
Additive Homomorphic Encryption with t-Operand
Multiplications

Carlos Aguilar Melchor1, Philippe Gaborit1, and Javier Herranz2

1 XLIM-DMI,
Université de Limoges,
123, av. Albert Thomas

87060 Limoges Cedex, France
carlos.aguilar,philippe.gaborit@xlim.fr

2 IIIA-CSIC,
Campus de la UAB,

08193 Bellaterra, Spain
jhsotoca@gmail.com

Abstract. Homomorphic encryption schemes are an essential ingredient to design
protocols where different users interact in order to obtain some information from
the others, at the same time that each user keeps private some of his information.
When the algebraic structure underlying these protocols is complicated, then stan-
dard homomorphic encryption schemes are not enough, because they do not allow to
crypto-compute at the same time additions and products of plaintexts.
In this work we define a theoretical object, t-chained encryption schemes, which can
be used to design crypto-computers for the addition and product of t integer values.
Previous solutions in the literature worked for the case t = 2. Our solution is not only
theoretical: we show that some existing (pseudo-)homomorphic encryption schemes
(some of them based on lattices) can be used to implement in practice the concept of
t-chained encryption scheme.

Keywords. homomorphic encryption, lattices.

1 Introduction

Nowadays, there are many digital situations where users want to obtain some information
which involves private information of other users, in such a way that the final and desired
information is obtained, but nothing about the private inputs of the users is leaked. A well-
known exxample is (Symmetric) Private Information Retrieval (PIR) [4], where a user U
wants to obtain the i-th entry of a database held by a different user S. User U wants to keep
private the value of i, so S does not obtain any information about it. Furthermore, in the
symmetric case, U must not obtain any information about the other entries of the database,
different from the i-th one.

This kind of protocols receive the generic name of Secure Function Evaluation (SFE)
[14]. Each user Uj holds a private input aj , they engage an interactive protocol and, at the
end, some (maybe all) of the users obtain f(a1, . . . , an), for some function f which may be
public or may be part of the secret input of some of the users. A very important particular
case of SFE is that where f is an arithmetic formula. We will focus on this particular case.
When the arithmetic formula to be evaluated is linear with respect to the private inputs
(i.e., f(a1, . . . , an) =

∑
j cjaj for some public values cj), then the problem of SFE can be

solved by using additively homomorphic encryption schemes. In such schemes, there exists
some operation ⊗ defined in the set of ciphertexts, such that (informally) E(m1)⊗E(m2) =
E(m1 +m2), where E denotes the encryption function.

However, when the formula f to be evaluated is more complicated (involving in partic-
ular producs of private inputs, e.g. f(a1, . . . , a4) = a1a2 + a1a3a4), standard homomorphic
schemes are not enough. Intuitively, what we would need in this case is a cryptographic
mechanism that, given encryptions of the private inputs, allows to compute encryptions of

both sums and products of the inputs. In [13], such cryptographic mechanisms received the
name of algebraic homomorphic encryption schemes. In this paper we will use the name of
crypto-computer to refer to these mechanisms. The existence of such schemes has been left
as an open problem for many years (see [5, 3] for some related work). The most important
contribution towards a solution to this problem was done by Boneh, Goh and Nissim [2].
They propose a new secure encryption scheme which allows to design a crypto-computer
which works correctly whenever the products in the formula involve at most t = 2 private
inputs. A proof of the importance of this resulat, and of the number of practical applications
of SFE, is the huge number of papers which discuss, cite or are based on the mechanism
proposed in [2].

Our goal is to give more steps towards a solution of the generic problem, when the number
of private inputs which are multiplied in the formula is bounded by some value t possibly
bigger than 2. To do this, we define a theoretical cryptographic object, that we denote
as t-chained encryption scheme, and which is composed by different (pseudo-)homomorphic
encryption schemes satisfying some conditions. This object leads to a crypto-computer which
can evaluate any arithmetic formula f involving the product of up to t private inputs and
a bounded number of additions. We review some existing (pseudo-)homomorphic schemes
that can be used as components to realize in practice this theoretical concept of t-chained
encryption schemes. Some of the employed encryption schemes must be necessarily based on
lattices, which has an effect on the efficiency of the resulting crypto-computers (in particular,
regarding the size of the ciphertexts). We study in detail two possible particular instances
for the case t = 3, to exemplify this problem. However, any future advance in the area
of lattice-based (pseudo-)homomorphic schemes will immediately have an impact on the
implementability of our solutions.

Organization of the Paper

We recall in Section 2 some basic concepts on (pseudo-)homomorphic encryption schemes.
Then we introduce in Section 3 the concept of t-chained encryption scheme, after having
proved some technical results involving (pseudo)-homomorphisms, which can be of indepen-
dent interest. In Section 4 we explain how to construct compute the sum and product of
integer private inputs with a t-chained encryption scheme. Then we give in Section 5 some
examples of t-chained encryption schemes (for t = 2 and t = 3) that can be obtained by
using some existing (pseudo)-homomorphic encryption schemes. Some concluding remarks
are given in Section 6.

2 Preliminaries

A public key encryption scheme PKE = (KG, E ,D) consists of three probabilistic and
polynomial time algorithms. The key generation algorithm KG takes as input a security
parameter (for example, the desired length for the secret key) and outputs a pair (sk, pk) of
secret and public keys. The encryption algorithm takes as input a plaintext m corresponding
to some set of plaintexts M, some randomness r ∈ R and a public key pk, and outputs a
ciphertext c = Epk(m, r) ∈ C, where C is the ciphertexts’ space. Finally, the decryption
algorithm takes as input a ciphertext and a secret key, and gives a plaintext m = Dsk(c) as
output.

In the rest of the paper, for simplicity of the notation, we will not explicitly include the
randomness as an input of the encryption functions.

2.1 L-Pseudo-homomorphic Encryption Schemes

We say that PKE = (KG, E ,D) is pseudo-homomorphic if M and C have both a group
structure (with operations ⊕ and ⊗, respectively; we will write (M,⊕) and (C,⊗)), and the
property

Dsk
(
Epk(m1)⊗ Epk(m2)

)
= m1 ⊕m2,

holds for any m1,m2 ∈M.
This basic pseudo-homomorphic property Dsk

(
Epk(m1)⊗Epk(m2)

)
= m1⊕m2 does not

imply Epk(m1)⊗Epk(m2) = Epk(m1⊕m2) but just Epk(m1)⊗Epk(m2) ∈ D−1
sk (m1⊕m2). This

is important as often the function E :M→ C is not surjective. In order to avoid cumbersome
notations, Ẽpk(x) will represent an element of D−1

sk (x) just as Epk(x) has been representing
an element of {Epk(x, r)|r ∈ R}. We thus have Epk(m1) ⊗ Epk(m2) = Ẽpk(m1 ⊕m2). With
these ideas in mind, one can consider the following definition.

Definition 1. A public key encryption scheme which satisfies Epk(m1) ⊗ . . . ⊗ Epk(mk) =
Ẽpk(m1⊕ . . .⊕mk) for all k ≤ L and all k-tuple (m1, . . . ,mk) ∈Mk is said to be L-pseudo-
homomorphic.

If E is homomorphic, we have Epk(m1) ⊗ Epk(m2) = Epk(m1 ⊕ m2), and then we can
iteratively apply this result to deduce that Epk(m1) ⊗ . . . ⊗ Epk(mk) = Epk(m1 ⊕ . . . ⊕mk)
for any k. We will say that such encryption schemes are ∞-pseudo-homomorphic (or simply
homomorphic). Note that if E is surjective and 2-pseudo-homomorphic then Epk(m1) ⊗
Epk(m2) = Epk(m1 ⊕m2) and thus E its homomorphic.

2.2 Semantic Security

We recall the standard notion of security for public key encryption schemes in terms of
indistinguishability, or semantic security. We consider chosen-plaintext attacks (CPA), be-
cause homomorphic schemes can never achieve security against chosen-ciphertext attacks.
To define security, we use the following game that an attacker A plays against a challenger:

(pk, sk)← KG(·)
(St,m0,m1)← A(find, pk)
b← {0, 1} at random; c∗ ← Epk(mb)
b′ ← A(guess, c∗, St).

The advantage of such an adversary A is defined as

Adv(A) =
∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
A public key encryption scheme is said to be ε-indistinguishable under CPA attacks if

Adv(A) < ε for any attacker A which runs in polynomial time.
From this definition, it is quite obvious that the role of the randomness r is crucial

to ensure (semantic) security of a public key encryption scheme. In effect, a deterministic
scheme can never be semantically secure, because an attacker A could always encrypt m0

and m1 by using pk, and then compare the resulting ciphertexts with the challenge one c∗,
to decide the value of the bit b.

3 t-Chained Pseudo-homomorphic Encryption Schemes

In this section we define t-chained encryption schemes, the basic tool of our protocols. In
order to do this we first define L-pseudo-homomorphisms, and prove some of their properties
through a small set of lemmas and propositions.

3.1 Extending Pseudo-homomorphic Encryption Schemes

Following the idea of Definition 1 one can define a pseudo-homormophic relation between
two groups by:

Definition 2. Let (G1,⊕1) and (G2,⊕2) be two groups and

φ : (G1,⊕1)→ (G2,⊕2) φ∗ : (G2,⊕2)→ (G1,⊕1)

two computable functions such that for all k ≤ L and all k-tuple (g1, . . . , gk) ∈ Gk1 we have
φ∗(φ(g1)⊕2 . . .⊕2 φ(gk)) = g1 ⊕1 . . .⊕1 gk.
We say that (φ, φ∗) forms a computable L-pseudo-homomorphism from (G1,⊕1) to (G2,⊕2).

Pseudo-homomorphisms can be combined with pseudo-homomorphic encryption scheme
in order to change their plaintext or ciphertext space without changing the security proper-
ties of the cryptosystem. This is stated in the next proposition.

Proposition 1. If PKE = (KG, E ,D) is an L-pseudo-homomorphic encryption scheme
such that there is a computable L′-pseudo-homomorphism (φ, φ∗) (φ being public) from a
given space to PKE’s plaintext space, the associated encryption scheme PKE′ = (KG, E ◦
φ, φ∗ ◦ D) is a min(L,L′)-pseudo-homomorphic encryption scheme. If there exists a pub-
lic computable L′′-pseudo-homomorphism (ψ,ψ∗) (ψ being public) from PKE’s ciphertext
space to another space, PKE′ = (KG, ψ ◦ E ,D ◦ ψ∗) is a min(L,L′′)-pseudo-homomorphic
encryption scheme. Moreover, in both cases, if PKE is IND-CPA, PKE′ is IND-CPA too.

Proof. (sketch) The fact that PKE′ is min(L,L′) or min(L,L′′)-pseudo-homomorphic is
trivial. IND-CPA for PKE′ in the first case is ensured as distinguishing two plaintexts
x1, x2 in PKE′ implies distinguishing φ(x1), φ(x2) in PKE and φ must be injective. In the
second case, ψ being public, distinguishing x2, x2 in PKE′ implies distinguishing them also
in PKE.

3.2 Twisting Additive Pseudo-homomorphic Encryption Schemes

In many applications, homomorphic encryption schemes are used to sum up plaintext inte-
gers. If for a given L-pseudo-homomorphic encryption scheme, its plaintext space is (Zs,+)n

for some positive integers s, n ∈ Z+, we say that the scheme is plaintext additive. If its ci-
phertext space is (Zs′ ,+)n

′
for some positive integers s′, n′ ∈ Z+, we say that the scheme

is ciphertext additive. These schemes can be easily modified using Proposition 1 and simple
L-pseudo-homomorphisms.

When a plaintext or ciphertext space is (Zs,+)n we will call s its order and n its dimen-
sion.

Lemma 1. Let (Zs,+)n be a group for s, n ∈ Z+. For any k, L, s′ ∈ Z+ such that (2k −
1) · L < s′ < s there is a computable L-pseudo-homomorphism from (Zs,+)n to (Zs′ ,+)n

′

with n′ = n · d(log2 s)/ke.

Proof. (sketch) Let n′ = n·d(log2 s)/ke, define φ : (Zs,+)n → (Zs′ ,+)n
′
by φ((x1, . . . , xn)) =

(y1, . . . , yn′) with yi·d(log2 s)/ke+j being the j − th k-bit block of xi. The sum of L images of
φ results in elements with coordinates at most equal to (2k − 1) · L and thus is strictly
smaller than s′. Defining φ∗(y1, . . . , yn′) = (x1, . . . , xn) with xi =

∑d(log2 s)/ke−1
j=0 2j·k ·

yi·d(log2 s)/ke+j mod s, we have that (φ, φ∗) form an L-pseudo-homomorphism from (Zs,+)n

to (Zs′ ,+)n
′
.

Corollary 1. Let PKE be a ciphertext additive L-pseudo-homomorphic encryption scheme
with ciphertext space (Zs,+)n. For any k ∈ Z+, it is possible to lower the order of the
ciphertext space s to any value s′ such that 2k ·L ≤ s′ < s by increasing the dimension n to
n′ = n · d(log2 s)/ke. This transformation preserves indistinguishability.

It is thus possible to split ciphertexts in order to have many small elements instead of one
large element while preserving the pseudo-homomorphic properties and indistinguishability.
In other words, it is possible to lower the ciphertext space order by increasing its dimension.

Lemma 2. For any s1, s2, n ∈ Z+ there is a computable L-pseudo-homomorphism from
(Zs1 ,+)n to (Zs2 ,+)n for L = bs2/s1c.

Proof. (sketch) As an L-pseudo-homomorphism only makes sense for L > 0 we suppose
that s2 > s1. Define φ : (Zs1 ,+)n → (Zs2 ,+)n by φ((x1, . . . , xn)) = (x1, . . . , xn), and
φ∗ : (Zs2 ,+)n → (Zs1 ,+)n by φ∗((y1, . . . , yn)) = (y1 mod s1, . . . , yn mod s1). For any k ≤ L,
and z1, . . . , zk < s1, we have

∑k
i=1 zi < k · s1 (in Z) and thus

∑k
i=1 zi < s2. This fact

directly implies that φ∗(φ(x1) + . . . , φ(xk)) = x1 + . . . + xk mod s1, for any k elements
x1, . . . ,xk ∈ Zns1 . Thus, (φ, φ∗) is an L-pseudo-homomorphism from (Zs1 ,+)n to (Zs2 ,+)n.

It is thus possible to increase the ciphertext space order or to lower the plaintext space
order. This can be used to match a given structure in which we would like to be in the
plaintext or ciphertext space.

Lemma 3. A plaintext additive L-pseudo-homomorphic scheme PKE with plaintext space
(Zs,+)n can be transformed into a plaintext additive L-pseudo-homomorphic scheme PKE′

with plaintext space (Zs,+)kn, for any k ∈ Z+. This transformation preserves indistinguisha-
bility.

Proof. (sketch) We can use the direct product to define E ′′ : (Zs,+)n× (Zs,+)n → (C,⊗)×
(C,⊗) with E ′′((x1, x2)) = (E(x1), E(x2)). Similarly, we define D′′ : (C,⊗) × (C,⊗) →
(Zs,+)n×(Zs,+)n by D′′(y1, y2) = (D(y1), D(y2)), and KG′′ = KG. PKE′′ = (KG′′, E ′′,D′′)
is a plaintext additive L-pseudo-homomorphic encryption scheme. If PKE is IND-CPA, then
PKE′′ is IND-CPA by a standard hybrid argument. Using this construction recursively we
obtain PKE′ for any k.

Lemma 4. For any s, n ∈ Z+ and any ` < n we define π−1 : (Zs,+)` → (Zs,+)n by
π−1((x1, · · · , x`)) = (x1, · · · , x`, 0, · · · , 0), where π is the standard projection. (π−1, π) is a
computable ∞-pseudo-homomorphism from (Zs,+)` to (Zs,+)n.

Proof. T rivial.

These two lemmas prove that it is also possible to change the dimension of the plaintext
space of a plaintext additive pseudo-homomorphic encryption scheme without changing the
order.

Corollary 2. A plaintext additive L-pseudo-homomorphic scheme PKE with plaintext space
(Zs,+)n can be transformed into a plaintext additive L-pseudo-homomorphic scheme PKE′

with plaintext space (Zs,+)`, for any ` ∈ Z+. This transformation preserves indistinguisha-
bility.

3.3 Chained Schemes

In this section we propose a way to adapt a plaintext additive pseudo-homomorphic encryp-
tion scheme PKE2 in order to encrypt the ciphertexts of a plaintext and ciphertext additive
pseudo-homomorphic encryption scheme PKE1, in such a way that the imbrication of both
schemes leads to a new plaintext additive pseudo-homomorphic encryption scheme called
2-chained. Chained schemes are used in the following sections for cryptocomputing multi-
plications.

Definition 3. Let PKE1 = (KG1, E1,D1) be a plaintext and ciphertext additive L1-pseudo-
homomorphic encryption scheme with associated plaintext and ciphertext spaces (Zs1 ,+) and
(Zs2 ,+)n2 , and let PKE2 = (KG2, E2,D2) be a plaintext additive L2-pseudo-homomorphic
encryption scheme with associated plaintext and ciphertext spaces (Zs2 ,+) and (C2,⊕2).

Set PKE′2 = (KG′2, E ′2,D′2) as the plaintext additive L2-pseudo-homomorphic encryption
scheme with plaintext space (Zs2 ,+)n2 and ciphertext space (C2,⊕2)n2 derived from PKE2

(using Lemma 3), such that E ′2((x1, . . . , xn2)) = (E2(x1), . . . , E2(xn2)).

We define the 2-chained encryption scheme derived from PKE1 and PKE2 as PKE =
(KG, E ,D) with: KG = KG1 ×KG′2; E = E ′2 ◦ E1; D = D1 ◦ D′2.

The resulting 2-chained encryption scheme PKE has plaintext space (Zs1 ,+) and ci-
phertext space (C2,⊕2)n2 . The following proposition describes the security and pseudo-
homomorphic properties of such a scheme.

Proposition 2. A 2-chained encryption scheme PKE is a plaintext additive L-pseudo-
homomorphic encryption scheme with L = min(L1, L2). If one of the encryption schemes
used to create the 2-chained scheme is IND-CPA, PKE is also IND-CPA.

Proof. (sketch) Lemma 3 proves that if PKE2 is IND-CPA PKE′2 is IND-CPA too. The
2-chained scheme can be seen as an extension of PKE′2 with the L1-pseudo-homomorphism
(E1,D1) or an extension of PKE′1 with the L2-pseudo-homomorphism (E ′2,D′2). In any case,
Proposition 1 proves that the resulting 2-chained scheme is a plaintext additive min(L1, L2)-
pseudo-homomorphic encryption scheme, and IND-CPA if any of PKE1 or PKE2 are IND-
CPA.

The lemmas of Section 3.2 show that in order to obtain 2-chained schemes, the only
thing we need is to be able to create plaintext and ciphertext additive pseudo-homomorphic
encryption scheme with plaintext order large enough. This is specified by the following
proposition.

Proposition 3. For any L, if there is a family of plaintext and ciphertext L-pseudo-homomorphic
encryption schemes such that the plaintext space order can be chosen arbitrarily large, it is
possible to construct a 2-chained L-pseudo-homomorphic encryption scheme.

Proof. (sketch) Suppose for any s we can obtain a ciphertext and plaintext additive L-
pseudo-homomorphic encryption scheme PKE such that E : (Zs,+)n → (Zs′ ,+)n

′
, n, s′

and n′ possibly being functions on s.
Set PKE1 as such a scheme for a given s1. We note (Zs1 ,+)n1 and (Zs′1 ,+)n

′
1 the

plaintext and ciphertext spaces of this cryptosystem. Set PKE2 as a second scheme with
plaintext and ciphertext spaces (Zs2 ,+)n2 and (Zs′2 ,+)n

′
2 such that the plaintext order s2

satisfies bs2/s1c > L.
Using Lemma 4 we lower the plaintext dimension of these schemes to one and obtain

two L-pseudo-homomorphic schemes PKE′1 and PKE′2. Using Lemma 2 we increase the
ciphertext space order of PKE′1 to s2 and obtain an L-pseudo-homomorphic scheme PKE′′1
(as bs2/s1c > L).

PKE′′1 (resp. PKE′2) is L-pseudo-homomorphic and has plaintext and ciphertext spaces
(Zs1 ,+) and (Zs2 ,+)n

′
1 (resp. (Zs2 ,+) and (Zs′2 ,+)n

′
2). These schemes verify the properties

requested in Definition 3 and can therefore be used to construct a 2-chained L-pseudo-
homomorphic encryption scheme.

Generalization: If PKE2 is plaintext and ciphertext additive, the 2-chained scheme is
implicitly plaintext and ciphertext additive. Note that in this case, we can use it for further
imbrications. We thus define a t-chained scheme, as the consecutive imbrication of t −
1 plaintext and ciphertext pseudo-homomorphic schemes PKE1, PKE

′
2, . . . , PKE

′
t−1 and

of one plaintext pseudo-homomorphic scheme PKE′t (all of them resulting from properly
twisting some initial schemes, as explained in Section 3.2). The encryption diagram of a
t-chained scheme would be

(Zs1 ,+) E1−→ (Zs2 ,+)n2
E′2−→ (Zs3 ,+)n3

E′3−→ . . .
E′t−1−→ (Zst

,+)nt
E′t−→ (Ct,⊗t).

Propositions 2 and 3 are trivially generalized. This scheme is thus L-pseudo-homomorphic,
with L = min(L1, . . . , Lt) if PKEi is Li-pseudo-homomorphic.

In [7], Kawachi, Tanaka and Xagawa propose a set of lattice-based ciphertext and plain-
text additive pseudo-homomorphic encryption schemes derived from [6, 11, 12, 1] in which L
and the plaintext space order can be set to any value in Z+. These cryptosystems can thus
be used to implement t-chained encryptions schemes in practice.

4 Crypto-Computing with t-Chained Schemes

The most important consequence of the existence of t-chained encryption schemes is that
they can be used for computing over ciphertexts. Namely a t-chained encryption scheme
PKE = (KG, E ,D) resulting from the schemes PKE1, . . . , PKEt can be used by anyone to:

(i) Compute ciphertexts E1(a), . . . , Et(a), E(a) of any of the encryption schemes PKE1, . . . , PKEt, PKE.
(ii) Given L ciphertexts E(a1), . . . , E(aL), anyone can publicly compute an element C, such

that D(C) = a1 + · · ·+ aL.
(iii) Given a set of t ciphertexts E1(a1), . . . , Et(at), anyone can publicly compute an element

C, such that D(C) = a1 · . . . · at.

A t-chained encryption scheme can thus be used to evaluate multivariate polynomials
(of total degree t) on encrypted values.

4.1 Computation

In order to show how this first crypto-computer works, and for simplicity of the explanation,
let us consider the case of a crypto-computer based on a 2-chained scheme. Then we will
informally present the general case.

Sum and Product of Two Ciphertexts Let PKE1, PKE2, PKE
′
2, and PKE denote

the cryptosystems introduced in Definition 3.

Sum of plaintexts: Proposition 2 states that PKE is L-pseudo-homomorphic with L =
min(L1, L2). Indeed, if a1, a2 ∈ Zs1 , we can consider the ciphertexts Ci = E(ai) = E ′2(E1(ai)) ∈
(C2,⊗2)n2 , for i = 1, 2. Then, if L ≥ 2, anyone can operate these ciphertexts to obtain
C = C1 ⊗2 C2 = Ẽ(a1 + a2). Recall that we use notation Ẽ(x) to represent an element of
D−1(x). The owner of sk = (sk1, sk2) can decrypt C, by applying D = D1 ◦ D2, to obtain
a1 + a2 mod s1 as desired.

Product of plaintexts: Regarding crypto-computation of the product, given two values
a1 ∈ Zs1 and a2 ∈ Zs2 , we can consider the ciphertexts c1 = E1(a1) ∈ (Zs2 ,+)n2 and
c2 = E2(a2) ∈ (C2,⊗2). We write c1 = (E(1)

1 (a1), . . . , E(n2)
1 (a1)), where E(l)

1 (a1) ∈ Zs2 , for
l = 1, . . . , n2. Obviously, E(l)

1 : (Zs1 ,+)n1 → (Zs2 ,+) is a L1-pseudo-homomorphism. We
compute:

(E(1)
1 (a1)E2(a2), . . . , E(n2)

1 (a1)E2(a2)) = (Ẽ2(E(1)
1 (a1)a2)), . . . , Ẽ2(E(n2)

1 (a1)a2))

= (Ẽ2(Ẽ1
(1)

(a1a2)), . . . , Ẽ2(Ẽ(n2)
1 (a1a2)))

= Ẽ ′2(Ẽ1(a1a2)) = Ẽ(a1a2),

where the first operation has to be interpreted as ‘applying ⊗2 to E2(a2) a number E(l)
1 (a1)

of times’. The first equality is true if L2 ≥‖ E1 ‖∞, noting ‖ E1 ‖∞ the maximum attainable
value on a coordinate through the function E1. It is important to be precise as this value
can be much smaller than s2 the space order. Indeed, in our practical examples we will use
Lemma 1 with k = 1 and thus we will have ‖ E1 ‖∞= 1 whereas s2 >> 1. The second
equality in the above array is true the if L1 ≥ a2, and the two last ones because of the
definitions of PKE′2 and PKE.

General Case Although we have explained the case t = 2 for simplicity, the computing
techniques can be easily generalized for greater values of t. We skip the details due to the
cumbersome notation. As an informal example with t = 3, if we are interested in the product
a1a2a3, we have to provide a ciphertext E3(a3). Once the first multiplication has been done we
have Ẽ ′2(Ẽ1(a1a2)) which belongs to (Zs3 ,+)n3 (using the notations of the generalization at

the end of Section 3.3) and thus can be represented as (Ẽ ′(1)2 (Ẽ1(a1a2)), . . . , Ẽ ′(n3)
2 (Ẽ1(a1a2))

the same procedure as before can be applied to obtain:

(Ẽ ′(1)2 (Ẽ1(a1a2))E3(a3), . . . , Ẽ ′(n3)
2 (Ẽ1(a1a2)))E3(a3)) =

= (Ẽ3(Ẽ ′(1)2 (Ẽ1(a1a2))a3)), . . . , Ẽ3(Ẽ ′(n3)
2 (Ẽ1(a1a2))a3))

= (Ẽ3(Ẽ ′(1)2 (Ẽ1(a1a2)a3))), . . . , Ẽ3(Ẽ ′(n3)
2 (Ẽ1(a1a2)a3)))

= (Ẽ3(Ẽ ′(1)2 (Ẽ1(a1a2a3)))), . . . , Ẽ3(Ẽ ′(n3)
2 (Ẽ1(a1a2a3))))

= Ẽ ′3(Ẽ ′2(Ẽ1(a1a2a3))) = Ẽ(a1a2a3),

Note that the number of operations involving ciphertexts of the different encryption
functions in the chain increases when t. In this case, we must have L1 > a2a3, L2 >‖
E1 ‖∞ a3, and L3 > s3. In the general case of t-chains, in order to compute the ciphertext
Ẽ(a1 · · · at), we must have L1 > a2 · · · at, L2 >‖ E1 ‖∞ a2 · · · at, . . ., and Lt >‖ Et−1 ‖∞. In
other words L1 >

∏t
j=2 aj and Li >‖ Ei−1 ‖∞

∏t
j=i+1 aj .

Summing up, the presented crypto-computers can be used to evaluate t-degree multi-
variate polynomials on ciphertexts. Namely, if F (x1, . . . , xn) is a n-variate polynomial of
total degree t, and if the coefficients of F are properly bounded (to preserve the pseudo-
homomorphic properties of the chained encryption scheme), then one can consider encryp-
tions C1, . . . , Cn of the values a1, . . . , an in such a way that anyone can compute an encryp-
tion C̃ of the value F (a1, . . . , an) mod s1.

5 Specific Realizations

We will divide homomorphic encryption schemes in two families: factorization and discrete
logarithm based homomorphic encryption schemes ; and lattice-based homomorphic encryp-
tion schemes.

5.1 Factorization and Discrete Logarithm Based Schemes

In most of these schemes the plaintext space is (ZN ,+) for a given N . They are thus plaintext
additive. On the other hand, the ciphertext space is usually (ZN ,×)∗ or ((ZN ,×)∗)2 for a
given N such that the discrete logarithm is hard to compute. The existence of a computable
pseudo-homomorphism ψ between one of these spaces and (Zs,+)n for given s and n is
not possible as computing the discrete logarithm of gx in (C,⊗) can be done by computing
ψ(gx)/ψ(g) in (Zs,+)n. Thus, the factorization and discrete logarithm schemes cannot be
ciphertext and plaintext additive.

Many cryptosystems could be used but Paillier’s [8] and Boneh, Goh and Nissim’s [2]
are specially well fitted for instantiation of t-chained schemes. Paillier’s encryption func-
tion is an epimorphism EPaillier : (ZN ,+) → (ZN2 ,×)∗ and thus the scheme is ∞-pseudo-
homomorphic. Boneh, Goh and Nissim’s encryption function is also an epimorphism EBGN :
(ZN ,+) → (G,×), G being a bilinear group of order N associated to a bilinear map
e : G × G → G1. Both schemes ensure IND-CPA as long as N is a hard-to-factor mod-
ulus, which implies that N > 21024 for current security standards.

Boneh, Goh and Nissim’s encryption scheme has a very interesting property. Two en-
crypted messages can be multiplied once using the bilinear map e : G × G → G1. The
resulting ciphertexts are not in the same group than the original ones and the decryption
function D′BGN : (G1,×) → (ZN ,+) is slightly different for these ciphertexts, but remains
homomorphic allowing to do sums of the plaintexts associated to the ciphertexts in G1. On
the other hand this encryption scheme has a major drawback. The decryption of EBGN(x)
needs O(

√
x) group operations in G (or G1). In order to be able to decrypt, plaintext size

must be moderate.

5.2 Lattice-Based Schemes

The Lattice-based homomorphic schemes proposed by Goldreich Goldwasser and Halevi [6],
Regev [11, 12] and Ajtai [1] have very limited pseudo-homomorphic properties. In [7], Kawachi,
Tanaka and Xagawa propose multi-bit variants of these schemes with extended pseudo-
homomorphic properties. In [9], Peikert Vaikuntanathan and Waters also propose a multi-
bit variant of the scheme proposed by Regev in [12] but they do not evaluate the pseudo-
homomorphic properties of their variant. Thus, even if this scheme is very interesting from
a performance point of view we will not use it for our constructions, letting the proofs and
evaluation of this scheme in t-chained schemes for a long version of this paper.

Among the schemes proposed by Kawachi, Tanaka and Xagawa, two of them allow to form
t-chained schemes with acceptable parameters. The most efficient is the variant of Ajtai [1],
whose security is based on an average-case reduction to the Diophantine Approximation
problem (DA). The less efficient is the variant of [11] (noted hereafter mR04), whose security
is based on a worse-case reduction to Õ(n1.5+r) − uSV P for a given parameter r. Even if
this scheme provides worse performance results than the variant of Ajtai, we will use it as
an example as it allows us to prove that t-chained schemes, even if costly, are possible for
the lattice schemes based on the strongest reductions.

In mR04, the encryption and decryption functions form an L-pseudo-homomorphism
(E ,D) from (Zp,+) to (ZN ,+) with N = 28n2

, n being a security parameter such that
L × p < nr. The underlying security problem, Õ(n1.5+r) − uSV P , has been solved for
n ' 10 and r ' 10 but is believed to be secure for n ' 100 [10]. Key size is in O(n4) and
thus the scheme is considered to be unpractical for such parameters as it is possible to use
other cryptosystems with much smaller keys. However, in our case, we do not want to use
this cryptosystem as a traditional public key scheme. In many situations key size is not such
an issue as the keys do not need to be sent and are short-lived. Indeed, a user can store a
one gigabyte key for the few seconds needed by the protocol and then free its memory by
erasing the key. The encryption system has a decryption error probability which for practical
parameters is negligible, and thus will not be considered in this small practical construction.

5.3 Examples of t-Chained Schemes

A 3-Chained Encryption Scheme Using Paillier Constructing a 2-chained encryption
scheme is of little interest as Boneh, Goh and Nissim already provide an efficient solution for
multiplications of 2 operands in [2]. We thus propose a 3-chained 104-pseudo-homomorphic
encryption scheme that will be usable to evaluate polynomials with maximum degree 3 and
many monomials with the techniques described in Section 4.

An instance of mR04 for parameters n = 100 and r = 5 with p = 104 + 1 and L = 104

verifies p×L < nr and provides a 104-pseudo-homomorphic encryption scheme with plaintext
space (Z104+1,+) and ciphertext space (Z280000 ,+). We define PKE1 applying Lemma 1
with k = 1 to transform this encryption scheme into an L-pseudo-homomorphic encryption
scheme PKE1 with plaintext space (Z104+1,+) and ciphertext space (Z104+1,+)80000 such
that ‖ E1 ‖∞= 1.

We define PKE2α applying Lemma 1 with k = 1000 to the same initial scheme and obtain
thus a 104-pseudo-homomorphic encryption scheme PKE2α with plaintext space (Z104+1,+)
and ciphertext space (Z21000 ,+)80. Using the pseudo-homomorphism from (Z21000 ,+) to
(Z2NP ,+) described in Lemma 2, NP being a hard-to-factor 1024-bit modulus, we obtain
a 104-pseudo-homomorphic encryption scheme PKE2 with plaintext space (Z104+1,+) and
ciphertext space (ZNP

,+)80.
Finally, we define PKE3 as an instance of Paillier’s encryption scheme for the hard-

to-factor modulus NP and use Lemma 3 to transform it into a ∞-pseudo-homomorphic
encryption scheme.

Applying twice the construction given in Definition 3 we obtain a 3-chained 104-pseudo-
homomorphic encryption scheme PKE with plaintext space (Z104+1,+) and ciphertext
space ((ZN2

P
,×)∗)6400000. Note that the size of ciphertexts is 2048 × 6400000 ' 13 × 109

bits, which is very large (maybe too large to be acceptable in many practical applications).
However, sending such amounts of data with nowadays bandwidths is possible.

A 2-Chained Encryption Scheme Using Boneh-Goh-Nissim We can achieve the
same functionality as the previous example (e.g. private evaluation of 3-DNF formulas) by
considering a 2-chained scheme which uses as PKE2 the scheme of Boneh-Goh-Nissim.

As before, to construct PKE1, we start from mR04 with parameters n = 100, r = 5,
p = 104 + 1 and L = 104. We apply Lemma 1 with k = 1, to obtain a 104-pseudo-
homomorphic encryption scheme PKE1α with plaintext space (Z104+1,+) and ciphertext
space (Z104+1,+)80000. Using the pseudo-homomorphism from (Z104+1,+) to (ZNP

,+) de-
scribed in Lemma 2, NP being a hard-to-factor 1024-bit modulus, we obtain PKE1, a
104-pseudo-homomorphic encryption scheme with plaintext space (Z104+1,+) and cipher-
text space (ZNP

,+)80000 with ‖ E1 ‖∞= 1. Let PKE2 be an instance of Boneh-Goh-
Nissim’s encryption scheme for a hard-to-factor 1024-bit modulus NP . PKE2 is an ∞-
pseudo-homomorphic encryption scheme with plaintext space (ZNP

,+) and ciphertext space
(G,×).

Applying twice the construction given in Definition 3 we obtain a 2-chained 104-pseudo-
homomorphic encryption scheme PKE with plaintext space (Z104+1,+) and ciphertext
space (G,×)80000. Ciphertexts will therefore be a few megabytes long.

The resulting 2-chained encryption scheme allows to start from ciphertexts c1 = E1(a1),
c2 = E2(a2), for integer values a1, a2, and to obtain a ciphertext C12 = E2(E1(a1a2)) ∈ G.
Now, for a third integer a3, we can consider the ciphertext c3 = E2(a3) ∈ G. Using the bilinear
map of the scheme by Boneh-Goh-Nissim, we can compute a ciphertext C = e(C12, c3). This
ciphertext C is an encryption of a1a2a3, according to a different cryptosystem related to
PKE2, which can be decrypted by the owner of the secret key of the scheme PKE2.

The
Note that, Boneh-Goh-Nissim ciphertexts can only be decrypted if the associated plain-

texts are small. We have ‖ E1 ‖∞= 1 and thus plaintexts will be small if the ai are small too.
This makes this t-chained encryption scheme specially adapted for boolean calculations.

6 Conclusions

In this work we have presented a theoretical cryptographic object, that we denote as t-
chained encryption schemes, which allow to compute over encrypted data in such a way that
ciphertexts of sums and t multiplications of the encrypted initial inputs can be computed.
This has a huge number of applications in protocols where some users want to evaluate a
(possibly secret) function on their private inputs. For example, the work [2], which proposes
a solution to this problem for the case t = 2, is very celebrated and cited because of its
multiple applications.

Our solution theoretically works for any value of t. As an illustrative example, we have
explained how to construct practical 3-chained encryption schemes starting from some well-
known (pseudo-)homomorphic schemes, some of them necessarily involving lattices.

References

1. Miklós Ajtai. Representing hard lattices with O(n log n) bits. In Harold N. Gabow and Ronald
Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 94–103. ACM, 2005.

2. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
Joe Kilian, editor, Theory of Cryptography, Second Theory of Cryptography Conference, TCC
2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture Notes
in Computer Science, pages 325–341. Springer, 2005.

3. Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to cryp-
tography (extended abstract). In Neal Koblitz, editor, Advances in Cryptology—CRYPTO ’96,
volume 1109 of Lecture Notes in Computer Science, pages 283–297. Springer-Verlag, 18–22 Au-
gust 1996.

4. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Information Re-
trieval. In 46th IEEE Symposium on Foundations of Computer Science (FOCS’95), Pittsburgh,
PA, USA, pages 41–50. IEEE Computer Society Press, 1995.

5. Joan Feigenbaum and Michael Merritt. Open questions, talk abstracts, and summary of discus-
sions. In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, volume 2,
pages 1–45, 1991.

6. Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Eliminating decryption errors in the ajtai-
dwork cryptosystem. In Burton S. Kaliski, Jr., editor, Advances in Cryptology – CRYPTO ’ 97,
volume 1294 of Lecture Notes in Computer Science, pages 105–111. International Association
for Cryptologic Research, Springer-Verlag, Berlin Germany, 1997.

7. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit cryptosystems based on lattice
problems. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public Key Cryptography - PKC
2007, 10th International Conference on Practice and Theory in Public-Key Cryptography, Bei-
jing, China, April 16-20, 2007, Proceedings, volume 4450 of Lecture Notes in Computer Science,
pages 315–329. Springer, 2007.

8. Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In
18th Annual Eurocrypt Conference (EUROCRYPT’99), Prague, Czech Republic, volume 1592
of Lecture Notes in Computer Science, pages 223–238. Springer, 1999.

9. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and compos-
able oblivious transfer. In David Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008.
Proceedings, volume 5157 of Lecture Notes in Computer Science, pages 554–571. Springer, 2008.

10. Phong Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from
Crypto ’97. In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of
Lecture Notes in Computer Science, pages 288–304. Springer, 1999.

11. Oded Regev. New lattice based cryptographic constructions. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, STOC’2003 (San Diego, California, USA, June 9-
11, 2003), pages 407–416, New York, 2003. ACM Press.

12. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93. ACM Press, 2005.

13. Tomas Sander, Adam Young, and Moti Yung. Non-interactive CryptoComputing for NC1.
In Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS), pages
554–567, New York, NY, USA, October 1999. IEEE Computer Society Press.

14. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario,
Canada, 27–29 October 1986. IEEE.

