
Additively Homomorphic Encryption
with t-Operand Multiplications

Carlos Aguilar Melchor1, Philippe Gaborit1, and Javier Herranz2

1 XLIM-DMI, Université de Limoges,
123, av. Albert Thomas

87060 Limoges Cedex, France
{carlos.aguilar,philippe.gaborit}@xlim.fr

2 DMA-IV, Universitat Politècnica de Catalunya,
C. Jorgi Girona, 1-3, Mòdul C-3,

08034 Barcelona, Spain
jherranz@ma4.upc.edu

Abstract. Homomorphic encryption schemes are an essential ingredient to design protocols where
different users interact in order to obtain some information from the others, at the same time that each
user keeps private some of his information. When the algebraic structure underlying these protocols
is complicated, then standard homomorphic encryption schemes are not enough, because they do not
allow to compute at the same time additions and products of plaintexts through the manipulation of
ciphertexts.
In this work we define a theoretical object, t-chained encryption schemes, which can be used to compute
additions and products of t integer values, by ciphertext manipulation. Efficient solutions have been
previously proposed only for the case t = 2. Our solution is not only theoretical: we show that some
existing IND-CPA secure (pseudo)homomorphic encryption schemes (some of them based on lattices)
can be used to implement in practice the concept of t-chained encryption scheme.

Keywords: homomorphic encryption, lattices, secure function evaluation.

1 Introduction

In 1978 Rivest, Adleman and Dertouzos introduced privacy homomorphisms [1], which are public key en-
cryption schemes that map an operation on the ciphertext space to an operation on the plaintext space. Such
schemes allow therefore to modify plaintexts through ciphertext manipulation. Privacy homomorphisms are
also known as homomorphic (public-key) encryption schemes and are usually classified by the operation
they allow to compute on the plaintext space: multiplicatively homomorphic schemes, such as RSA [2] or
El Gamal [3], allow to compute a product; and additively homomorphic schemes, such as Paillier [4], al-
low to compute a sum. An homomorphic public-key encryption scheme that allows to compute both sums
and products of plaintexts through ciphertext manipulation is called an algebraic homomorphic public-key
encryption scheme.

Additively homomorphic public-key encryption schemes have many applications such as computing with
encrypted functions (or with encrypted data), multi-party computation, zero-knowledge proofs, oblivious
transfer, commitment schemes, etc. A large survey of these applications (and an associated bibliography) is
done by Rappe in [5]. Rappe also highlights that being able to arbitrarily compute sums and products of
encrypted plaintexts (with a secure algebraic homomorphic scheme, for example) would result in a dramatic
improvement on performance and functionality of many applications.

Unfortunately, only a few algebraic homomorphic public-key encryption schemes have been proposed in
the literature and all of them have been broken. Fellows and Koblitz proposed Polly Cracker [6] which cannot
be considered secure [7], and Grigoriev and Ponomarenko proposed a scheme [8] which was broken in [9].
As Fontaine and Galand note in their survey on homomorphic encryption [10], no satisfactory solution has
been proposed so far, and given the conjecture by Boneh and Lipton that algebraic homomorphic encryption

schemes cannot be secure [11], the question of their existence is still open (see also this and other interesting
questions on the subject in [12]).

For the case of symmetric cryptography, Domingo-Ferrer proposed two schemes [13, 14] which were broken
in [15, 16]. A secret-key algebraic homomorphic encryption scheme has been recently proposed by Armknecht
and Sadeghi [17]. Their scheme is derived from a Private Information Retrieval (PIR) scheme by Kiayias and
Yung [18] whose security was based on the Polynomial Reconstruction Problem. This problem was broken
in [19] and [20], and Armknecht and Sadeghi’s proposal is therefore based on a variation that resists to these
attacks. The main issue with the encryption scheme they propose is that security against an attacker with
access to r ciphertexts is only ensured if ciphertext size is in O(er). This limits considerably the number of
applications. In any case, the work in [17] is very interesting from a theoretical point of view and may lead
to code-based homomorphic schemes with very useful properties.

In the scenario of asymmetric cryptography, the most important contribution towards the construction
of an algebraic homomorphic scheme was done by Boneh, Goh and Nissim. In [21] they propose a new secure
encryption scheme which is additively homomorphic and, at the same time, allows to compute products of
plaintexts by ciphertext manipulation. However, this proposal has one fundamental limitation: only products
of plaintexts pairs can be computed and the resulting ciphertexts can be used to compute sums but not
products any more. The span of applications of algebraic homomorphic encryption is so large that, despite
this limitation, the scheme in [21] has lead to a huge number of papers which discuss, cite or are based on
the mechanism proposed therein.

Our Contribution. Our motivating goal was to get rid of the limitation of Boneh, Goh and Nissim’s
encryption scheme, allowing the computation of plaintext products by ciphertext manipulation even if one of
the ciphertexts is the result of another product computation. To do this, we define a theoretical cryptographic
object, that we denote as t-chained encryption scheme, which is constructed through the combination of
multiple (pseudo)homomorphic encryption schemes satisfying some conditions. If the combined encryption
schemes are IND-CPA secure (see a formal definition of this concept in Appendix A), then the resulting
t-chained encryption scheme is also IND-CPA secure. We show how to compute products with t-chained
schemes so that each ciphertext can be used iteratively in up to t − 1 product computations before it can
only be used to compute sums.

After that, we review some existing (pseudo)homomorphic schemes that can be used as components to
realize in practice this theoretical concept of t-chained encryption schemes. We study in detail two possible
particular instances to illustrate this construction. Both instances are IND-CPA secure: security of the first
one is reduced to well-known problems such as uSVP (with a worst-case/average-case reduction) and the
subgroup decision problem; security of the second one is reduced to a more adhoc problem, the Differential
Knapsack Vector Problem. Some of the employed encryption schemes must be necessarily based on lattices,
which has an effect on the efficiency of the resulting t-chained encryption schemes (in particular, regarding
the size of the ciphertexts). However, any future advance in the area of lattice-based (pseudo)homomorphic
schemes will immediately have an impact on the efficiency of our solutions.

Application to Secure Function Evaluation. Some important applications of homomorphic encryption
schemes can be seen as particular cases of a primitive: secure function evaluation (SFE). In (a simplified
version of) SFE, a user Alice has a function f and a user Bob some data x. Bob must obtain f(x) without
Alice learning anything about x (not even f(x)) through a protocol with the minimum possible interaction.
If moreover, Bob does not learn anything about f (besides f(x)) we say the evaluation is symmetrically
secure. Due to length constraints we just consider in this paper Bob’s security, and describe a construction
that does not ensure symmetric security. In Appendix D we provide a few more details on this point and
highlight how the construction can be modified to provide symmetric security if the underlying encryption
schemes have the correct properties.

An additively homomorphic encryption scheme allows to securely evaluate multivariate polynomials
F (x1, . . . , xn) of degree t = 1: Bob, who holds secret inputs a1, . . . , an, generates a key pair for an ad-
ditively homomorphic scheme, encrypts each input, and sends to Alice the resulting ciphertexts, along with

the public key. Alice can use the additively homomorphic properties of the scheme to compute an encryption
of F (a1, . . . , an), which is sent back to Bob. Finally, Bob decrypts and obtains the desired value. If the
encryption scheme is IND-CPA secure Bob’s security is ensured.

It is often necessary to evaluate higher degree polynomials either to improve performance or to unlock
new applications (see [5]), and additively homomorphic encryption schemes do not provide a straight solution
to these situations. A fully algebraic homomorphic public-key encryption scheme would solve this problem,
but as we have noted before, there is not any such scheme right now.

The encryption scheme proposed by Boneh, Goh and Nissim allows to evaluate polynomials of degree
t = 2, as long as the output F (a1, . . . , an) is a small number (the computational cost of decryption is linear
on this number). For this reason they propose to use it for 2-DNF formula evaluation, which can be derived
from polynomial evaluation with a decryption cost in O(1), as long as ciphertext size is at least in O(logL),
being L the number of sums done.

Sander, Young and Yung propose an alternative approach [22] based on an uncommon usage of additively
homomorphic encryption schemes, which allows to compute any boolean formula. The major drawback of
their approach is that a given ciphertext’s size is exponential in the number of operations it has undergone
and thus the scheme can only be used to evaluate functions with logarithmic depth. Many applications need
linear depth functions to be evaluated and thus, despite the generality of the solution provided by Sander,
Young and Yung, the number of applications based on this scheme in the literature is similar to the case of
Boneh, Goh and Nissim’s scheme.

In this paper we focus on SFE to highlight our construction’s practicality. We will see that t-chained
schemes, introduced in this work, can be used to evaluate any polynomial of degree t ensuring Bob’s security
as long as the underlying encryption schemes are IND-CPA secure.

Organization of the Paper. In Section 2 we describe the general idea and a simple example of our
construction. We recall in Section 3.1 some basic concepts on (pseudo)homomorphic encryption schemes. The
main part of our work is presented in Section 3. We first recall some basic concepts on (pseudo)homomorphic
encryption schemes, and we prove some technical results involving (pseudo)homomorphisms, which can be
of independent interest. After that, the concept of t-chained encryption scheme is introduced. In Section 4
we explain how to use t-chained encryption schemes to securely evaluate a t-degree polynomial; we discuss
the security of the protocol and we briefly present some of its applications in Appendix C. We finally give,
in Section 5, some examples of t-chained encryption schemes (for t = 2 and t = 3) that can be obtained by
using some existing (pseudo)homomorphic encryption schemes.

2 Overview of Our Solution

2.1 Basic Idea

From a theoretical point of view, an algebraic encryption scheme would have an encryption function E which
is a ring homomorphism between (Zs,+, ·) and some ring (R,+R, ·R).3 Some encryption functions, as for
example ElGamal’s [3], ensure naturally a group homomorphism between (Z∗s, ·) and the group of associated
ciphertexts. Other encryption functions, as Paillier’s [4], ensure a group homomorphism between (Zs,+) and
the group of ciphertexts. As noted in the introduction, all the cryptosystems with an encryption function
that is a ring homomorphism between (Zs,+, ·) and some ring have been broken.

The proposal of Boneh, Goh and Nissim is very interesting from a theoretical point of view. Indeed, their
cryptosystem provides two group homomorphic encryption functions E1 and E2 such that

3 In fact, the homomorphism must be between (Zs,+, ·)× (Ω,+Ω , ·Ω) and some ring (R,+R, ·R) as the encryption
scheme is probabilistic, but the randomization is often hidden to simplify notations.

where E2(x) = e(E1(x), 1) and e(·, ·) is a bilinear map such that e(E1(a1), E1(a2)) = e(E1(a1 · a2), 1) =
E2(a1 · a2). Starting from encryptions E1(a1) and E1(a2), it is thus possible to obtain encryptions (according
to E2) of both a1+a2 and a1 ·a2. The bilinear map e(·, ·) is a Weil pairing over an elliptic curve. Unfortunately,
once in G2 it is not possible to use a second pairing in order to compute more products. Our motivating
goal was to obtain a chain of homomorphic encryption functions and bilinear pairings such that for any t we
have:

With such a structure (and the right properties on the bilinear functions), the inductive limit of the disjoint
union Rt = qti=1Gi is isomorphic to a ring. Even if such a structure does not represent a ring and an
associated ring homomorphism, it provides at least a series of groups and group homomorphisms which have
a ring and a ring homomorphism as a limit. Unfortunately, our construction is slightly weaker than the
aforementioned one, and such a ring cannot be defined. Nevertheless, from a practical point of view we are
still able to compute as with such a structure.

2.2 A Simple Construction

A real construction of a scheme allowing to do t multiplications is a little bit complex and is described in the
following sections, but we will present here an ‘ideal world’ construction as its simplicity allows to grab the
principles our construction is based on. Suppose that, for any s ∈ Z+, we can obtain a cryptosystem with
an encryption function E : Zs → Zs′ , such that E(a1) + E(a2) = E(a1 + a2). Starting from a value s1 ∈ Z+,
it is then possible to:

– obtain E1 : Zs1 → Zs2 such that E1(a1) + E1(a2) = E1(a1 + a2);
– obtain E2 : Zs2 → Zs3 such that E2(a1) + E2(a2) = E2(a1 + a2).

Because of the chosen parameters we have E2(E1(a1)) + E2(E1(a2)) = E2(E1(a1) + E1(a2)) = E2(E1(a1 + a2)).
Denoting E = E2 ◦ E1, we have E(a1) + E(a2) = E(a1 + a2). Moreover,

E1(a1) · E2(a2) = E2(a2 · E1(a1)) = E2(E1(a1 · a2)) = E(a1 · a2),

the first two equalities being verified as the homomorphic property of E2 (resp. E1) implies k ·E2(x) = E2(k ·x)
(resp. k · E1(x) = E1(k · x)). We thus have:

E(a1) + E(a2) = E(a1 + a2) and E1(a1) · E2(a2) = E(a1 · a2)

Of course, this construction can be generalized if we obtain additive schemes E1, . . . , Et such that

(Zs1 ,+) E1−→ (Zs2 ,+) E2−→ (Zs3 ,+) E3−→ . . .
Et−→ (Zst+1 ,+).

Unfortunately, the existing additive schemes that we could use to realize this ‘ideal world’ construction
only provide a pseudohomomorphic property (properly defined in the next section) and not a real homomor-
phism. Moreover, in many cases we do not have E : Zs → Zs′ , but E : Zs → Zn′s′ , or E : Zns → Zn′s′ . In fact,
we will use a cryptosystem such that E : Zs → Zs′ (s′ being very large) in our practical constructions in
Section 5. However, using it directly leads to a very inefficient construction. We will thus modify it to obtain
an encryption function E : Zs → Zn′′s′′ with a small s′′ and a large n′′.

In Section 3.1, we provide basic definitions and in Sections 3.2 and 3.3 we show how to modify the existing
encryption schemes to fit our needs. Then, in Section 3.4 we provide a general construction derived from the
intuitive one that we have just presented.

3 t-Chained Pseudohomomorphic Encryption Schemes

In this section we define t-chained encryption schemes, the basic tool of our protocols. In order to do this we
first define L-pseudohomomorphisms, and prove some of their properties through a small set of lemmas and
propositions. The (sketched) proofs are given in Appendix B.1, except when they deal with security issues
in which case they have been included in the main text (when not trivial).

3.1 Preliminaries: (Pseudo)Homomorphic Encryption

A public key encryption scheme PKE = (KG, E ,D) consists of three probabilistic and polynomial time
algorithms. The key generation algorithm KG takes as input a security parameter (for example, the desired
length for the secret key) and outputs a pair (sk, pk) of secret and public keys. The encryption algorithm
takes as input a plaintext m corresponding to some set of plaintextsM, some randomness r ∈ R and a public
key pk, and outputs a ciphertext c = Epk(m, r) ∈ C, where C is the ciphertexts’ space. Finally, the decryption
algorithm takes as input a ciphertext and a secret key, and gives a plaintext m = Dsk(c) as output. In the
rest of the paper, for simplicity of the notation, we will only include explicitly the randomness as an input
of the encryption functions and the public key as their index when necessary.

We say that PKE = (KG, E ,D) is pseudohomomorphic if M and C have both a group structure (with
operations ⊕M and ⊕C , respectively; we will write (M,⊕M) and (C,⊕C)), and the property

D
(
E(m1)⊕C E(m2)

)
= m1 ⊕M m2

holds for any m1,m2 ∈M.
Again the index of the operation will only be included explicitly when necessary and often we will just

write D
(
E(m1) ⊕ E(m2)

)
= m1 ⊕m2. This basic pseudohomomorphic property does not imply E(m1) ⊕

E(m2) = E(m1 ⊕m2), but just E(m1) ⊕ E(m2) ∈ D−1(m1 ⊕m2). This is important as often the function
E : M → C is not surjective. In order to avoid cumbersome notations, Ẽ(x) will represent an element of
D−1(x) just as E(x) represents an element of {E(x, r)|r ∈ R}. We thus have E(m1)⊕ E(m2) = Ẽ(m1 ⊕m2).
With these ideas in mind, one can consider the following definition.

Definition 1. A public key encryption scheme which satisfies E(m1)⊕ . . .⊕ E(mk) = Ẽ(m1 ⊕ . . .⊕mk) for
all k ≤ L and all k-tuple (m1, . . . ,mk) ∈Mk is said to be L-pseudohomomorphic.

If E(m1)⊕ E(m2) = E(m1 ⊕m2), then we can iteratively apply this result to deduce that E(m1)⊕ . . .⊕
E(mk) = E(m1 ⊕ . . .⊕mk) for any k. We will say that such encryption schemes are ∞-pseudohomomorphic
(or simply homomorphic). Note that if E is surjective for any element y ∈ D−1(x) there is an r ∈ R such
that y = E(x, r). Thus if E is surjective and 2-pseudohomomorphic then E(m1)⊕ E(m2) = E(m1 ⊕m2) and
thus E is (fully) homomorphic.

With respect to security, it is well-known that homomorphic schemes can never achieve security against
chosen-ciphertext attacks. For this reason, we will consider indistinguishability under chosen-plaintext attacks
(CPA). Roughly speaking, an encryption scheme is IND-CPA secure if, knowing only the public key, it is
computationally hard to distinguish between two encryptions of two different plaintexts. A more formal
definition of this security property can be found in Appendix A.

3.2 Extending Pseudohomomorphic Encryption Schemes

Following the idea of Definition 1 one can define a pseudohomomorphic relation between two groups by:

Definition 2. Let (G1,⊕1) and (G2,⊕2) be two groups and

φ : (G1,⊕1)→ (G2,⊕2) φ∗ : (G2,⊕2)→ (G1,⊕1)

two computable functions such that for all k ≤ L and all k-tuple (g1, . . . , gk) ∈ Gk1 we have φ∗(φ(g1)⊕2 . . .⊕2

φ(gk)) = g1 ⊕1 . . .⊕1 gk.
We say that (φ, φ∗) forms a computable L-pseudohomomorphism from (G1,⊕1) to (G2,⊕2).

Pseudohomomorphisms can be combined with pseudohomomorphic encryption schemes in order to change
their plaintext or ciphertext space without changing the security properties of the cryptosystem. This is stated
in the next proposition.

Proposition 1. If PKE = (KG, E ,D) is an L-pseudohomomorphic encryption scheme such that there
is a computable L′-pseudohomomorphism (φ, φ∗) (φ being public) from a space (G1,⊕1) to PKE’s plain-
text space (M,⊕M), then the associated encryption scheme PKE′ = (KG, E ◦ φ, φ∗ ◦ D) is a min(L,L′)-
pseudohomomorphic encryption scheme. If there exists a computable L′′-pseudohomomorphism (ψ,ψ∗) (ψ
being public) from PKE’s ciphertext space to another space, PKE′ = (KG, ψ ◦ E ,D ◦ ψ∗) is a min(L,L′′)-
pseudohomomorphic encryption scheme. Moreover, in both cases, if PKE is IND-CPA secure, PKE′ is
IND-CPA secure too.

Proof. (sketch) Suppose that PKE′ is a plaintext space extension. For any k ≤ min(L,L′) and any
g1, . . . , gk ∈ G1,

D′(E ′(g1)⊕C · · · ⊕C E ′(gk)) = φ∗(D(E(φ(g1))⊕C · · · ⊕C E(φ(gk)))) by definition of E ′ and D′,
= φ∗(φ(g1)⊕M · · · ⊕M φ(gk)) as k ≤ L,
= g1 ⊕1 · · · ⊕1 gk as k ≤ L′.

PKE′ is thus min(L,L′)-pseudohomomorphic. The same proof can be done if PKE′ is a ciphertext ex-
tension. IND-CPA for PKE′ in the first case is ensured as distinguishing two plaintexts x1, x2 in PKE′

implies distinguishing φ(x1), φ(x2) in PKE and φ must be injective. In the second case, being φ public,
distinguishing x1, x2 in PKE′ implies distinguishing them also in PKE. ut

3.3 Twisting Additive Pseudohomomorphic Encryption Schemes

If for a given L-pseudohomomorphic encryption scheme, its plaintext space is (Zs,+)n for some positive
integers s, n ∈ Z+, we say that the scheme is plaintext additive. If its ciphertext space is (Zs′ ,+)n

′
for some

positive integers s′, n′ ∈ Z+, we say that the scheme is ciphertext additive. When a plaintext or ciphertext
space is (Zs,+)n we will call s its order and n its dimension. These schemes can be easily modified using
Proposition 1 and simple L-pseudohomomorphisms.

Lemma 1. Let (Zs,+)n be a group for s, n ∈ Z+. For any k, L, s′ ∈ Z+ such that (2k − 1) · L < s′ < s
there is a computable L-pseudohomomorphism from (Zs,+)n to (Zs′ ,+)n

′
where n′ = n · d(log2 s)/ke.

The proof (available in Appendix B) uses a simple construction that we will associate to this lemma.
The main idea is to split each coordinate of an element in (Zs,+)n in k-bit blocks, and to form a vector
of dimension n′, each k-bit block being the binary representation of a coordinate. Computing with such a
vector in (Zs′ ,+)n

′
for a large enough s′ ensures that the process is reversible.

Corollary 1. Let PKE be a ciphertext additive L-pseudohomomorphic encryption scheme with ciphertext
space (Zs,+)n. For any k ∈ Z+, it is possible to lower the order of the ciphertext space s to any value s′

such that (2k − 1) · L < s′ < s by increasing the dimension n to n′ = n · d(log2 s)/ke. This transformation
preserves indistinguishability.

It is thus possible to split ciphertexts in order to have many small elements instead of one large element
while preserving the pseudohomomorphic and indistinguishability properties. The extreme case happens
when one considers k = 1, i.e. the initial ciphertexts of PKE, which are elements in (Zs,+)n, are transformed
into elements of (Z2,+)n·dlog2 se (vectors of bits). To preserve the L-pseudohomomorphic properties, however,
we will see these bits as elements of Zs′ , for some s′ between L and s, as stated in the previous lemma and
corollary.

For an encryption function E with ciphertext space (Zs,+)n, let us denote as ‖ E ‖∞ the maximum
value that can be in a component of E(x), for all possible plaintexts x. Of course, we have ‖ E ‖∞≤ s, but

in general this value can be much smaller. For example, if we apply the construction of Lemma 1 to an
encryption function E , then we obtain ‖ E ‖∞≤ 2k − 1, and in the particular case where k = 1, we will have
‖ E ‖∞≤ 1.

The following lemmas give tools to increase the ciphertext space order of a ciphertext additive scheme,
and to modify the plaintext space dimension of a plaintext additive scheme.

Lemma 2. For any s1, s2, n ∈ Z+ there is a computable L-pseudohomomorphism from (Zs1 ,+)n to (Zs2 ,+)n

for L = bs2/s1c.

Lemma 3. A plaintext additive L-pseudohomomorphic scheme PKE with plaintext space (Zs,+)n can be
transformed into a plaintext additive L-pseudohomomorphic scheme PKE′ with plaintext space (Zs,+)kn,
for any k ∈ Z+. This transformation preserves indistinguishability.

Lemma 4. For any s, n ∈ Z+ and any ` < n we define π−1 : (Zs,+)` → (Zs,+)n by π−1((x1, · · · , x`)) =
(x1, · · · , x`, 0, · · · , 0), where π is the standard projection. (π−1, π) is a computable ∞-pseudohomomorphism
from (Zs,+)` to (Zs,+)n.

Corollary 2. A plaintext additive L-pseudohomomorphic scheme PKE with plaintext space (Zs,+)n can
be transformed into a plaintext additive L-pseudohomomorphic scheme PKE′ with plaintext space (Zs,+)`,
for any ` ∈ Z+. This transformation preserves indistinguishability.

Summing up, it is possible to increase or reduce the ciphertext order of a ciphertext additive scheme,
possibly changing the ciphertext dimension, and to increase or reduce the plaintext dimension of a plaintext
additive scheme, without changing its order. Moreover, each of these operations preserves indistinguishability.
Combining these results, we will be able to modify the schemes in a given chain in such a way that the order
and dimension of the ciphertext space of a scheme are equal to the order and dimension of the plaintext
space of the following scheme in the chain.

3.4 t-Chained Schemes

For simplicity, we start with the case of chains with t = 2 schemes. We propose a way to adapt a plaintext
additive pseudohomomorphic encryption scheme PKE2 in order to encrypt the ciphertexts of a plaintext
and ciphertext additive pseudohomomorphic encryption scheme PKE1, in such a way that the imbrication
of both schemes leads to a new plaintext additive pseudohomomorphic encryption scheme called 2-chained.

Definition 3. Let PKE1 = (KG1, E1,D1) be a plaintext and ciphertext additive L1-pseudohomomorphic
encryption scheme with associated plaintext and ciphertext spaces (Zs1 ,+) and (Zs2 ,+)n2 , and let PKE2 =
(KG2, E2,D2) be a plaintext additive L2-pseudohomomorphic encryption scheme with associated plaintext and
ciphertext spaces (Zs2 ,+) and (C2,⊕2).

Set PKE′2 = (KG′2, E ′2,D′2) as the plaintext additive L2-pseudohomomorphic encryption scheme with
plaintext space (Zs2 ,+)n2 and ciphertext space (C2,⊕2)n2 derived from PKE2 (using Lemma 3), such that
E ′2((x1, . . . , xn2)) = (E2(x1), . . . , E2(xn2)).

We define the 2-chained encryption scheme derived from PKE1 and PKE2 as PKE = (KG, E ,D) with:
KG = KG1 ×KG′2; E = E ′2 ◦ E1; D = D1 ◦ D′2.

The resulting 2-chained encryption scheme PKE has plaintext space (Zs1 ,+) and ciphertext space
(C2,⊕2)n2 . The following proposition describes the security and pseudohomomorphic properties of such
a scheme.

Proposition 2. A 2-chained encryption scheme PKE is a plaintext additive L-pseudohomomorphic encryp-
tion scheme with L = min(L1, L2). If one of the encryption schemes used to create the 2-chained scheme is
IND-CPA secure, then PKE is also IND-CPA secure.

Proof. (sketch) Lemma 3 proves that if PKE2 is IND-CPA secure then PKE′2 is IND-CPA secure too. The
2-chained scheme can be seen as an extension of PKE′2 with the L1-pseudohomomorphism (E1,D1) or as an
extension of PKE′1 with the L2-pseudohomomorphism (E ′2,D′2). In any case, Proposition 1 proves that the
resulting 2-chained scheme is a plaintext additive min(L1, L2)-pseudohomomorphic encryption scheme, and
IND-CPA secure if any of PKE1 or PKE2 are IND-CPA secure.

Note that in Definition 3 we are implicitly assuming that the order s2 of the ciphertext space of PKE1

is the same as the order of the plaintext space of PKE2. The lemmas of Section 3.3 show that in order to
obtain 2-chained schemes, the only thing we need is to be able to create plaintext and ciphertext additive
pseudohomomorphic encryption schemes with large enough plaintext order. This is specified by the following
proposition.

Proposition 3. For any L, if there is a family of plaintext and ciphertext additive L-pseudohomomorphic
encryption schemes such that the plaintext space order can be chosen arbitrarily large, it is possible to con-
struct a 2-chained L-pseudohomomorphic encryption scheme.

Proof. (sketch) Suppose that, for any positive integer s, we can take a ciphertext and plaintext additive
L-pseudohomomorphic encryption scheme PKE such that E : (Zs,+)n → (Zs′ ,+)n

′
, where n, s′, n′ may

depend on s.
Set PKE1 as such a scheme for a given s1. We denote as (Zs1 ,+)n1 and (Zs′1 ,+)n

′
1 the plaintext and

ciphertext spaces of this cryptosystem. Set PKE2 as a second scheme with plaintext and ciphertext spaces
(Zs2 ,+)n2 and (Zs′2 ,+)n

′
2 , such that the plaintext order s2 satisfies bs2/s1c > L.

Using Lemma 4 we lower the plaintext dimension of these schemes to one and obtain two L-pseudohomomorphic
schemes PKE′1 and PKE′2. Using Lemma 2 we increase the ciphertext space order of PKE′1 to s2 and obtain
an L-pseudohomomorphic scheme PKE′′1 (as bs2/s1c > L).

PKE′′1 (resp. PKE′2) is L-pseudohomomorphic and has plaintext and ciphertext spaces (Zs1 ,+) and
(Zs2 ,+)n

′
1 (resp. (Zs2 ,+) and (Zs′2 ,+)n

′
2). These schemes satisfy the properties required in Definition 3 and

can therefore be used to construct a 2-chained L-pseudohomomorphic encryption scheme.

Generalization. If PKE2 is plaintext and ciphertext additive, the 2-chained scheme constructed above is
implicitly plaintext and ciphertext additive. Note that in this case, we can use it for further imbrications. We
thus define a t-chained scheme, as the consecutive imbrication of t−1 plaintext and ciphertext pseudohomo-
morphic schemes PKE1, PKE

′
2, . . . , PKE

′
t−1 and of one plaintext pseudohomomorphic scheme PKE′t (all

of them resulting from properly twisting some initial schemes, as explained in Section 3.3). The encryption
diagram of a t-chained scheme would be

(Zs1 ,+) E1−→ (Zs2 ,+)n2
E′2−→ (Zs3 ,+)n3

E′3−→ . . .
E′t−1−→ (Zst

,+)nt
E′t−→ (Ct,⊕t)nt .

Propositions 2 and 3 are trivially generalized. This scheme is thus L-pseudohomomorphic, with L = min(L1, . . . , Lt)
if PKEi is Li-pseudohomomorphic. And it is IND-CPA secure if some PKEi is IND-CPA secure.

In [23], Kawachi, Tanaka and Xagawa propose a set of lattice-based ciphertext and plaintext additive
pseudohomomorphic encryption schemes, derived from [24–27], that are proved to be IND-CPA secure under
standard assumptions. In these schemes, L and the plaintext space order can be set to any value in Z+ and
thus they can be used to implement t-chained encryptions schemes.

4 Secure Function Evaluation with t-Chained Schemes

Maybe the most important consequence of the existence of t-chained encryption schemes is that they can
be used for computing over ciphertexts. Namely a t-chained encryption scheme PKE = (KG, E ,D) resulting
from the schemes PKE1, . . . , PKEt can be used by anyone to:

(i) Compute ciphertexts E1(a), . . . , Et(a), E(a) of any of the encryption schemes PKE1, . . . , PKEt, PKE.
(ii) Given L ciphertexts E(a1), . . . , E(aL), anyone can publicly compute an element C, such that D(C) =

a1 + · · ·+ aL.
(iii) Given a set of t ciphertexts E1(a1), . . . , Et(at), anyone can publicly compute an element C, such that

D(C) = a1 · . . . · at.

In particular, a t-chained encryption scheme can thus be used for secure evaluation of multivariate
polynomials (of total degree t). In order to show how this is done, and for simplicity of the explanation, let
us consider first the case of a 2-chained scheme. Then we will informally present the general case.

4.1 Secure Evaluation of the Sum and Product of Two Inputs

Let PKE1, PKE2, PKE
′
2, and PKE denote the cryptosystems introduced in Definition 3.

Sum of inputs. Proposition 2 states that PKE is L-pseudohomomorphic with L = min(L1, L2). Indeed,
if a1, a2 ∈ Zs1 , we can consider the ciphertexts Ci = E(ai) = E ′2(E1(ai)) ∈ (C2,⊕2)n2 , for i = 1, 2. Then,
if L ≥ 2, anyone can operate these ciphertexts to obtain C = C1 ⊕2 C2 = Ẽ(a1 + a2). Recall that we use
notation Ẽ(x) to represent an element of D−1(x). The owner of sk = (sk1, sk2) can decrypt C, by applying
D = D1 ◦ D2, to obtain a1 + a2 mod s1 as desired.

Product of inputs. Regarding secure evaluation of the product, given two values a1 ∈ Zs1 and a2 ∈ Zs2 ,
we can consider the ciphertexts c1 = E1(a1) ∈ (Zs2 ,+)n2 and c2 = E2(a2) ∈ (C2,⊕2). We write c1 =
(E(1)

1 (a1), . . . , E(n2)
1 (a1)), where E(l)

1 (a1) ∈ Zs2 , for l = 1, . . . , n2. Obviously, E(l)
1 : (Zs1 ,+)n1 → (Zs2 ,+) is a

L1-pseudohomomorphism. We compute:

(E(1)
1 (a1)E2(a2), . . . , E(n2)

1 (a1)E2(a2)) = (Ẽ2(E(1)
1 (a1)a2)), . . . , Ẽ2(E(n2)

1 (a1)a2))

= (Ẽ2(Ẽ1
(1)

(a1a2)), . . . , Ẽ2(Ẽ(n2)
1 (a1a2)))

= Ẽ ′2(Ẽ1(a1a2)) = Ẽ(a1a2),

where the first operation has to be interpreted as ‘applying ⊕2 to E2(a2) a number E(l)
1 (a1) of times’. The

first equality is true if L2 ≥‖ E1 ‖∞, where ‖ ‖∞ is the norm defined in Section 3.3. It is important to
be precise as this value can be much smaller than the space order s2. Indeed, in our practical examples we
will use Lemma 1 with k = 1 and thus we will have ‖ E1 ‖∞= 1, whereas s2 >> 1. The second equality in
the above array is true if L1 ≥ a2, and the two last equalities hold because of the definitions of PKE′2 and
PKE.

4.2 General Case

Although we have explained the case t = 2 for simplicity, the computing techniques can be easily general-
ized for greater values of t. We skip the details due to the cumbersome notation. As an informal example
with t = 3, if we are interested in the product a1a2a3, we have to provide a ciphertext E3(a3). Once
the first multiplication has been done, we have Ẽ ′2(Ẽ1(a1a2)), which belongs to (Zs3 ,+)n3 (using the no-
tations of the generalization at the end of Section 3.4). Therefore, this ciphertext can be represented as
(Ẽ ′(1)2 (Ẽ1(a1a2)), . . . , Ẽ ′(n3)

2 (Ẽ1(a1a2))). The same procedure as before (i.e. ‘multiplying’ each component of
this vector with E3(a3)) can be applied to obtain:(

Ẽ ′(1)2 (Ẽ1(a1a2))E3(a3), . . . , Ẽ ′(n3)
2 (Ẽ1(a1a2))E3(a3)

)
=

=
(
Ẽ3(Ẽ ′(1)2 (Ẽ1(a1a2))a3), . . . , Ẽ3(Ẽ ′(n3)

2 (Ẽ1(a1a2))a3)
)

=
(
Ẽ3(Ẽ ′(1)2 (Ẽ1(a1a2)a3)), . . . , Ẽ3(Ẽ ′(n3)

2 (Ẽ1(a1a2)a3))
)

=
(
Ẽ3(Ẽ ′(1)2 (Ẽ1(a1a2a3))), . . . , Ẽ3(Ẽ ′(n3)

2 (Ẽ1(a1a2a3)))
)

= Ẽ ′3(Ẽ ′2(Ẽ1(a1a2a3))) = Ẽ(a1a2a3).

Note that the number of operations involving ciphertexts of the different encryption functions in the chain
increases with t. In this case, we must have L1 > a2a3, L2 >‖ E1 ‖∞ a3, and L3 >‖ E2 ‖∞. In the general
case of t-chained schemes, in order to compute the ciphertext Ẽ(a1 · · · at), we must have L1 >

∏t
j=2 aj and

Li >‖ Ei−1 ‖∞
∏t
j=i+1 aj , for i = 2, . . . , t.

Summing up, the presented t-chained encryption schemes can be used to evaluate t-degree multivariate
polynomials on ciphertexts. Namely, if F (x1, . . . , xn) is a n-variate polynomial over Zs of total degree t,
and with m monomials, one can consider encryptions Ci,j = Ei(aj), for i = 1, . . . , t and j = 1, . . . , n, and
anyone can compute an encryption C̃ of the value F (a1, . . . , an) mod s1. We represent such a polynomial by
F (a1, . . . , an) =

∑m
r=1 λrMr, Mr being a monomial of degree at most t. In order to evaluate the polynomial:

1. Each monomial Mr is computed by multiplying the associated ciphertexts;
If the monomial has degree t′ < t it is then multiplied by t− t′ encryption of 1;

2. The monomial Mr is added to itself λr times;
3. The results of each monomial computation are summed up.

The constraints associated to the values L1, . . . , Lt are easy to derive from the ones we presented for sum
and product computation. Namely, we must have L1 > m · λ · at−1 and Li > m · λ · at−i ‖ Ei−1 ‖∞, for
i = 2, . . . , t, noting λ and a the maximum possible values for λ1, . . . , λm and a1, . . . , an respectively.

Note that for boolean polynomials we have a = λ = 1 and thus if we manage to have ‖ Ei−1 ‖∞= 1 the
only constraint is Li > m for i ∈ {1, . . . , t}.

Some applications of SFE in which having t > 2 is relevant are presented in Appendix C

4.3 Security

As stated by Proposition 2, a t-chained scheme PKE (with underlying schemes PKE1, . . . , PKEt), is IND-
CPA secure as long as one of the underlying schemes is IND-CPA secure. This means that the ciphertexts
of any plaintext pair m1,m2 resulting from the encryption with E = E ′t ◦ · · · ◦ E1 are indistinguishable.

When requiring a secure evaluation of a polynomial, a user (Bob) holding a secret input aj does not
know which operations are going to be done with this input. He should thus encrypt this value with all the
underlying encryption schemes of the chain, producing Ci,j = Ei(aj) for i = 1, . . . , t, so that the value may
be used at any point of a product or sum evaluation. Therefore, when considering to use a t-chained scheme
for secure function evaluation we are not interested in the IND-CPA security of the t-chained scheme PKE,
but on the IND-CPA security of the scheme PKEG defined by EG(x) = (E1(x), . . . , Et(x)).

Proposition 4. If t encryption schemes E1, . . . , Et are all ε-indistinguishable under CPA attacks, then the
global encryption scheme EG(x) = (E1(x), . . . , Et(x)) is tε-indistinguishable under CPA attacks.

The proof of this Proposition can be found in Appendix B.2. The final conclusion is that our protocol for
Secure Function Evaluation offers security for Bob, despite the publication of all the ciphertexts Ci,j = Ei(aj),
for i = 1, . . . , t and j = 1, . . . , n, as long as all the encryption schemes PKE1, . . . , PKEt are IND-CPA secure.
Some details on the privacy of the function (i.e. symmetric security) are given in Appendix D.

5 Specific Realizations

The encryption scheme of Boneh, Goh and Nissim allows to compute products of two operands. In this
section we will provide two schemes that allow to compute products of three operands.

5.1 2-Chained Encryption Schemes for 3-DNF Secure Evaluation

As noted at the end of Section 3.4, the lattice-based additively pseudohomomorphic schemes that have been
proposed by Kawachi, Tanaka and Xagawa in [23], derived from [24–27], can be used to construct a t-chained

scheme for any value of t, in particular for t = 3. Our idea here is to achieve the same functionality as in a
3-chained scheme (e.g. private evaluation of multi-variate polynomials with degree up to 3) by constructing
a 2-chained scheme which uses as PKE2 the scheme of Boneh-Goh-Nissim. It is possible to set t > 2 by
chaining multiple times lattice-based schemes and once at the end Boneh-Goh-Nissim. However, ciphertext
size grows quickly, and therefore we present here just the case t = 2. This scheme allows to securely evaluate,
in the sense of SFE, 3-DNF boolean formulas with billions of disjunctions (and thus with billions of depth
levels) which could not be done in practice with any of the previously existing SFE protocols. For a definition
of DNF formulas, and of how they are related to boolean polynomials, see Appendix C.

Regarding PKE1, we consider one of the schemes proposed in [23]. It is a variant of [25] (noted hereafter
mR04), whose IND-CPA security is based on a worse-case reduction to Õ(n1.5+r) − uSV P for a given
parameter r. In mR04, the encryption and decryption functions form an L-pseudohomomorphism (E ,D)
from (Zp,+) to (ZN ,+) with N = 28n2

, being n a security parameter such that L× p < nr. The encryption
system has a decryption error probability which for practical parameters is negligible, and thus will not be
considered in our simple practical constructions.

Choosing p > L, we can apply Lemma 1 to this scheme, with k = 1, to obtain an L-pseudohomomorphic
encryption scheme PKE1α with plaintext space (Zp,+) and ciphertext space (Zp,+)8n

2
, such that ‖ E1α ‖∞=

1. We take a hard-to-factor modulus NP > p×L and we consider the pseudohomomorphism from (Zp,+) to
(ZNP

,+) described in Lemma 2. In this way, we obtain PKE1, an L-pseudohomomorphic encryption scheme
with plaintext space (Zp,+) and ciphertext space (ZNP

,+)8n
2

with ‖ E1 ‖∞= 1.
Let PKE2 be an instance of Boneh-Goh-Nissim’s encryption scheme for the modulus NP . PKE2 is

an ∞-pseudohomomorphic encryption scheme with plaintext space (ZNP
,+) and ciphertext space (G,×).

Applying the construction given in Definition 3, we obtain a 2-chained L-pseudohomomorphic encryption
scheme PKE with plaintext space (Zp,+) and ciphertext space (G,×)8n

2
. The following results are directly

inferred from Proposition 2 and Proposition 4.

Theorem 1. The 2-chained encryption scheme PKE is IND-CPA secure assuming either that the Õ(n1.5+r)−
uSV P problem is hard or that the subgroup decision problem is hard in G. Moreover, it is possible to use it
for Secure Function Evaluation of 3-DNF boolean functions with up to L disjunctions if both problems are
assumed to be hard.

The resulting 2-chained encryption scheme allows to start from ciphertexts c1 = E1(a1), c2 = E2(a2), for
integer values a1, a2, and to obtain a ciphertext C12 = E2(E1(a1a2)) ∈ G. Now, for a third integer a3, we can
consider the ciphertext c3 = E2(a3) ∈ G. Using the bilinear map of the scheme by Boneh-Goh-Nissim, we can
compute a ciphertext C = e(C12, c3). This ciphertext C is an encryption of a1a2a3, according to a different
cryptosystem related to PKE2, which can be decrypted by the owner of the secret key of the scheme PKE2.

Note that Boneh-Goh-Nissim ciphertexts can only be decrypted if the associated plaintexts are small.
We have ‖ E1 ‖∞= 1 and thus plaintexts will be small if the integers ai are small too. This makes this
t-chained encryption scheme specially adapted for boolean formula evaluation. Using the technique proposed
by Boneh, Goh and Nissim for DNF formula evaluation, we will set p = L + 1. Thus, as ciphertext size
is in O(n2), for an optimal choice of n (such that L × p ' nr) we have a ciphertext size in O(L4/r). The
asymptotic ciphertext growth in the formula depth is polynomial, whereas with the technique of Sander,
Young and Yung [22] it is exponential.

The underlying security problem of mR04, Õ(n1.5+r) − uSV P , has been solved for n ' 10 and r ' 10
but is believed to be unfeasible for r = 10 and n ' 100 [28]. Thus, a concrete instantiation of mR04 could
be: n = 100, r = 10, p = 109 + 1 and L = 109, which verify p × L < nr and L < p. We can set a 1024-
bit modulus for Boneh-Goh-Nissim which corresponds to current standards on factorization and ensures
NP > L × p. With these parameters, our 2-chained encryption scheme would be 109-pseudohomomorphic,
with plaintext space (Z109+1,+) and ciphertext space (G,×)80000, an element of G being represented by 2048
bits. Ciphertexts will therefore be a few megabytes long and the scheme will be usable to evaluate 3-DNF
boolean formulas with depth up to 109. Again, the protocol of Sander, Young and Yung[22] also allows to
evaluate such formulas, but ciphertext size will be in O(e10

9
) for such depths.

5.2 t-Chained Encryption Schemes for General Use

In [29], Aguilar, Castagnos and Gaborit propose a lattice-based homomorphic encryption scheme which is
ciphertext and plaintext additive. The IND-CPA security of this scheme is based on a non-standard security
assumption, the hardness of a problem they named the Differential Knapsack Vector Problem, which as
its name states is a variation of the Knapsack Problem against which traditional lattice-reduction attacks
seem ineffective. In this scheme, noted hereafter ACG08, the encryption and decryption functions form an
L-pseudohomomorphism (E ,D) from (Zp,+)N to (Zq,+)2N with q = K×p2×L, being K and N two security
parameters.

For any i ∈ {1, . . . , t} we set PKEiα as an instance of ACG08 from (Zpi
,+)N to (Zqi

,+)2N such that
p1 = p and pi = qi−1 for i > 1. Using Lemma 4 on each of these schemes we obtain PKEi with plaintext
space (Zpi

,+) and ciphertext space (Zqi
,+)2N . Applying the construction given in Definition 3 iteratively,

we obtain a t-chained L-pseudohomomorphic encryption scheme PKE with plaintext space (Zp,+) and
ciphertext space (Zqt ,+)Nt with qt = (K × L× p)2t−1 × p and Nt = (2N)t. Again, the following theorem is
a direct result of Propositions 2 and 4.

Theorem 2. The t-chained encryption scheme PKE is IND-CPA secure assuming that the Differential
Knapsack Vector Problem is hard. Moreover, with the same assumption, it is possible to use it for Secure
Function Evaluation of t-degree multivariate polynomials over Zp with up to L monomials.

Ciphertext size is ((2t−1) log(K×L×p)+log p)×(2N)t, which is still exponential in t but just logarithmic
in L. With this t-chained scheme there is no issue on decryption and thus it can be used for SFE of t-degree
polynomials over an arbitrary ring Zp or on any of the other applications of homomorphic schemes.

Based on the security parameters proposed in [29], we can set N = 50 and K = 220. For t = 3 we
have a ciphertext size of roughly ten megabytes, for values of p and L close to one. Since the growth of the
ciphertext size is logarithmic in these parameters, it remains pretty much the same for larger values of p, L.
For example, for p = 232, L = 232 ciphertext size is just multiplied by a factor 4 (and not 64 as we already
have K = 220) and for p = 2100, L = 2100 it is multiplied by a factor 10.

6 Conclusion

The construction we have presented in this paper provides a general way to obtain additively homomorphic
schemes that allow to compute products of t operands. We have presented two specific implementations,
but many other alternatives can be considered: for example a 3-chained encryption scheme could have been
obtained from chaining twice mR04 instances with Paillier’s encryption scheme which would have given an
alternative 3-chained scheme for general use based on uSVP and the subgroup decision problem.

The performance differences between the proposed schemes illustrates the fact that the efficiency of our
generic construction depends much on the underlying encryption schemes. In fact, there is no reason for the
growth to be exponential in t, even if the underlying encryption schemes are randomized (and thus have
an expansion factor in]1;∞[). Indeed, in [30] Lipmaa uses Damg̊ard-Jurik [31], an additively homomorphic
encryption scheme, to iteratively encrypt data with a function E1 ◦ · · · ◦ Et such that Ei has an expansion
factor (i + 1)/i > 1. The global scheme has therefore an expansion factor

∏t
i=1(i + 1)/i = t + 1, which

grows linearly. Unfortunately, Damg̊ard-Jurik is not ciphertext additive and cannot therefore be used in our
construction. But Lipmaa’s technique shows that linear growth in t is possible if the underlying schemes
enjoy some suitable properties.

Finally, we would like to highlight that due to space limitations we have focused on SFE, which is very
illustrative of our schemes’ practicality. However, an homomorphic encryption scheme has many applications
beyond SFE (see [5]). We hope our research will motivate the analysis of such applications.

References

1. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On Data Banks and Privacy Homomorphisms. In: On Data Banks
and Privacy Homomorphisms. Academic Press (1978) 169–180

2. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems.
Communications of the ACM 21(2) (1978) 120–126

3. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions
on Information Theory 31(4) (1985) 469–472

4. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: 18th Annual Eu-
rocrypt Conference (EUROCRYPT’99), Prague, Czech Republic. Volume 1592 of Lecture Notes in Computer
Science., Springer (1999) 223–238

5. Rappe, D.K.: Homomorphic cryptosystems and their applications. Cryptology ePrint Archive, Report 2006/001
(2006) http://eprint.iacr.org/.

6. Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! In: Finite fields: theory, applications, and algo-
rithms (Las Vegas, NV, 1993). Volume 168 of Contemp. Math., Amer. Math. Soc. (1994) 51–61

7. Steinwandt, R., Geiselmann, W.: Cryptanalysis of Polly Cracker. IEEE Transactions on Information Theory
48(11) (2002) 2990–2991

8. Grigoriev, D., Ponomarenko, I.: Homomorphic public-key cryptosystems and encrypting boolean circuits. Appli-
cable Algebra in Engineering, Communication and Computing 17(3), 239-255. (2006) 17 (2006) 239–255

9. Choi, S.J., Blackburn, S.R., Wild, P.R.: Cryptanalysis of a homomorphic public-key cryptosystem over a finite
group. J. Math. Cryptography 1 (2007) 351–358

10. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP J. Inf. Secur.
2007(1) (2007) 1–15

11. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to cryptography (extended ab-
stract). In Koblitz, N., ed.: Advances in Cryptology—CRYPTO ’96. Volume 1109 of Lecture Notes in Computer
Science., Springer-Verlag (1996) 283–297

12. Feigenbaum, J., Merritt, M.: Open questions, talk abstracts, and summary of discussions. In: DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. Volume 2. (1991) 1–45

13. Domingo-Ferrer, J.: A new privacy homomorphism and applications. Information Processing Letters 60(5) (1996)
277–282

14. Domingo-Ferrer, J.: A provably secure additive and multiplicative privacy homomorphism. In Chan, A.H.,
Gligor, V.D., eds.: Information Security, 5th International Conference, ISC 2002 Sao Paulo, Brazil, September 30
- October 2, 2002, Proceedings. Volume 2433 of Lecture Notes in Computer Science., Springer (2002) 471–483

15. Cheon, J.H., Kim, W.H., Nam, H.S.: Known-plaintext cryptanalysis of the domingo-ferrer algebraic privacy
homomorphism scheme. Inf. Process. Lett 97(3) (2006) 118–123

16. Wagner, D.: Cryptanalysis of an algebraic privacy homomorphism. In: Information Security, 6th International
Conference, ISC 2003, Bristol, UK, October 1-3, 2003, Proceedings. Volume 2851 of Lecture Notes in Computer
Science., Springer (2003) 234–239

17. Armknecht, F., Sadeghi, A.R.: A new approach for algebraically homomorphic encryption. Cryptology ePrint
Archive, Report 2008/422 (2008) http://eprint.iacr.org/.

18. Kiayias, A., Yung, M.: Secure Games with Polynomial Expressions. In: ICALP: Annual International Colloquium
on Automata, Languages and Programming. (2001)

19. Bleichenbacher, D., Kiayias, A., Yung, M.: Decoding of Interleaved Reed Solomon Codes over Noisy Data. In
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J., eds.: Automata, Languages and Programming, 30th
International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings. Volume
2719 of Lecture Notes in Computer Science., Springer (2003) 97–108

20. Coppersmith, D., Sudan, M.: Reconstructing curves in three (and higher) dimensional space from noisy data. In:
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC’2003 (San Diego, California,
USA, June 9-11, 2003), New York, ACM Press (2003) 136–142

21. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In Kilian, J., ed.: Theory of
Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12,
2005, Proceedings. Volume 3378 of Lecture Notes in Computer Science., Springer (2005) 325–341

22. Sander, T., Young, A., Yung, M.: Non-interactive CryptoComputing for NC1. In: Proceedings of the 40th
Symposium on Foundations of Computer Science (FOCS), New York, NY, USA, IEEE Computer Society Press
(1999) 554–567

23. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice problems. In Okamoto, T.,
Wang, X., eds.: Public Key Cryptography - PKC 2007, 10th International Conference on Practice and Theory
in Public-Key Cryptography, Beijing, China, April 16-20, 2007, Proceedings. Volume 4450 of Lecture Notes in
Computer Science., Springer (2007) 315–329

24. Goldreich, O., Goldwasser, S., Halevi, S.: Eliminating decryption errors in the ajtai-dwork cryptosystem. In
Kaliski, Jr., B.S., ed.: Advances in Cryptology – CRYPTO ’ 97. Volume 1294 of Lecture Notes in Computer
Science., International Association for Cryptologic Research, Springer-Verlag, Berlin Germany (1997) 105–111

25. Regev, O.: New lattice based cryptographic constructions. In: Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, STOC’2003 (San Diego, California, USA, June 9-11, 2003), New York, ACM Press
(2003) 407–416

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, ACM Press (2005)
84–93

27. Ajtai, M.: Representing hard lattices with O(n log n) bits. In Gabow, H.N., Fagin, R., eds.: Proceedings of the
37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, ACM (2005)
94–103

28. Phong Q. Nguyen: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto ’97. In: Ad-
vances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 15-19, 1999, Proceedings. Volume 1666 of Lecture Notes in Computer Science., Springer (1999)
288–304

29. Aguilar Melchor, C., Castagnos, G., Gaborit, P.: Lattice-based homomorphic encryption of vector spaces. In:
The 2008 IEEE International Symposium on Information Theory (ISIT’08), Toronto, Ontario, Canada, IEEE
Computer Society Press (2008) 1858–1862

30. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: 8th Information Security
Conference (ISC’05), Singapore. Volume 3650 of Lecture Notes in Computer Science., Springer (2005) 314–328

31. Damg̊ard, I., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Applications. In: ACISP 2003. (2003)
350–364

32. Ostrovsky, R., E. Skeith III, W.: Private searching on streaming data. J. Cryptology 20(4) (2007) 397–430

33. Adida, B., Wikström, D.: How to shuffle in public. In: TCC’07. Volume 4392 of Lecture Notes in Computer
Science., Springer (2007) 555–574

34. Adida, B., Wikström, D.: Offline/online mixing. In: ICALP’07. Volume 4596 of Lecture Notes in Computer
Science., Springer (2007) 484–495

35. Bringer, J., Chabanne, H., Pointcheval, D., Tang, Q.: Extended private information retrieval and its application
in biometrics authentications. In: CANS’07. Volume 4856 of Lecture Notes in Computer Science., Springer (2007)
175–193

36. Kursawe, K., Neven, G., Tuyls, P.: Private policy negotiation. In: Financial Cryptography Conference, FC’06.
Volume 4107 of Lecture Notes in Computer Science., Springer (2006) 81–95

A IND-CPA Security

We recall here the standard notion of indistinguishability under chosen-plaintext attacks (CPA security), for
an encryption scheme PKE = (KG, E ,D). We use the following game that an attacker A plays against a
challenger:

(pk, sk)← KG(·)
(St,m0,m1)← A(find, pk)
b← {0, 1} at random
c∗ ← Epk(mb)
b′ ← A(guess, c∗, St).

The advantage of such an adversary A is defined as

Adv(A) =
∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
A public key encryption scheme is said to be ε-indistinguishable under CPA attacks if Adv(A) < ε for

any attacker A which runs in polynomial time.

B Some Proofs

We include here some of the proofs of the lemmas of Section 3.3, and also the proof of Proposition 4 of
Section 4.3.

B.1 Proofs of Lemmas in Section 3.3

Lemma 1. Let (Zs,+)n be a group for s, n ∈ Z+. For any k, L, s′ ∈ Z+ such that (2k − 1) · L < s′ < s
there is a computable L-pseudohomomorphism from (Zs,+)n to (Zs′ ,+)n

′
where n′ = n · d(log2 s)/ke.

Proof. (sketch) Let n′ = n · d(log2 s)/ke, define
φ : (Zs,+)n → (Z,+)n

′

(x1, . . . , xn) → (y1, . . . , yn′)
φ∗ : (Z,+)n

′ → (Zs,+)n

(y1, . . . , yn′) → (z1, . . . , zn)
with y(i−1)·d(log2 s)/ke+j being the j-th k-bit block of xi seen as an integer in Z and,

zi =
(∑d(log2 s)/ke

j=1 2(j−1)·k · y(i−1)·d(log2 s)/ke+j

)
mod s.

The fact that φ∗(φ(x)) = x is trivial. Note that φ∗ is linear and thus for any sum
∑
` φ(x`) of images of

φ, φ∗(
∑
`

φ(x`)) =
∑
`

φ∗(φ(x`)) =
∑
`

x`

Define ψ : (Zs,+)n → (Zs′ ,+)n
′

and ψ∗ : (Zs′ ,+)n
′ → (Zs,+)n by ψ(x) = φ(x) mod s′ for x ∈ (Zs,+)n

and ψ∗(y) = φ∗(y) for y ∈ (Zs′ ,+)n
′
. For any sum

∑
` ψ(x`) of images of ψ,

ψ∗(
∑
`

ψ(x`)) = φ∗(
∑
`

φ(x`) mod s′)

Which is equal to
∑
` x` as long as the coordinates of

∑
` φ(x`) are smaller than s′. The sum of k′ ≤ L

images of φ results in elements with coordinates at most equal to (2k−1)·L < s′. (ψ,ψ∗) is thus a computable
L-pseudohomomorphism from (Zs,+)n to (Zs′ ,+)n

′
.

Lemma 2. For any s1, s2, n ∈ Z+ there is a computable L-pseudohomomorphism from (Zs1 ,+)n to (Zs2 ,+)n

for L = bs2/s1c.

Proof. (sketch) As an L-pseudohomomorphism only makes sense for L > 0 we suppose that s2 > s1.
Define φ : (Zs1 ,+)n → (Zs2 ,+)n by φ((x1, . . . , xn)) = (x1, . . . , xn), and φ∗ : (Zs2 ,+)n → (Zs1 ,+)n by
φ∗((y1, . . . , yn)) = (y1 mod s1, . . . , yn mod s1). For any k ≤ L, and z1, . . . , zk < s1, we have

∑k
i=1 zi < k · s1

(in Z) and thus
∑k
i=1 zi < s2. This fact directly implies that φ∗(φ(x1) + . . . , φ(xk)) = x1 + . . .+ xk mod s1,

for any k elements x1, . . . ,xk ∈ Zns1 . Thus, (φ, φ∗) is an L-pseudohomomorphism from (Zs1 ,+)n to (Zs2 ,+)n.

Lemma 3. A plaintext additive L-pseudohomomorphic scheme PKE with plaintext space (Zs,+)n can be
transformed into a plaintext additive L-pseudohomomorphic scheme PKE′ with plaintext space (Zs,+)kn,
for any k ∈ Z+. This transformation preserves indistinguishability.

Proof. (sketch) We can use the direct product to define E ′′ : (Zs,+)n × (Zs,+)n → (C,⊕) × (C,⊕) with
E ′′((x1, x2)) = (E(x1), E(x2)). Similarly, we define D′′ : (C,⊕)×(C,⊕)→ (Zs,+)n×(Zs,+)n by D′′(y1, y2) =
(D(y1), D(y2)), and KG′′ = KG. PKE′′ = (KG′′, E ′′,D′′) is a plaintext additive L-pseudohomomorphic
encryption scheme. If PKE is IND-CPA, then PKE′′ is IND-CPA by a standard hybrid argument. Using
this construction recursively we obtain PKE′ for any k.

Lemma 4. For any s, n ∈ Z+ and any ` < n we define π−1 : (Zs,+)` → (Zs,+)n by π−1((x1, · · · , x`)) =
(x1, · · · , x`, 0, · · · , 0), where π is the standard projection. (π−1, π) is a computable ∞-pseudohomomorphism
from (Zs,+)` to (Zs,+)n.

Proof. T rivial.

Lemma 3 and 4 prove that it is possible to change the dimension of the plaintext space of a plaintext
additive pseudohomomorphic encryption scheme, without changing the order, which proves the last corollary.

Corollary 2. A plaintext additive L-pseudohomomorphic scheme PKE with plaintext space (Zs,+)n can
be transformed into a plaintext additive L-pseudohomomorphic scheme PKE′ with plaintext space (Zs,+)`,
for any ` ∈ Z+. This transformation preserves indistinguishability.

B.2 Proof of Proposition 4

Proposition 4. If t encryption schemes E1, . . . , Et are all ε-indistinguishable under CPA attacks, then the
global encryption scheme EG(x) = (E1(x), . . . , Et(x)) is tε-indistinguishable under CPA attacks.

Proof. Let us start with the case t = 2, i.e. EG = (E1, E2). Assume that there exists a CPA attack A against
EG with advantage ε′. Let us construct, then, an attacker A′ whose goal is to attack either E1 or E2.

In the first stage, A′ receives a public key pk1 for E1 and a public key pk2 for E2. Then, A′ initializes A
with the global public key PKG = (pk1, pk2). The hypothetical attacker A outputs two messages m0,m1. A′
gives the same messages m0,m1 to the two challengers (one for E1 and the other one for E2). As a result, A′
receives a ciphertext E1(mb1) from the first challenger and a ciphertext E2(mb2) from the second challenger,
where b1, b2 ∈ {0, 1} are random bits.
A′ sends then to A the challenge ciphertext c∗ = (E1(mb1), E2(mb2)). At some point, A outputs his guess

b′. Finally, the new attacker A′ outputs the same guess b′1 = b′2 = b′ for the two games he is playing.
If b1 = b2 (which happens with probability 1/2), then A outputs the correct bit b′ = b1 with probability

1/2 + ε′. IF b1 6= b2 (which happens again with probability 1/2), let us denote by δi the probability that A
outputs b′ = bi, for i = 1, 2. Let δj = max{δ1, δ2} ≥ 1/2, where j ∈ {1, 2}. Then, we have that the probability
that A′ guesses the bit bj is

1
2
·
(

1
2

+ ε′
)

+
1
2
· δj ≥

1
2

+
ε′

2
.

Summing up, A′ would have an advantage ε′/2 in breaking the semantic security of the scheme Ej .
If ε′ ≥ 2ε, this would mean that the attacker A′ would break the ε-indistinguishability of Ej , which is a
contradiction with the hypothesis of the proposition. Therefore, we conclude that EG is 2ε-indistinguishable.

Applying this result in a recursive way, starting with (E1, E2), (E3, E4), . . ., then (E1, . . . , E4), (E5, . . . , E8), . . .,
and so on, we obtain in log t steps the result stated in this proposition.

C Applications of SFE

Here we list some particular cases of secure function evaluation of polynomials where the t-chained schemes
could be used. Actually, our schemes can be seen in some way as a generalization of the scheme by Boneh,
Goh and Nissim [21]. Therefore, our solution can be applied in many of the cases where the Boneh-Goh-
Nissim scheme has been applied, sometimes adding some new functionalities, since our solution allows the
secure evaluation of polynomials of any degree t (not only t = 2).

Private searching. A clear example is the topic of private searching on streaming data, introduced in
[32]. There, the authors propose a solution, based on the Boneh-Goh-Nissim cryptosystem, to filter messages
from a stream. The programmer can choose a subset S ⊂ D × D, D being a public dictionary, and filter
out the messages containing the couples of keywords in S (for example the couple (secret,bomb)), without
revealing S. Our schemes allow to solve this problem in the case of tuples of keywords in Dt for any t.

t-DNF formula evaluation. Boneh, Goh and Nissim explain in their paper [21] how to apply their cryp-
tographic scheme for evaluating a 2-DNF formula. Our schemes could in principle be used to evaluate any
t-DNF formula, for bigger values of t. A t-DNF formula is defined by:

φ(x1, . . . , xn) =
q∨
j=1

(`j,1 ∧ `j,2 ∧ . . . ∧ `j,t),

where `j,i ∈ {x1, x̄1, . . . , xn, x̄n}. In order to evaluate this formula for a secret assignment a = (a1, . . . , an) ∈
{0, 1}n, we define the polynomial P (x1, . . . , xn) =

∑q
j=1 `j,1 · . . . · `j,t over Zs for s > q and crypto-compute

P (a). As highlighted in [21], we have φ(a) = 1 ⇔ P (a) 6= 0 which ensures that the function is correctly
evaluated. Boneh Goh and Nissim use this technique to improve a set of cryptographic protocols among
which a Private Information Retrieval scheme whose communication complexity drops from n1/2 to n1/3. Of
course, using t-chained schemes, this complexity drops to n1/(t+1).

Other uses. Other cryptographic functionalities where both the scheme by Boneh, Goh and Nissim and
our scheme can be applied include mixing and shuffling [33, 34] or extended private information retrieval
[35]. Finally, the work [36] on private policy negotiation is an example where the scheme of Boneh, Goh and
Nissim cannot be used, because it allows only one multiplication, but our schemes could be applied.

D Symmetrically Secure Function Evaluation

When using t-chained schemes for the secure evaluation of a t-degree multivariate polynomial F (x1, . . . , xn),
the only privacy property that can be guaranteed in general is privacy of Bob’s inputs, as we have discussed
in Section 4.3. Recall that this privacy property is enough for many of the practical applications of secure
function evaluation. On the other hand, the secure evaluation techniques explained in Sections 4.1 and 4.2
cannot always ensure the privacy of the function held by Alice . To illustrate this fact, suppose we try to
securely evaluate a polynomial by using a t-chained scheme, where the last encryption scheme E in the chain
is such that the distribution of the ciphertext E(m1) + . . . + E(m`) depends on the number ` of sums. In
this case, when Bob receives the final encryption of F (a1, . . . , an), he can obtain some information about the
number of monomials in the polynomial, breaking in this way the intended privacy for Alice.

These problems can be overcome if we assume that all the encryption schemes in the t-chain enjoy a
suitable uniformity property.

Definition 4. A (pseudo)homomorphic public key encryption scheme PKE = (KG, E ,D), with randomness
space R for encryption, is said to have the uniformity property if there exists a probability distribution r ←↩ R
such that

{E(m1, r1) + E(0, r) | r ←↩ R} and {E(m2, r2) + E(0, r) | r ←↩ R}

are computationally indistinguishable, for any messages m1,m2 and random values r1, r2.

The most well-known homomorphic encryption schemes (ElGamal, Paillier, Boneh-Goh-Nissim) enjoy
this property, taking r ←↩ R as the uniform random distribution. However, for the encryption schemes based
on lattices, particularly those that we consider in Section 5, it is not known if this uniformity property can
be enjoyed. Our intuition is that some of them will not, but that there can be other (secure) instantiations
enjoying this property. Studying this property for particular lattice-based schemes remains as a challenging
open problem.

In any case, assuming that we have a t-chain where all the encryption schemes enjoy the uniformity
property, we can slightly modify the SFE techniques explained in Sections 4.1 and 4.2 to achieve privacy for
the polynomial F (Alice’s input). The idea is that Alice must replace E(a1) + . . .+ E(a`) with E(a1) + . . .+
E(a`) + E(0, r), where r ←↩ R, each time she computes an encryption of a sum of plaintexts (in particular,
each time she computes an encryption of a product of two plaintexts, as well). In this way, each ciphertext
decrypted by Bob contains information on the associated plaintext only, and not on the operations it has
undergone.

