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Abstract. Ring signcryption is an anonymous signcryption which al-
lows a user to anonymously signcrypt a message on behalf of a set of
users including himself. In an ordinary ring signcryption scheme, even
if a user of the ring generates a signcryption, he also cannot prove that
the signcryption was produced by himself. In 2008, Zhang, Yang, Zhu,
and Zhang solve the problem by introducing an identity-based authenti-
catable ring signcryption scheme (denoted as the ZYZZ scheme). In the
ZYZZ scheme, the actual signcrypter can prove that the ciphertext is
generated by himself, and the others cannot authenticate it. However,
in this paper, we show that the ZYZZ scheme is not secure against cho-
sen plaintext attacks. Furthermore, we propose an improved scheme that
remedies the weakness of the ZYZZ scheme. The improved scheme has
shorter ciphertext size than the ZYZZ scheme. We then prove that the
improved scheme satisfies confidentiality, unforgeability, anonymity and
authenticatability.
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1 Introduction

Confidentiality, integrity, non-repudiation and authentication are the impor-
tant requirements for many cryptographic applications. A traditional approach
to achieve these requirements is to sign-then-encrypt the message. Signcryp-
tion, first proposed by Zheng in 1997 [28], is a cryptographic primitive that
performs digital signature and public key encryption simultaneously, at lower
computational costs and communication overheads than the signature-then-
encryption approach. Several efficient signcryption schemes have been proposed
since 1997 [3, 11, 17, 20, 22, 25]. The original scheme in [28] is based on the dis-
crete logarithm problem but no security proof is given. Zheng’s original con-
struction was only proven secure in 2002 by Baek, Steinfeld, and Zheng [2] who
described a formal security model in a multi-user setting.
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Identity-based (ID-based) cryptography was introduced by Shamir in 1984 [21].
The distinguishing property of ID-based cryptography is that a user’s public
key can be any binary string, such as an email address that can identify the
user. This removes the need for senders to look up the recipient’s public key
before sending out an encrypted message. ID-based cryptography is supposed
to provide a more convenient alternative to conventional public key infrastruc-
ture. Several practical ID-based signature schemes have been devised since 1984,
but a satisfying ID-based encryption scheme only appeared in 2001 [5]. It was
devised by Boneh and Franklin and cleverly uses bilinear maps (the Weil or
Tate pairing) over supersingular elliptic curves. A recent direction is to merge
the concepts of ID-based cryptography and signcryption to design efficient ID-
based signcryption schemes. Several ID-based signcryption schemes have been
proposed so far, e.g. [4, 6–8, 16]. In addition, many variations of ID-based sign-
cryption were proposed, for examples, ID-based proxy signcryption [13, 15, 23],
ID-based threshold signcryption [10, 18] and unsigncryption [14], and ID-based
blind signcryption [24].

The concept of ring signature was introduced by Rivest, Shamir, and Tauman
in 2001 [19]. A ring signature is considered to be a simplified group signature
which consists of only users without managers. It protects the anonymity of a
signer since the verifier knows that the signature comes from a member of a ring,
but doesn’t know exactly who the signer is. The first ID-based ring signature
scheme was proposed by Zhang and Kim in [26].

In 2005, Huang, Susilo, Mu, and Zhang proposed an ID-based ring sign-
cryption scheme (denoted as the HSMZ scheme) by combining the concepts of
ID-based ring signature and signcryption together [12]. In such a scheme, a user
can anonymously signcrypt a message on behalf of a set of users including him-
self. ID-based ring signcryption is very useful to protect privacy and authenticity
of a collection of users who are connected through an ad hoc network. However,
in [12], even if a user of the ring generates a signcryption, he also cannot prove
that the signcryption was produced by himself. Such ring signcryption is not
suitable for the following scenario [27]. If Alice want to expose a grafter to a
policeman using ring signcryption manner to signcrypt the evidence in order to
avoid being retaliated. The policeman will give Alice prize in order to advocate
such behavior. However, the policeman can not distinguish who is the actual
signcrypter from the group members, and Alice also cannot prove that the sign-
cryption was produced by herself because of the anonymity of ring signcryption.

To solve the above problem, Zhang, Yang, Zhu, and Zhang proposed an
identity-based authenticatable ring signcryption scheme (denoted as the ZYZZ
scheme) in 2008 [27]. In their scheme, the actual signcrypter can prove that
the ciphertext is generated by himself, and the others cannot authenticate it.
However, in this paper, we show that the ZYZZ scheme is not secure against
chosen plaintext attacks. Furthermore, we propose an improved scheme that
remedies the weakness of the ZYZZ scheme. The improved scheme has shorter
ciphertext size than the ZYZZ scheme. We then prove that the improved scheme
satisfy confidentiality, unforgeability, anonymity and authenticatability.



The rest of this paper is organized as follows. Some preliminary works are
given in Section 2. The formal model of ID-based authenticatable ring sign-
cryption is described in Section 3. We analyze the ZYZZ scheme in Section 4.
The improved scheme is given in Section 5. We analyze the improved scheme in
Section 6. Finally, the conclusions are given in Section 7.

2 Preliminaries

In this section, we briefly describe the basic definition and properties of the
bilinear pairings.

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
and G2 be a cyclic multiplicative group of the same order q. A bilinear pairing
is a map ê : G1 ×G1 → G2 with the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1, a, b ∈ Zq.
2. Non-degeneracy: There exists P and Q ∈ G1 such that ê(P, Q) 6= 1.
3. Computability: There is an efficient algorithm to compute ê(P, Q) for all

P ,Q ∈ G1.

The modified Weil pairing and the Tate pairing [5] are admissible maps of
this kind. The security of our scheme described here relies on the hardness of
the following problems.

Definition 1. Given two groups G1 and G2 of the same prime order q, a bilinear
map ê : G1 ×G1 → G2 and a generator P of G1, the Decisional Bilinear Diffie-
Hellman problem (DBDHP) in (G1, G2, ê) is to decide whether h = ê(P, P )abc

given (P, aP, bP, cP ) and an element h ∈ G2. We define the advantage of a
distinguisher against the DBDHP like this

Adv(D) = |Pa,b,c,∈RZq,h∈RG2 [1 ← D(aP, bP, cP, h)]

−Pa,b,c,∈RZq
[1 ← D(aP, bP, cP, ê(P, P )abc)]|.

Definition 2. Given two groups G1 and G2 of the same prime order q, a bilinear
map ê : G1 × G1 → G2 and a generator P of G1, the Computational Bilinear
Diffie-Hellman problem (CBDHP) in (G1, G2, ê) is to compute h = ê(P, P )abc

given (P, aP, bP, cP ).

The decisional problem is of course not harder than the computational one.
However, no algorithm is known to be able to solve any of them so far.

3 Formal Model of ID-Based Authenticatable Ring
Signcryption

3.1 Generic Scheme

A generic ID-based authenticatable ring signcryption scheme consists of the fol-
lowing five algorithms.



– Setup: Given a security parameter k, the private key generator (PKG) gen-
erates the system’s public parameters params. Among the parameters pro-
duced by Setup is a key Ppub that is made public. There is also corresponding
master key s that is kept secret.

– Extract: Given an identity ID, the PKG computes the corresponding pri-
vate key DID and transmits it to its owner in a secure way.

– Signcrypt: To send a message m to the receiver Bob whose identity is
IDB , Alice chooses a group U = {u1, . . . , un} with identities {ID1, . . . , IDn}
including herself and computes Signcrypt(m,DIDA

,U , IDB) on behalf of
the group to obtain the ciphertext C.

– Unsigncrypt: When Bob receives the ciphertext C from Alice, he computes
Unsigncrypt(C,U , DIDB

) and obtains the plaintext m or the symbol ⊥ if
C is an invalid ciphertext between the group U and Bob.

– Authenticate: Given the ciphertext C and Alice’s private key DIDA
, this

algorithm outputs > for “true” or ⊥ for “false”, depending on whether Alice
is the actual signcrypter of ciphertext C or not.

We make the consistency constraint that if

C = Signcrypt(m,DIDA
,U , IDB),

then

m = Unsigncrypt(C,U , DIDB
) and Authenticate(C, DIDA

) = >.

3.2 Security Notions

The HSMZ scheme [12] defines the security notions for ID-based ring signcryp-
tion schemes. These notions are indistinguishability against adaptive chosen ci-
phertext attacks and unforgeability against adaptive chosen messages attacks.
The ZYZZ scheme [27] extended the notions to ID-based authenticatable ring
signcryption scheme. However, both [12] and [27] do not consider insider secu-
rity [1]. Insider security can resist attacks from his partner. It means that (a)
if the sender’s private key is exposed, an adversary is still not able to recover
the message from the ciphertext and (b) if the receiver’s private key is exposed,
an adversary is still not able to forge a signcryption. Here, we modify their de-
finitions slightly by adding the insider security for signcryption. An ID-based
authenticatable ring signcryption scheme should satisfy confidentiality, unforge-
ability, anonymity and authenticatability.

For the confidentiality, we consider the following game played between a
challenger C and an adversary A.

– Initial: The challenger C takes a security parameter k and runs Setup to
generate system parameters params and the master secret key s. C sends
params to A.

– Phase 1: The adversary A can perform a polynomially bounded number
of queries in an adaptive manner (that is, each query may depend on the
responses to the previous queries).



• Key extraction queries: A chooses an identity ID and receives the ex-
tracted private key DID = Extract(ID).

• Signcryption queries: A produces a group U = {u1, . . . , un} with iden-
tities {ID1, . . . , IDn}, an identity IDj and a plaintext m. C randomly
chooses a user ui ∈ U whose identity is IDi and computes DIDi

=
Extract(IDi). Then C acts as ui on behalf of the group U and sends the
result of Signcrypt(m,DIDi ,U , IDj) to A.

• Unsigncryption queries: A produces a group U = {u1, . . . , un} with
identities {ID1, . . . , IDn}, an identity IDj , and a ciphertext C. C gen-
erates the private key DIDj

= Extract(IDj) and sends the result of
Unsigncrypt(C,U , DIDj

) to A (this result can be the ⊥ symbol if C is
an invalid ciphertext)

– Challenge: The adversary A decides when Phase 1 ends. A generates two
equal length plaintexts m0,m1, a user set UA and an identity IDB on which
he wants to be challenged. He cannot have asked the private key correspond-
ing to IDB in Phase 1. C picks a random bit b from {0, 1}, chooses us ∈ U ,
and computes C = Signcrypt(mb, DIDs ,UA, IDB) which is sent to A.

– Phase 2: The adversary A can ask a polynomially bounded number of
queries adaptively again as in Phase 1 with the restriction that it cannot
make a key extraction query on IDB and cannot make an unsigncryption
query on (C,UA, DIDB

) to obtain the corresponding plaintext.
– Guess: The adversary A produces a bit b′ and wins the game if b′ = b.

The advantage of A is defined as Adv(A) = |2P [b′ = b] − 1|, where P [b′ = b]
denotes the probability that b′ = b.

Definition 3 (Confidentiality). An ID-based authenticatable ring signcryp-
tion scheme (IDARSC) is said to have the indistinguishability against adap-
tive chosen ciphertext attacks property (IND-IDARSC-CCA2) if no polynomially
bounded adversary has a non-negligible advantage in the confidentiality game.

Notice that the adversary is allowed to make a key extraction query on any
user in the group UA in the above definition. This condition corresponds to the
stringent requirement of insider security for confidentiality of signcryption [1]. On
the other hand, it ensures the forward security of the scheme, i.e. confidentiality
is preserved in case the sender’s private key becomes compromised.

For the unforgeability, we consider the following game played between a chal-
lenger C and an adversary F .

– Initial: The challenger C takes a security parameter k and runs Setup to
generate system parameters params and the master secret key s. C sends
params to A.

– Attack: The adversary A performs a polynomially bounded number of
queries just like in the confidentiality game.

– Forgery: A produces a new triple (UA, IDB , C)(i.e. a triple that was not
produced by the signcryption oracle), where the private keys of the users in
the group UA were not asked in the second stage and wins the game if the
result of the Unsigncrypt(C,UA, DIDB

) is not the ⊥ symbol.



The advantage of A is defined as the probability that it wins.

Definition 4 (Unforgeability). An ID-based authenticatable ring signcryp-
tion scheme (IDARSC) is said to have the existential unforgeability against adap-
tive chosen messages attacks (EUF-IDARSC-CMA) if no polynomially bounded
adversary has a non-negligible advantage in the unforgeability game.

Note that the adversary is allowed to make a key extraction query on the
identity IDB in the above definition. Again, this condition corresponds to the
stringent requirement of insider security for signcryption [1].

For anonymity, we require that it is impossible for an adversary to guess the
identity of the real signcrypter with a probability larger than 1/n, where n is
the size of the ring.

Definition 5 (Anonymity). An ID-based authenticatable ring signcryption scheme
is unconditional anonymous if for any group of n members, any message m and
ciphertext C, any adversary cannot identify the actual signcrypter with probabil-
ity better than random guess. That is, the adversary can only output the identity
of the actual signcrypter with probability 1/n.

Definition 6 (Authenticatability). An ID-based authenticatable ring sign-
cryption scheme is authenticatable if and only if the actual signcrypter can au-
thenticate that a ciphertext C was indeed produced by himself. However, the
other members of the group cannot authenticate the ciphertext C to be produced
by themselves with non-negligible probability.

4 Analysis of the ZYZZ Scheme

In this section, we show that the ZYZZ scheme [27] is not secure against chosen
plaintext attacks.

4.1 Review of the ZYZZ Scheme

The ZYZZ scheme consists of the following five algorithms.

– Setup: Given a security parameter k, the PKG chooses groups G1 and G2 of
prime order q (with G1 additive and G2 multiplicative), a generator P of G1,
a bilinear map ê : G1×G1 → G2, and hash functions H0 : {0, 1}∗ → G1, H1 :
G2 → {0, 1}l, and H2 : {0, 1}∗ → Z∗q . The PKG chooses a master key s ∈ Z∗q
randomly and computes Ppub = sP . The PKG publishes system parameters
{G1, G2, l, ê, P, Ppub,H0,H1,H2} and keeps the master key s secret.

– Extract: Given an identity ID, the PKG computes QID = H0(ID) and the
private key DID = sQID. Then PKG sends the private key to its owner in
a secure way.



– Signcrypt: Consider a set of users U = {u1, . . . , un} including the actual
signcrypter Alice. Let IDi be ui’s identity. To send a message m to Bob
with identity IDB on behalf of the group U , the actual signcrypter Alice,
indexed by s (i.e. her public key is QIDs = H0(IDs) and private key is
DIDs

= sQIDs
) performs the following steps.

1. Choose r ∈ Z∗q randomly.
2. Compute R = rP , R′ = ê(Ppub, QIDB

)r and t = H1(R′).
3. Compute c = m⊕ t.
4. For all i ∈ {1, . . . , n}, i 6= s, choose ai ∈ Z∗q randomly, compute Ui = aiP

and hi = H2(m,U , t, Ui).
5. Choose as ∈ Z∗q randomly and compute Us = asQIDs

−∑n
i=1,i 6=s(Ui +

hiQIDi).
6. Compute hs = H2(m,U , t, Us) and σ = (hs + as)DIDs

.
The ciphertext is C = (U , c, R, h1, . . . , hn, U1, . . . , Un, σ).

– Unsigncrypt: When receiving C, Bob follows the steps below.
1. Compute t = H1(ê(R, DIDB

)).
2. Recover m = c⊕ t.
3. Accept C if and only if both hi = H2(m,U , t, Ui)(i = 1, . . . , n) and

ê(P, σ) = ê(Ppub,
∑n

i=1(Ui + hiQIDi
)) hold, return ⊥ otherwise.

– Authenticate: If the actual signcrypter Alice wants to prove that the ci-
phertext C was produced by herself, she follows the steps below.
1. Alice chooses x ∈ Z∗q randomly, computes µ = ê(P, σ)x, and sends µ to

the verifier.
2. The verifier chooses y ∈ Z∗q randomly and sends it to Alice.
3. Alice computes ν = (x + y)(hs + as) and sends ν to the verifier.
4. The verifier checks that if ê(Ppub, QIDs

)ν = µê(P, σ)y holds. If the equa-
tion holds, the verifier believes that Alice is actual signcrypter and re-
turns >, otherwise returns ⊥.

4.2 Analysis

We show that the ZYZZ scheme is not secure against chosen plaintext attacks.
WhenA receives the challenge ciphertext C∗ = (U∗, c∗, R∗, h∗1, . . . , h∗n, U∗

1 , . . . , U∗
n, σ∗).

A first makes a “wild guess” of b to be 0. Then, A follows the steps as follows.

1. Compute t∗ = m0 ⊕ c∗.
2. Check if h∗i = H2(m0,U∗, t∗, U∗

i ) for i = 1, . . . , n.
3. Check if ê(P, σ∗) = ê(Ppub,

∑n
i=1(U

∗
i + h∗i QID∗

i
)).

If the above equations hold, then A knows that m0 is the plaintext for the
challenge ciphertext. If the above equations do not hold, then A knows that m1

is the plaintext for the challenge ciphertext. In fact, it is enough for A to check
one equation, for example h∗1 = H2(m0,U∗, t∗, U∗

1 ). Therefore, we conclude that
the ZYZZ scheme is not secure against chosen plaintext attacks.



5 An Improved Scheme

To overcome the weakness of the ZYZZ scheme [27], we propose an improved
scheme in this section. The details of the improved scheme is described as below.

– Setup: Given a security parameter k, the PKG chooses groups G1 and G2 of
prime order q (with G1 additive and G2 multiplicative), a generator P of G1,
a bilinear map ê : G1×G1 → G2, a secure symmetric cipher (E, D) and hash
functions H0 : {0, 1}∗ → G1, H1 : G2 → {0, 1}l, and H2 : {0, 1}∗ → Z∗q . The
PKG chooses a master key s ∈ Z∗q randomly and computes Ppub = sP . The
PKG publishes system parameters {G1, G2, l, ê, P, Ppub, E,D, H0,H1,H2}
and keeps the master key s secret.

– Extract: Given an identity ID, the PKG computes QID = H0(ID) and the
private key DID = sQID. Then PKG sends the private key to its owner in
a secure way.

– Signcrypt:Consider a set of users U = {u1, . . . , un} including the actual
signcrypter Alice. Let IDi be ui’s identity. To send a message m to Bob
with identity IDB on behalf of the group U , the actual signcrypter Alice,
indexed by s (i.e. her public key is QIDs = H0(IDs) and private key is
DIDs

= sQIDs
) performs the following steps.

1. Choose r ∈ Z∗q randomly.
2. Compute R = rP and k = H1(ê(Ppub, QIDB

)r).
3. Compute c = Ek(m).
4. For all i ∈ {1, . . . , n}, i 6= s, choose ai ∈ Z∗q randomly, compute Ui = aiP

and hi = H2(c,U , Ui).
5. Choose as ∈ Z∗q randomly and compute Us = asQIDs

−∑n
i=1,i 6=s(Ui +

hiQIDi
).

6. Compute hs = H2(c,U , Us) and σ = (hs + as)DIDs
.

The ciphertext is C = (U , c, R, U1, . . . , Un, σ).
– Unsigncrypt: When receiving C, Bob follows the steps below.

1. Compute k = H1(ê(R, DIDB
)).

2. Recover m = Dk(c).
3. For all i ∈ {1, . . . , n}, compute hi = H2(c,U , Ui).
4. Accept C if and only if ê(P, σ) = ê(Ppub,

∑n
i=1(Ui + hiQIDi

)), return ⊥
otherwise.

– Authenticate: If the actual signcrypter Alice wants to prove that the ci-
phertext C was produced by herself, she follows the steps below.
1. Alice chooses x ∈ Z∗q randomly, computes µ = ê(P, σ)x, and sends µ to

the verifier.
2. The verifier chooses y ∈ Z∗q randomly and sends it to Alice.
3. Alice computes ν = (x + y)(hs + as) and sends ν to the verifier.
4. The verifier checks that if ê(Ppub, QIDs)

ν = µê(P, σ)y holds. If the equa-
tion holds, the verifier believes that Alice is actual signcrypter and re-
turns >, otherwise returns ⊥.



Notice that we compute hi = H2(c,U , Ui) instead of hi = H2(m,U , t, Ui),
which can resist the above attack. In addition, our scheme has shorter cipher-
text since the ciphertext does not contain h1, . . . , hn. In the validity verification
phase, the ZYZZ scheme [27] needs to check n + 1 equations. Our scheme only
needs to check 1 equation. Moreover, our scheme provides the ciphertext au-
thenticity [8]. Anyone can verify the validity of the ciphertext without knowing
the content of the message. When Bob receives the ciphertext C, he can first
compute hi = H2(c,U , Ui)(i = 1, . . . , n) and verify the validity of the ciphertext
by the following equation:

ê(P, σ) = ê(Ppub,
n∑

i=1

(Ui + hiQIDi
))

If he finds the ciphertext is valid, he then computes k and recovers m. Otherwise,
he need not compute k and recover m. So the computational cost is saved.

6 Analysis of the Improved Scheme

6.1 Correctness

The correctness can be easily verified by the following equations.

ê(R, DIDB
) = ê(rP, DIDB

) = ê(rPpub, QIDB
) = ê(Ppub, QIDB

)r

and

ê(P, σ) = ê(P, (hs + as)DIDs
) = ê(Ppub, hsQIDs

+ asQIDs
)

= ê(Ppub, hsQIDs
+ Us +

n∑

i=1,i 6=s

(Ui + hiQIDi
))

= ê(Ppub,
n∑

i=1

(Ui + hiQIDi
))

6.2 Security

The following several theorems show that the improved scheme satisfies confi-
dentiality, unforgeability, anonymity and authenticatability.

Theorem 1 (Confidentiality). In the random oracle model, we assume we
have an IND-IDARSC-CCA2 adversary called A that is able to distinguish ci-
phertext during the confidentiality game with an advantage ε when running in
a time t and asking at most qH0 identity hashing queries, at most qH1 H1

queries, at most qH2 H2 queries, at most qK key extraction queries, qS sign-
cryption queries and qU unsigncryption queries. Then, there exists a distin-
guisher C that can solve the Decisional Bilinear Diffie-Hellman problem in a
time O(t + (qS + 3qU )Tê) with an advantage

Adv(C)DBDH(G1,P ) >
ε− qU/2k−1

2q2
H0

,



where Tê denotes the computation time of the bilinear map.

Proof. See the appendix A. ut
Theorem 2 (Unforgeability). The improved scheme has the existential un-
forgeability against adaptive chosen messages attacks.

Proof. See the appendix B. ut
Theorem 3 (Anonymity). The improved scheme has the unconditional sign-
crypter ambiguity property.

Proof. See the appendix C. ut
Theorem 4 (Authenticatability). The improved scheme has the authenti-
catability property.

Proof. See the appendix D. ut

6.3 Performance and Security Comparison

We compare the performance and security of the improved scheme with those
of existing schemes [12, 27] in Table 1. We consider the costly operations which
include point scalar multiplications in G1 (G1 Mul), exponentiations in G2 (G2

Exp), and pairing operations (Pairing). The D3, D4, D5 and D6 in the “Security”
column refer to security under Definitions 3, 4, 5 and 6 respectively. A “Y” means
that the scheme meets the definition and a “N” means that the scheme is not
secure under the definition.

Table 1. Performance and security comparison

Scheme Efficiency Security Ciphertext size
G1 Mul G2 Exp Pairing D3 D4 D5 D6

[12] 3n + 2 0 n + 5 Y Y Y N |U|+ 2l + 2|G1|+ n|G2|+ nq

[27] 3n + 1 4 4(+3) N Y Y Y |U|+ |c|+ (n + 2)|G1|+ nq

Ours 3n + 1 4 4(+3) Y Y Y Y |U|+ |c|+ (n + 2)|G1|

From Table 1, we can see that our scheme has same efficiency as the ZYZZ
scheme [27]. Both the two schemes need 4 pairing operations in Signcrypt and
Unsigncrypt phases and 3 pairing operations in Authenticate phase. However,
our scheme has shorter ciphertext than the ZYZZ scheme. The ciphertext size of
our scheme is |U|+ |c|+ (n + 2)|G1|. The ciphertext size of the ZYZZ scheme is
|U|+|c|+(n+2)|G1|+nq. Moreover, Our scheme meets security Definitions 3, 4, 5
and 6. The ZYZZ scheme [27] does not meet the confidentiality definition (D3).
The HSMZ scheme [12] does not meet the authenticatability definition (D6).
Therefore, our scheme is more efficient and secure than existing schemes [12, 27].



7 Conclusions

We have showed that the ZYZZ scheme is not secure against chosen plain-
text attacks. Then, we proposed an improved scheme with shorter ciphertext.
We proved that the improved scheme satisfies confidentiality, unforgeability,
anonymity and authenticatability. Compared with the existing two schemes, our
scheme is more efficient and secure.
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Appendix

A Proof of Theorem 1

Proof. We assume the distinguisher C receives a random instance (P, aP, bP, cP, h)
of the Decisional Bilinear Diffie-Hellman problem. His goal is to decide whether
h = ê(P, P )abc or not. C will run A as a subroutine and act as A’s challenger in
the IND-IDARSC-CCA2 game. During the game, A will consult C for answers
to the random oracles H0, H1, and H2. Roughly speaking, these answers are
randomly generated, but to maintain the consistency and to avoid collision, C
keeps three lists L0, L1, L2, respectively to store the answers. The following
assumptions are made.

1. A will ask for H0(ID) before ID is used in any key extraction query, sign-
cryption query and unsigncryption query.

2. Ciphertext returned from a signcryption query will not be used by A in an
unsigncryption query.

At the beginning of the game, C gives A the system parameters with Ppub =
cP . Note that c is unknown to C. This value simulates the master key value for
the PKG in the game. Then, C chooses a random number j ∈ {1, 2, . . . , qH0}. A
asks a polynomially bounded number of H0 queries on identities of his choice.
At the j-th H0 query, C answers by H0(IDj) = bP . For queries H0(IDe) with
e 6= j, C chooses be ∈ Z∗q randomly, puts the pair (IDe, be) in list L0 and answers
H0(IDe) = beP .

We now explain how the other kinds of queries are treated by C.
– H1,H2 queries: When A asks queries on these hash values, C checks the

corresponding list. If an entry for the query is found, the same answer will
be given to A; otherwise, a randomly generated value will be used as an
answer to A, the query and the answer will then be stored in the list.

– Key extraction queries: When A asks a question Extract(IDe), if IDe =
IDj , then C fails and stops. If IDe 6= IDj , then the list L0 must contain a
pair (IDe, be) for some be (this indicates C previously answered H0(IDe) =
beP on a H0 query on IDe). The private key corresponding to IDe is then
bePpub = cbeP . It is computed by C and returned to A.

– Signcryption queries: At any time, A can perform a signcryption query for
a plaintext m, a user group U and a receiver with identity IDB . C randomly
chooses a user uA in the group U whose identity is IDA and IDA 6= IDj

(in this case, the list L0 must contain a pair (IDA, bA), then C can com-
putes uA’s private key DIDA

= bAPpub). C uses uA’s private key and runs
Signcrypt(m,DIDA

,U , IDB) to signcrypt the message on the behalf of the
group U . Finally, C returns the result ciphertext C to A.

– Unsigncryption queries: For a unsigncryption query on a ciphertext C =
(U , c, R, U1, . . . , Un, σ) between a user group U and a receiver with identity
IDB . If IDB = IDj , C always notifies A that the ciphertext is invalid. If
IDB 6= IDj , C computes τ = ê(R, DIDB

) (C could obtain DIDB
from the key



extraction algorithm because IDB 6= IDj), runs the H1 simulation algorithm
to obtain k = H1(τ), and runs the H2 simulation algorithm to obtain hi =
H2(c,U , Ui) for i = 1, . . . , n. Then C checks if ê(P, σ) = ê(Ppub,

∑n
i=1(Ui +

hiQIDi)) holds. If the above equation does not hold, C rejects the ciphertext.
Otherwise C computes m = Dk(c) and returns m. It is easy to see that, for
all queries, the probability to reject a valid ciphertext does not exceed qU/2k.

After the first stage, A outputs a set of users UA = {u1, . . . , un} with iden-
tities {ID1, . . . , IDn} and a receiver’s identity IDB he wishes to be challenged.
Note that C fails if A has asked a key extraction query on IDB during the first
stage. If IDB 6= IDj , C fails too.

Then A outputs two plaintexts m0 and m1. C chooses b ∈ {0, 1} randomly
and signcrypts mb. To do so, he sets R∗ = aP , obtains k′ = H1(h)(where
h is C candidate for the DBDH problem) from the H2 simulation algorithm,
and computes cb = Ek′(mb). Then C randomly chooses a user us in the group
UA whose identity is IDs. For all i ∈ {1, . . . , n}, i 6= s, C chooses a′i ∈ Z∗q
randomly, computes U∗

i = a′iP and obtains h′i = H2(cb,UA, U∗
i ) from the H2

simulation algorithm. Finally, C chooses h′s ∈ Z∗q and z′ ∈ Z∗q randomly, com-
putes U∗

s = z′P − h′sQIDs −
∑n

i=1,i 6=s(U
∗
i + h′iQIDi), stores the relationship

h′s = H2(cb,UA, U∗
s ) to the list L2, and computes σ∗ = z′cP . The ciphertext

C∗ = (UA, cb, R
∗, U∗

1 , . . . , U∗
n, σ∗) is returned to A.

A then performs a second series of queries which is treated in the same way
as the first one. At the end of the simulation, he produces a bit b′ for which
he believes the relation C∗ = Signcrypt(mb′ , DIDs

,UA, IDj) holds. At this
moment, if b = b′, C outputs h = ê(R∗, DIDj

) = ê(aP, cbP ) = ê(P, P )abc as a
solution of the DBDH problem, otherwise C stops and outputs “failure”.

We can now assess C’s probability of success. We saw that C fails if A asks the
private key associated to IDj during the first stage. We know that there are qH0

ways to choose the IDj . Among those qH0 identities, at least one of them will
never be the subject of a key extraction query from A. Then, with a probability
greater than 1/qH0 , A will not ask the questions Extract(IDj). Further, with a
probability exactly 1/qH0 , A chooses to be challenged on the IDj and this must
allow C to solve his DBDH problem if A wins the IND-IDARSC-CCA2 game.

Since

p1 = Pr[b′ = b|σ = Signcrypt(mb, DIDi
, IDj)] =

ε + 1
2

− qU

2k
,

and
p0 = Pr[b′ = i|h ∈R G2] =

1
2

for i = 0, 1,

We have

Adv(C) =
|p1 − p0|

q2
H0

= (
ε + 1

2
− qU

2k
− 1

2
)(

1
qH0

)2

=
ε− qU/2k−1

2q2
H0



The bound on C’s computation time derives from the fact that every signcryption
query requires 1 pairing evaluation and every unsigncryption query requires 3
pairing evaluations. ut

B Proof of Theorem 2

Proof. The unforgeability of the improved scheme against adaptive chosen mes-
sages attacks can be derived directly from the security of the Chow-Yiu-Hui ID-
based ring signature scheme [9] under the Computational Diffie-Hellman prob-
lem assumption. If an adversary can forge a valid signcryption of the improved
scheme, the he must be able to forge a valid signature for the Chow-Yiu-Hui
ID-based ring signature scheme. That is, if A can forge a valid signcryption on
message m, say C = (U , c, R, U1, . . . , Un, σ) of a user group U and a receiver
with identity IDB , then (U , U1, . . . , Un, σ) be viewed as a valid signature for the
Chow-Yiu-Hui ID-based ring signature scheme, where the message m = c. Since
the Chow-Yiu-Hui ID-based ring signature scheme has unforgeability against
adaptive chosen messages attacks, the improved scheme also has unforgeability
against adaptive chosen messages attacks. ut

C Proof of Theorem 3

Proof. Since as and ai(i = 1, . . . , n, i 6= s) are randomly generated, hence
U1, . . . , Un are also uniformly distributed. c does not contain any information
about the actual signcrypter. We consider whether σ = (hs + as)DIDs

leaks
information about the actual signcrypter. We know

ê(P, σ) = ê(P, (hs + as)DIDs)
= ê(Ppub, (hs + as)QIDs)
= ê(Ppub, hsQIDs)ê(Ppub, asQIDs)

= ê(Ppub, hsQIDs
)ê(Ppub, Us +

n∑

i=1,i 6=s

(Ui + hiQIDi
))

It seems that the adversary can check if the uj with identity IDj is the actual
signcrypter by checking whether the following equation holds:

ê(Ppub, Uj +
n∑

i=1,i 6=j

(Ui + hiQIDi)) =
ê(P, σ)

ê(Ppub, hjQIDj )
.

However, this method is of no use, as the above equation not only holds when
j = s, but also ∀ ∈ {1, 2, . . . , n}\{s}, i.e. the signature is symmetric. Indeed, the
above equation is just the same as the equation to be checked in the verification
procedure.



ê(Ppub, Uj +
n∑

i=1,i 6=j

(Ui + hiQIDi
))

= ê(Ppub,

n∑

i=1,i 6=s

Ui + Us +
n∑

i=1,i 6=j

hiQIDi)

= ê(Ppub,
n∑

i=1,i 6=s

Ui + asQIDs
−

n∑

i=1,i 6=s

(Ui + hiQIDi
) +

n∑

i=1,i 6=j

hiQIDi
)

= ê(Ppub, asQIDs −
n∑

i=1,i 6=s

hiQIDi +
n∑

i=1,i 6=j

hiQIDi)

= ê(Ppub, asQIDs
− hjQIDj

+ hsQIDs
)

= ê(P, asDIDs
− hjDIDj

+ hsDIDs
)

= ê(P, σ − hjDIDj
)

=
ê(P, σ)

ê(P, hjDIDj )

=
ê(P, σ)

ê(Ppub, hjQIDj )

Therefore, the distribution of (U , c, R, U1, . . . , Un, σ) are independent and
uniformly distributed no matter who is the actual signcrypter. Any adversary
cannot identify the actual signcrypter with probability better than random guess.
That is, the adversary can only output the identity of the actual signcrypter
with probability 1/n. So the improved scheme has the unconditional signcrypter
ambiguity property. ut

D Proof of Theorem 4

Proof. If us with identity IDs produces a ciphertext C = (U , c, R, U1, . . . , Un, σ),
obviously, he can authenticate the ownership of her signcryption by the above
scheme. The other members of the group cannot authenticate the ciphertext
C to be produced by themselves. If a member ua with identity IDa can find
some values µ′, y′, ν′, where µ′ = ê(P, σ)x′ , which can pass the authentication
algorithm, i.e. the following equation holds:

ê(Ppub, QIDa
)ν′ = µ′ê(P, σ)y′

we can obtain

ê(Ppub, QIDa
)

ν′
x′+y′ = ê(P, σ) = ê(Ppub, QIDs

)hs+as

That is, ν′
x′+y′QIDa = (hs + as)QIDs holds. Since the adversary does not know

the random number as, it is impossible for he to find such µ′, y′, ν′ because



of the discrete logarithm problem. Therefore, The improved scheme has the
authenticatability property. ut


