instead. A then sends (x, y) = auth(s,K1,K2,K3)
along strong path (S,H, I, K,R) to R. Now, A sends the same three keys (namely K1,K2 and K3) to
R along the strong path (A,D, E, F,R). Note that A sends the keys to R only after S has sent the
authenticated message (namely (x1, y1)) along the strong path to R. This can be done because the system
is synchronous and the protocol is executed in rounds. If R does not receive the keys from A, then R
knows the identity of the set in A that is corrupt. This can be achieved because if any node does not
receive data from it’s predecessor node, say j, then it generates a message saying “message not received
from node j” and pass on to the next node in the path. Since the strong path from A to R contains
nodes from F ∗

1 and F ∗
2 , R will always identify the corrupted set in A if it does not receive keys from A.

Similarly, if R does not receive any value from S along the strong path (S,H, I, K,R), then R can easily
conclude that the first set in A is corrupted. However, if R did receive the keys along path (A, D, E, F,R)
and tuple (x′, y′) along (S,H, I, K,R), then R verifies if y′ ?= x′K2 + K3. If yes, then R outputs the
message (x′ −K1); else, B concludes that first set in A is corrupted.

If the second set (B2, E2, F2) of A is corrupted, then the adversary will know K1,K2,K3 (when A
sends them to S). But there is no node from B2 along the strong path from S to R. So, the authenticated
message will reach correctly to R. Since there are no nodes from B2 along the strong path from A to R,
R will either correctly receive the keys or it will not receive any key, depending upon whether the node
E crashes or not. If it crashes, then R will not receive any key but will know that second set in A is
corrupted. On the other hand, if R receives the keys from A, then they are correct and so the verification
step at R’s end will succeed and R will correctly output s.

If the first set (B1, E1, F1) of A is corrupted, then adversary will also know the keys by passively
listening node F . But in the protocol, A sends the keys to R, only after the authenticated message
reaches to R through the strong path (S,H, I,K,R). So the node H, which is B1 type corrupted will
not know the keys when the authenticated message passes through H. Hence the delay done by A in
sending the keys to R plays a very significant role in the sub-protocol. In essence, the node from B1

8

on path (S,H, I, K,R) can not change the authenticated message in a consistent manner without being
detected by R with very high probability. Now similar to information checking protocol of Rabin [9],
adversary can forge the authenticated message with probability 1

|F| , without knowing K1,K2,K3. Once
the authenticated tuple reaches R, adversary will also know the keys which A sends to R. So now from the
authenticated tuple which passed through H and the keys which passed through the node F , adversary
can compute m. But now he cannot change it, as R already have either recovered m (if the authenticated
tuple is received correctly) or knows that the first set in A is corrupted.

Thus, what the above sub protocol achieves is the following: The adversary has full information
about the transmitted value s and also has complete control over R’s output which could be either a valid
message or a null message with the knowledge of the identity of the set in A which is actually corrupt.
Moreover, if R receives a valid message, it is indeed the correct message with a very high probability.
This is identical to saying that S, with a very high probability, sends a message to R through nodes that
are in F1, E1, F2 and E2 respectively. Thus Πsim

1 has the effect of simulating a ”virtual path” between S
and R with very high probability. So N in Fig. 3 can be enhanced to network N1 under the influence
of Ā1 as shown in Fig. 4 where in N1, there exists a ”virtual path” between S and R, containing inter-
mediate virtual nodes X1, X2, X3 and X4, where X1 ∈ F1, X2 ∈ E1, X3 ∈ F2 and X4 ∈ E2 respectively.

B
A

S R

C

H I K

D

E

F

ML

X1

X2

X3

X4

B1 F1 E2

F1

E2 F1

B2 F2

F2

E1

A1 = {(B′
1
, E ′

1
, F ′

1
), (B′

2
, E ′

2
, F ′

2
)}

Network N1 under the influence of A1

F ′
1

E ′
1

F ′
2

E ′
2

B′
1

= {H}, E ′
1

= {F, X2}

F ′
1 = {I, C, D, X1}

B′
2 = {L}, E ′

2 = {K, B, X4}

F ′
2

= {E, M, X3}

Figure 4: Network N updated to N1

Now note that N1 satisfies the conditions of The-
orem 3 with respect to Ā1, where the virtual path
(S, X1, X2, X3, X4,R) serves as path q. So the
URMT protocol Π (of Theorem 3) can be executed
over N1 tolerating Ā. But we want to design an
URMT protocol overN which is the given physical
graph. So we have to simulate the URMT protocol
Π executed over N1 tolerating Ā, into an URMT
protocol over N tolerating Ā1. Our next goal is to
demonstrate that simulation.

Any value which is sent over p1 or p2 in protocol Π over N1 can be also sent over the same paths in
N (as these paths are physically present in N). Similarly, any value which is sent over the virtual path
(S, X1, X2, X3, X4,R) in protocol Π over N1 can be also sent in N by using the sub-protocol Πsim

1 . 2

Thus all the steps of Π over N1 can be simulated over N also. If the error probability of sub-protocol
Πsim

1 is δ′ (which is at most 1
|F|), then the error probability of the protocol Π simulated over N is at most

nδ′, where n is the number of times sub-protocol Πsim
1 is executed. So we can make the error probability

of resultant URMT protocol over N to be at most δ, by appropriately selecting |F| so that nδ′ = δ.

Summary of the example: In Example 1, we have seen a network, which do not satisfy the conditions
of Theorem 3, but still protocol Π could be simulated on them with very high probability. In Example 1,
we demonstrated a graph which contains a ”special structures” (which satisfied some ”special properties”
with respect to Ā). This structure lead to the simulation of a special type of ”virtual path” in the original
network. Also, though not demonstrated, the ”virtual path(s)” could be added recursively. Finally, the
enhanced graph, with virtual path added, satisfies conditions of Theorem 3 and hence we could simulate
Π on enhanced graph. But Π can be run on the original graph with the help of sub-protocols like Πsim

1 .
So the idea is that starting from a physical graph (where all the edges and nodes are physical), we find the
special structures (recursively) and keep on enhancing the graph (step by step through some intermediate
graphs) until no more special structure is present on the (enhanced) graph. The final enhanced graph is
named as URMT-BEF-Closure-Digraph of the original graph. If URMT-BEF-Closure-Digraph
satisfies conditions of Theorem 3, then URMT protocol Π exists on the Closure graph. The protocol Π
can be run on the physical (original) graph using the sub-protocols that simulate the respective virtual
paths present in URMT-BEF-Closure-Digraph. In next section, we explore all possibilities of special
structures and define URMT-BEF-Closure-Digraph formally.

2Note that each time an independent random triplet of keys are used to execute the sub-protocol Πsim
1 .

9

5 Definition of URMT-BEF-Closure-Digraph

Definition 9 (URMT-BEF-Closure-Digraph) Let N = (P,E) be the network (directed graph) influ-
enced by a non-threshold adversary characterized by the adversary structure A with a maximal basis of
exactly two elements, say A = {(B1, E1, F1), (B2, E2, F2)}. We inductively define a sequence of networks
N1,N2 . . . where the set of vertices, denoted by Pi, of the network Ni is defined as Pi = P ∪ Vi with
V1 = ∅ and the set of edges, say Ei, of the network Ni is defined as Ei = E∪Ai with A1 = ∅. The set Vi

denotes the set of virtual nodes in Ni, while Ai denotes the set of virtual edges in Ni. We also define a
corresponding sequence of adversary structures with maximal basis of two elements each, viz., A1,A2, . . .,
where A1 = A. The details are as follows:

The network Ni, i ≥ 2 can be constructed from the network Ni−1 in four different ways by applying
one of the constructions from Table 1. In the table, a typical entry like

#n

∣∣∣∣∣∣∣∣∣∣

A → X1 → X2 → X3 →
X4 → B where
X1 ∈ F1,X2 ∈ F2,
X3 ∈ E1, X4 ∈ E2

∣∣∣∣∣∣∣∣∣∣

• Head → A: avoids nodes from ((B1 ∪B2 ∪F2 ∪E1) \ {A, B})
with condition Q1

• Head → B avoids nodes from ((B1∪B2∪ (F1∩F2))\{A, B})
• A → B avoids nodes from ((B2 ∪ (F1 ∩ F2)) \ {A, B}) with
condition Q2

∣∣∣∣∣∣∣∣∣∣

y

A B

F ∗

1
, F ∗

2

E1, E2

E2, F ∗

1

B1, F ∗

1
, E1, F ∗

2
, E2

means the following:
“In the nthway of construction, we could potentially add an virtual path with four new virtual nodes
X1, X2, X3 and X4 and five new virtual edges to Ni−1 to obtain Ni. Specifically, we add directed
edges (A,X1), (X1, X2), (X2, X3), (X3, X4) and (X4, B) if and only if the digraph Ni−1 = (Pi−1,Ei−1)
is such that there exists two physical nodes A,B in Ni−1, such that for the two elements (B1, E1, F1) and
(B2, E2, F2) in Ai−1, both the following (1 and 2) are true:

1. there does not exist four nodes w1 ∈ (Vi−1 ∩ F1), w2 ∈ (Vi−1 ∩ F2), w3 ∈ (Vi−1 ∩ E1) and w4 ∈
(Vi−1∩E2) such that the edges (A,w1), (w1, w2), (w2, w3), (w3, w4) and (w4, B) belong to Ei−1. This
means nth construction has not been already used for nodes A and B. This is interpreted by the
second column of the entry.

2. Both the following (a and b) hold:

(a) there exists a semi-strong path, say q with head y from A to B in Ni−1, such that the strong path
from y to A avoids nodes from ((B1∪B2∪F2∪E1)\{A,B}) and satisfies condition Q1 (possibly
null). Similarly, the strong path from y to B avoids nodes from ((B1∪B2∪(F1∩F2))\{A,B}).
This is interpreted by the first two bulleted items in the third column of the entry.

(b) there exists a strong path, say p from A to B in Ni−1, such that p avoids nodes from ((B2∪(F1∩
F2))\{A, B}). The path p satisfies the condition Q2 (possibly null). This is the interpretation
of the third bulleted item in the third column of the entry. Further in addition to Q2, the
following condition must always be satisfied by p: for each i ∈ {1, 2}, every occurrence of a
node from (Bi∪Fi)\{A,B} (if any) in p is after the last occurrence of a node from Bi\{A,B}
(if any), where if i = 1 (i = 2), then i = 2 (i = 1). Though not explicitly specified in the
entry, the last condition should be always satisfied by the strong path(s) from A to B in all the
constructions.

If one of the above two conditions (1 and 2) fails, we continue to work with Ni−1 influenced by Ai−1.
However, if both of them are true, then we let Vi = Vi−1∪{X1, X2, X3, X4} which implies that Pi = Pi−1∪
{X1, X2, X3, X4}; and we let Ai = Ai−1 ∪ {(A,X1), (X1, X2), (X2, X3), (X3, X4), (X4, B)} which implies
Ei = Ei−1 ∪ {(A,X1), (X1, X2), (X2, X3), (X3, X4), (X4, B)}; finally we let the new nodes X1, X2, X3 and
X4 to be added to F1, F2, E1 and E2 respectively. That is, if Ai−1 = {(B1, E1, F1), (B2, E2, F2)}, then we
let Ai = {(B1, E1∪{X3}, F1∪{X1}), (B2, E2∪{X4}, F2∪{X2})}.” The figure in the fourth column of the
entry denotes the complementary view of the conditions specified in the third column of the entry. The
labels along the edges of the figure denote the the set of allowable adversarial nodes along the semi-strong
path and strong path(s) between A and B. It is obvious, that honest nodes can be always present along
these paths. For example, in the figure, we have put sets E2 and F ∗

1 along the edge y → A which means
that the nodes along the strong path from y to A can be completely honest (denoted by H) or may contain
nodes from sets E2 and F ∗

1 , where F ∗
i = Fi \ (F1 ∩ F2), i ∈ {1, 2}.

10

No. Temporary Link Conditions & Figure

#1

A → X1 → X2

→ X3 → X4 → B,
X1 ∈ F1, X2 ∈ E1,
X3 ∈ F2, X4 ∈ E2

1. y → A: ((B1 ∪B2 ∪ F2 ∪ E1) \ {A, B})
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B: Path p: ((B2 ∪ (F1 ∩F2)) \ {A, B}) with the last node
from F ∗1 before the first node from E1 and the last node
from F ∗2 before the first node from E2.

y

A B

F ∗

1
, F ∗

2

E1, E2

E2, F ∗

1

B1, F ∗

1
, E1, F ∗

2
, E2

1. y → A: ((B1 ∪B2 ∪ F1 ∪ E2) \ {A, B})
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B: Path p: ((B1 ∪ (F1 ∩F2)) \ {A, B}) with the last node
from F ∗1 before the first node from E1 and the last node
from F ∗2 before the first node from E2.

y

A B

F ∗

1
, F ∗

2

E1, E2

B2, F ∗

1
, E1, F ∗

2
, E2

E1, F ∗

2

1. y → A: ((B1 ∪B2 ∪ F1 ∪ E1) \ {A, B}) with the last node
from F ∗2 before the first node from E2.
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B: for each i ∈ {1, 2}, Path pi: (Bi ∪ (F1 ∩ F2)) \ {A, B})
with the last node from F ∗1 before the first node from E1

and the last node from F ∗2 before the first node from E2.

A B

y E1, E2

F ∗

1
, F ∗

2

p1

p2

B2, F ∗

1
, E1, F ∗

2
, E2

B1, F ∗

1
, E1, F ∗

2
, E2

F ∗

2
, E2

1. y → A: ((B1 ∪ B2 ∪ F2 ∪ E2) \ {A, B}) with the last node
from F ∗1 before the first node from E1.
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B: for each i ∈ {1, 2}, Path pi: (Bi ∪ (F1 ∩ F2)) \ {A, B})
with the last node from F ∗1 before the first node from E1

and the last node from F ∗2 before the first node from E2.

A B

y

B2, F
∗

1
, E1 F ∗

2
, E2

F ∗

1
, E1

E1, E2

F ∗

1
, F ∗

2

B1, F ∗

1
, E1, F ∗

2
, E2

p1

p2

1. y → A: ((B1 ∪B2 ∪ (F1 ∩ F2) ∪ E1) \ {A, B})
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B, Path p: (B2 ∪ (F1 ∩ F2)) \ {A, B}) with the last node
from F ∗1 before the first node from E1 and the last node
from F ∗2 before the first node from E2.
4. A → B, Path Q: (B1 ∪B2 ∪ (F1 ∩ F2)

A B

y E1, E2

F ∗

1
, F ∗

2

E2, F ∗

1
, F ∗

2

p

Q

E1, F ∗

1
, E1, F ∗

2
, E2

B1, F ∗

1
, E1, F ∗

2
, E2

1. y → A: ((B1 ∪B2 ∪ (F1 ∩ F2) ∪ E2) \ {A, B})
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B, Path p: (B1 ∪ (F1 ∩ F2)) \ {A, B}) with the last node
from F ∗1 before the first node from E1 and the last node
from F ∗2 before the first node from E2.
4. A → B, Path Q: (B1 ∪B2 ∪ (F1 ∩ F2)

A B

y E1, E2

F ∗

1
, F ∗

2

p

Q

B2, F ∗

1
, E1, F ∗

2
, E2

F ∗

1
, E1, F ∗

2
, E2

E1, F ∗

1
, F ∗

2

#2

A → X1 → X2

→ X3 → X4 → B,
X1 ∈ E1, X2 ∈ F1,
X3 ∈ F2, X4 ∈ E2

Similar to the construction #1 except that the condition “with
the last node from F ∗1 before the first node from E1” is removed
from the strong path(s) from A to B in all the six cases

Similar to #1 except that
first restriction on the order-
ing of vertices in the strong
path(s) from A to B is re-
laxed

#3

A → X1 → X2

→ X3 → X4 → B,
X1 ∈ F1, X2 ∈ E1,
X3 ∈ E2, X4 ∈ F2

Similar to the construction #1 except that the condition “with
the last node from F ∗2 before the first node from E2” is removed
from the strong path(s) from A to B in all the six cases

Similar to #1 except that
second restriction on the or-
dering of vertices in the
strong path(s) from A to B
is relaxed

#4

A → X1 → X2

→ X3 → X4 → B,
X1 ∈ F1, X2 ∈ F2,
X3 ∈ E1, X4 ∈ E2

Similar to the construction #1 except that both the conditions
“with the last node from F ∗1 before the first node from E1” and
“with the last node from F ∗2 before the first node from E2” are
removed from the strong path(s) from A to B in all the six cases

Similar to #1 except that
both restrictions on the or-
dering of vertices in the
strong path(s) from A to B
are relaxed

Table 1: The various constructions (#1 to #4) to augment Ni−1 to Ni. In the figures, y denotes the
head of semi-strong path between A and B and the labels along the edges, represents the permissible
category of adversary sets in permitted order for the construction. F ∗

i = Fi \ (F1 ∩ F2) for i ∈ {1, 2}.
Further in addition to the conditions specified in each construction, the strong path(s) from A to B must
satisfy the following: for each i ∈ {1, 2}, every occurrence of a node from (Bi ∪ Fi) \ {A,B} is after the
last occurrence of a node from Bi \ {A, B}, where if i = 1 (i = 2), then i = 2 (i = 1)

Remark 2 : A pair of vertices (A,B) may permit at most twenty-four augmentations, corresponding
to one of the constructions from Table 1. When no augmentation is possible with respect to any pair
of vertices, we stop the process. Thus, starting from N1, if we build a sequence of distinct networks
N1,N2, · · · ,Nν through the augmenting process, we observe that ν ≤ 24

(
n
2

)
, where n = |P| denotes the

set of nodes in N . Also, we may consider the pairs of vertices in any order and augmentation may also

11

be done in any order for a given pair of vertices. The URMT-BEF-closure-digraph of N , denoted by
N ∗

URMTBEF
is defined as N ∗

URMTBEF
= Nν . The corresponding adversary structure is A∗ = Aν , where

|Ā∗| = 2.

An illustration of constructing URMT-BEF-Closure-Digraph is given in APPENDIX B. We now briefly
and informally mention few important properties of the constructions.

Property 1 (Principle Behind the Constructions) In general, if Ni−1 is augmented to Ni by ap-
plying some construction to A, B in Ni−1 and if some value s is sent over the resultant virtual path from
A to B in Ni, then there always exist a sub-protocol Πsim (as demonstrated in Example 1), which when
executed over Ni−1 has one of the following outcomes: (a) Πsim correctly sends s from A to B over Ni−1

with negligible error probability, as demonstrated in Example 1; (b) Πsim may fail to send s, in which
case it facilitates B to correctly know the exact identity of the corrupted set, as demonstrated in Example
1. The basic format of the sub-protocol Πsimulate will be more or less same for all the constructions (as
shown in Example 1). We do not provide the Πsim protocol for every construction given in Table 1 due
to space constraint.

Lemma 1 N ∗
URMTBEF

has finite number of nodes and is unique (up to isomorphism).

Proof: The finiteness property follows from the Remark 2 provided in the Definition 9. The proof of
the uniqueness property is similar to the proof of Lemma 2 in [11] and hence is omitted3. 2

Property 2 (Property of A∗) If Ā = Ā1 = {(B1, E1, F1), (B2, E2, F2)} and Ā∗ = {(B′
1, E

′
1, F

′
1),

(B′
2, E

′
2, F

′
2)}, then we have B′

1 = B1, B
′
2 = B2, (F ′

1 ∩F ′
2) = (F1 ∩F2) and (E′

1 ∩E′
2) = (E1 ∩E2). This is

because the Bi’s are never changed and no new virtual node is simultaneously added to both the fail-stop
sets or both the passive sets at any stage in any of the constructions. Also note that each virtual node in
N ∗

URMTBEF
has a unique in-neighbor and out-neighbor.

6 True Characterization of URMT Tolerating A with |Ā| = 2

We now give first ever true characterization of URMT in an arbitrary digraph N tolerating an adversary
structure A with |Ā| = 2, in terms of N ∗

URMTBEF
. This along with Theorem 2, completely characterizes

URMT in N tolerating any arbitrary adversary structure A.

Theorem 4 Let N = (P,E) be a directed graph, where S, R ∈ P. Let N be under the influence
of a non-threshold adversary A with maximal basis Ā = {(B1, E1, F1), (B2, E2, F2)}. Furthermore, let
N ∗

URMTBEF
= (P∗,E∗) denotes the URMT-BEF-closure-digraph of network N with respect to A. More-

over, let N ∗
URMTBEF

be under the control of A∗ where A∗ is the adversary closure of A with maximal
basis Ā∗ = {(B′

1, E
′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}. Then URMT between S and R is possible in N tolerating A iff

(a) for each α ∈ {1, 2}, there exists a strong path (not necessarily distinct) pα from S to R in N avoiding
nodes from (Bα ∪ Fα) and (b) there exists a strong path P (not necessarily distinct from pα’s) from S to
R in N ∗

URMTBEF
, avoiding nodes from (B′

1 ∪B′
2 ∪ (F ′

1 ∩ F ′
2)).

Proof: Sufficiency: Suppose the conditions of the theorem are true. Now closely looking at the
conditions, we observe that they are almost same as the sufficiency conditions in Theorem 3. Now in
order to prove the sufficiency of the Theorem 4, we begin with a definition.

Definition 10 (URMTforward) An URMT protocol over digraph Ni = (P ∪ Vi,E ∪ Ai) is called an
URMTforward protocol, if in the protocol, the virtual nodes (nodes in Vi) are capable of only receiving
and forwarding messages and do no other computation; i.e., they do not use any internal random coins.

In order to prove the sufficiency of the Theorem 4, we first show that if the conditions of Theorem 4 are
satisfied, then we can design an URMTforward protocol over N ∗

URMTBEF
tolerating Ā∗ (Lemma 2). We

then show that if there exists an URMTforward protocol over Ni for i > 1 tolerating Āi, then there exists

3In [11], the authors have given the construction of closure graph by considering only Byzantine adversary. The con-
structions given here can be viewed as non-trivial generalization of the constructions given in [11]

12

an URMTforward protocol over Ni−1 tolerating Āi−1 (Lemma 3). Now any URMTforward protocol over
the original graph N = N1 is actually an URMT protocol over N . This is because there are no virtual
nodes in N ; i.e., V1 = ∅. Since N ∗

URMTBEF
is finite and unique (see Lemma 1), sufficiency of Theorem 4

follows from Lemma 2 and Lemma 3.

Lemma 2 If the conditions of Theorem 4 are satisfied, then there exists an URMTforward protocol from
S to R in the network N ∗

URMTBEF
tolerating the adversary structure Ā∗.

Proof: It is easy to see that if the conditions of Theorem 4 are satisfied in N ∗
URMTBEF

with respect to
Ā∗, then protocol Π (of Theorem 3) can be executed over N ∗

URMTBEF
. Let us call the protocol as Π∗.

It is easy to see that Π∗ is an URMTforward protocol in N ∗
URMTBEF

tolerating Ā∗ because in Π∗, the
virtual nodes only receive and forward messages and do no other computation. 2

Lemma 3 For any i > 1, there exists an URMTforward protocol from S to R in the graph Ni tolerating
the adversary structure Āi if and only if there exists an URMTforward protocol from S to R in the network
Ni−1 tolerating the adversary structure Āi−1.

Proof: If part: This is the easy part. In fact, it is fairly obvious since any URMTforward protocol over
Ni−1 can be directly run over Ni without using the newly added virtual nodes at all! This is guaranteed
to work because the adversary structure Āi differs from Āi−1 only with respect to the virtual nodes that
are newly added.

Only-if Part:(sketch) Let Πi be an URMTforward protocol over Ni tolerating Āi. Using Πi, we now
design an URMTforward protocol Πi−1 over Ni−1 tolerating Āi−1. Let I be an instruction in the protocol
Πi involving some nodes from Ni. If all these nodes are also present in Ni−1, then I can also be executed
over Ni−1. Hence I will be present in Πi−1. On the other hand, suppose I is of the form “send M along
(A, X1) who then forwards it to X2, who in turn forwards it to X3, who in turn forwards it to X4, who
finally forwards it to B”, such that A,B are physical nodes in Ni (and hence in Ni−1) and X1, X2, X3, X4

are virtual nodes present in Ni but not in Ni−1. In this case, I cannot be executed over Ni−1 directly.
But since X1, X2, X3 and X4 are virtual nodes present in Ni but not in Ni−1, it implies that these virtual
nodes would have been added to Ni−1 by applying one of the constructions, say C Table 1, to the nodes
A and B. However, as pointed out in Property 1, for construction C there is a sub-protocol Πsim

C which
can simulate the effect of the virtual path/edge (added by C) over the graph Ni−1 on which C is applied.
An example of sub-protocol Πsim

C protocol is provided in Example 1 of previous section. Thus, we can
replace the instruction I, with sub-protocol Πsim

C in Πi−1. In this way, from Πi, we get Πi−1. This
completes the proof of the lemma. 2

Remark 3 If the sub-protocol that we use to replace instruction I in Ni is incorrect with error probability
δsub and the sub-protocol is invoked N times, then the resultant URMTforward protocol is incorrect with a
probability up to Nδsub. Since, δsub can be reduced exponentially by a linear blow-up in the communication
complexity (as the number of bits required to represent a field element is log |F|), we may set δsub = δ

N
where δ is the tolerance limit of the URMTforward protocol and N is an upper bound on the number of
sub-protocol invocations. This increases the overall communication complexity by a factor of O(log N

δ).

Now the proof of sufficiency of the Theorem 4 follows from the Lemma 1, 2 and 3. We now proceed to
prove the necessity part of the Theorem 4.

Necessity (sketch): The necessity of path pα in N is obvious. Otherwise all the strong paths from S
to R in N will contain nodes from (Bα ∪ Fα) and the adversary can choose to corrupt the αth set from
Ā and block all the nodes from (Bα ∪ Fα), thus refuting any type of communication from S to R in N .
Finally the necessity of path P in N ∗

URMTBEF
is proved by contradiction. Suppose there exists an URMT

protocol Π∗ in N ∗
URMTBEF

(and hence in N) tolerating Ā∗ even in the absence of path pP in N ∗
URMTBEF

.
Since P does not exist, it implies that each of the strong paths from S to R in N ∗

URMTBEF
contain nodes

from (B′
1∪B′

2∪ (F ′
1∩F ′

2)). We now divide the set of nodes (virtual + physical) in N ∗
URMTBEF

as follows:
let Y1 be the set of all nodes that have a strong path to R in N ∗

PPSMTBEF
that does not use any vertex

from (B′
1 ∪B′

2 ∪ (F ′
1 ∩ F ′

2)). Furthermore, let X1 = P∗ \ (B′
1 ∪B′

2 ∪ (F ′
1 ∩ F ′

2) ∪ Y1). Clearly, R ∈ Y1 and
S ∈ X1. Moreover, it is evident from the definition of Y1 that there are no edges from any node in X1

13

to any node in Y1. However, there can be some reverse path(s) from the node(s) in Y1 to the node(s) in
X1. The necessity of P is now proved in two parts:

1. We first show that if there are no reverse path(s) from the node(s) in Y1 to the node(s) in X1,
then in the absence of P , there always exists an adversary strategy using which Ā∗ can violate the
reliability property of Π∗ (see Lemma 5 in APPENDIX C).

2. We next show that even if there is some reverse path, say p, from Y1 to X1, then also presence of p
does not help in the possibility of URMT (in the absence of P), thereby maintaining the impossibility
of URMT in N ∗

URMTBEF
as projected by Lemma 5. This is tricky to prove. In order to prove this,

we consider all possible allowable behavior of path p. We then show that corresponding to each
different status of p, the strong path(s) from X1 to Y1 should definitely satisfy certain properties.
If not, then we could augment N ∗

URMTBEF
by applying at least one of the constructions, thus

contradicting the fact that N ∗
URMTBEF

is URMT-BEF-Closure-Digraph. Now once it is shown
that corresponding to each status of p, the strong path(s) from X1 to Y1 exhibit certain properties,
we prove that there always exists an adversary strategy which disallows p to help in the possibility
of URMT at all.

So existence of P is necessary for possibility of Π∗ on N ∗
URMTBEF

. This in turn implies the necessity of
P in N ∗

URMTBEF
for the possibility of URMT in N . For the complete proof of the above two cases, see

APPENDIX C. 2

Theorem 4 is demonstrated with an example in APPENDIX I. We have thus characterized URMT
in an arbitrary directed graph tolerating a non-threshold mixed adversary. As stated earlier this also
provides the characterization for the possibility of URMT on Dunder tolerating Aunder. Now what is left
is the characterization of URMTspecial on Dunder tolerating Aunder. For this, in the next section, we
characterize URMTspecial on Dunder tolerating a non-threshold mixed adversary A.

7 Characterization of URMTspecial on Dunder

In this section, we characterize URMTspecial (see Definition 6) in the “underlying digraph” Dunder (Def-
inition 5) of an arbitrary directed hypergraph D, tolerating a non-threshold mixed adversary A. This
characterization, along with Theorem 1 completely characterize URMT in D tolerating A(tb,tp,tf). Now
similar to Theorem 2, we can reduce the problem of characterizing URMTspecial in Dunder tolerat-
ing A, to the problem of characterizing URMTspecial in Dunder tolerating all possible A ⊆ A where
A = {(B1, E1, F1), (B2, E2, F2)}. Now the only reason why a URMT protocol may exist in Dunder tol-
erating A but a URMTspecial does not exist in Dunder (tolerating A) is that in URMTspecial protocol,
the nodes in V in Dunder are forced to toss coins (which according to Definition 6, they cannot do).
Now from the proof of sufficiency of Theorem 4, the problem comes when in the protocol, a node y
from V in Dunder is acting as the head of semistrong path between two nodes A and B (in one of the
constructions in Table 1) and is forced to send some random secret keys K1,K2,K3 ∈ F to A and B
(as done in the sub-protocol in Example 1). Since the virtual nodes from V cannot do any random
computation in URMTspecial protocol, we have to modify the definition of URMT-BEF-Closure-Digraph
to obtain URMTspecial-BEF-Closure-Digraph of Dunder under the influence of A. We highlight only the
modifications.

Definition 11 (URMTspecial-BEF-Closure-Digraph) Let N = Dunder = (P ′, E ′) be the “underlying
digraph” of a directed hypergraph D = (P, E), where P ′ = (P ∪ V). Let Dunder be under the influence
of a non-threshold mixed adversary A with exactly two elements in its maximal basis A = {(B1, E1, F1),
(B2, E2, F2)}. We inductively define a sequence of directed networks N1,N2 . . . with N1 = N , where the
set of vertices, denoted by P ′i, of the network Ni is defined as P ′i = P ′ ∪ Vi with V1 = ∅ and the set of
edges, say E ′i, of the network Ni is defined as E ′i = E ′ ∪Ai with A1 = ∅. We also define a corresponding
sequence of adversary structures with two elements each, viz., A1,A2, . . ., where A1 = A.

The network Ni is augmented from Ni−1 by applying different constructions from Table 1 (as done
in Definition 9), with certain additional restrictions imposed. We mention these restrictions. Let A,B

14

be two nodes in Ni−1, where both A,B ∈ P. Thus A, B are physical nodes in Dunder. Let p be a strong
path between A,B and q be a semi-strong path between A,B with head y. Now suppose that paths p and q
satisfy the condition of one of the constructions in Table 1, say C. Let according to C, SA and SB denotes
the set of adversarial nodes which should be absent along the strong path from y to A and B respectively.
Now we can augment Ni−1 by applying C to A and B, if one of the following (extra) conditions are
satisfied:
1. The head y of q is such that y ∈ P (y is a Physical node in Ni−1): In this case, C is directly
applied to A and B (as done in Definition 9).
2. The head y of q is such that y ∈ V (y is a Virtual node in Ni−1): In this case we put
some additional constraints as follows: Let ~z ∈ P be the immediate out-neighbor of y on the path from
y to B and ~x ∈ P be the unique in-neighbor of y. Note that according to the definition of Dunder (see
Definition 5), if y ∈ V, then it implies that the out-neighbor of y on the path from y to B (~z) and
the in-neighbor of y (~x) are physical nodes in Dunder. Hence both ~x and ~z are physical nodes in Ni−1.
Since y ∈ V and is not allowed to toss random coins, it cannot perform any synchronisation; i.e., in
any protocol, we cannot ask y to send some “secret” information to A first and send the same “secret”
information to B, only after A has send some “authenticated” message to B (this principle is used in
the sub-protocol in Example 1). With these properties of y, ~z and ~x, we now mention the additional
constraints on ~z and ~x:

1. Restriction on ~z: ~z /∈ (SA ∩ (E1 ∪ E2)) ∪ SB.

Remark: Informally, the above restriction says that ~z can not be under the influence of a passive
adversary set which is not allowed over the path from y to A in C. This is so because in any
protocol, y being a virtual node (∈ V), sends every information received from its in-neighbor ~x,
simultaneously to both ~z and the first node from y to A. So if C requires the path from y to A
should not contain nodes from certain type of passive adversary set, then the same type of passive
adversary set should not influence ~z too. With this restriction on ~z, if any synchronisation is needed
from y in the protocol (we have used such synchronisation from y when y is a physical node in the
sub-protocol in Example 1), can be taken care by ~z. We will explain this more elaborately in the
proof of Theorem 5.

2. Restriction on ~x: (a) ~x 6∈ (F1 ∩ F2) and (b) If Ei ∈ SA, then ~x 6∈ Ei ∪Bi, for i ∈ {1, 2}
Remark: When the head y of path q is virtual node, all the computations supposed to be done by
y in the protocol, is actually done by ~x. The above restriction says that if path from y to A should
devoid of Ei, then ~x can not belong to Ei ∪ Bi. In addition, ~x /∈ F1 ∩ F2. We prove the necessity
and sufficiency of the restriction in sequel.

If ~z and ~x follows the above restrictions, then we can augment Ni−1 by applying C to A and B. Otherwise,
C cannot be applied to A and B. Since C can be any of the 24 constructions from Table 1, we get 24
corresponding additional constructions when y ∈ V. These additional constructions are given in Table 2
in APPENDIX IV.

Remark: A pair of vertices (A,B) ∈ P in Ni−1 may permit at most 48 augmentations (24 according to
Table 1 and 24 according to Table 2). When there is no augmentation possible with respect to any pair
of vertices, we stop the process. Thus, starting from N = N1, if we build a sequence of distinct networks
N1,N2, · · · ,Nν through the augmenting process, we observe that ν ≤ 48

(
n
2

)
, where n is the number of

physical nodes in N1 = N . Also, we may consider the pairs of vertices in any order and augmentation
may also be done in any order for a given pair of vertices. The URMTspecial-BEF-Closure-Digraph of
N denoted N ∗

URMTsplBEF
is defined as N ∗

URMTsplBEF
= Nν . The corresponding adversary structure

A∗spl = Aν . Note that Lemma 1 and Property 2 will be true for N ∗
URMTsplBEF

also.

Theorem 5 Let N = Dunder = (P ′, E ′) be the “underlying digraph” of an arbitrary directed hypergraph
D = (P, E), where P ′ = P ∪ V and V is the set of virtual nodes. Then URMTspecial is possible in N
tolerating a non-threshold adversary A iff for every A ⊆ A with A = {(B1, E1, F1), (B2, E2, F2)} both the
following hold:

15

1. The network N is such that for each α ∈ {1, 2} the deletion of nodes in ((Bα ∪ Fα) \ {S,R}) does
not eliminate all the strong paths from S to R.

2. The URMTspecial-BEF-Closure-Digraph of network N with respect to the adversary structure A,
viz., N ∗

URMTsplBEF
= (P∗,E∗) is such that, there exists a strong path from S to R in N ∗

URMTsplBEF
,

induced by the set of vertices (P∗ \ (B′
1 ∪ B′

2 ∪ (F ′
1 ∩ F ′

2))) ∪ {S,R} where the adversary structure
closure A∗spl = {(B′

1, E
′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}.

Proof: We will draw very heavily from the proof of Theorem 4, where we proved the necessary and
sufficient condition for the existence of URMT — the conditions are analogous to the current theorem, the
only difference is that extra restrictions (on ~x and ~z) are imposed while forming closure graph. We now
show that the extra restrictions are necessary and sufficient to convert URMT protocol into URMTspecial

protocol. This completes the proof of current theorem, since the characterization of URMT is done in
Theorem 4.

Suppose that one of the constructions in Definition 11 is that “there exists a semi-strong path q from
A to B, with head y, such that the strong path from y to A does not contain nodes from the set SA and
the strong path from y to B does not contain nodes from the set SB”. We know from Theorem 4 that
this construction is necessary and sufficient for the existence of URMT in Dunder, provided y ∈ P; i.e., y
is a non-virtual node in Dunder. Now let y ∈ V and ~x ∈ P be the unique in-neighbor of y and ~z ∈ P be
the first node on the strong path between y and B. We now show that the extra restrictions imposed on
~x and ~z as per Definition 11 are necessary and sufficient for converting the URMT protocol over Dunder

into a URMTspecial protocol over Dunder, when y ∈ V.

Necessity: We first note that in any URMTspecial protocol, if y is virtual node then all its random coin
toss and computations are done by its unique in-neighbor ~x. The first restriction on ~x is necessary
because if ~x ∈ (F1 ∩ F2) and if the adversary crashes ~x, then neither A nor B will come to know the
identity of the corrupted set. The second restriction on ~x; i.e., if Ei ∈ SA, i ∈ {1, 2}, then ~x 6∈ (Bi∪Ei), is
necessary because of the following reason: We prove it by contradiction. If y ∈ P, then from Theorem 4,
the condition Ei ∈ SA is necessary for URMT. Now if y ∈ V, then in the protocol, its random coins are
tossed by ~x. Hence it is necessary that ~x 6∈ (Bi ∪Ei). This is so because if ~x ∈ (Bi ∪Ei) and if the ith set
is corrupted, then the adversary will know the random coins tossed by ~x (on behalf of ~y). This exactly
simulates the scenario when y ∈ P and is corrupted by Ei. This implies that nodes from Ei are present
in the strong path from y to A and hence Ei 6∈ SA. This is a contradiction because Ei ∈ SA.

The necessity of the restrictions on ~z; i.e., ~z 6∈ (SA ∩ (E1 ∪E2)) ∪ SB, can be argued in the following
way: The restriction ~z 6∈ SB is obvious from the fact that ~z is a node on the strong path from y to B.
Now we argue that why ~z 6∈ (SA ∩ (E1 ∪E2)). On the contrary, assume that ~z ∈ (SA ∩ (E1 ∪E2)). This
implies that ~z could be passively corrupted by a set Ei, i ∈ {1, 2}, where Ei ∈ SA. Now as mentioned
earlier, if y ∈ V, then all the local random coins (such as some local random values) are computed by
~x on behalf of ~y. Moreover, ~x simultaneously delivers these random values to all the out-neighbors of
y (by the property of hyperedge). So, both ~z and first node on the strong path from y to A receive
these random values simultaneously from ~x via y. However, since ~z ∈ Ei, if the ith set is corrupted, then
adversary will also know the random coin toss of ~x (done on behalf of y). This simulates as if y ∈ Ei,
which implies that nodes from the set Ei are present along the strong path from y to A. This again
implies that Ei /∈ SA, which is a contradiction.

Sufficiency: The URMT protocol designed in the proof of Theorem 4 can be easily converted into a
URMTspecial protocol, if the heads of the semi-strong path considered in Definition 11 are all non-
virtual. In case they are virtual, it is sufficient if the nodes ~x and ~z satisfy the restrictions imposed on
them according to Definition 11. The conversion is as follows: For every random coin toss that should be
done by a virtual node y in URMT protocol, is now done by ~x (on behalf of y) in URMTspecial. ~x then
simultaneously sends random coin tosses (values) to both ~z and the first node on the strong path from
y to A (via y). Now any synchronisation which needs to be done by y (such as not sending the random
values to B, till A receives them and sends an authenticated message to B, etc) in URMT protocol, will
be taken care by ~z in URMTspecial protocol. Note that the restrictions imposed on ~x and ~z ensures that

16

URMTspecial protocol will retain all properties of URMT protocol. This is so because ~x 6∈ (F1 ∩ F2).
So if ~x crashes and fails to do random coin toss on behalf of y, then both A and B will come to know
the identity of corrupted set. Similarly if Ei ∈ SA, i ∈ {1, 2}, then ~x /∈ (Bi ∪ Ei) and ~z 6∈ Ei. In this
case even if i

th set gets corrupt and listens the random coin toss done by ~x, it will simulate as if y ∈ Ei.
However, this does not affect the correctness of the URMTspecial protocol since this adversarial behavior
is countered in URMT protocol. This completes the sufficiency proof. 2

Thus, we have characterized URMTspecial on Dunder tolerating a non-threshold adversary A. Now
Theorem 5, along with Theorem 1, completely characterize URMT over directed hypergraph D, tolerating
A(tb,tf ,tp). In APPENDIX V, we demonstrate the characterization of URMT on directed hypergraph
(Theorem 5 + Theorem 1) on hypergraph D (shown in Fig. 2) tolerating two different adversary A(1,0,0)

(tb = 1 and tp = tf = 0) and A(1,1,0) (tb = tp = 1 and tf = 0). We show that URMT is possible over D
tolerating A(1,0,0) but impossible tolerating A(1,1,0) (as claimed in subsection 1.3).

8 Conclusion

In this work, we focused on the problem of URMT over directed hypergraphs tolerating a threshold mixed
adversary A(tb,tp,tf). We completely characterize URMT in directed hypergraph tolerating A(tb,tp,tf). For
that first we proved that URMT protocol on directed hypergraph tolerating A(tb,tp,tf) is possible iff a
special kind URMT protocol URMTspecial is possible on the “underlying digraph” Dunder tolerating a
non-threshold mixed adversary. So, we first characterize the possibility of URMT in arbitrary digraphs
tolerating non-threshold mixed adversary, then describe the modifications needed to adapt the charac-
terization for URMTspecial. Finally, we would like to remark that all the results presented in this paper
are highly non-trivial and shows in-depth insight on this area and above all reveals many quintessential
surprises.

References

[1] Amos Beimel and Matthew K. Franklin. Reliable communication over partially authenticated net-
works. In WDAG, pages 245–259, 1997.

[2] Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In Proceedings of Ad-
vances in Cryptology EUROCRYPT’02, volume 2332 of LNCS, pages 502–517. Springer Verlag,
2002.

[3] Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. Cryptology ePrint
Archive, Report 2002/128, 2002. url - http://eprint.iacr.org.

[4] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. JACM,
40(1):17–47, 1993.

[5] M. Franklin and R. Wright. Secure communication in minimal connectivity models. Journal of
Cryptology, 13(1):9–30, 2000.

[6] M. Franklin and M. Yung. Secure hypergraphs: Privacy from partial broadcast. In Proc. of 27th
Ann. Symposium on Theory of Computing, pages 36–44, 1995.

[7] M. V. N. A. Kumar, P. R. Goundan, K. Srinathan, and C. Pandu Rangan. On perfectly secure
communication over arbitrary networks. In Proc. of 21st PODC, pages 193–202. ACM Press, 2002.

[8] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, San Mateo, CA, USA, 1996.

[9] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority.
In Proc. of 21st ACM STOC, pages 73–85, 1989.

[10] B. Shankar, P. Gopal, K. Srinathan, and C. Pandu Rangan. Unconditional reliable message trans-
mision in directed networks. In Proc. of SODA 2008.

17

[11] K. Srinathan and C. Pandu Rangan. Possibility and complexity of probabilistic reliable communi-
cation in directed networks. In Proc. of 25th PODC, pages 265–274. ACM Press, 2006.

[12] Y. Wang and Y. Desmedt. Secure communication in multicast channels: The answer to Franklin
and Wright’s question. Journal of Cryptology, 14(2):121–135, 2001.

APPENDIX A: Proof of Theorem 2

The only-if direction is obvious. For the if-direction, we show that if a URMT protocol exists while
tolerating every monotone subset A ⊆ A such that |A| = 2, then one can construct a URMT protocol
that tolerates A. Suppose that every monotone subset A of A, such that |A| = 2, is tolerable. In order
to show that every monotone subset A of A, such that |A| = 3, is also tolerable, we argue as follows: for
any subset A ⊆ A with |A| = 3, there exist three subsets, each of size two, such that any element in A
belongs to exactly two of them. Specifically, we may choose to divide A = {x1, x2, x3} (where each xi is
an ordered triple (Bi, Ei, Fi)) into A1 = {x1, x2}, A2 = {x2, x3} and A3 = {x1, x3}. Therefore, we may
run three URMT protocols in parallel transmitting the same message, tolerating the adversary structures
A1,A2 and A3 respectively. R can output the majority among the individual outputs as the received
message. Since any element from A belongs to at least two of the three Ai’s, the above protocol is a
URMT protocol tolerating A (since R gets the correct message in at least two of the three sub-protocols).
Thus any subset A of A, such that |A| = 3, is tolerable. Applying this procedure again, we find that any
subset A of A, such that |A| = 4, is tolerable — because any set of size four can be divided into three
subsets of size three each, such that every element occurs in at least two of the subsets. In general, any
µ > 3 sized set can be divided into three subsets, each of size

⌈
2µ
3

⌉
, such that every element of the set

occurs in at least two of them. The rest follows from induction4. 2

APPENDIX B: Illustration of Constructing URMT-BEF-Closure-Digraph
N ∗

URMTBEF

Consider a digraph N , under the influence of an adversary structure A = {(B1, E1, F1), (B2, E2, F2)}, as
shown in the Fig. 5. We construct the URMT-BEF-Closure-Digraph of N by a sequence of application
of constructions from Table 1. Initially let N1 = N and A1 = A. Now consider nodes C and R. The
semi-strong path (C,D, E, F,R) with head D and the strong path (C, G,H,R) from C to R satisfies all
the conditions required in Construction #1 subcase 2 (see the figure given in 2nd row of Table 1). Hence
in digraph N1, we apply Construction #1 subcase 2 between nodes C and R and add four new temporary
vertices X1, X2, X3 and X4 and five new temporary edges namely, (C, X1), (X1, X2), (X2, X3), (X3, X4)
and (X4,R). We denote this new digraph by N2. We also upgrade our adversary structure A1 such that
F1 = F1∪{X1}, F2 = F2∪{X3}, E1 = E1∪{X2}, E2 = E2∪{X4}. This augmented adversary structure is
denoted by A2. Now consider the nodes S and R and the semi-strong path (S, A, B, C,X1, X2, X3, X4,R)
with head C and strong path (S, I, J,K,R) between them in N2. The semi-strong path and the strong
path between S and R satisfies all the conditions required in Construction #1 subcase 1 (see the figure
given in 1st row of Table 1). Therefore in N2, we apply Construction #1 subcase 1 between S and
R and essentially add four new temporary vertices X5, X6, X7 and X8 and five new temporary edges
namely, (S, X5), (X5, X6), (X6, X7), (X7, X8) and (X8,R). We denote this new digraph by N3. We also
upgrade our adversary structure A2 such that F1 = F1 ∪ {X5}, F2 = F2 ∪ {X7}, E1 = E1 ∪ {X6}, E2 =
E2 ∪ {X8}. This augmented adversary structure is denoted by A3. Now notice that in the digraph N3,
there is no pair of physical nodes to which we can apply any new construction from Table 1. Hence, the
augmenting process will stop here and the URMT-BEF-Closure-Digraph is defined as N ∗

URMTBEF
= N3

and corresponding adversary structure A∗ = A3. Let A∗ = {(B′
1, E

′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}.

Now we see that digraph N , along with A, satisfies the conditions specified in Theorem 3 and thus
URMT is possible in N tolerating A. The strong paths (from S to R) that do not contain nodes from

4The protocol given here is based on induction and is used to only prove the sufficiency. It is not an efficient protocol

18

S

A

B

C

D

E

G

H

KJI

L M N

F

RX3

X1

X2

X4

N2, A2 = {(B1, E1, F1), (B2, E2, F2)}

B1 = {I}, E1 = {D, K, X2} , F1 = {B, H, J, X1}

B2 = {G, L}, E2 = {A, E, N, X4} , F2 = {F, M, X3}

S R

A

B

C

D

E

F
G

H

I J K

L
M

N

where the semi−strong path is (C,D, E, F, R) with head D

and the strong path is (S,I, J, K,R)

and the strong path is (C,G, H, R)
: Temporary Nodes added due to the application of constructions

: Temporary Nodes added due to the application of constructions

B2 = {G, L}, E2 = {A, E, N} , F2 = {F, M}

N = N1, A = A1 = {(B1, E1, F1), (B2, E2, F2)}

B1 = {I}, E1 = {D, K} , F1 = {B, H, J}

Apply Construction #1 subcase 1 to the nodes S and R,

where the semi-strong path is (S, A, B, C, X1, X2, X3, X4, R) with head C

Apply Construction #1 subcase 2 to the nodes C and R,

S

A

B

C

D

E

G

H

KJI

L M N

F

RX3

X1

X2

X4

X5 X6 X7 X8

B1 = {I}, E1 = {D, K, X3, X6} , F1 = {B, H, J, X1, X5}

N3, A3 = {(B1, E1, F1), (B2, E2, F2)}

B2 = {G, L}, E2 = {A, E, N, X4, X8} , F2 = {F, M, X2, X7}

Figure 5: Illustration of constructing URMT-BEF-Closure-Digraph N ∗
URMTBEF

of digraph N

(B1 ∪E1 ∪F1) and (B2 ∪E2 ∪F2) are (S, L,M, , N,R) and (S, I, J, , K,R) respectively. In URMT-BEF-
Closure-Digraph N ∗

URMTBEF
, the strong path (from S to R) that is free from (B′

1 ∪ B′
2 ∪ (F ′

1 ∩ F ′
2)) =

(B1 ∪B2 ∪ (F1 ∩ F2)) is (S, X5, X6, X7, X8,R). Hence URMT is possible in N tolerating A.

APPENDIX C: Necessity Proof of Theorem 4

Necessity of path(s) p1 and p2 is already shown in Section 6. We now prove the necessity of path P . To
prove the necessity of path P , we show that if there is no URMTforward protocol in N ∗

URMT BEF
, then

there is no URMT protocol in N (Lemma 4). We then show that presence of path P is necessary for
existence of URMTforward protocol in N ∗

URMT BEF
(Lemma 5, 6 and 7).

Lemma 4 If there exists a URMT protocol from S to R in N tolerating adversary A then there exists
a URMTforward protocol from S to R in N ∗

URMTBEF
tolerating adversary A∗.

Proof: Obvious, since any URMT protocol over N can be directly run over N ∗
URMTBEF

without using
the newly added temporary nodes at all. 2

We next show that presence of path P is necessary for the existence of URMTforward in N ∗
URMTBEF

.
Thus we show that for the existence of URMTforward in N ∗

URMTBEF
, there should exist a strong path

from S to R after deletion of nodes in (B′
1 ∪ B′

2 ∪ (F ′
1 ∩ F ′

2)) = (B1 ∪ B2 ∪ (F1 ∩ F2)) from N ∗
URMTBEF

19

(recall that B′
1 = B1, B′

2 = B2 and (F ′
1 ∩ F ′

2) = (F1 ∩ F2)). Define the set Y ⊂ P∗ as the set of vertices
that have a strong path to R in N ∗

URMTBEF
that does not use any vertex from (B1 ∪ B2 ∪ (F1 ∩ F2)).

Furthermore, let X = P∗ \ (B1 ∪B2 ∪ (F1 ∩ F2) ∪ Y).
Assuming that S and R are honest (for otherwise almost any protocol is a valid one for URMT),

if the second condition of Theorem 4 fails then S ∈ X and R ∈ Y (see Fig. 6). Moreover, from the
definition of Y , there does not exist edge (x, y) in N ∗

URMTBEF
, such that x ∈ X and y ∈ Y (otherwise

x also belongs to Y). We first prove the necessity assuming that there does not exist an edge (y, x) in
N ∗

URMTBEF
, such that x ∈ X and y ∈ Y (Lemma 5). Later, we will show that even if the edge (y, x)

exists in N ∗
URMTBEF

, impossibility of URMTforward over N ∗
URMTBEF

holds, if the second condition of
Theorem 4 fails (Lemma 6 and 7).

Lemma 5 If there is no edge (y, x) in N ∗
URMTBEF

, such that x ∈ X and y ∈ Y , then the second condition
of Theorem 4 is necessary for the existence of URMTforward in N ∗

URMTBEF
tolerating A∗.

Proof: Let N ∗
URMTBEF

does not satisfy the second condition of Theorem 4. Thus in N ∗
URMTBEF

all the
paths between S and R pass through the nodes in (B′

1 ∪B′
2 ∪ (F ′

1 ∩F ′
2)) = (B1 ∪B2 ∪ (F1 ∩F2)) (see Fig.

6). Also let there does not exist an edge (y, x) in N ∗
URMTBEF

, such that vertices x ∈ X and y ∈ Y . Now
suppose there exists a URMTforward protocol Π in N ∗

URMTBEF
. Consider two execution sequence E1 and

E2 of Π. In E1, S wants to send m1 and the set (B′
1, E

′
1, F

′
1) is corrupted. In E2, S wants to send m2

and the set (B′
2, E

′
2, F

′
2) is corrupted. Now using a standard cut and paste argument [4, 7, 11, 1], it can

be shown that there exists an adversary strategy such that R can not distinguish with probability more
than 1

2 , whether set (B′
1, E

′
1, F

′
1) is corrupted and the message transmitted is m1 or the set (B′

2, E
′
2, F

′
2) is

corrupted and the message transmitted is m2. This contradicts that Π is a URMTforward protocol over
N ∗

URMTBEF
. 2

X Y

y
RS

x
B2

B1

F1 ∩ F2

where B′
1

= B1, B
′
2

= B2 and (F ′
1
∩ F ′

2
) = (F1 ∩ F2)

All nodes y ∈ Y have a strong path to R

free from B′
1
∪ B′

2
∪ (F ′

1
∩ F ′

2
) = B1 ∪ B2 ∪ (F ′

1
∩ F ′

2
)

N ∗
PRMTBEF

tolerating A∗ = {(B′
1
, E′

1
, F ′

1
), (B′

2
, E′

2
, F ′

2
)}

Figure 6: N ∗
URMTBEF

when every path between S and R pass through the nodes in (B1 ∪B2 ∪ (F1 ∩F2))

In order to complete the necessity of Theorem 4, we need to prove the impossibility of URMTforward

in N ∗
URMTBEF

, even when there exist and edge (y, x) in N ∗
URMTBEF

, such that y ∈ Y and x ∈ X. Towards
that end, we will now prove that every such edge (y, x) in N ∗

URMTBEF
is essentially “useless”, thereby

maintaining the impossibility of URMTforward in N ∗
URMTBEF

as projected by the Lemma 5.
Firstly, how can an edge (y, x) be useful? It can be used by the nodes in Y to send some secret

messages to the nodes in X, such that the adversary, oblivious of these messages, cannot simulate the
messages of X without being distinguished by Y . In other words, x can influence w ∈ Y , by using the
data received from y through the edge (y, x). This also implies that there exists a strong path from x to
w. So we need to know whether x can really influence w by using the data received from y. If we manage
to show that it cannot then we are through, since what it means is that data sent along the edge (y, x)
has no effect on w ∈ Y (in turn R) and hence can be ignored.

For that, we have to consider whether y is honest or not and also whether x ∈ P (the set of physical
nodes). By the definition of Y , the node y 6∈ (B1∪B2∪ (F1∩F2). Also it is obvious that if y ∈ (E1∩E2),
then the edge (y, x) cannot be useful, since the adversary can continue to simulate players in X in such
a way that players in Y are oblivious of it (since whatever is sent across the edge (y, x) will be fully
known to the adversary). Now in the next lemma, depending on the behavior of y and whether x ∈ P, we
characterize the allowable set(s) of adversary on the strong path from x to w in N ∗

URMTBEF
. To prove

the lemma, we argue that if nodes from some other adversary set(s) (other than those which are specified
in Lemma 6) are present on the strong path from x to w, then we can still apply some construction
from Table 1 on N ∗

URMTBEF
, contradicting the fact that N ∗

URMTBEF
is a closure graph of N . Finally, in

20

Lemma 7, by devising appropriate adversary strategy, we show that the edge (y, x) becomes “useless”, if
one of the conditions of Lemma 6 is true in N ∗

URMTBEF
, thereby maintaining the necessity of Lemma 5

and hence Theorem 4.

Lemma 6 Let there be no edges from the nodes in X to the nodes in Y in N ∗
URMTBEF

after the deletion
of nodes from ((B′

1 ∪ B′
2 ∪ (F ′

1 ∩ F ′
2))). If the edge (y, x) exists in N ∗

URMTBEF
, where y ∈ Y and x ∈ X

, then for each w ∈ Y such that there exists a strong path from y to w (not containing nodes from
(B′

1 ∪B′
2 ∪ (F ′

1 ∩ F ′
2))), at least one of the following must be true:

1. x ∈ P (that is, x is a physical node) and at least one of the following holds:

(a) y is honest and there exists an α ∈ {1, 2} such that every strong path from x to w in N ∗
URMTBEF

passes through some node(s) in (F ′
α ∪B′

α) followed by some node(s) in B′
α.

(b) y ∈ F ′∗
1 where F ′∗

1 = F ′
1 \ (F ′

1 ∩ F ′
2) and every strong path from x to w in N ∗

URMTBEF
passes

through some node(s) in B′
2 ∪ (F ′

1 ∩ F ′
2).

(c) y ∈ F ′∗
2 where F ′∗

2 = F ′
2 \ (F ′

1 ∩ F ′
2) and every strong path from x to w in N ∗

URMTBEF
passes

through some node(s) in B′
1 ∪ (F ′

1 ∩ F ′
2).

(d) y ∈ E′
1 and every strong path from x to w in N ∗

URMTBEF
passes through some node(s) in

B′
1 ∪ (F ′

1 ∩ F ′
2).

(e) y ∈ E′
2 and every strong path from x to w in N ∗

URMTBEF
passes through some node(s) in

B′
2 ∪ (F ′

1 ∩ F ′
2).

2. x 6∈ P (x is a temporary node added by some construction) and letting z ∈ P be the first physical
node that occurs in every path that emanates from x, at least one of the following holds:

(a) there exists an α ∈ {1, 2} such that every strong path from y to z (starting with the edge (y, x))
in N ∗

URMTBEF
has a node from F ′

α followed by a node from E′
α and there exists i ∈ {1, 2} such

that every path from z to w passes through some node(s) in B′
i ∪ (F ′

1 ∩ F ′
2).

(b) every strong path from y to z (starting with the edge (y, x)) in N ∗
URMTBEF

has a node from
E′

α and every path from z to w passes through some node(s) in (B′
α ∪ (F ′

1 ∩ F ′
2)).

Proof: Since w ∈ Y and y ∈ Y has a strong path to w, then according to the property of the nodes
in Y , y has a strong path to R through w, which is free from the nodes in the set B′

1 ∪ B′
2 ∪ (F ′

1 ∩ F ′
2).

Consider the first case where x ∈ P and y is honest, then according to condition (1.a), every path from
x ∈ X to w ∈ Y in N ∗

URMTBEF
must pass through some node(s) in (F ′

α∪B′
α) followed by some node(s) in

B′
α, for some α ∈ {1, 2}. If this is not true then y can act as the head of a semi strong path between x and

w and using at least one of the constructions from Table 1, it is possible to augment N ∗
URMTBEF

, which
is a contradiction. Similarly, using the same argument, it can be shown that if none of the conditions of
Lemma 6 are satisfied, then using at least one of the constructions #1, #2, #3 and #4, it is possible to
augment N ∗

URMTBEF
which is a contradiction. This proves the lemma. 2

By looking carefully, we find that the conditions in Lemma 6 captures all possible behavior of y, for
both the cases when x ∈ P and x 6∈ P. If x ∈ P, then conditions 1a, 1b, 1c, 1d and 1e enumerates all
possibilities of y, since other possibilities of y (say y ∈ (F ∗

1 ∩E1) etc) will fall under these five enumerations.
Similarly if x 6∈ P, then conditions 2a and 2b captures all possible behavior of the adversary along the
path from y to z beginning with the edge (y, x). Each of these conditions (condition 1 and 2) also specifies
the corresponding restrictions that the strong paths from x to w (if x ∈ P) or z to w (if x 6∈ P) should
satisfy. According to Lemma 6, at least one of these conditions (along with the corresponding restriction
on the path from x to w or z to w) should be true in N ∗

URMTBEF
. We now show that if this is true, then

there exists an adversary strategy, making (y, x) useless.

Lemma 7 If one of the conditions stated in Lemma 6 is satisfied, then x cannot influence w ∈ Y (and
hence R), using the data received from y along the edge (y, x) in N ∗

URMTBEF
.

Proof: We consider only the following cases. The remaining cases are similar.

21

1. If x ∈ P and y is honest, and there exists an α ∈ {1, 2} such that every strong path from x to w
in N ∗

URMTBEF
passes through some node(s) in (F ′

α ∪ B′
α) followed by some node(s) in B′

α: This is
the case wherein the Condition 1(a) of Lemma 6 holds (see Fig. 7(a)). In this case, we show that x
cannot influence w by considering the following adversarial strategy: If αth set in A∗ is corrupted,
then the nodes in B′

α blocks all messages from x to Y (which includes w) and instead send messages
obtained by locally simulating the nodes in X (which includes x) assuming that the nodes in F ′

α

crashed. On the other hand, if the αth set in A∗ is corrupted, then the adversary crashes the
nodes from F ′

α along the path from x to w, thus ensuring that w is unable to distinguish (with a
probability more than half) the two execution scenarios.

2. x ∈ P, y ∈ F ′∗
1 where F ′∗

1 = F ′
1 \ (F ′

1 ∩ F ′
2) and every path from x to w in N ∗

URMTBEF
involves

node(s) from B′
2: This is the case wherein the Condition 1(b) of Lemma 6 holds (see Fig. 7(b)).

In this case, we show that x cannot influence w by considering the following adversarial strategy:
when the second set in A∗ is corrupt, the adversary blocks all the messages from x to Y (which
includes w) and instead sends the messages obtained by (locally) simulating the nodes in X (which
includes x) assuming that the node y failed and sent nothing to x. On the other hand, if the first set
in A∗ is corrupt, then the adversary crashes y and thereby ensures that w just cannot distinguish
(with a probability more than half) the two execution scenarios.

3. x 6∈ P and every strong path from y to z (starting with the edge (y, x)) in N ∗
URMTBEF

has a node
from E′

α and every path from z to w passes through some node(s) in (B′
α ∪ (F ′

1 ∩ F ′
2)): This is the

case wherein Condition 2(b) of Lemma 6 holds (see Fig. 7(c)). In this case, if the αth set in A∗ is
corrupted, then the adversary will also know the data received by z from y (the path from y to z
passes through E′

α). Hence, it is easy to see that the adversary can easily simulate the nodes in X
which cannot be distinguished by w.

Thus x has no influence on w (and hence R) and can be ignored. Hence the lemma holds. 2

From Lemmas 5, 6 and 7, it is proved that conditions of Theorem 4 are necessary for the existence of

S R S S R

x

w

y y
x

w

x

w zR

X X XY Y Y
Case (a) Case (b) Case (c)

F′

α
,B′

α
,B′

ᾱ

y ∈ F′∗

1

B′

α
, (F′

1
∩ F′

2
)

B′

2

E′

α

Figure 7: Illustration of the edge (y, x) to be useless in N ∗
URMTBEF

URMTforward in N ∗
URMTBEF

. The necessity of these conditions for the existence of URMT in N follows
from Lemma 4. This completes the necessity proof of Theorem 4. 2

9 APPENDIX V: Illustration of Constructing URMTspecial-BEF-Closure-
Digraph N ∗

URMTBEF

Recall that in subsection 1.3, we have claimed that URMT over D (shown in Fig. 2 and 8) tolerating
A(1,0,0) (where tb = 1 and tp = tf = 1) is possible and feasible. Here we show that

(a) D satisfies the necessary and sufficient conditions for the existence of URMT tolerating A(1,0,0)

(b) D does not satisfy the necessary and sufficient condition for tolerating A(1,1,0).

According to Theorem 1, URMT over D tolerating A(1,0,0) is possible iff URMTspecial over Dunder is
possible tolerating Aunder. Dunder and Aunder corresponding to D and A(1,0,0) respectively are shown
in Fig. 8. Now according to Theorem 5, URMTspecial is possible over Dunder tolerating Aunder =
{(B1, E1, F1), (B2, E2, F2)} iff (1) Dunder is such that for each α ∈ {1, 2} the deletion of nodes in ((Bα ∪
Fα) \ {S,R}) does not eliminate all the strong paths from S to R and (2) The URMTspecial-BEF-
Closure-Digraph of Dunder with respect to Aunder viz., N ∗

URMTsplBEF
= (P∗,E∗) is such that, there exists

a strong path from S to R in N ∗
URMTsplBEF

, after deleting the vertices from the set (B′
1 ∪ B′

2 ∪ (F ′
1 ∩

22

F ′
2)) = (B1 ∪ B2 ∪ (F1 ∩ F2)) where the adversary structure closure A∗spl = {(B′

1, E
′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}.

The digraph Dunder satisfies condition (1) of Theorem 5 because the strong path from S to R after
deleting (B1 ∪ F1) is (S, XV ir

e3
, B, XV ir

e4
,R) and the strong path from S to R after deleting (B2 ∪ F2) is

(S, XV ir
e1

, A, XV ir
e2

,R). Now we construct the URMTspecial-BEF-Closure-Digraph of Dunder with respect
to Aunder viz., N ∗

URMTsplBEF
(shown in Fig. 8). For that, let Dunder = N1 and Aunder = A1. Now in

N1, consider the nodes S and R, along with the semi-strong path (S, XV ir
e5

,R) with head XV ir
e5

∈ V and
strong path (S, XV ir

e3
, B, XV ir

e4
,R) from S to R. The immediate in-neighbor (~x) of head XV ir

e5
is node

A and the immediate out-neighbor (~z) of head XV ir
e5

on the path from the head XV ir
e5

to R is R. The
semi-strong path and the strong path, along with ~x and ~z, satisfy the conditions of Construction #1
subcase 2 from Table 2. Hence we apply Construction #1 subcase 2 on nodes S and R and add four
new temporary nodes X1, X2, X3 and X4 and five new temporary edges (S, X1), (X1, X2), (X2, X3) and
(X3, X4) in N1. This augmented digraph is denoted as N2. The adversary structure A1 is upgraded such
that F1 = F1 ∪ {X1}, F2 = F2 ∪ {X3}, E1 = E1 ∪ {X2}, E2 = E2 ∪ {X4}. This augmented adversary
structure is denoted by A2. Now notice that no new construction can be applied from Table 1 and 2 on
any pair of physical nodes. Hence URMTspecial-BEF-Closure-Digraph of Dunder with respect to Aunder is
N ∗

URMTsplBEF
= N2 and the corresponding adversary closure is A∗spl = A2 = {(B′

1, E
′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}.

Now inN ∗
URMTsplBEF

, the strong path from S to R after deletion of vertices from set (B′
1∪B′

2∪(F ′
1∩F ′

2)) =
(B1 ∪B2 ∪ (F1 ∩ F2)) = {A, B} is (S, X1, X2, X3, X4,R). Hence Dunder satisfies condition 2 of Theorem
5. So, from Theorem 5 URMTspecial is possible over Dunder tolerating Aunder and hence from Theorem
1 URMT is possible over D tolerating A(1,0,0).

Now recall the second claim that we made in subsection 1.3: URMT over D tolerating A(1,1,0) (where
tb = tp = 1 and tf = 1) is impossible. In this case Aunder is represented by it’s maximal basis Aunder =
{(B1, E1, F1), (B2, E2, F2)} where (B1, E1, F1) = ({A}, {B, XV ir

e1
, XV ir

e1
, XV ir

e2
, XV ir

e3
, XV ir

e4
, XV ir

e5
, XV ir

e6
},

∅) and (B2, E2, F2) = ({B}, {A,XV ir
e1

, XV ir
e1

, XV ir
e2

, XV ir
e3

, XV ir
e4

, XV ir
e5

, XV ir
e6
}, ∅). So no construction can

be applied between any pair of physical nodes in Dunder. Hence URMTspecial-BEF-Closure-Digraph of
Dunder with respect to Aunder is Dunder itself which does not satisfy condition 2 of Theorem 5. Therefore
URMTspecial is impossible over Dunder tolerating Aunder and hence from Theorem 1 URMT is impossible
over directed hypergraph D tolerating A(1,1,0).

10 APPENDIX D: Modified Constructions when y ∈ V

23

A

S

A

R

B

S

B

R

Hypergraph D = (P , E), where P = {S, A, B, R}

and E = {e1, e2, e3, e4, e5, e6}

with e1 = (S, {A}), e2 = (A, {R}),

e3 = (S, {B}), e4 = (B, {R}),

e5 = (A, {S, R}), e6 = (B, {S, R})

XV ir
e2

XV ir
e4

XV ir
e3

XV ir
e1

XV ir
e6

XV ir
e5

Dunder = (P ′, E ′),P ′ = P ∪ V ,

V = {XV ir
e1

, XV ir
e2

, XV ir
e3

, XV ir
e4

, XV ir
e5

, XV ir
e6

}

denotes virtual nodes from the set V

A(1,0,0) where tb = 1 and tp = tf = 0

Find PPRMTspecial-BEF-Closure-Digraph of Dunder w.r.t Aunder

Find Dunder and Aunder

B1 = {A}

E1 = {XV ir
e1

, XV ir
e2

, XV ir
e5

}

F1 = ∅

B2 = {B}

E2 = {XV ir
e3

, XV ir
e4

, XV ir
e6

}

F2 = ∅

Aunder = {(B1, E1, F1), (B2, E2, F2)} where

Let Dunder = N1 and Aunder = A1

S

A

R

B

N2,

A2 = {(B1, E1, F1), (B2, E2, F1)}

B1 = {A}

F1 = {X3}

B2 = {B}

E1 = {XV ir
e1

, XV ir
e2

, XV ir
e5

, X2}

F2 = {X3}

E2 = {XV ir
e3

, XV ir
e4

, XV ir
e6

, X4}

N2 = NPPRMTsplBEF
and

XV ir
e2XV ir

e1

XV ir
e6

XV ir
e5

X1

X2 X3

the strong path is (S, XV ir
e3

, B, XV ir
e4

,R)

XV ir
e5

∈ V and ~x = A and ~z = R

Apply Construction #1 subcase 2 from Table 2 on nodes S

and R where the semi-strong path is (S, XV ir
e5

,R) with head

X4

XV ir
e3

XV ir
e4

A2 = A∗
spl

Figure 8: Illustration of constructing URMTspecial-BEF-Closure-Digraph N ∗
URMTBEF

of a directed hy-
pergraph D tolerating A(1,0,0)

24

No. Temporary Link Conditions & Figure

#1

A → X1 → X2

→ X3 → X4 → B,
X1 ∈ F1, X2 ∈ E1,
X3 ∈ F2, X4 ∈ E2

1. y → A: ((B1 ∪B2 ∪ F2 ∪ E1) \ {A, B})
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B: Path p: ((B2 ∪ (F1 ∩ F2)) \ {A, B}) with the
last node from F ∗1 before the first node from E1

and the last node from F ∗2 before the first node
from E2.
4. ~x /∈ (B1 ∪ E1 ∪ (F1 ∩ F2))
5. ~z /∈ (B1 ∪B2 ∪ E1 ∪ (F1 ∩ F2)) BA

y

~z ∈ (E2, F
∗
1
, F ∗

2
)

E1, E2

~z

~x

E2, F ∗
1

~x ∈ (B2, E2, F
∗
1
, F ∗

2
)

B1, F ∗
1
, E1, F ∗

2
, E2

F ∗
1
, F ∗

2

y ∈ V

1. y → A: ((B1 ∪B2 ∪ F1 ∪ E2) \ {A, B})
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B: Path p: ((B1 ∪ (F1 ∩ F2)) \ {A, B}) with the
last node from F ∗1 before the first node from E1

and the last node from F ∗2 before the first node
from E2.
4. ~x /∈ (B2 ∪ E2 ∪ (F1 ∩ F2))
5. ~z /∈ (B1 ∪B2 ∪ E2 ∪ (F1 ∩ F2)) BA

y

F ∗

1
, F ∗

2

E1, E2

~z

~x ~x ∈ (B1, E1, F
∗

1
, F ∗

2
)

~z ∈ (E1, F
∗

1
, F ∗

2
)

E1, F ∗

2

B2, F ∗

1
, E1, F ∗

2
, E2

y ∈ V

1. y → A: ((B1 ∪ B2 ∪ F1 ∪ E1) \ {A, B}) with the last
node from F ∗2 before the first node from E2.
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B: for each i ∈ {1, 2}, Path pi:
(Bi ∪ (F1 ∩ F2)) \ {A, B}) with the last node from F ∗1
before the first node from E1 and the last node
from F ∗2 before the first node from E2.
4. ~x /∈ (B1 ∪ E1 ∪ (F1 ∩ F2))
5. ~z /∈ (B1 ∪B2 ∪ E1 ∪ (F1 ∩ F2))

y

BA

F ∗

1
, F ∗

2

~z ∈ (E2, F
∗

1
, F ∗

2
)

~x ∈ (B2, E2, F
∗

1
, F ∗

2
)

E1, E2

~z

~x

F ∗

2
, E2

p2

p1

B2, F ∗

1
, E1, F ∗

2
, E2

B1, F ∗

1
, E1, F ∗

2
. E2

y ∈ V

1. y → A: ((B1 ∪ B2 ∪ F2 ∪ E2) \ {A, B}) with the last
node from F1 before the first node from E1.
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B: for each i ∈ {1, 2}, Path pi:
(Bi ∪ (F1 ∩ F2)) \ {A, B}) with the last node from F ∗1
before the first node from E1 and the last node
from F ∗2 before the first node from E2.
4. ~x /∈ (B2 ∪ E2 ∪ (F1 ∩ F2))
5. ~z /∈ (B1 ∪B2 ∪ E2 ∪ (F1 ∩ F2))

y

BA

F ∗

1
, F ∗

2

~z ∈ (E1, F
∗

1
, F ∗

2
)

E1, E2

~z

~x

B1, E1, E2, F ∗

1
, F ∗

2

~x ∈ (B1, E1, F
∗

1
, F ∗

2
)

B2, F ∗

1
, E1, F ∗

2
, E2

p1

p2

F ∗

1
, E1

y ∈ V

1. y → A: ((B1 ∪B2 ∪ (F1 ∩ F2) ∪ E1) \ {A, B})
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B, Path p: (B2 ∪ (F1 ∩ F2)) \ {A, B}) with the
last node from F ∗1 before the first node from E1

and the last node from F ∗2 before the first node
from E2.
4. A → B, Path Q: (B1 ∪B2 ∪ (F1 ∩ F2)
5. ~x /∈ (B1 ∪ E1 ∪ (F1 ∩ F2))
6. ~z /∈ (B1 ∪B2 ∪ E1 ∪ (F1 ∩ F2))

y

BA

F ∗

1
, F ∗

2

~z ∈ (E2, F
∗

1
, F ∗

2
)

~x ∈ (B2, E2, F
∗

1
, F ∗

2
)

E1, E2

~z

~x

E2, F ∗

1
, F ∗

2

p

Q

F ∗

1
, E1, F ∗

2
, E2

B1, F ∗

1
, E1, F ∗

2
, E2

y ∈ V

1. y → A: ((B1 ∪B2 ∪ (F1 ∩ F2) ∪ E2) \ {A, B})
2. y → B: ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
3. A → B, Path p: (B1 ∪ (F1 ∩ F2)) \ {A, B}) with the
last node from F ∗1 before the first node from E1

and the last node from F ∗2 before the first node
from E2.
4. A → B, Path Q: (B1 ∪B2 ∪ (F1 ∩ F2)
5. ~x /∈ (B2 ∪ E2 ∪ (F1 ∩ F2))
6. ~z /∈ (B1 ∪B2 ∪ E2 ∪ (F1 ∩ F2))

y

BA

F ∗

1
, F ∗

2

~z ∈ (E1, F
∗

1
, F ∗

2
)

E1, E2

~z

~x ~x ∈ (B1, E1, F
∗

1
, F ∗

2
)

E1, F ∗

1
, F ∗

2

p

Q

B2, F ∗

1
, E1, F ∗

2
, E2

F ∗

1
, E1, F ∗

2
, E2

y ∈ V

25

No. Temporary Link Conditions & Figure

#2

A → X1 → X2

→ X3 → X4 → B,
X1 ∈ E1, X2 ∈ F1,
X3 ∈ F2, X4 ∈ E2

Similar to the construction #1 except that the condition
“with the last node from F1 before the first node from E1”
is removed from the strong path(s) from A to B in all the
six cases

Similar to #1 except that
first restriction on the order-
ing of vertices in the strong
path(s) from A to B is re-
laxed

#3

A → X1 → X2

→ X3 → X4 → B,
X1 ∈ F1, X2 ∈ E1,
X3 ∈ E2, X4 ∈ F2

Similar to the construction #1 except that the condition
“with the last node from F2 before the first node from E2”
is removed from the strong path(s) from A to B in all the
six cases

Similar to #1 except that
second restriction on the or-
dering of vertices in the
strong path(s) from A to B
is relaxed

#4

A → X1 → X2

→ X3 → X4 → B,
X1 ∈ F1, X2 ∈ F2,
X3 ∈ E1, X4 ∈ E2

Similar to the construction #1 except that both the con-
ditions “with the last node from F1 before the first node
from E1” and “with the last node from F2 before the first
node from E2” are removed from the strong path(s) from
A to B in all the six cases

Similar to #1 except that
both restrictions on the or-
dering of vertices in the
strong path(s) from A to B
are relaxed

Table 2: The various constructions (#1 to #4) to convert Ni−1 to Ni. In the figures, y denotes the head
of semi-strong path q between A and B such that y ∈ V. ~x denotes the in-neighbor of y and ~z denotes the
first physical node on the strong path from y to B. In the figures, the labels along the edges, represents
the permissible category of adversary sets in permitted order for the construction. F ∗

i = Fi \ (F1∩F2) for
i = {1, 2}. Further in addition to the conditions specified in each construction, the strong path(s) from
A to B must satisfy: for each i ∈ {1, 2}, every occurrence of a node from (Bi ∪ Fi) \ {A,B} is after the
last occurrence of a node from Bi \ {A, B}, where if i = 1 (i = 2), then i = 2 (i = 1). The constructions
are similar to the constructions of Table 1, except that extra restrictions are imposed on ~x and ~z.

26

