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Abstract

In the papers “Stronger Security of Authenticated Key Exchange” [LLM07, LLM06], a
new security model for key exchange protocols is proposed. The new model is suggested
to be at least as strong as previous models. In particular, the model includes a new notion
of an Ephemeral Key Reveal adversary query, which is claimed in [LLM06, Oka07, Ust08]
to be at least as strong as existing definitions of the Session-state Reveal query. We show
that for some protocols, a straightforward interpretation of Session-state Reveal is strictly
stronger than Ephemeral Key Reveal. In particular, we show that the NAXOS protocol
from [LLM07, LLM06] does not meet its security requirements if the Session-state Reveal
query is allowed in the security model.

1 Introduction

In the area of secure key agreement protocols many security models [BCPQ01,MU08,LLM07,
CBH05, CK01, BPR00] and protocols have been proposed. Many of the proposed protocols
have been shown to be correct in some particular security model, but have also shown to be
incorrect in others. In order to get a grasp on the exact properties that are required from
such protocols, a single unified security model would be desirable. However, given the very
recent works such as [MU08] on security models for key agreement protocols, it seems that a
single model is still not agreed upon.

In this paper we focus on a very specific detail of one such security model for key agreement
protocols. In particular, we focus on the ability of the adversary to learn the local state of an
agent. For example, when an agent chooses a random value, or computes the hash function
of a certain input, many elements of the computation reside temporarily in the local memory
of the agent. It may be possible for the adversary to learn such information. This ability is
captured in security models for key agreement protocols by the Session-state Reveal query.

A drawback of the Session-state Reveal query in current security models such as the
Cannetti-Krawczyk (CK) model [CK01], is that the query is underspecified. It is not clear
what is exactly revealed in such a query for a given protocol. Effectively, this decision is
postponed to the proof of a particular protocol.
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In [LLM06,LLM07] a security model is proposed which is said to be stronger than existing
AKE (Authenticated Key Exchange) security models. The model is based on the CK model,
and is referred to in [LLM07] as the Extended Canetti-Krawczyk (eCK) model. The eCK
model differs in a number of aspects from the CK model, where the main difference seems to
be that the adversary is allowed to reveal part of the local state of participants even during a
normal protocol session. A more subtle aspect in which the eCK model differs from the CK
model is that it replaces the Session-state Reveal query by a new Ephemeral Key Reveal query.
In this paper we focus on this aspect.

The Session-state Reveal query from the CK model leaves underspecified what exactly
is revealed. To address this, the eCK model (re)defines the notion of ephemeral key and
introduces a corresponding Ephemeral Key Reveal query that reveals this key. The ephemeral
key is defined to contain all secret session-specific information. The authors argue for the new
Ephemeral Key Reveal query that “by setting the ephemeral secret key equal to all session-
specific secret information, we seem to cover all definitions of Session-state Reveal queries which
exist in literature” [LLM06, p.2]. Similar arguments can be found in [Ust08,Oka07]. Within
the resulting eCK model, the NAXOS protocol is proposed and proven correct in [LLM07].

In [BCNP08] it is argued that strictly speaking the eCK and CK models are incomparable.
Regarding the difference between Session-state Reveal and Ephemeral Key Reveal, it is remarked
that “The important point to note is that the ephemeral-key does not include session state
that has been computed using the long-term secret of the party. This is not the case in the
CK model where, in principle, the adversary is allowed access to all the inputs (including the
randomness, but excluding the long-term secret itself) and the results of all the computations
done by a party as part of a session” [BCNP08, Section 3.1]. However, the authors also
remark that “it is arguable whether the differences between the two models are meaningful
in reality” [BCNP08, Section 3.1].

In this paper we show that contrary to the claims in [LLM06, Ust08, Oka07], Ephemeral
Key Reveal is not as strong as Session-state Reveal. We show this by providing two attacks
on the NAXOS protocol, which can be performed using Session-state Reveal, but cannot be
performed by using Ephemeral Key Reveal. The security model we use is nearly identical to
the eCK model: we only replace Ephemeral Key Reveal by Session-state Reveal. Furthermore,
our attacks also seem to be valid in the CK model, which implies that there is a meaningful
difference between CK and eCK, as NAXOS was proven correct in the eCK model.

The assumption needed for our attacks is that when a participant computesH(x), whereH
is a hash function, then x1, . . . , xn are be in the local state before the computation, excluding
any long-term keys. More precisely, a Session-state Reveal query just before the computation
of H(x1, . . . , xn) reveals all xi (0 < i ≤ n) except for any long-term keys.1

We base our assumption on two generic observations and two observations specific to
NAXOS. First, our interpretation of Session-state Reveal does not seem to violate the con-
straints on the security model specified in [CK01], and therefore seems a valid possible inter-
pretation of the CK model. Second, given that the difference between long-term private keys
and local state seems to be inspired by TPM based scenarios in which only the long-term keys
are protected, it seems reasonable to assume that intermediate computations are performed
in local memory. Third, for protocols such as NAXOS, it seems that such a value xi needs

1An example of an execution model for NAXOS where this assumption holds is a TPM which securely
stores the long-term keys, and provides an interface to compute H1(x, ska) for a given x, where ska is the
long-term private key of the agent. Alternatively, H1 may be completely computed inside the TPM whereas
H2 may be computed in unprotected memory.

2



to be stored in memory for a similar time duration as the ephemeral key. Fourth, in the
case of NAXOS, if we assume H2 is computed entirely in a TPM, there is no reason to store
the ephemeral key in unprotected memory, in which case the local state effectively becomes
empty.

We proceed as follows. In Section 2 we explain some notation, and present the NAXOS
protocol. Then, in Section 3 we show two attacks on this protocol that use Session-state
Reveal. We conclude in Section 4.

2 The NAXOS key exchange protocol

A B

eskA
$← {0, 1}λ

X = gH1(eskA,skA)

eskB
$← {0, 1}λ

Y = gH1(eskB,skB)

KA ←
H2(Y skA , pk

H1(eskA,skA)
B , Y H1(eskA,skA),A,B)

KB ←
H2(pk

H1(eskB,skB)
A , XskB , XH1(eskB,skB),A,B)

Figure 1: The NAXOS protocol. At the end of a normal execution we have that KA = KB
(pkx = gskx).

The NAXOS protocol is shown in Figure 1. The purpose of the protocol is to establish a
shared symmetric key between two parties. Both parties have a long-term private key, e. g.
ska, and initially know the public key of all other participants, e. g. pkb. In Table 1 we give
an overview of the notation used in the protocol as well as the remainder of this paper. We
follow the notation from [LLM07] where possible.

The protocol is designed to be secure in a very strong sense: the adversary is assumed to
have the capability of learning long-term private keys, and also has the capability of learning
short term data generated during a protocol session that does not include the private key.

The intuition behind the design of the protocol is that by strongly connecting the long-
term private key with the short term ephemeral key, the adversary would need to have both
of these elements to construct an attack. For example, the protocol should be secure if the
adversary either (a) learns the long-term key of a participant during a session, or (b) learns
the short-term data (except for the long-term key) of a participant during a session. A typical
scenario for (b) is that the participant stores the long-term key on a TPM, and computes other
operations in unprotected memory. For full details we refer the reader to [LLM07,LLM06].

At the end of a normal protocol execution, the session key is computed as

H2(gH1(eskB,skB)skA , gH1(eskA,skA)skB , gH1(eskA,skA)H1(eskB,skB),A,B). (1)

In a normal execution, we have the following equivalences based on the properties of the
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Table 1: Notation

A,B The initiator and responder roles of the protocol.
a, b Agents (participants) executing roles of the protocol.
G A mathematical group of known prime order q.
g A generator of the group G.
ska The long-term private key of the agent a, where ska ∈ Zq.
pka The long-term public key of the agent a, where pka = gska .
H1, H2 Hash functions, where H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ →

{0, 1}λ (for some constant λ).
eska, esk

′
a Two different ephemeral keys of the agent a, generated in

different sessions.
◦ Written in place of a (bigger) term that is not relevant for

the explanation at that point.
λ A constant.
x

$← S The variable x is drawn uniformly from the set S.
x← e The variable x is assigned the result of the expression e.

modular exponentiation:

XskB = gH1(eskA,skA)skB = pk
H1(eskA,skA)
B (2)

Y skA = gH1(eskB,skB)skA = pk
H1(eskB,skB)
A (3)

Y H1(eskA,skA) = gH1(eskB,skB)H1(eskA,skA) = XH1(eskB,skB) (4)

3 Attacking NAXOS using Session-state Reveal

3.1 Security model

We use a slightly modified security model from the one defined in [LLM07]. The only change is
that we replace the Ephemeral Key Reveal query by the Session-state Reveal query throughout
the security definition.

Regarding the information revealed by a Session-state Reveal query, we assume the follow-
ing. If an agent computes a hash function h(x1, . . . , xn) at some point in the protocol, the
local state directly before the computation of the hash includes all xi (0 < i ≤ n) except for
any long-term keys. As a result, performing a Session-state Reveal query at the start of the
computation of h(x1, . . . , xn) reveals all xi, excluding any long-term keys.

We show two attacks: One using test queries on oracles of the initiator type A and one
using the responder type B.

3.2 Attacking the initiator

In Figure 2, we show an attack for a test query on an initiator oracle of NAXOS. The attack
requires an active adversary, that can reveal the local state of an agent.

The adversary can compute Ka on the basis of the revealed information (based on the
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1
A: a

(talking to b)
test oracle

2
A: b

(talking to a)
clean

eska
$← {0, 1}λ eskb

$← {0, 1}λ

Xa = gH1(eska,ska)

Xb = gH1(eskb,skb)

Session-state Reveal (before H2)
Xskb

a , pk
H1(eskb,skb)
a , X

H1(eskb,skb)
a

Ka ←
H2(Xska

b , pk
H1(eska,ska)
b , X

H1(eska,ska)
b , a, b)

Kb ←
H2(Xskb

a , pk
H1(eskb,skb)
a , X

H1(eskb,skb)
a , b, a)

Figure 2: Attacking an initiator oracle. Note that Ka 6= Kb. The adversary can compute Ka

after compromising the local state of b.

algebraic properties of the group exponentiation, which are required for the core of the pro-
tocol).

The attack proceeds as follows.

1. a starts an initiator instance, wanting to communicate with b.

2. a chooses her ephemeral key eska, and sends out Xa = gH1(eska,ska). The adversary
learns this message.

3. b also starts an initiator instance, wanting to communicate with a.

4. b chooses her ephemeral key eskb, and sends out Xb = gH1(eskb,skb). The adversary
learns this message.

5. The adversary sends the message Xb to a.

6. a computes the session key

Ka = H2(Xska
b , pk

H1(eska,ska)
b , X

H1(eska,ska)
b , a, b). (5)

7. The adversary sends the message Xa to b.

8. b computes the session key

Kb = H2(Xskb
a , pk

H1(eskb,skb)
a , X

H1(eskb,skb)
a , b, a). (6)

During the computation of Kb, the adversary uses Session-state Reveal to learn the input
to H2. In particular, the adversary learns Xskb

a , pkH1(eskb,skb)
a , and X

H1(eskb,skb)
a .
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9. The adversary now knows

pk
H1(eskb,skb)
a = gskaH1(eskb,skb) = Xska

b , (7)

Xskb
a = gH1(eska,ska)skb = pk

H1(eska,ska)
b , (8)

X
H1(eskb,skb)
a = gH1(eska,ska)H1(eskb,skb) = X

H1(eska,ska)
b . (9)

The three terms on the right-hand side are the first three components of the session key
Ka from Formula 5.

10. The adversary combines the elements with the names a and b, and applies H2, resulting
in Ka.

The above sequence of actions forms an attack on the protocol, because the adversary can
learn the session key of the initiator a by revealing the local state of the second oracle.
This second oracle is clean according to the security definition in [LLM07]. In particular, in
terms of [LLM07, p.8-9], the second oracle is clean because (a) neither a nor b are adversary-
controlled, (b) no Session-key Reveal queries are performed by the adversary, (c) the second
oracle is not a partner to the test oracle (in [LLM07] partnering is defined in terms of matching
sessions), and (d) no long-term keys are revealed. Therefore, the attack violates security in
the adapted eCK model in which Session-state Reveal is allowed.

Some further observations regarding this attack:

• The oracles compute different session keys: Ka 6= Kb, because the order of the partici-
pant names a, b is reversed.

• The adversary does not need to learn any ephemeral key for this attack.

• Even in other existing interpretations of the partner function (or freshness) from liter-
ature (external session identifiers, explicit session identifiers, etc.) the two oracles are
not partners. Consequently, it seems that the NAXOS protocol is therefore also not
secure in other models that allow Session-state Reveal, such as the CK model [CK01]
(under the assumption that Session-state Reveal is interpreted to include non-long term
xi before computation of h(x1, . . . , xn)).

3.3 Attacking the responder

Second, we show an attack for a test query on a responder oracle in Figure 3. It seems this
attack is more easily exploited than the previous one.

The attack proceeds as follows.

1. The adversary chooses an arbitrary bit string κ.

2. The adversary computes gκ and sends the result to a responder instance of a, with
sender address b.

3. a receives the message and assigns Xb = gκ.

4. a chooses her ephemeral key eska, and sends out Xa = gH1(eska,ska). The adversary
learns this message.
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1
B: a

(responding to b)
test oracle

2
B: b

(responding to anybody)
clean

Xb = gκ

eska
$← {0, 1}λ

Xa = gH1(eska,ska)

Ka ←
H2(pk

H1(eska,ska)
b , Xska

b , X
H1(eska,ska)
b , b, a)

eskb
$← {0, 1}λ

◦

Session-state Reveal (before H2)
Xskb

a

Kb ←
H2(◦, Xskb

a , ◦, ◦, ◦)

Figure 3: Attack on a responder oracle. We have Ka 6= Kb. The adversary can compute (and
even contribute to) Ka after revealing the local state of b.

5. a computes the session key

Ka = H2(pkH1(eska,ska)
b , Xska

b , X
H1(eska,ska)
b , b, a) (10)

which is equal to
H2(pkH1(eska,ska)

b , gκ ska , gκ H1(eska,ska), b, a). (11)

6. The adversary redirects Xa to a responder instance of b. The adversary can insert an
arbitrary participant name in the sender field of the message, which b takes to be the
origin of the message.

7. b computes his ephemeral secret, combines it with his long term key, and sends out the
corresponding message.

8. b computes his session key Kb (which differs from Ka). Before applying H2, b computes
the second component Xskb

a .

9. The adversary uses Session-state Reveal on the session of b directly before the application
of H2 to learn Xskb

a .
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10. The adversary knows κ, Xa, and Xskb
a . Furthermore, as the public keys are by definition

public, the adversary also knows pka. Hence the adversary also knows, or can compute:

Xskb
a = gH1(eska,ska)skb = pk

H1(eska,ska)
b , (12)

(pka)κ = gskaκ = Xska
b , (13)

(Xa)κ = gH1(eska,ska)κ = X
H1(eska,ska)
b . (14)

The three terms on the right-hand side are the first three components of the session key
Ka from Formula 10.

11. The adversary combines the elements and applies H2, resulting in Ka.

This sequence forms an attack on the protocol, because the adversary can use data revealed
from a clean oracle (as defined in [LLM07]) in order to compute the session key of the test
oracle. In practical terms, this attack even allows the adversary to determine a part of the
session key of a.

For this attack there are also some observations to be made:

• The responder oracle of b is not a partner to the oracle of a in terms of matching
sessions. Also, in other partner existing interpretations from literature (external session
identifiers, explicit session identifiers, etc.) they would also not match.

• The adversary chooses κ, and can therefore influence the session key.

• In this attack, the adversary does not need to learn any long term private keys or
ephemeral keys.

• The attack seems to be also valid in the CK model: the oracles are not partners for
a number of reasons, for example because their choice of agents differs. Oracle 1 has
{a, b} and oracle 2 has {b, z} where z is an arbitrary participant. Hence the adversary
can choose z 6= a.

• Based on this attack, one can construct an alternative attack on two agents performing
matching sessions. Given a regular protocol run, and hence matching sessions, by
initiator b and responder a, an adversary can perform a Session-state Reveal on b to
reveal H1(eskb, skb). If the adversary then chooses κ = H1(eskb, skb), a second instance
of b (as responder) can be exploited along the lines of Figure 3 to reconstruct the session
key or the regular protocol run.

4 Conclusion

In common definitions of AKE security the Session-state Reveal query is underspecified. In
many cases the definition is only made explicit in particular protocol proofs. This approach
turns the exact definition of Session-state Reveal into a parameter of the exact security pro-
vided by the protocol. As a result, stating that two protocols are “AKE secure” does not
mean they meet exactly the same property.

In [LLM07,LLM06] the Session-state Reveal query is replaced by the Ephemeral Key Reveal
query, which is claimed to be at least as strong as Session-state Reveal. Thus, the notion
of Session-state Reveal is reduced to Ephemeral Key Reveal. Reducing Session-state Reveal to
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Ephemeral Key Reveal simplifies proofs significantly: one does not need to define what exactly
is part of the ephemeral key, but one only needs to prove that no information about the
ephemeral key is revealed [LLM07,Ust08,Oka07]. However, the validity of this reduction has
not been proven.

The validity of the reduction is informally argued in [LLM06], and similar arguments can
be found in other works that use the eCK model [Ust08, Oka07], e. g. in [Ust08, p.333]: “In
general, by specifying that the session specific private information (the session state) is part
of the ephemeral private key, the Session-state Reveal and Ephemeral Key Reveal queries can
be made functionally equivalent”.

In this paper we have shown that the reduction is invalid, that is, a security model with
Ephemeral Key Reveal is not as strong as a model with Session-state Reveal. The attacks
presented here on the NAXOS protocol, which was proven correct for Ephemeral Key Reveal
in [LLM07], strictly depend on the use of the Session-state Reveal query.

The attacks presented here fall just outside the eCK security model, and they therefore
do not indicate a problem with the proofs in [LLM07]. Instead, what the attacks indicate
is that the eCK security model, and similarly the property that is proved correct, is not as
strong as suggested in e. g. [LLM07]. Furthermore, the attacks seem also to be valid in our
interpretation of the CK model, which shows that contrary to the statement in [BCNP08],
the difference between CK and eCK is in fact meaningful in reality. In particular, we have
shown that one can prove real protocols secure in eCK which are not secure in CK, and are
vulnerable to attacks where the local state is revealed.

The idea behind the NAXOS protocol is appealing: by strongly connecting the long- and
short-term information, the adversary would be required to know both elements to perform an
attack. However, in order to use the combination of these elements securely in the protocol,
in particular for transmission, there are further computations needed. The way in which
the ephemeral key (and hence Ephemeral Key Reveal) is defined and used in proofs, excludes
the intermediate products of such subsequent computations. This is the ultimate problem
with the reduction from Session-state Reveal to Ephemeral Key Reveal, as was already noted
in [BCNP08]. Precisely this difference is exploited by the attacks shown here.

The question remains whether it is possible to adapt NAXOS to satisfy a security model
similar to eCK that allows for Session-state Reveal queries.
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