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Abstract. Over a period of sixteen years elliptic curve cryptography went
from being an approach that many people mistrusted or misunderstood to
being a public key technology that enjoys almost unquestioned acceptance. We
describe the sometimes surprising twists and turns in this paradigm shift, and
compare this story with the commonly accepted Ideal Model of how research
and development function in cryptography. We also discuss to what extent the
ideas in the literature on “social construction of technology” can contribute to
a better understanding of this history.

1. Introduction

Research into number theoretic questions concerning elliptic curves was originally
pursued mainly for aesthetic reasons. But in recent decades such questions have
become important in several applied areas, including coding theory, pseudorandom
number generation, and especially cryptography.

The first use of elliptic curves in cryptography was H. W. Lenstra’s elliptic curve
factoring algorithm [69]. Inspired by this unexpected application of elliptic curves,
in 1985 N. Koblitz [52] and V. Miller [80] independently proposed using the group of
points on an elliptic curve defined over a finite field in discrete log cryptosystems.
The primary advantage that elliptic curve systems have over systems based on
either integer factorization or the discrete log problem in the multiplicative group
of a finite field is the absence of a subexponential-time algorithm (such as those
of index calculus type) that could find discrete logs in these groups, provided that
the curve and the underlying field are suitably chosen. Consequently, one can use
an elliptic curve group that is smaller in size while maintaining the same level of
security. In many situations the result is smaller key sizes, bandwidth savings,
and faster implementations, features which are especially attractive for security
applications in devices where computational power and integrated circuit space are
limited, such as smart cards and cell phones.

In 2005 the U.S. National Security Agency posted a paper [86] titled “The Case
for Elliptic Curve Cryptography,” in which they recommended that industry “take
advantage of the past 30 years of public key research and analysis and move from
first generation public key algorithms and on to elliptic curves.” The NSA com-
mented:

The best assured group of new public key techniques is built on
the arithmetic of elliptic curves. This paper will outline a case
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for moving to elliptic curves as a foundation for future Internet
security. This case will be based on both the relative security of-
fered by elliptic curves... and the relative performance of these
algorithms. While at current security levels elliptic curves do not
offer significant benefits over existing public key algorithms, as one
scales security upwards over time to meet the evolving threat posed
by eavesdroppers and hackers with access to greater computing re-
sources, elliptic curves begin to offer dramatic savings over the old,
first generation techniques.

In the present paper we give an overview of the history of elliptic curve cryptog-
raphy (ECC), focusing on the controversies over the security of ECC. This story
can be seen as a case study in the history of technology. We start by describing
what we call the Ideal Model of research and development in cryptography. The
subsequent sections examine to what extent our observations and experiences con-
form to or contradict that Ideal Model. We then summarize some of the viewpoints
found in a subfield of history and sociology of science called Social Construction of
Technology,1 and ask whether those ideas can contribute to a better understanding
of the history of ECC.

2. The Ideal Model

Although not everyone working in cryptography necessarily believes in the valid-
ity of what we shall call the Ideal Model of research and development, the general
outline given below is a fair representation of the image that cryptographers hope
to project to the outside world — especially to laypeople, business customers, and
scientists and engineers in related fields.

1. Security always at center stage. The most fundamental feature of any type of
cryptographic technology is its security — its resistance to being compromised by
an adversary. Although functionality and efficiency are also important — and,
for example, users may choose to make do with smaller parameters for increased
efficiency if they need only short-term security — the desire to speed up encryption
and signature and improve user interface is never a valid reason to lose sight of the
basic question of security. In addition, there is a broad realization that complacency
is the enemy of security. Hence, the security of the protocols and the underlying
mathematical problems is constantly reevaluated in light of new research.

2. From an art to a science. Cryptographic research and development have largely
left behind the days when they depended on the intuition of artisans. Rather than a
craft or art, cryptography has truly become a science. The techniques of “provable
security” allow marketers of cryptographic protocols to give ironclad guarantees
that broad classes of attacks — and these include even attacks that no one has
yet imagined — are impossible provided that certain widely believed mathematical
assumptions are correct. In addition, the increasing use of automatic software-
checkers and theorem-provers gives further reason to expect that human mistakes

1Often referred to by the acronym SCOT, not to be confused with SCOS (Social Construction
of Science) or STOC (one of the most prestigious annual conferences in computer science). In this
paper in the interest of readability we shall eschew the use of abbreviations and acronyms, with
only a few exceptions, such as RSA and ECC.
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and failings will play an ever-diminishing role in the evaluation and selection of
cryptographic products.

3. Tradition of vigorous debate. The cryptographic community expects and wel-
comes vigorous debate on the merits of competing systems and methods of analysis.
Because of the large interests at stake, these discussions might be heated at times,
but the participants understand the need for sharp debate, and so do not take
disagreements personally.

4. Special institutions to ensure careful vetting. Although, as in other branches of
science, cryptographers have the usual peer review system for academic journals,
the most important guarantors of quality control are the program committees that
choose papers for presentation at major conferences2 and the accredited industrial
standards bodies that evaluate specific systems and recommend their deployment
with suggested parameters.

5. Survival of the fittest. As a result of the checks and balances that are part and
parcel of cryptographic research and development, the technology that emerges as
the “winner” has passed a stringent series of tests leading to “survival of the fittest.”
In that sense it can be regarded as intrinsically the best of the alternatives available
at the time.

3. The mid-1980s: Discrete Logs and Factoring

At the heart of any type of public key cryptography is a “one-way” mathematical
process or function for which the inverse cannot feasibly be computed. In the
famous RSA system the process is to take two very large randomly-generated prime
numbers and multiply them together. In a classical Diffie-Hellman system the
operation is exponentiation in a finite field. In the former case the inverse process
is integer factorization. In the latter type of system the inverse is called the discrete

logarithm in the finite field.
More precisely, let G be a subgroup of prime order n in the multiplicative group

of the field of q elements Fq, where q = pf is a prime power. (For simplicity we shall
generally assume that G has prime order; this is usually the case in cryptographic
applications.) Given a generator g ∈ G (i.e., a non-identity element), the discrete

log problem in G is the problem, given y ∈ G, of finding an integer x (mod n) such
that y = gx.

The simplest example of a Diffie-Hellman system is a basic key agreement scheme
that works as follows. Suppose that Alice and Bob wish to agree on a shared key,
which will be a random element of G. Alice chooses a secret integer a (mod n) and
sends Bob the group element A = ga; Bob chooses a secret integer b (mod n) and
sends Alice the group element B = gb. The shared key is then gab, which Alice
can compute as Ba and Bob can compute as Ab. An eavesdropper who monitors
the exchange of information has the task of computing gab knowing g, ga, and gb.
This problem is known as the Diffie-Hellman problem in the group G. The Diffie-
Hellman problem can be immediately solved if one knows how to find discrete logs
in G, and it is thought to be essentially equivalent to the discrete log problem.

2The vast majority of papers in cryptography are published in refereed conference proceedings,
not in journals.
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3.1. Index calculus. The most efficient algorithms to solve both the problem of
factoring the product of two large primes and the problem of finding the discrete
log in a finite field were — and still are — of “index calculus” type. We’ll illustrate
how index calculus works using a simplified version for the discrete log in a prime
field. For ease of exposition we’ll temporarily suppose that G is the entire group
F∗

p rather than a prime order subgroup, so that n = p− 1. Let g be a generator of

F
∗

p. Given y ∈ F
∗

p, we want to find x such that y ≡ gx (mod p).
To do that we first choose a “factor base” consisting of the first s primes, where

s is chosen in a certain optimal way so as to minimize running time. The first part
of the algorithm, which does not depend on y, consists in finding the discrete logs
of the factor base. We choose some random value ui less than n and compute the
least positive residue of gui (mod p). If that residue has a prime factor greater than
the s-th prime, we make another choice of ui. Finally we get a “smooth” residue
that has no large prime factor, at which point we can write

gui ≡
s∏

j=1

p
αij

j (mod p),

and hence

ui ≡
s∑

j=1

αijxj (mod n),

where xj is the discrete log of pj . When we get more than s such congruences we
can find the unknowns xj by linear algebra over Z/nZ. Once we have the discrete
logs of the pj , the rest of the algorithm proceeds quickly. We choose random values
of u until we get one for which the least positive residue of guy has no prime factor
greater than ps, so that we can write

guy ≡
s∏

j=1

p
βj

j (mod p).

We conclude that the desired discrete log is

x ≡




s∑

j=1

βjxj


 − u (mod n).

In the early 1980s the best index calculus algorithms for either factorization or
discrete log in a finite field had asymptotic running time of the form exp(k1/2+ǫ),
where k is, respectively, the bitlength of the number to be factored or the bitlength
of the size of the finite field. An important exception — which turned out to be a
harbinger of things to come — was Don Coppersmith’s algorithm [18] for finding
discrete logs in the finite fields F2k . His algorithm had running time of the form
exp(k1/3+ǫ).3

After the demise of the early knapsack cryptosystems (which were proposed
in the late 1970s and broken within a few years), most cryptographic protocols
were based on either factorization or discrete logs in a finite field. This was a
little disconcerting, because it appeared that, despite the superficial dissimilarity
between the two problems, the most efficient algorithms were very similar. In such
circumstances one might speculate that a major advance in solving one of the two

3In discussing running times of attacks on number theoretic problems, we shall not distinguish
between heuristic and proven time estimates.
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supposedly “hard” problems would soon be followed by a similar improvement in
methods to solve the other one. (And in fact a few years later, when the number
field sieve was developed for factoring, it was soon followed by a version that finds
discrete logs in a prime field [34].) In that sense the two problems are not really
independent, and it might have seemed that cryptographers were putting all their
security eggs in one basket.

3.2. Elliptic Curve Cryptography (ECC). In 1984 Hendrik Lenstra circulated
a preprint describing a new factorization method. Like the index calculus algo-
rithms available at the time, it also has running time exp(k1/2+ǫ) to factor a k-bit
integer, but it has several features that mark a radical departure from the other
algorithms with that running time. First, it is not an index calculus algorithm, and
it seems that no algorithm similar to Lenstra’s can be developed for the discrete
log problem in a finite field. Second, although it is not more efficient than index
calculus for factoring an RSA-type integer — that is, a product of two primes of
roughly the same size — it has the advantage that its running time depends on
the size of the smallest prime factor, not on the size of the number itself. This was
later put to use in factoring other types of numbers that arise in cryptography.

But the most striking feature of Lenstra’s factoring algorithm [69] was that it
used elliptic curves. This was the first application of elliptic curves in cryptography,
and it set in motion a process of finding cryptographic uses for many types of “pure”
mathematics — especially arithmetic algebraic geometry — that had never before
been studied for this purpose.

In 1985 V. Miller [80] and N. Koblitz [52] proposed a completely different cryp-
tographic use of elliptic curves: constructing Diffie-Hellman type protocols using
the group of points of an elliptic curve defined over a finite field rather than the
multiplicative group of a finite field. Let E be given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ Fq. The groups used in ECC are the prime order subgroups G of the
Fq-points of E. In the setting of the elliptic curve group law, which is customarily
written in additive notation, the discrete log problem asks: given P,Q ∈ G, find x
(mod n) such that Q = xP .

The most important reason for considering ECC was that it seemed unlikely that
index calculus could be adapted for use in an elliptic curve group. The reason is
that in order to apply the idea of index calculus, one needs a set of “small” elements
(the “factor base”) such that a reasonable proportion of the remaining elements can
be efficiently written in terms of the factor base. In [80] Miller made an argument
using the Néron-Tate height function (see also [98], which contains a much more
detailed discussion) that if one tries to use the most natural notion of “smallness”
one will find that there are very few points of bounded size, not nearly enough to
form a factor base for index calculus.

In the early years of ECC a popular choice of curves for expository purposes was
the equation y2 = x3 − x defined over a prime field Fp. If p ≡ 3 (mod 4) — this
is known as the supersingular case — it’s an easy exercise to show that the group
order is p+ 1. One can then quickly find a p such that this group has a very large
prime-order subgroup. The procedure is similar to the following method for finding
a prime field whose multiplicative group has a prime-order subgroup of smallest
possible index 2. Namely, let n be a Sophie Germain prime, and set p = 2n + 1.



6 ANN HIBNER KOBLITZ, NEAL KOBLITZ, AND ALFRED MENEZES

Then F
∗

p has a subgroup of prime order n = (p − 1)/2. In the elliptic curve case
choose a prime n for which p = 4n − 1 is prime; then the group of Fp-points on
y2 = x3 − x is the product of the group of 4 points of order 2 and a subgroup of
prime order n = (p+ 1)/4.

In characteristics 2 and 3 the supersingular curves had another convenient fea-
ture: point doubling on a supersingular curve in characteristic 2 and point tripling
on a supersingular curve in characteristic 3 take negligible time.

Convenient as these parameter choices were, the early writers on ECC later
regretted having used them, because in 1991 we learned that the discrete log prob-
lem on a supersingular curve is much easier to solve than on most curves (see
§4). Among all elliptic curves defined over Fp the supersingular ones are a tiny
proportion — a randomly selected curve has probability only O(1/

√
p) of being

supersingular — but the frequent use of supersingular curves for ease of exposition
gave some people an exaggerated impression of their importance.

Avoiding supersingular curves does not, however, mean avoiding curves that
are very easy to compute with. For example, one can use the very same curve
y2 = x3 − x but choose p ≡ 1 (mod 4). In that case a formula for the group order
goes back to Gauss. If p is expressed as a sum of two squares, p = a2+b2 with a ≡ 1
(mod 4), then #E(Fp) = p + 1 − 2a. (A similar example is given by y2 = x3 + 1
with p ≡ 1 (mod 3).)

The two curves in the last paragraph are obtained by reduction mod p of an
elliptic curve defined over Q that has complex multiplication by, respectively, the
fourth roots and the third roots of unity. Namely, on the curve y2 = x3 − x we
have the automorphism (x, y) 7→ (−x, iy), and on the curve y2 = x3 + 1 we have
(x, y) 7→ (ζx, y), where ζ = exp(2πi/3).

3.3. ECC protocols. By a protocol we mean a specific sequence of steps that are
carried out in a particular application. Most of the protocols using elliptic curves
were obtained by simply repeating the ones that had been developed for finite
fields with the obvious modification in notation. Until the advent of pairing-based
cryptography (see §9), there were no important protocols that exploited any of the
rich structure of elliptic curves.

However, it was a little tricky to find a good elliptic curve analogue of the
finite field Digital Signature Algorithm that NSA developed in 1991 (see §7). We
now describe this construction. In the elliptic curve digital signature algorithm
(ECDSA) we suppose that Alice wants to sign a message that she has sent to Bob,
and both Alice and Bob are using the same elliptic curve defined over Fq containing
a subgroup G of prime order n with generator P . For simplicity we shall suppose
that q is a prime, although the construction can easily be adapted to a prime power
q as well.

As usual, we suppose that we have a “hash function” that assigns a value H
to a message; H plays the role of the message’s “fingerprint” in the sense that we
assume that it is computationally infeasible to find two different messages with the
same hash value.

ECDSA key generation. Each user Alice constructs her keys by selecting a random
integer x in the interval [1, n− 1] and computing Q = xP . Alice’s public key is Q;
her private key is x.
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ECDSA signature generation. To sign a message having hash value H , 0 < H < n,
Alice does the following:

(1) She selects a random integer k in the interval [1, n− 1].
(2) She computes kP = (x1, y1) and sets r equal to the least nonnegative

residue of x1 mod n (where x1 is regarded as an integer between 0 and
q− 1). (Note: If r = 0, then she must go back to step 1 and select another
k.)

(3) She computes k−1 mod n and sets s equal to the least nonnegative residue
of k−1(H + xr) mod n. (Note: If s = 0, then she must go back to step 1.)

The signature for the message is the pair of integers (r, s).

ECDSA signature verification. To verify Alice’s signature (r, s) on a message, Bob
does the following:

(1) Obtain an authenticated copy of Alice’s public key Q.
(2) Verify that r and s are integers in the interval [1, n− 1], and compute the

hash value H of the message.
(3) Compute u1 = s−1H mod n and u2 = s−1r mod n.
(4) Compute u1P + u2Q = (x0, y0) and, regarding x0 as an integer between 0

and q − 1, set v equal to the least nonnegative residue of x0 mod n.
(5) Accept the signature if and only if v = r.

Notice that if Alice generated her signature correctly, then u1P + u2Q = (u1 +
xu2)P = kP because k ≡ s−1(H + xr) (mod n), and so v = r.

3.4. Early algorithms for elliptic curve discrete logs. At first the only algo-
rithms known to solve the elliptic curve discrete log problems were generic ones,
that is, they have nothing to do with the specific structure of the elliptic curve
group. The first such algorithm, designed in the setting of finite field discrete logs
by Pohlig and Hellman [87], uses the Chinese remainder theorem to reduce the
problem to the discrete log problem in the prime-order subgroups. This is why
groups of prime order are usually chosen for Diffie-Hellman type cryptosystems.

In a group G of prime order n the two best generic algorithms — Shanks’ “baby-
step/giant-step” and Pollard’s rho [88] — each requires time roughlyO(

√
n); for this

reason they’re known as squareroot attacks on the discrete log problem. Although
Shanks’ method has the advantage of being deterministic, it has a very large storage
requirement — also of order

√
n — and so in practice some randomized version of

the Pollard-rho method is preferred.
The general idea of Pollard is to take a pseudo-random walk in G (i.e., it’s

deterministic, but heuristically seems to have a high degree of randomness) using
certain combinations of the basepoint P and the point Q with the unknown discrete
log. As soon as the walk hits the same place twice, one can immediately solve for
the discrete log. The

√
n estimate comes from the “birthday paradox.”

As we shall soon discuss, subsequently faster-than-squareroot algorithms were
found for various classes of elliptic curves. However, it still appears — after a
quarter century of ECC — that the types of curves used in most cryptographic
applications cannot be attacked by anything faster than the generic algorithms.

The last statement has to be qualified somewhat. One can group together a point
and its negative so as to apply Pollard-rho to a set of (n− 1)/2 pairs of points; this

gives a speed-up of generic Pollard-rho by a factor of
√

2. Moreover, if the curve E
is defined over a much smaller subfield — say, over Fq0

, where q = qℓ
0 — then by
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grouping together Frobenius conjugacy classes of points (obtained by applying the
map (x, y) 7→ (xq0 , yq0)) one can speed up the generic algorithm by an additional

factor of
√
ℓ (see [29, 107]). This is a relatively small effect, but it does have to be

taken into account if one wants the efficiency advantage that comes from choosing
an elliptic curve defined over a small field.

4. The Weil Pairing Attack

If E is an elliptic curve defined over Fq, q = pf , let E[n] ⊂ E(Fq), where Fq is

the algebraic closure of Fq, denote the set of all Fq-points of order n. If n is prime
to p, then E[n] ≈ (Z/nZ)× (Z/nZ). Let Fqk be the smallest field that contains the
coordinates of the points in E[n]. In our applications n will be a prime dividing
#E(Fq) but not dividing q − 1. In that case the integer k, which is called the
embedding degree, is also equal to the smallest positive integer such that n|(qk − 1).
Let µn ⊂ F

∗

qk denote the subgroup of n-th roots of unity. Then the Weil pairing is
a non-degenerate skew-symmetric bilinear map

E[n] × E[n] −→ µn.

This pairing can be efficiently computed if k is not too big (see [81, 82]).
The first use of the Weil pairing in cryptography was to solve the discrete log

problem in subexponential time on an elliptic curve of low embedding degree. In
[75] it was shown how the Weil pairing could be used to transport the elliptic curve
discrete log problem to the discrete log problem in the group F

∗

qk . In the latter
group index calculus methods are effective provided that k is very small. (A similar
attack using the Tate pairing was given by Frey and Rück [26], who introduced
that pairing into cryptographic use.)

However, curves for which k is small are very rare. The most important class
of such curves are the supersingular curves, i.e., those for which #E(Fq) ≡ 1
(mod p). For those curves k ≤ 6; in contrast, it was shown in [4] that very few
ordinary (meaning non-supersingular) curves have small embedding degree. A ran-
domly chosen curve over Fp has probability O(p−1/2) of being supersingular, and a
randomly chosen pair consisting of p and an ordinary curve over Fp has probability
only O(p−1) of having bounded embedding degree.

Nevertheless, the Weil pairing attack, which was the first subexponential algo-
rithm for the discrete log problem on a prime order subgroup of points on any
elliptic curve, had a major impact. As mentioned before, it had an especially chas-
tening effect on those of us who for expository convenience had used supersingular
curves with embedding degree k = 2 in articles and books.

For almost a decade it was widely assumed that supersingular curves should
be completely avoided in cryptography, and that even an ordinary curve had to
be checked to see that its embedding degree was fairly large. In practice k ≥ 20
was usually considered to be sufficient to guarantee intractability of the discrete
log problem in F

∗

qk . However, some cryptographers have gone to the extreme of
insisting that k ≥ (q − 1)/100 (see §11).

In reality, as long as k ≥ 6, with the state-of-the-art techniques available at
the time the discrete log problem in the field Fqk into which E(Fq) embeds was
at least as hard to solve using index calculus as the discrete log problem was to
solve directly on E(Fq) using Pollard-rho. And on rare occasions curves with k = 6
were considered in cryptography papers (for example, [55]). But such curves were
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almost universally shunned. Certainly no curves with low embedding degree were
permitted in the ECC standards.

5. Hyperelliptic Curve Cryptography

Just as the group of points on an elliptic curve can be used to construct crypto-
graphic protocols, so can the jacobian group of a genus-g hyperelliptic curve

y2 + h(x)y = x2g+1 + a1x
2g + · · · + a2g+1

(with deg h ≤ g) defined over Fq. This is a natural generalization of the elliptic curve
group, which is the case g = 1, and it was first proposed for use in cryptography in
1989 [53]. The group order for a hyperelliptic jacobian is approximately qg, that is,
the same size as one gets in elliptic curve cryptography working over the extension
field Fqg . In other words, if g is large, one can work over a small field. On the other
hand, the group operation is much more cumbersome than in the elliptic curve
case: it uses a process of reduction of divisors that is closely analogous to Gauss’
method for composition of binary quadratic forms. But in any case it turns out
that the discrete log problem is actually much easier on the jacobian of a high-genus
curve than on a comparably sized group of points of an elliptic curve, as shown by
Adleman, DeMarrais, and Huang [1] in 1994.

5.1. Two meanings of “complexity”. The subexponential-time algorithm in [1]
for the discrete log problem on the jacobian of a high-genus curve came as a big
surprise to people who were starting to think about implementing hyperelliptic
curve cryptography. When N. Koblitz proposed such systems in [53], he thought
that the difficulty of the discrete log problem for a genus g curve would probably
be at least as great as that of the corresponding problem on an elliptic curve. Isn’t
it reasonable to assume that a problem would be at least as hard to solve on a more
complicated object (a g-dimensional jacobian) as on a relatively simple object?

That way of thinking was a “rookie mistake” for a cryptographer to make, be-
cause he was confusing two meanings of “complexity”: conceptual complexity and
computational complexity. True, standard treatments of algebraic curves often de-
scribe the genus g as a measure of the complexity of the curve. And over a fixed
field it’s reasonable to regard high-genus curves as more complicated to compute
with than elliptic curves.

However, in practical applications what’s fixed is not the field Fq, but rather the
bitlength of the group size qg. And the algorithm in [1], while not subexponen-
tial in log q, is subexponential in g log q as g grows. Thus, from a computational
standpoint the discrete log problem on a suitably chosen elliptic curve over F2163

has much higher complexity than the discrete log problem on the jacobian of a
genus-163 hyperelliptic curve over F2. Such an elliptic curve at present would pro-
vide adequate security for cryptographic applications, whereas the genus-163 curve
definitely would not.

What made high-genus hyperelliptic curves computationally simpler than low-
genus curves was that there was a natural choice of “small” divisors that could be
used in index calculus. Namely, elements of the jacobian can be uniquely repre-
sented by certain pairs of polynomials of the form (a(x), b(x)), where deg a ≤ g and
deg b < deg a. The elements represented by (a(x), b(x)) with a(x) of small degree
can be used as the “factor base” (see §3.1) for index calculus, and this was what
Adleman, DeMarrais, and Huang did.
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5.2. Further developments in genus ≥ 3. A few years after the subexponential
index calculus algorithm was found for high-genus jacobians, Gaudry and others saw
that for much smaller genus one could get similar algorithms that, while not subex-
ponential, were significantly faster than Pollard-rho. The best and most recent of
them [21] can find discrete logs in the jacobian group of a hyperelliptic curve over
Fq of fixed genus g in O(q2−2/g) operations. Since a squareroot attack takes O(qg/2)

operations, this is a big improvement for g ≥ 3; for example, we get O(q4/3) rather
than O(q3/2) for genus 3. Somewhat surprisingly, for non-hyperelliptic curves of
fixed genus g, Diem [20] found an algorithm with significantly faster running time
than in the hyperelliptic case, namely O(q2−2/(g−1)). However, for genus 2 thus far
we have nothing faster than Pollard-rho in the general case.

6. RSA vs. ECC

6.1. Early attitudes toward ECC. For several years after elliptic curve cryptog-
raphy was proposed, the most common response from cryptographers was curiosity
and approval. Although most researchers had never studied elliptic curves and at
first had little understanding of the technical issues in ECC, they tended to react
positively to the general idea of a type of cryptography based on algebraic curves.
In the late 1980s a broad range of mathematicians were starting to work in the field,
and the growing interest in cryptography by mathematicians and the increasing so-
phistication of the mathematics that was being introduced perhaps were taken as
an indication that public key cryptography was coming into its own and would soon
be “ready for prime time.”

Moreover, ECC was not perceived as a commercial threat to anyone. Commercial
rivalries were still in the future, and even RSA had not yet become a major force
in commerce. In fact, to most people in the 1980s the term “information security”
meant that you bought a lock for your file cabinet. In many ways the atmosphere
during the first decade of academic work on cryptography was relaxed, open-minded
and curious — a contrast with what came later.

6.2. ECC becomes a commercial threat. In the late 1980s three professors at
the University of Waterloo formed a company, now called Certicom, that developed
and promoted ECC. Researchers affiliated with Certicom started attending meet-
ings of industrial standards bodies, where they lobbied for the inclusion of ECC
protocols in the recommendations. For example, the Elliptic Curve Digital Signa-
ture Algorithm (see §3.3) was making headway as an efficient alternative both to
RSA signatures and to NSA’s original finite field Digital Signature Algorithm (see
§7), although its final approval and inclusion in the standards didn’t occur until
1999 and 2000 [3, 85].

Meanwhile, RSA Data Security was finally enjoying commercial success. RSA
cryptography was becoming well known among the general public, and it had a
virtual monopoly on the market for public key cryptography. On the other hand,
there were clouds on the horizon. The recently developed number field sieve fac-
toring method had lowered the running time for factoring a k-bit RSA modulus
from exp(k1/2+ǫ) to exp(k1/3+ǫ). This was a dramatic improvement, and it meant
that the size of the numbers recommended for safe use of RSA would soon grow
to over a thousand bits. As small devices such as cell phones, pagers, and smart
cards entered the mass market, promoters of ECC were cautioning that RSA would
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have significant disadvantages in “constrained environments” that had low storage
capacity and bandwidth.

6.3. “ECC Central”: RSA strikes back. In 1997 RSA Data Security put on its
website a section called “ECC Central,” running to nine printed pages, in order to
respond to what they termed “significant coverage in the media” and “the current
excitement around elliptic curve cryptosystems.” The website announced that

The recommendation of RSA, supported by the world’s top cryp-
tographers and cryptanalysts, is that the use of ECC puts customer
data at far too great a risk and that further study and testing is
required.

The company’s main argument to justify its recommendation was that

...the integer factorization problem (on which the security of RSA
depends) has been studied intensively by number theorists and
mathematicians around the world for literally hundreds of years
and there is no doubt that the RSA cryptosystem has stood the
test of time very well. By contrast, research into the elliptic curve
discrete logarithm problem (on which the security of elliptic curve
cryptosystems depends) and on elliptic curve cryptosystems in gen-
eral represents a fraction of that spent on both RSA and the integer
factorization.

The last section of the RSA policy statement rhetorically asked “Elliptic curve
cryptosystems ready for prime time?” and answered the question in the negative.

RSA buttressed its position by appending a section called “The Experts Com-
ment on ECC” in which eight cryptographers offered their skeptical commentary.
Most interesting were the statements by two of the three founders of RSA, Leonard
Adleman and Ron Rivest. Adleman started by saying, “I am suspicious of elliptic
curve cryptosystems,” and then explained his suspicion by citing his work [1] with
DeMarrais and Huang giving a subexponential algorithm for the analogous problem
for high-genus hyperelliptic curves. He correctly pointed out that those curves had
been thought to be at least as secure as elliptic curves (see §5.1).

Rivest’s comments were the most erudite:

But the security of cryptosystems based on elliptic curves is not
well understood, due in large part to the abstruse nature of elliptic
curves. Few cryptographers understand elliptic curves, so there is
not the same widespread understanding and consensus concerning
the security of elliptic curves that RSA enjoys. Over time, this may
change, but for now trying to get an evaluation of the security of an
elliptic-curve cryptosystem is a bit like trying to get an evaluation
of some recently discovered Chaldean poetry.

Supporters of ECC countered these statements by pointing out that the claim
that the security of RSA rested on sturdier ground was a little misleading. Al-
though Gauss himself spoke of his interest in the integer factorization problem
almost two hundred years ago, it is a gross exaggeration to say that mathemati-
cians have been studying the problem intensively since that time. In fact, it was
the invention of RSA cryptography in 1977 that stimulated stepped-up efforts to
improve algorithms, and most of the research on integer factorization is relatively
recent.
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In addition, the elliptic curve discrete log problem is analogous to the corre-
sponding problem in a finite field, and most of the approaches to the elliptic curve
problem are closely related to approaches that were studied earlier in the finite
field context. The discrete log problem in a finite field played an important role in
cryptography long before the invention of RSA and public key: in the 1950s it arose
in work on shift-register sequences. Index calculus was actually first developed in
the 1920s by Kraitchik [64, 65] for the discrete log problem in a prime field, and it
was not applied to integer factorization until many years later.

Moreover, it is not quite right that more sophisticated mathematical knowledge
is needed to study possible attacks on elliptic curves than to study approaches
to the integer factorization problem. Although it takes a little more mathematical
background to understand the group law on an elliptic curve than to understand the
modular exponentiation in RSA, it is illogical to conclude from this that research
on breaking RSA through factoring is easier to understand than research on finding
discrete logs on elliptic curves. At the time that “ECC Central” appeared, by far the
most complicated mathematics that had ever been applied to solve either problem
was the number field sieve, which had had such a dramatic impact on factoring.
Contrary to what Rivest implied in the remark quoted above, in 1997 the number
of cryptographers with sufficient mathematical background to analyze and improve
upon the best attacks on integer factorization was less than the number who were
capable of evaluating the best attacks on the elliptic curve discrete log problem. As
number theorists know well, there is no correlation between ease of understanding
the statement of a problem and the level of difficulty involved in making progress
in solving it.

6.4. Xedni calculus and liftings. In September 1998 J. Silverman circulated an
outline of an attack [96] on the elliptic curve discrete log problem. He called it
“xedni” calculus (xedni = index spelled backwards) because in some sense it re-
versed the steps in index calculus. Suppose we have two points P,Q in a prime
order subgroup G ⊂ E(Fp), and we want to find x such that Q = xP . Silver-
man’s general idea was to start by randomly generating a few (no more than 9)

integer linear combinations Pi = aiP + biQ and then lifting them to points P̃i with

Z-coordinates. He then finds a lifting Ẽ over Q that reduces to E mod p, passes

through the P̃i, and satisfies some other conditions that, if one believes the heuris-
tics of the Birch and Swinnerton-Dyer conjecture (and uses an analytic formula of

J. F. Mestre for the Mordell rank of Ẽ), increase the likelihood that the points

P̃i ∈ Ẽ will be dependent over Z. If they are dependent, then it’s easy to find x.
Although the outline of xedni calculus was fairly simple, its running time would

depend on some subtle considerations that were hard to pin down in computational
terms. At first it was completely unclear whether or not xedni calculus would be
more efficient than other algorithms for finding elliptic curve discrete logs. This was
still a time when RSA and ECC were in fierce competition, and the promoters of
ECC feared that RSA people would seize upon the opportunity provided by xedni
calculus and proclaim to the world that ECC had been broken.

Fortunately, however, it turned out that slight modifications of Silverman’s algo-
rithm could be used to solve not only the discrete log problem in the multiplicative
group of Fp (by applying it to a degenerate elliptic curve, i.e., a rational curve
over Fp), but also the problem of factoring an RSA modulus N (by applying it to
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a degenerate elliptic curve over Z/NZ). In other words, if Silverman’s algorithm
destroyed ECC, then it would destroy RSA as well. This feature of the algorithm
was very opportune, because it gave us time to analyze it without having to worry
about RSA people making premature announcements about the threat from xedni
calculus.

The xedni algorithm was found to be extremely inefficient; in fact, it seemed
to take super-exponential time to find discrete logs [43]. The reason was basically
the same one that Miller [80] had used back in 1985 to argue that index calculus
wouldn’t work on elliptic curves. Namely, the Néron-Tate height function guaran-

teed that Ẽ(Q) couldn’t have a large number of “small” points.
Once again the height function played a crucial role in explaining why lifting

techniques couldn’t be efficiently used to find discrete logs. In 2000 N. Koblitz
gave a talk on this at the ECC conference in Essen titled “Miracles of the Height
Function — A Golden Shield Protecting ECC.” Subsequent developments would
show that Koblitz’s celebration of the “golden shield” was premature, as researchers
found faster-than-squareroot and even subexponential index calculus attacks on
some elliptic curves defined over certain classes of finite fields (see §10). However,
in none of these partial successes of index calculus have liftings to global fields
played any role.

At the ECC conference in 2007 Silverman [97] gave a much more systematic
analysis of the failure of four possible plans of attack on the discrete log problem
based on lifting to a global field. But despite the repeated failure of lifting-based
approaches, one cannot be absolutely certain that no lifting will ever work. For
this reason some people recommend staying away from elliptic curves over Fq for
which it is easy to construct a lifting to a number field that has special properties
that might some day prove useful to an attacker. In particular, in §11 we’ll discuss
the recommendation of the Brainpool consortium that all curves used in ECC have
complex multiplication by quadratic imaginary fields of very high class number so
that they cannot efficiently be lifted to a CM-curve over a number field.

7. The Role of NSA

In the 1970s and early 1980s the U.S. National Security Agency was an extremely
secretive organization. The standing joke at the time was that NSA stood for “No
Such Agency.” People from NSA would attend the crypto conferences that were
starting to be held, but they would never identify where they worked.

NSA was unhappy with the sudden growth of open research on cryptography
that had been stimulated by the invention of public key systems and especially
RSA. In 1980 they made a heavy-handed and ultimately unsuccessful attempt to
impose a system of prior restraint on publication of mathematical articles that they
judged to have cryptographic relevance (see [67]).

But by the time the debates between RSA and ECC heated up in the 1990s,
NSA had changed in a fundamental way — it had “come in from the cold.” There
were two main reasons for the transformation of NSA into an organization that
started to participate openly in the cryptographic research community.

The first reason was a broadening of NSA’s mandate after the passage of the
Computer Security Act of 1987. Originally NSA had been given responsibility only
for communication security for the U.S. military and government agencies. But
with the emergence of the Internet and other technologies, communications were
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increasingly mixed up with computers, and it was becoming clear that issues of
computer security and communication security could not be separated. In addi-
tion, most government communications were integrated with the public network
and faced the same threats as everyone else. So government security could not be
kept separate from similar issues in the private sector. Thus, in 1987 the U.S. gov-
ernment agency NIST (National Institute for Standards and Technology, the new
name of the National Bureau of Standards) was given a mandate to investigate and
help establish standards for security of all sorts of computer and communication
networks. According to some accounts [24, 70] the intent of the Computer Security
Act of 1987 in explicitly assigning this task to NIST was to have non-military cryp-
tography under civilian control and prevent NSA from venturing into the private
sector. However, in practice NSA has had the resources and expertise to dominate
NIST, and NIST has rarely played a significant independent role. In any case,
whatever the intent of the Act was, in the aftermath NSA took on an increasing
role in the civilian world.

The second basic reason for the emergence of a “kinder, friendlier NSA” (in the
words of a top NSA official [108]) was the end of the Cold War. During the decade
between the collapse of the Soviet Union and the 9/11/2001 attacks, the U.S. did
not have any obvious external enemy. As a result the companies, government
agencies, and even academic disciplines (such as Russian area studies) that had
come to prominence during the Cold War had to re-tool or else risk losing their
relevance and their funding. Thus, it was strongly in NSA’s interest to show that
it had a role to play in developing technology that could protect the commercial
world and the public at large from all sorts of threats to their communications.

Whatever the reasons for NSA’s new focus, the timing could not have been
better for elliptic curve cryptography, which by the mid-1990s was locked in an
increasingly nasty competition with RSA. From a commercial standpoint RSA had
a tremendous advantage over the Canadian company Certicom, which was the main
promoter of ECC. RSA was well established, had name recognition and had the
lion’s share of the public key cryptography market. On the other hand, the advent
of the number field sieve forced RSA to use longer and longer keys. People who
understood the math behind the two systems could see that over time RSA would
be inferior to ECC in constrained environments where memory and bandwidth are
very limited.

In the early 1990s there was a controversy over a proposed Digital Signature
Standard that to some extent presaged the role that NSA would later play in the
debate over ECC. NIST proposed a protocol for digital signatures that had been
developed by NSA and closely resembled an earlier method invented by C. Schnorr.
In these systems the security of signatures was based on the discrete log problem in a
finite field. This choice was a direct challenge to the predominance of factorization-
based cryptography, and it was bitterly opposed by RSA. Although the Digital
Signature Standard — which was approved for commercial use in 1994 — was not
based on elliptic curves, it signaled a dissatisfaction with RSA technology within
NSA.

The technical people in NSA had been attracted to elliptic curve cryptography
since the 1980s. But the first time these views became known to the outside world
occurred at a meeting of the American National Standards Institute (ANSI) in
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December 1995. Meetings of standards bodies typically include industry represen-
tatives who have little mathematical background and so are easily manipulated by
scare tactics. At the meeting in question, the RSA people were casting doubt on the
safety of ECC-based protocols. As the heated debate continued, one of the NSA
representatives left to make a phone call. He then returned to the meeting and
announced that NSA believed that ECC had sufficient security to be used for com-
munications among all U.S. government agencies, including the Federal Reserve.
People were stunned. Normally the NSA representatives at standards meetings
would sit quietly and hardly say a word. No one had expected such a direct and
unambiguous statement from NSA — a statement that tipped the scales at ANSI
in favor of ECC.

At Crypto ’97 J. Solinas gave the first paper ever presented publicly at a cryp-
tography meeting by an NSA member. It contained a procedure he had developed
(see [102]) for greatly improved efficiency of ECC using anomalous binary curves
(see §11.1). NSA’s support for ECC became more and more obvious over the years.
In 2003 it licensed 26 ECC-related patents from Certicom for US$25 million, and
in 2005 it posted the paper “The Case for Elliptic Curve Cryptography” on its
website (see §1).

The influence of NSA, which is part of the U.S. Department of Defense, on the
RSA versus ECC debate is an example of a general phenomenon that has been
documented by sociologists and historians of technology. For example, Braun and
MacDonald (see [13] and [72], p. 16) have shown that military support played
an essential role in the history of the microchip, especially in the early years of
semiconductor electronics when the commercial world viewed solid-state devices
as inferior to the earlier valve technology. According to MacKenzie and Wajc-
man ([72], p. 15), “Military interest in new technology has often been crucial in
overcoming what might otherwise have been insuperable economic barriers to its
development and adoption.” In a sense, NSA served as a counterweight to RSA’s
market advantage, and in this way helped level the playing field between RSA and
ECC.

8. XTR vs. ECC

At Crypto 2000 A. Lenstra and Verheul [68] proposed a new type of cryptosystem
called XTR. They choose a prime p such that p2 − p + 1 has a large prime factor
n, and they let G be the subgroup µn ⊂ F

∗

p6 of order n in the multiplicative
group of the degree-6 extension of Fp. They have a way (which they call the “trace
representation”) of writing elements of G as efficiently as if they lived in the subfield
Fp2 (which, of course, they don’t). But to find discrete logs in G by index calculus
methods one would have to work in the field of p6 elements, not p2 elements. Lenstra
and Verheul explained the advantages of their system:

XTR achieves security similar to RSA for much smaller key sizes
than RSA. Although ECC key sizes can be somewhat further re-
duced than XTR key sizes, in many circumstances... key sizes of
ECC and XTR will be comparable... XTR may be regarded as the
best of two worlds, RSA and ECC.

They also claimed a security advantage over ECC:

However, XTR is not affected by the uncertainty still marring ECC
security.... Also, compared to ECC, the mathematics underlying
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XTR is straightforward, thus avoiding two common ECC-pitfalls:
ascertaining that unfortunate parameter choices are avoided that
happen to render the system less secure, and keeping abreast of...
newly obtained results.

At the Crypto 2000 Rump Session, Menezes and Vanstone responded to the
claims for XTR by pointing out that the XTR group is precisely the group to
which a certain supersingular curve E defined over Fp2 is isomorphic using the Weil
pairing. Since the appearance of the Weil pairing attack [75], such curves were
generally avoided in ECC. Isn’t it risky to start using a group that is so intimately
related to a weak case of ECC? Of course, the Weil embedding transports the
discrete log problem on E to the XTR group, not vice-versa. This means that the
problem on E reduces to the problem on the XTR group, not that the two problems
are equivalent. However, Menezes and Vanstone asked whether there might be an
efficiently computable map in the other direction that inverted the map coming
from the Weil pairing. If so, then that would show that the discrete log problems
on the two groups are exactly equivalent.

8.1. Verheul’s theorem. Lenstra and Verheul were bothered by the suggestion
that their system was equivalent in security to that of supersingular ECC. In 2000
supersingular elliptic curves were still viewed as too weak for cryptography. Verheul
took up the challenge of Menezes-Vanstone, and was able to prove a striking theorem
[104, 105]: If an efficiently computable isomorphism existed from the XTR group
to the curve, then the Diffie-Hellman problem would be easy in both groups. Since
that was unlikely, he concluded that the map goes only one way.

Verheul’s own interpretation of his theorem — stated boldly in the title to [104,
105] — was that it provided evidence that XTR has strictly greater security (in the
sense of hardness of the discrete log problem) than the corresponding supersingular
ECC. However, in the first place, that conclusion does not follow logically from the
theorem. There is in fact no evidence that there’s any method of solving the discrete
log problem on the supersingular curve that’s faster than embedding it in the XTR
group and then solving the discrete log problem in that group. Just because a
possible avenue to proving equivalence of two problems — namely, constructing
an efficient isomorphism in both directions — has been shown to be unlikely, that
doesn’t mean that in practice the problems are not equivalent. For example, on
curves of high embedding degree the so-called decision Diffie-Hellman problem (the
problem, given g, gx, gy, of determining whether or not a fourth group element is
equal to gxy) is believed to be solvable only if one can find the discrete log of gx or
gy. However, it is highly unlikely that anyone will be able to prove by a reduction
that the decision Diffie-Hellman problem is equivalent to the discrete log problem
in such a group.

If someone really believes, along with Verheul, that the supersingular curve E
over Fp2 might be even less secure than the subgroup of F∗

p6 into which it embeds,
then presumably the same would apply to all supersingular curves. That would
have dire implications for much of pairing-based cryptography. However, Verheul’s
theorem was presented just a few months before the first major pairing-based pro-
tocols were announced. So at the time no one was worried about this implication
of Verheul’s claim in the title of his papers [104, 105].

And what if a map in the reverse direction could be constructed? It turns out
that Verheul’s theorem can be generalized (see [28, 83]) to all supersingular curves
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and all finite fields. Thus, the construction of such a map would imply that the
Diffie-Hellman problem is easy in all finite fields and all supersingular elliptic curves.
We do not mean to suggest that this is likely — we only want to illustrate the point
that Verheul’s theorem lends itself to multiple interpretations.

8.2. Skepticism’s last gasp. Despite the disparaging comments about ECC by
the promoters of XTR, skepticism about elliptic curves was very much on the decline
by the start of the new millenium. Industrial standards bodies had endorsed certain
forms of ECC (see, e.g., [3, 85]), and “ECC Central” had been removed from the
RSA website.

This is not to say that no one in recent years has expressed doubts about ECC.
Occasionally a writer on cryptography might object to the increasing acceptance of
elliptic curve technology. For example, Bruce Schneier, the author of a best-selling
guide to cryptography, has a popular blog that in 2005 took comments on the
NSA paper “The Case for Elliptic Curve Cryptography” (see §1). In response to a
blogger who wrote, “But ECC was less researched than the others [sic] algorithms!”
Schneier posted the comment: “I agree with you, not the NSA.”

9. The Dramatic Entry of Pairing-Based Cryptography

Starting in 2001, pairing-based cryptosystems were proposed by Dan Boneh,
Matt Franklin, and others. Although some of the ideas had been around for a
couple of years (see, for example, [45, 89]), their tremendous potential had not
been realized before.

The basic idea is that the Weil or Tate pairing on elliptic curves allows certain
cryptographic functions to be performed more efficiently than ever before, provided
that one works with elliptic curves where the pairing can be efficiently computed,
i.e., curves of low embedding degree. Such curves have the “Diffie-Hellman gap”
property, which means that the Diffie-Hellman problem is thought to be difficult,
whereas the decision Diffie-Hellman problem (see §8.1) can be easily solved using
the pairing.

One of the first uses of pairing-based cryptography was the elegant solution by
Boneh and Franklin [10] to an old question of Shamir [93], who had asked whether
an efficient encryption scheme could be devised in which a user’s public key would
be just her identity (e.g., e-mail address). Such a system is called identity-based

encryption. Another early application (see below) was to obtain short signatures.

9.1. Boneh-Lynn-Shacham signatures. We shall describe the pairing-based sig-
nature scheme of Boneh-Lynn-Shacham [11] in the setting of the supersingular el-
liptic curve

(1) y2 = x3 − x

defined over Fp, p ≡ 3 (mod 4). This curve E has group order p+1 and embedding
degree 2; suppose that p is chosen so that n = (p+ 1)/4 is prime. Let P be a fixed
and publicly known generator of the subgroup G ⊂ E(Fp) of prime order n. We
define what’s called a distortion map on the Fp2 -points of E as follows:

Q = (u, v) 7→ Q̃ = (−u, iv), where i2 = −1, i ∈ Fp2 .

This is the reduction mod p of the usual complex multiplication on the Q-curve
with equation (1). It gives an isomorphism from G ⊂ E(Fp) to a “distorted group”
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G̃ ⊂ E(Fp2) that, together with G, generates all of E[n]. Note that non-degeneracy
of the Weil pairing implies that the pairing of a nontrivial element of G with a

nontrivial element of G̃ gives a nontrivial n-th root of unity.
Each user Alice chooses a random integer x mod n, which is her secret key, and

computes the point Q = xP , which is her public key. Suppose that Alice wants
to sign a message to Bob that has hash value H , which we suppose is an Fp-point
of E. All she does is compute S = xH , which is her signature for the message.
When Bob receives the message and the signature he computes the hash value H
and then the two pairing values

(H, Q̃) and (S, P̃ ).

If Alice created the signature correctly, then the two values must be equal, because
they are both equal to

(H, P̃ )x.

Bob has confidence that only Alice could have signed the message, because only
she would have been able to generate the point S whose discrete log to the base H
is the same as the discrete log of Q to the base P .

Not only is the Boneh-Lynn-Shacham signature shorter in bitlength and easier
to describe than the Elliptic Curve Digital Signature Algorithm (see §3.3), but,
unlike ECDSA, it uses properties of elliptic curves in an essential way and does not
have any analogue in the simpler group F

∗

q .

9.2. Selection of curves. There are two ways to select a curve of low embedding
degree k. One can choose a supersingular curve, for which k ≤ 6. Supersingular
curves have the advantage that there is a computable distortion map that can be
used to construct protocols (see §9.1).

However, one often wants k ≥ 6 to be large enough so that the time required to
find discrete logs using index calculus in Fqk is comparable to the time required to
find discrete logs directly in the groupG using a squareroot attack. At present k = 6
is a reasonable choice, but with increased computing power the optimal choice of k
will soon be larger. A supersingular curve with k = 6 exists only in characteristic
3, and there is no supersingular curve with k > 6. Thus, implementers might want
to use ordinary curves of low embedding degree. Such curves are rare, and the only
way known to construct them is to use the so-called CM-method.

Let E be an ordinary elliptic curve defined over Fp with trace t, which means
that #E(Fp) = p + 1 − t. We want p + 1 − t to be a prime (or a prime times a
very small cofactor); we want pk ≡ 1 (mod p+ 1 − t) (note that this is equivalent
to (t − 1)k ≡ 1 (mod p + 1 − t)); and we want the discriminant t2 − 4p to have
small squarefree part d, in which case a curve over a number field can be found
with complex multiplication by Q(

√
d) that reduces modulo a prime lying over p to

a curve with the desired properties. The idea of the construction of ordinary curves
with low k by the CM-method is to find a family of integers (p, t) parameterized by
an integer z such that the second and third of these conditions hold (and there’s a
reasonable probability that p is prime and p+ 1 − t has a large prime factor). The
first results of this type were found for k = 3, 4, 6 in [79]; in the case k = 6 they set
p = 4z2 + 1 and t = 1 ± 2z. Subsequently other authors showed how to construct
ordinary curves for certain embedding degrees k > 6.
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9.3. Like a knife through butter. Pairing-based cryptography received near-
universal acceptance and acclaim from the beginning. Unlike traditional ECC, it
did not pass through a period of several years of skepticism and resistance. We
find this especially striking because the curves used in this type of cryptography
are precisely the ones that were shunned in ECC for many years after the discovery
of the Weil pairing attack [75] and were still being disparaged as late as Eurocrypt
2001 by Verheul [104].

This paradoxical turn of events has several possible explanations. In the first
place, it is hard not to be attracted by the sheer elegance of some of the construc-
tions in pairing-based cryptography. Note, for example, how much simpler the
Boneh-Lynn-Shacham signature is to describe (see §9.1) than the ECDSA was (see
§3.3).

In the second place, the timing was propitious. The first major pairing-based
protocols were being promoted in the years right after traditional ECC had won
acceptance and the once-bitter rivalry between RSA and ECC had subsided. Basi-
cally, most of the earlier critics of ECC had thrown in the towel — starting in the
late 1990s the RSA software toolkit even included a version of ECC.

In the history of technology it often happens that after a period of intense debate
(what the sociologists Kline and Pinch [48] call interpretative flexibility) a consensus
emerges to admit the “new kid on the block” into full membership in the club. At
that point most people see no benefit in standing in the way of adopting the newer
technology; rather, it seems to be in everyone’s interest to incorporate it into their
theories and products. This process is known as closure. As Kline and Pinch
explain,

Interpretative flexibility, however, does not continue forever. ‘Clo-
sure’ and stabilization occur, such that some artifacts [i.e., inven-
tions] appear to have fewer problems and become increasingly the
dominant form of the technology. This, it should be noted, may
not result in all rivals vanishing, and often two very different tech-
nologies can exist side by side (for example, jet planes and propeller
planes). Also this process of closure and stabilization need not be
final. New problems can emerge and interpretative flexibility may
reappear. ([48], pp. 113-114)

A third explanation for the immediate acceptance of pairing-based cryptography
is that by 2001 the viewpoint that papers proposing new protocols must always in-
clude a “proof of security” had become pervasive, especially on cryptography con-
ference program committees. Almost all papers proposing pairing-based protocols
included such “proofs,” and they served to reassure people about the security of
the systems.

This isn’t the place to repeat the critique of “provable security” in the series
of papers [57, 58, 59]. Suffice it to say that the guarantees given by such proofs,
even when the proofs are mathematically correct, are very conditional and con-
tingent. In recent years what has often happened is that, whether or not readers
fully understand the proof, they are mesmerized by it and are willing to put aside
any doubts they might have had. Most likely this effect was at work in causing
virtually universal and unquestioning acceptance of pairing-based cryptography in
the research community.
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What a “security proof” — or, as we prefer to say, a reductionist security argu-

ment [57] — actually does is show that an adversary cannot succeed in mounting
a certain category of attack unless a certain underlying mathematical problem is
tractable. What is peculiar in the case of pairing-based cryptography is that the
underlying mathematical problem is often a very contrived one, of the sort that
hardly any mathematician would recognize as natural, let alone want to study.
Nevertheless, it has become customary to regard a conditional result related to
such a problem as a type of guarantee of security.

For example, the underlying problem in [8] is called the m-strong Diffie-Hellman

problem in a group G of prime order n. Let g be a generator of G, and let x denote

an unknown integer mod n. Given the m + 1 group elements g, gx, gx2

, . . . , gxm

,
the m-strong Diffie-Hellman problem asks one to find a pair (c, h) (where c is a
nonzero integer mod n and h is a group element) such that hx+c = g. At first it
seemed that in practice this problem would prove to be as hard as finding discrete
logs — in other words, in a generic group G no algorithm would be faster than

√
n.

However, at Eurocrypt 2006 Cheon [17], using the same method that had been
described earlier in a different context by Brown and Gallant [16], showed that if
n−1 has a factor m0 ≤ m of size a little less than n1/3, then the m-strong problem
can be solved in roughly n1/3 operations. So the underlying problem used in the
security proof turned out to be weaker than expected.

Some of the other underlying problems that occur in reductionist security ar-
guments for pairing-based systems are even more ornate and contrived than the
m-strong Diffie-Hellman problem (see [60] for some examples). Nevertheless, few
people have expressed skepticism regarding the true security of the “provably se-
cure” pairing-based protocols.

We wish to stress that we have no reason to believe that any pairing-based
protocol is actually insecure. Our purpose in discussing this issue is not to urge
people to avoid such cryptosystems, but rather to raise the intriguing question of
why there have been hardly any skeptics in the research community.

A final reason for the rapid acceptance of pairing-based cryptography is that
it was not perceived as a threat either to important commercial interests or to
established traditions of cryptographic research. On the contrary, the idea had
an immediate appeal both for practical reasons — it provided the opportunity to
improve functionality — and for intellectual reasons as well — it used some clever
ideas in both mathematics and protocol design.

Moreover, the timing could not have been better for the cryptography profession,
which was having some difficulty coming up with a lot of nice problems for research
projects. A large number of people with math or computer science backgrounds had
entered the field and were faced with the challenge — especially, but not exclusively,
in academia — to “publish or perish.” In addition, there had been a proliferation
of cryptography conferences, all of which hoped to attract cutting-edge research
papers. An increasing concern of program committees was that it was unrealistic
to expect the amount of high-quality research to have increased at the same rate
as the number of conferences. Against this backdrop the entrance onto the stage
of pairing-based cryptography was like a godsend.

As mentioned before, pairing-based cryptography started at the height of influ-
ence of the notion of “provable security,” and almost all papers in the area included
reductionist arguments for the security of the proposed protocol. Interestingly, this
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tradition of always including a security proof led to even more possibilities for re-
search projects, thanks to the controversy surrounding the so-called “random oracle
model.” (The random oracle model basically allows one to make arguments for the
security of a protocol under the plausible assumption that hash function values
are indistinguishable from random bitstrings.) Leading theoreticians — apparently
inspired in part by the Biblical story of the Bronze Serpent (see [33], pp. 10-11)
— had decided that the random oracle assumption that is used in many security
proofs is suspect, and cryptographers should try to design protocols that have se-
curity proofs that avoid the use of this assumption. As a result it became common
first to develop a protocol with nice properties that has a proof of security in the
random oracle model, and then to publish a modified version, usually with slightly
less desirable properties but with a security proof in a “standard” model. This was
an important advance for the profession, since in one fell swoop it increased the
number of papers that could be published on provably secure protocols from N to
2N .

10. A Chink in the Golden Shield:

Index Calculus Again Rears Its Head

10.1. Weil descent. In the late 1990s Gerhard Frey had the idea of attacking the
discrete log problem on an elliptic curve defined over Fqm by transporting it to the
jacobian group of a curve over the smaller field Fq, where it could be solved using
index calculus in a way similar to [1]. This program was first carried out in certain
cases by Gaudry, Hess, and Smart [31], and their method has been generalized by
Hess [37].

In some very special situations it has been possible to transport the discrete log
problem on the elliptic curve defined over Fqm to the corresponding problem on the
jacobian group of a genus-m curve defined over Fq (in that case both groups have the
same order ≈ qm). In other special cases the genus of the curve is considerably larger
than m, but the resulting algorithm is still faster-than-squareroot as a function of
qm.

Weil descent doesn’t apply over prime fields, and in the range of interest in cryp-
tography it seems not to apply to curves considered over prime degree extensions of
F2 (see [76]). Its main successes so far have been for curves defined over the fields
F2f when f is divisible by 3, 5, 6, 7, or 8. For example, in [78] one of the classes of
curves to which the Weil descent methods in [31] were shown to be applicable is the
set of all elliptic curves E defined over F25ℓ (with ℓ prime) and not over a proper
subfield. In theory it might be possible to transport the discrete log problem on
E to the jacobian of a genus-5 curve over F2ℓ , for which there would be an index
calculus algorithm requiring O(21.6ℓ) operations. In practice, though, the curves
that came out of the Weil descent had genus 15 or 16, resulting in an algorithm
with running time roughly 22ℓ. This was still significantly better than Pollard-rho,
which takes time 22.5ℓ+ǫ.

10.2. Other potentially weak fields for ECC. In [30] Gaudry used index cal-
culus methods directly on elliptic curves defined over Fqm with m > 1. For a factor
base he used the set of points whose x-coordinate lies in Fq. He performed the
crucial step of expressing a randomly generated point in terms of the factor base by
means of summation polynomials, a concept introduced by Semaev [92]. For fixed
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m the running time of Gaudry’s algorithm was O(q2−2/m), so for m ≥ 3 this gave
a faster-than-squareroot attack.

In addition, Diem [19] proved that Gaudry’s algorithm yields a subexponential
algorithm when the size of the field Fqm increases in such a way that m2 is of order
log q.

Fortunately for ECC, by the late 1990s implementers had largely restricted them-
selves to either prime fields or prime-degree extensions of F2. Prime fields and
binary fields have traditionally been the easiest finite fields to use in most applica-
tions. The choice of prime degree m of F2m was partly dictated by the desire to
allow the use of anomalous binary curves (see §11.1), which must be taken over such
an extension if one wants the group order to be divisible by a prime of roughly m
bits. Thus, when NIST decided to recommend one random curve and one anoma-
lous binary curve for each recommended binary field, it was natural to choose m
to be prime values for which the order of one of the curves (2) or (3) (see below) is
equal to twice a prime or four times a prime [85]. In any case, because of this pref-
erence for prime fields and prime-degree binary fields, the faster-than-squareroot
attacks described in this section, none of which applied to curves over such fields,
had no impact on real-world implementations.

11. A Tale of Two Standards: Brainpool vs. Voltage

In this section we compare two recent recommendations concerning which ellip-
tic curves to use in ECC. One comes from Brainpool, a European consortium of
companies and government agencies led by Bundesamt für Sicherheit in der Infor-
mationstechnik (BSI, the German equivalent of NSA). The other one [12] comes
from an American company called Voltage, which presented it at a NIST workshop
on pairing-based protocols (see [73]). What is interesting to us is the extent to
which these recommendations contradict one another.

The Brainpool draft [71] explicitly excludes all elliptic curves of low embed-
ding degree (hence all supersingular curves) and all ordinary elliptic curves whose
CM-field has low class number (hence all curves constructed by the CM-method).
In particular, Brainpool rules out all curves (supersingular or ordinary) used in
pairing-based cryptography.

Both of these Brainpool requirements are given in a rather extreme form. The
embedding degree must be greater than (q − 1)/100. If, for example, q has 160
bits (the smallest size they allow), then they are saying that it’s a bad idea to
use an elliptic curve group that embeds in a finite field of the form Fqk with k a
150-bit integer (i.e., k ≈ (q − 1)/1000). Note that in such a humongous field the
fastest algorithms known for the finite field discrete log would take time greater
than exp(1015) — roughly 1 followed by four hundred trillion zeros. Brainpool
certainly seems to want to err on the side of caution! They also require that when
the elliptic curve lifts to an elliptic curve over a number field that has complex
multiplication, that number field must have degree greater than ten million.

In contrast, the Voltage recommendation [73] states under “security considera-
tions” that

The conservative choice for implementing a pairing-based algorithm
is to use a supersingular curve.
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The elliptic curve they recommend using is the curve

y2 = x3 + b

over a prime field Fp with p ≡ −1 (mod 12). This curve has p+1 points, embedding
degree 2, and complex multiplication by the ring Z[ζ], ζ = exp(2πi/3).

Moreover, the Voltage curve has far more structure than most curves because
it is supersingular. Namely, supersingular curves have a gigantic endomorphism
ring — a quaternion algebra that includes imaginary quadratic rings as a small
part. For the Voltage curve E the endomorphism ring of E(Fp) is the following
quaternion algebra:

Z + Zζ + Zφ+ Zφζ,

where φ is the Frobenius endomorphism (x, y) 7→ (xp, yp), which satisfies the re-
lation φ2 = −p. Since ζp = ζ−1, the commutation relation here is: ζφ = φζ−1 =
−φ− φζ.

No one has ever been able to use this vast stable of endomorphisms to mount
an attack on the discrete log problem on a supersingular curve. So there is no real
evidence that the Voltage curve is weak. But its extensive special properties would
certainly give heartburn to the Brainpool cryptographers.

What is Voltage’s rationale for referring to its curve as the “conservative choice”?
In the context of pairing-based cryptography, if you want to use an ordinary curve
rather than a supersingular curve, you must use a very special version of the CM-
method to construct your curve (see §9.2). As explained in [73], “With ordinary
curves, additional structure is needed to get a low embedding degree.” As men-
tioned in [56], the type of special values of p that are used might cause the discrete
log problem in Fpk (where k is the embedding degree) to be vulnerable to a ver-
sion of the special number field sieve rather than the general number field sieve.
Indeed, Schirokauer [90] has shown that this is true in a few cases. However, in
most cases it is far from clear that the “additional structure” in the choice of the
prime p or the group order n could ever be utilized by an attacker. So whether the
“conservative choice” is to use supersingular curves or to generate ordinary curves
of low embedding degree — or perhaps (if one is a follower of Brainpool) to avoid
pairing-based cryptography altogether — is anyone’s guess.

11.1. Special or random selection of parameters? A general philosophy one
often encounters in cryptography is that whenever possible parameters should be
chosen by some random process. If a special choice is made to increase efficiency,
there is always the risk that the same property that made the choice so attractive
will also lead to vulnerability to an unanticipated attack.

In the case of elliptic curve cryptography one of the arguments for its superiority
over RSA was the tremendous variety of curves to choose from. This means that
there are several opportunities to introduce randomness into parameter selection.
One can make a random choice of prime field Fp, for instance, followed by random
choices of the coefficients in the Weierstrass equation of the curve. This is, in fact,
essentially what Brainpool recommends.

In 1985 R. Schoof [91] devised the first polynomial-time algorithm to determine
the group order for an arbitrary elliptic curve. His method was greatly improved
upon by Atkin, Morain, Elkies, and others. Much of this work was based on
isogenies of elliptic curves; this was the first — but not the last (see §11.2) —
cryptographic application of isogenies.
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The availability of efficient point-counting algorithms for random elliptic curves
means that there is no practical reason not to use them. On the other hand,
certain special curves have significant efficiency advantages. For example, over
characteristic-2 fields one can save a lot of time computing point multiples by using
the so-called anomalous binary curves defined over F2

(2) y2 + xy = x3 + x2 + 1

and

(3) y2 + xy = x3 + 1

(see [54, 102]). In elliptic curve cryptography one would use a prime order subgroup
of the group of points defined over an extension of F2.

The conventional wisdom is that there’s a trade-off. If you want long-term
security, you must be willing to sacrifice a little bit of efficiency and generate your
parameters in a random way. On the other hand, if a special choice of parameters
allows for greater efficiency and if there are no known attacks that utilize their
special properties, and if you’re willing to risk the possibility that such attacks will
be found some day, then by all means use, for example, anomalous binary curves.

This point of view seems logical, and it is uncontroversial among cryptographers.
However, under certain circumstances it may be wrong. In particular, it is conceiv-
able that Brainpool’s super-cautious recommendations might cause one to choose
curves that are less secure than some CM-type curves might be. In other words,
random curves might be riskier than special curves.

Before explaining how this is possible, we’d like to make a remark about the no-
tion of special versus generic curves. As we saw in §5.1, a word such as “complexity”
might have a different meaning in cryptography than in traditional mathematics;
conceptual complexity and computational complexity are two quite different things.
The same goes for the term “special curve.”

Example 1. In the study of algebraic curves one normally regards hyperelliptic
curves as a very special subclass. For g ≥ 3 there are far fewer hyperelliptic than
non-hyperelliptic curves in the sense that the hyperelliptic curves correspond to a
submanifold of codimension g − 2 in the moduli space of all genus-g curves. That
is, for g ≥ 3 there are roughly 1/qg−2 times as many hyperelliptic curves as non-
hyperelliptic curves over Fq.

Yet Diem and Thomé [22] found an index calculus attack on the discrete log
problem in the jacobian group of a genus-3 non-hyperelliptic curve over Fq that
has running time of order only q1+ǫ. In [20] Diem generalized this algorithm to
all “sufficiently general” non-hyperelliptic curves of arbitrary genus g ≥ 3 with
running time q2−2/(g−1)+ǫ. This algorithm is substantially faster than the fastest
known algorithm for discrete logs in the jacobian group of a hyperelliptic curve (see
[21]), which takes time q2−(2/g)+ǫ. To put it another way, over a fixed field Fq the
discrete log problem on the jacobian of a genus-g hyperelliptic curve has the same
computational complexity (in the sense of the best available algorithms) as the dis-
crete log problem on the (much larger) jacobian of a genus-(g+1) non-hyperelliptic
curve. It turned out that a certain way in which a generic non-hyperelliptic curve
can be represented as a plane curve allows for a particularly efficient generation
of relations among divisor classes. Thus, to the best of our current knowledge, it
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is the non-hyperelliptic curves and not the hyperelliptic curves whose discrete log
problems have a special vulnerability to index calculus.4

There are various scenarios in which someone (say, Alice) who chose to use ECC
with a special curve might end up better off than someone else (say, Bob) who chose
a random curve. Our first example is a little removed from practice because we use
extension fields of composite degree, whereas real-world implementations of ECC
generally are over either a prime field Fp or an extension of F2 of prime degree.

Example 2. Suppose that Alice wants to use an anomalous F2-curve (2) or (3) over
a field extension of degree 5ℓ with ℓ prime. She knows, of course, that, because of
the large subgroup of order ≈ 2ℓ consisting of the F2ℓ-points of the curve, the largest
prime order subgroup she can hope to get has order roughly 24ℓ. (It’ll actually be
a little smaller because there’s also a subgroup of F25-points.) This means that
the Pollard-rho algorithm will take time approximately 22ℓ. (There will also be a
slight speed-up from grouping together conjugate points as explained in [29, 107],

but this is only by
√
ℓ, and we are using rough asymptotic running times here.) So

if Alice wants k bits of security she’ll have to use ℓ of order k/2. Nevertheless, she
still wants to use an anomalous curve because she feels that its efficiency advantage
is great enough to compensate for the need to choose ℓ a little larger.

Meanwhile, Bob thinks that Alice is being unwise, because if he uses a random
curve over the same type of field F25ℓ with ℓ prime, he can find a curve whose group
order is twice a prime, in which case Pollard-rho will take time roughly 22.5ℓ. That
means that he can get the same k bits of security as Alice with ℓ equal only to 0.4k.

Bob’s reasoning made perfect sense throughout the 1990s. However, the study
of Weil descent in [78] showed that the discrete log problem on a random curve over
F25ℓ can be reduced to the corresponding problem in the jacobian of a genus-15 or
genus-16 curve over F2ℓ , which, in turn, can be solved in time roughly 22ℓ. This is
asymptotically the same as the time for Pollard-rho on Alice’s special curve. Thus,
Bob took a bad gamble when he decided to use a random curve with a lower value
of ℓ than Alice’s. He gets only 0.8k bits of security, not the k bits he thought he’d
get.

In order to give two more examples of possible security disadvantages of ran-
domness in ECC, we have to talk about isogenies.

11.2. Isogenies and endomorphism rings. We shall give a brief overview of
isogenies between elliptic curves. For proofs and details see [95, 106]. Let E1 and
E2 be defined over Fq. An isogeny ψ : E1 −→ E2 defined over Fq is a non-constant
rational map defined over Fq that maps ∞ to ∞; its degree is its degree as a rational
map. If ψ is a separable isogeny, then the kernel of ψ is a subgroup of E1 of order
degψ.

Any isogeny ψ : E1 −→ E2 has a dual isogeny ψ̂ : E2 −→ E1 such that the

composition ψ ◦ ψ̂ is the endomorphism of multiplication by degψ. We say that E1

and E2 are isogenous over Fq if there exists an isogeny from one to the other that
is defined over Fq. A theorem of Tate states that E1 and E2 are isogenous over Fq

if and only if #E1(Fq) = #E2(Fq).

4An algorithm of Smith [99] allows one sometimes to transport the discrete logarithm problem
on the jacobian of a genus-3 hyperelliptic curve to a non-hyperelliptic jacobian. For large Fq the
procedure works for approximately 18% of all hyperelliptic curves. Smith’s algorithm applies only
to curves of genus 3 and fields of characteristic > 3.
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For example, suppose that ℓ 6= p is a prime, and C is a subgroup of E1 of order
ℓ that is defined over Fq. (Recall that this means that the subgroup C is fixed by
the Frobenius map φ : (x, y) 7→ (xq , yq), which can be true even if the individual
points of C are not in Fq.) For every such group C there is a degree-ℓ isogeny from
E1 to a curve E2 defined over Fq whose kernel is C.

The modular polynomial Φℓ[X,Y ] ∈ Z[X,Y ] has the property that if we let Φℓ

denote the reduction mod p and set Y equal to the j-invariant of E1, then the
ℓ+ 1 roots of Φℓ[X, j] ∈ Fq[X ] are the j-invariants of all of the curves E2 that are

ℓ-isogenous to E1 over the algebraic closure Fq. Each such isogeny corresponds to

one of the ℓ+1 subgroups of order ℓ in the group of ℓ2 points of order ℓ on E1(Fq).
An ℓ-isogeny from a given curve can be quickly constructed if ℓ is small; however,
in general the best available algorithm [63] has running time roughly ℓ3, so for large
ℓ the construction is not feasible.5

Let E be an elliptic curve defined over Fq, q = pf , and let t = q + 1 − #E(Fq)
denote its trace. An endomorphism of E is an isogeny from E to itself that is
defined over Fq. The endomorphisms form a ring denoted End(E). We consider
the ordinary case when p does not divide t; in that case the elements of End(E)
are all defined over Fq. Let ∆ = t2 − 4q denote the discriminant of E. Then the

complex multiplication (CM) field of E is K = Q(
√

∆). We have ∆ = c20d, where
d < 0 is the discriminant of the imaginary quadratic number field K. Let ZK

denote the ring of integers; then End(E) ⊂ ZK is an order in ZK . We let c denote
the conductor of End(E), i.e., its index in ZK .

As before, let φ denote the Frobenius endomorphism, given by (x, y) 7→ (xq , yq).
We regard φ as an element of ZK of norm q, since its characteristic polynomial
is T 2 − tT + q = 0. The subring Z[φ] has index c0 =

√
∆/d in ZK , and End(E)

is an order of ZK that contains Z[φ], and so its index in ZK is a divisor c of c0,
1 ≤ c ≤ c0.

The curves in the Fq-isogeny class of a given E can be partitioned according
to their endomorphism ring, i.e., into “endomorphism classes” within the isogeny
class. The endomorphism rings are the orders in ZK that contain Z[φ], and they are
in one-to-one correspondence with the divisors c of c0. The number of isomorphism
classes of curves in a given endomorphism class is equal to the class number hc of
the order, and this is approximately equal to chK , where hK is the class number of
the imaginary quadratic CM field K (for a more precise formula, see [27], p. 123).

The class number hK satisfies hK ≤ 1
π

√
|d| log |d|, where d is the discriminant of

K.
As mentioned before, the first use of isogenies was to develop improved methods

of determining the group order of a random curve. More recently, isogenies have
been used to investigate possible attacks on the elliptic curve discrete log problem.
The idea is that if an isogeny can be computed between E1 and E2, then the discrete
log problem on E1 can be transported to the same problem on E2. If it’s feasible to
construct isogenies between any two curves in a certain subset of the isogeny class,
then the discrete log problem is random self-reducible in that subset of curves; this
implies that the problem is equally difficult for all of those elliptic curves.

Suppose that starting with a curve E1 in an endomorphism class with conductor
c one randomly chooses an ℓ-isogeny E1 −→ E2, where ℓ is a small prime. Then

5In certain special cases there are faster methods [15], but they work only within a single
L-conductor-gap class (this term is defined below) and so do not affect our argument.
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either E2 is in the same endomorphism class as E1, or else it has conductor cℓ or
else c/ℓ. The last two possibilities can occur only if ℓ|c0. The main result of [44]
(assuming the Generalized Riemann Hypothesis) is that a sequence of isogenies of
prime degree ℓ < L = (log q)2+ǫ (for fixed ǫ), (ℓ, c0) = 1, can be used to fan out
randomly throughout the endomorphism class. (The precise statement is that the
graph whose vertices are the isomorphism classes in a given endomorphism class
with adjacency determined by these ℓ-isogenies is an expander graph.)

It is also possible to use isogenies to go efficiently between two endomorphism
classes, but only if they have a small conductor gap, by which we mean the largest
prime that divides one conductor and not the other. Thus, if L is a bound on the
size of primes ℓ for which it is feasible to construct an ℓ-isogeny, it is natural to
divide a given isogeny class into subsets that each consist of endomorphism classes
with conductor gap < L. Thus, in each isogeny class we define the L-conductor-gap

class of a curve E to be the set of all endomorphism classes having conductor gap
< L with End(E). The result of [44] extends to these larger classes; that is, the
discrete log problem is random self-reducible in each L-conductor-gap class. That
means that if an efficient algorithm were found to solve the discrete log problem in
time T1 in a constant proportion ǫ of all elliptic curves defined over Fq (we shall
call them “weak” curves), then the discrete log could be found on any curve in the
L-conductor-gap class in time roughly T1 + T2/ǫ, where T2 is the time required to
construct an ℓ-isogeny, ℓ < L. Here, of course, we’re assuming that the property
of being a weak curve for the discrete log algorithm is independent of isogeny class
and endomorphism ring; and we’re also assuming that the L-conductor-gap class
contains ≫ 1/ǫ curves.

Note that if c0 = 1 (which is often the case) or if c0 is L-smooth, then all
O(

√
p) curves in the isogeny class are in the same L-conductor-gap class. If c0 is

divisible by just a single large prime r, then there are two such classes: a small
set of isomorphism classes of curves whose endomorphism ring has conductor not
divisible by r, and the “generic” isomorphism classes where the endomorphism ring
has conductor a multiple of r.

It is the possibility of random isogeny walks through a conductor-gap class that
under certain circumstances might make a generic curve less secure than a special
curve. We discuss this in the next subsection.

11.3. More examples of potential weakness of random curves.

Example 3. In V. Müller’s Table 6.2 of [84] the following is a choice of parameters
suggested for ECC. Let q = 23·59, and let E be the curve defined over F8 by the
equation

y2 + xy = x3 + x2 + γ,

where γ ∈ F8 satisfies γ3 = γ2 + 1. This curve has 6 F8-points, and its group of
F2177 -points has order 6 times the 175-bit prime

P175 = 31926990434706017882465563211521159723534715689440269.

Suppose that Alice, following the suggestion of Müller, chooses this curve E and
extension field F2177 . She calculates that Pollard-rho (with the speed-up of

√
59 in

[29, 107]) would take roughly 284 operations, i.e., the curve will give her 84 bits of
security.

Bob, as usual, thinks that Alice is foolish for having chosen a curve with very
special properties that allow the

√
59 speed-up and may leave her vulnerable to
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other attacks. He figures that if he chooses a random curve over the same field with
group order twice a 176-bit prime, then he’ll get 88 bits of security rather than 84,
and he’ll also be less vulnerable to unanticipated specialized attacks.

At least through the 1990s Bob’s reasoning would have appeared to be correct.
But a closer examination using more recent research (see [78, 77]) shows that Bob
might not have nearly the security level that he thinks he has.

The complex multiplication field for Alice’s curve is Q(
√
−23), and the discrim-

inant is −23c20 with c0 factoring as the product of two primes:

c0 = 11681 · 98766024850235972863.

In [77] Menezes and Teske found that a certain proportion — roughly ǫ = 2−58 —
of all elliptic curves over F23·59 with group order ≡ 2 (mod 8) are “weak” in the
sense that Weil descent can be used to transport the discrete log problem to the
corresponding problem on the jacobian of a genus-3 hyperelliptic curve over 259.
At that point the discrete log problem can be solved in time roughly 259·4/3 ≈ 279

[21].
In what follows we shall make the (plausible) assumption that the property of

being a “weak” curve is independent of isogeny and endomorphism classes — in
other words, that the expected number of weak curves in such a class is roughly
equal to ǫ = 2−58 times its cardinality.

In Bob’s case almost certainly the discriminant of his curve E is not divisible
by the square of a large prime, and so it is possible to use isogenies to transport
the discrete log problem on E along a “random walk” throughout its isogeny class.
If his group order is ≡ 2 (mod 8) (of which there is a 50% chance), then after
approximately 258 isogenies we will have transported the discrete log problem to a
curve where it can be solved in time roughly 279. Each step in the “walk” takes
time approximately 217, so that the reduction to the weak curve will take time
≈ 275. In other words, Bob’s random curve will have just 79 bits of security, not
88 bits as Bob thought and not even the 84 bits that Alice has.

In contrast, even if the result in [77] applied to curves in Alice’s isogeny class
(which it doesn’t, since the number of points on her curve is ≡ 6 (mod 8)), she’d
still be safe because her curve’s endomorphism ring has conductor 1 and is in a
266-conductor-gap class containing fewer than 216 curves (the ones with conductor
1 or 11681). Under our assumption that the “weak” property is independent of
isogeny or endomorphism class, it is highly unlikely — a probability of about 2−42

— that the discrete log problem on Alice’s curve can be moved to a weak curve by a
sequence of isogenies. In other words, what saves Alice from Bob’s fate is precisely
the very special nature of her curve.6

Most practical implementations of ECC in characteristic two use prime extension
degrees, in which case Weil descent appears not to be useful (see [76]). However,
it is not inconceivable that either a new version of Weil descent or some entirely
different approach will some day lead to a faster-than-squareroot attack on a certain
small (but non-negligible) proportion of elliptic curves defined over Fq, where q is a

6In this discussion we are ignoring Gaudry’s recent algorithm [30] for the discrete log on an
elliptic curve over Fqm , m ≥ 3 (see §10.2). However, in §4.4 of [30] Gaudry says that, based
on experimental results, he expects that his algorithm for m = 3 will be faster than Pollard-
rho only for q > 265. In our example q = 259, so at present we need not concern ourselves
with Gaudry’s algorithm. But of course improved implementations could result in that algorithm
beating Pollard-rho in our case as well.
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prime power of 2. If we are using a curve over this field when this happens, we had
better hope that our curve cannot be linked to a weak curve by means of isogenies.

Example 4. In 2000 in its Digital Signature Standard [85], NIST recommended
ten elliptic curves over binary fields F2ℓ with ℓ = 163, 233, 283, 409, 571. For
each ℓ they gave one random curve and one anomalous binary curve. The security
level in the face of squareroot attacks is roughly 2ℓ/2.7 For instance, both curves
over F2571 should provide more than the 256 bits of security necessary to protect a
high-security Advanced Encryption Standard (AES) private key.

This raises the question: Which of the two NIST curves over F2571 is safer?
The conventional wisdom would be that the random curve is the more conservative
choice.

However, let’s suppose that a certain very small — but not negligible — fraction
ǫ of curves over this field could be attacked by some new faster-than-squareroot
algorithm. We further suppose that the property of being a “weak” curve is inde-
pendent of isogeny class or endomorphism class. In such a situation if our curve is
in a large L-conductor-gap class, then after a “random walk” consisting of O(1/ǫ)
isogenies, an attacker can move the discrete log problem to a weak curve. A random
curve is virtually certain to be in a large endomorphism class (since the discrim-
inant of a random curve is very unlikely to be divisible by a large square). In
particular, this is true of the random NIST curve over F2571 , whose discriminant is
squarefree, i.e., all isogenous curves are in the same endomorphism class [44]. In
contrast, the anomalous binary curve K-571 in [85] has discriminant ∆ = −7c20,
where the conductor c0 is the product of a 22-bit prime and a 263-bit prime, and
its endomorphism ring has conductor 1. For L = 2262 the L-conductor-gap class of
the curve K-571 has approximately 222 curves, so if ǫ ≪ 2−22, this curve is likely
to be safer than a random curve under our assumptions.

Weil descent methods are not applicable to curves defined over a prime field.
But suppose that we’re worried about the possibility that some new approach to
the discrete log problem will turn out to give faster-than-squareroot algorithms for
a certain proportion of curves defined over Fp. Suppose also that the condition for
a curve to be “weak” is likely to be independent of its isogeny or endomorphism
class. In such a case we might want to choose our curve E over Fp to be in a very
small endomorphism class — more precisely, in a small L-conductor-gap class for
fairly large L — so that an attacker could not use isogenies to transport the discrete
log problem from our curve to a weak curve.

Example 5. Choose B to be a random k-bit prime, and choose A to be a random
even number (perhaps also of k bits, but A may be chosen to have fewer bits) such
that (i) p = A2 +B2 is prime, and (ii) either n = (p+1)/2−A or n = (p+1)/2+A
is a prime. Heuristically one expects to have to test O(k2) values of A in order to
obtain conditions (i) and (ii). Then the curve E over Fp with equation

y2 = x3 − αx

has 2n points, where α ∈ Fp is a quadratic non-residue whose quartic residue class
depends on the sign in n = (p + 1)/2 ∓ A (see §9.8 and §18.4 of [42]). The trace
of E is ±2A, and its discriminant is 4A2 − 4p = −4B2. Because B is prime, for

7The actual security achieved with anomalous binary curves is a little less because of the

speed-up of the Pollard-rho attack by
√

ℓ.
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k ≥ 80 it is completely infeasible to transport the discrete log problem on E to that
on a generic isogenous curve. Note that E has complex multiplication by the full
ring of integers Z[i] (since i acts on the curve by (x, y) 7→ (−x, iy), where the latter
occurrence of i denotes a square root of −1 in the finite field); that is, End(E) has
conductor 1. Up to isomorphism E is the only curve in its conductor-gap class, and
the endomorphism ring of any of the other isogenous curves has conductor B.

The method of parameter selection in this example of course directly flouts the
advice of Brainpool [71]. But whether it is reckless or wise to do this is at present
far from clear.

Our purpose in giving these examples is not to lobby for the use of special curves
in preference to random ones. Rather, our point is that conventional wisdom may
turn out to be wrong and that, as far as anyone knows, either choice has risks. The
decision about what kind of curve to use in ECC is a subjective one based on the
user’s best guess about future vulnerabilities.

As frequently happens in cryptography, a close examination of a commonly ac-
cepted viewpoint on security issues reveals that opposing opinions or interpretations
cannot be ruled out. Much as we might wish to convey to the outside world an im-
pression of self-confidence and mathematical certainty about our recommendations
(see §2), there is ample reason to wonder whether this self-confidence is justified.

12. Path Dependence

In [72] MacKenzie and Wajcman discuss what they call the path-dependence of
technical change:

Technologies often manifest increasing returns to adoption. The
processes of learning by doing and by using... and the frequent
focus of inventive effort on removing weak points... from exist-
ing technologies, mean that the very process of adoption tends to
improve the performance of those technologies that are adopted.
This gives the history, especially the early history, of a technology
considerable significance. Early adoptions, achieved for whatever
reason, can be built into what may become irreversible superiority
over rivals, because success tends to breed success and rejection
can turn into neglect and therefore permanent inferiority. The his-
tory of technology is a path-dependent history, one in which past
events exercise continuing influences. Which of two or more tech-
nologies eventually succeeds is not determined by their intrinsic
characteristics alone, but also by their histories of adoption. The
technology that triumphs is not necessarily abstractly best.... Path-
dependence means that local, short-term contingencies can exercise
lasting effects.

12.1. Historical what-ifs. One of the best ways to refute the technological deter-
minist view of the history of cryptography that is implicit in the Ideal Model (see
the last paragraph of §2) is to ask some hypothetical questions of the form “What
if...?”

• What if in 1977 someone who had just written a Ph.D. thesis on elliptic curves
had happened to read the classic article [23] that had appeared the year before?
Fortunately for RSA, that appears not to have happened, since it probably would
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have occurred to such a person to suggest replacing the multiplicative group of
a finite field by the group of points of an elliptic curve, and ECC would have
been born eight years before 1985. In 1977 subexponential algorithms were already
known for the integer factorization problem. The elliptic curve discrete log problem
thus would have struck everyone as a much harder problem, and hence the one-way
function in ECC would have appeared to be much safer for the construction of
public key protocols. There would have been little reason for anyone to adopt
RSA.

• What if the ideas described in §10 for finding discrete logs on an elliptic curve E
over Fqm — Weil descent followed by index calculus on a jacobian group, or index
calculus directly on E using points with x-coordinate in Fq as the factor base —
had been proposed in the late 1980s or early 1990s? At that time it was generally
assumed that any finite field could be used in ECC, and the choice should depend
only on convenience. In fact, some people proposed using fields of the form Fqm

with q a prime or a power of 2 of intermediate size (say, 8 or 32 bits). The faster-
than-squareroot and even subexponential algorithms for some elliptic curves over
such “weak” fields would have come as a shock, and opponents of ECC could have
easily used the discovery of such algorithms as a reason not to have confidence
in elliptic curves. As it happened, however, by the late 1990s implementers were
almost exclusively using either prime fields or prime degree extensions of F2, to
which those algorithms do not apply.

• What if pairing-based cryptography had been proposed just three or four years
earlier, say in 1997 when “ECC Central” on the RSA website was warning of the
dangers of ECC? The elliptic curve skeptics would have had a field day! “The ECC
promoters are now using the very same low-embedding-degree elliptic curves that
five years ago they acknowledged to be insecure and recommended avoiding!” they
would have said. Some people would have hoped that by undermining confidence
in pairing-based cryptography they might be able to bring down all of ECC with
it. However, by 2001 the big rivalry between RSA and ECC was largely over, and
hardly anyone wanted to reopen that debate.

These hypothetical questions show that the particular chronology of RSA, ECC,
pairing-based cryptography, and new algorithms for factoring and discrete logs has
a lot to do with the history of the paradigm shift to ECC.

12.2. Narrative inversion. In historical studies one often finds a wide gap be-
tween the image that a nation or group has of its past — the historical narrative —
and what the record shows. In extreme cases it sometimes seems that the farther
this narrative is from reality, the more adamantly people repeat it and insist on its
validity. This is narrative inversion.

Take the hypothetical example of a country whose official version of its history is
that the guiding principle of its foreign policy has been to “defend freedom.” Even
though people in other countries might see an ever-widening chasm between this
national myth and the reality, the narrative continues to be a centerpiece of the
belief system of millions of people, who proclaim it with increasing fervor.

In the world of scholarship as well, one often encounters narrative inversion.
Take, for example, the word science. Often the humanistic and social areas whose
practitioners are the most insistent on using this word are those fields that have the
worst track record in attempting to use scientific methodology. In the last century



32 ANN HIBNER KOBLITZ, NEAL KOBLITZ, AND ALFRED MENEZES

the term “social studies” was replaced by “social sciences,” and departments of
government became departments of “political science.” Interestingly, the one pro-
fession in social studies that arguably uses a fair amount of scientific methodology
and does it competently — history — has never insisted on changing its name to
“historical science.”

12.3. Narrative inversion in cryptography. Modern cryptography can be viewed
as an applied science in the overlap between mathematics and computer science.
Nevertheless, the development of various technologies for implementing secure com-
munications continues to be as much a story of chance occurrences, mistaken inter-
pretations, zigzags, blunders, and strokes of good luck as was the cryptography of
old. It seems impossible to remove the element of contingency — of intuition and
of craft.

Part of the reason why cryptography has such a strong subjective element is that
speculation is central to the field. When deciding on the basic type of cryptogra-
phy to use (RSA or ECC, for example), when choosing the type of protocol for a
given application (e.g., whether or not to use identity-based encryption), and when
selecting parameters (for instance, random generation versus enhanced efficiency),
one has to make a guess about future developments in order to evaluate the fun-
damental issue of safety of the system. One has to ask: What type of adversaries
are we likely to encounter, and what will be their most likely avenues of attack?
Will there be any breakthroughs in bringing down the asymptotic running time
to solve any of the supposedly intractable mathematical problems? Will quantum
computing (see [94]) ever become practical? What new “side-channel” attacks (see
[2, 9, 61, 62]) might be devised?

Perhaps it is because of this highly contingent element in the field that researchers
increasingly feel the need to go out of their way to assure the public that it is rapidly
becoming a science, that ironclad guarantees of security can be given (“provable
security”), and that cryptographers faithfully follow the Ideal Model described in
§2.

Among the leading researchers in cryptography, Mihir Bellare (coinventor of
the subdiscipline of practice-oriented provable security) has a relatively moderate
view of the scientific nature of the field. On the one hand, he acknowledges that
the search for suitable mathematical one-way functions — what he calls atomic

primitives — has a large element of artistry [6]. But on the other hand, he thinks
that the part of cryptography concerned with constructing usable cryptosystems
based on these primitives is becoming a science:

...I’d like to claim that the design of protocols can be made a science.
[6]

Other theoreticians, writing more recently, are categorical in their rejection of any
notion that cryptography is not fully a science. In response to comments in [57]
questioning the claims of “provable security” and suggesting that cryptography is
“more an art than a science,” Oded Goldreich [33] stated that

...cryptographic research is indeed part of science. [emphasis in orig-
inal]

And in the preface to their recent book [47] Jonathan Katz and Yehuda Lindell
insisted that
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...cryptographic constructions can be proven secure with respect to
a clearly-stated definition of security and relative to a well-defined
cryptographic assumption. This is the essence of modern cryptog-
raphy, and what has transformed cryptography from an art to a
science. The importance of this idea cannot be over-emphasized.
[emphasis in original]

As in other cases of narrative inversion, these belabored claims inevitably bring to
mind the famous line from Hamlet

The lady doth protest too much, methinks.

13. Social Construction of Science and Technology

Until the work of Thomas Kuhn a half century ago, the term Scientific Revo-
lution, used in the singular, referred to the birth of modern science in the 16th
and 17th centuries. Kuhn, whose most famous book [66] appeared in 1962, used
the term “scientific revolutions” in the plural to refer to the radical shifts of point
of view that have punctuated the history of science. It was Kuhn who coined the
term “paradigm shift” for this process — a term that was later used in many areas
outside the sciences.

Before Kuhn’s work, the most common view among historians was that science
and technology progressed steadily toward a more accurate and complete under-
standing of the natural world. Mistakes were often made — and one could fre-
quently find social and political explanations for the backward steps — but the
overall pattern was to build upon the edifice constructed by earlier generations,
“standing on the shoulders of giants” in Newton’s famous formulation.

Kuhn, however, believed that the most important developments in the history
of science occur by means of a radical challenge to earlier conceptions. In his view
social and professional influences have a great effect on the direction of science as
a whole, and should not be invoked simply to explain the “mistakes.” In fact, he
believed in what later came to be called the “symmetry principle,” which states
that historians should use the same methods to study the emergence of a scientific
theory or school of thought independently of whether modern science regards the
theory as correct or incorrect.

In the years after Kuhn’s book appeared, this methodological principle was car-
ried much further by other historians and philosophers, who started advocating a
type of scientific relativism, according to which science has no more objective va-
lidity than anything else. Science, according to this view, is “socially constructed”
just as literature, politics, and religion are. The relativist tendency in thinking
about science was most pronounced among postmodernists such as Jacques Lacan,
Paul Feyerabend, Vandana Shiva, and Bruno Latour.

In the 1980s and 1990s as this tendency grew in strength among academics in the
humanities and social studies, some scientists started to take notice. Most reacted
with horror and anger at what the postmodern writers were saying. Some, such
as Holton [38] and Gross and Levitt [35], published refutations. Journalists often
referred to the debate as the “science wars.”

The culmination of the scientists’ counterattack on postmodern writings on sci-
ence came in the form of a hoax — perhaps the most successful hoax in the history
of academic writing. After two months of studying the relevant literature, physicist
Alan Sokal wrote a parody of the postmodern science studies jargon in the form



34 ANN HIBNER KOBLITZ, NEAL KOBLITZ, AND ALFRED MENEZES

of an article on the “hermeneutics” of quantum gravity. He submitted it to the
journal Social Text for publication. Astoundingly, the caricature was accepted, and
his article [100] appeared in the Spring/Summer 1996 issue of the journal.

Sokal’s hoax and subsequent critiques [14, 101] were directed against an extreme
form of “science studies.” But even the more moderate sociologists of science
sometimes write in a style that reveals an unmistakable undercurrent of resentment
and pique toward the sciences and technology. For example, in his introduction to
the book “Technology and Social Process,” B. Elliott [25] says:

Running through many of the chapters in this book... there is a
concern to demystify technology. The social studies of science have
shown us that the closer we get to the laboratories, to the day-
to-day practice of science, and the more intimately we explore the
social processes through which scientific knowledge is constituted,
the less in awe of it we stand. We appreciate the looseness of its
boundaries, the contested nature of its claims. Scientific research
turns out to be much messier than we had perhaps supposed, its
development less the product of logical and rational progression
than the product of hunches, improbable connections and various
struggles for power. In consequence we grow more skeptical of
claims that may be made for its special, privileged status and more
critical of various forms of scientific determinism. And so it is, and
should be, with technology.

It is tempting for scientists to revel in Sokal’s spoof of the nonsensical jargon of
the postmodernists, react with annoyance to the tone of sociologists of science such
as Elliott, and dismiss as ridiculous any attempt to describe a school of scientific
thought as a “social construct.” But that would be a mistake.

There have been many studies of the effects of such social factors as race, class,
and gender on the content of scientific theories. In some areas of the sciences —
especially those connected with human behavior — and in many areas of technology
these studies have exposed serious methodological failings.

This work in the history and sociology of science and technology on occasion can
be fascinating — and it can be especially entertaining when gender bias is involved.
In the sciences the influence of gender has been most pronounced in such fields as
primatology, endocrinology, embryology, archaeology, and sociobiology. We’ll give
brief (and admittedly superficial) descriptions of three examples.

13.1. Gorillas. The field of primatology emerged toward the end of the 19th cen-
tury in the wake of Darwin’s pathbreaking work on natural selection and evolution,
which was popularly known as the theory that “man descended from apes.” For
close to a century most primatologists visualized ape family life as conforming to
Victorian views of gender roles. A now-classic example of this tendency could
be seen in the primate hall of the American Museum of Natural History, which
featured a majestic male silverback gorilla towering over and guarding his much
smaller mate and their offspring. This memorable tableau directly replicated the
stereotypical Victorian nuclear family in the primate world. Unstated anywhere in
the exhibit was the fact that several large female gorillas had been shot in the mis-
taken belief that they were males worthy of being stuffed for the Museum. Unstated
also was the fact that such a scene of a nuclear ape family would have been highly
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unlikely in nature [36]. It wasn’t until the 1960s and 1970s, with the rise of second-
wave feminism and the entrance of a new generation of women into the profession,
that primatologists began to systematically question the patriarchal assumptions
of their older colleagues and point out that primates exhibit a surprising variety of
social organizations, parenting strategies, dominance hierarchies, and male/female
relations [39, 103].

13.2. The Hohokam. A more recent and equally amusing example of gender bias
can be found in a currently fashionable trend in the study of the prehistoric South-
west of the U.S. A group of archaeologists led by Steven LeBlanc of Harvard and
David Wilcox of the Museum of Northern Arizona have developed an elaborate
theory of endemic warfare among the ancient Hohokam peoples of central Arizona
(see [50, 51]). Wilcox and his coauthors describe how, while talking late at night
around a campfire, they arrived at their “exciting” conclusions, which seem to be
the result of lively imagination stimulated by male-to-male comradery rather than
any scholarly deductions. They recount with awe and describe as “scientific” the
“seminal ideas” supplied by a much-decorated veteran of the Vietnam War who vis-
ited the sites with Wilcox. Although there is scant evidence for any warfare among
the Hohokam, let alone battles of epic proportions, this group of archaeologists has
insisted on a version of prehistory that appears to have more to do with a modern
American culture of aggressive masculinity than with the actual interactions among
peoples in 14th-century Arizona.

13.3. Smart houses. Examples of gender bias abound in technology. For example,
the much-hyped “smart house” was analyzed in a delightful article by Anne-Jorunn
Berg [7]. On the face of it, one would expect that efforts to automate household
processes would naturally incorporate input from women, who are the primary
users of technology within the home. Berg found, however, that “smart house”
designers had been remarkably uninterested in grappling with such labor-intensive
activities as cooking, cleaning and childcare. Instead, designers had concentrated
on getting peripheral technologies to “talk” to one another through central control
stations: getting lights to turn on automatically, arranging voice-activated controls
for entertainment systems, etc. The closest any of the projects had come to a basic
household task was the “robobutler,” which could supposedly serve drinks. But
the drinks must first be made by a human and set precisely on the robobutler’s
tray, at which point the robobutler could be remotely guided into the livingroom
by controls much like those used for toy boats and planes. In other words, this
technology was a “toy for the boys” rather than a true labor-saving advance. The
core tasks that make housework so time-consuming remained untouched.

13.4. The social study of technology. The social study of technology has be-
come a subfield in its own right relatively recently — a decade or two after the
emergence of the social study of science. Sociologists of technology have usually
avoided the pitfalls of jargon and over-generalization that have plagued writers on
the social construction of science. In part this is a conscious strategy adopted in
order to avoid a repetition of the “science wars.” In the preface to the 1999 edition
of their book [72] MacKenzie and Wajcman warn their colleagues not to repeat the
mistakes of sociologists of science:

We fear a rerun in the social studies of technology of what has hap-
pened in the social studies of science. There, in the 1970s and 1980s,
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a variety of empirical studies... offered evidence that the content
of scientific knowledge was influenced by the social circumstances
of its production..... Those who produced this work knew well that
the evidence was partial, tentative and patchy, and that the concep-
tual issues involved were poorly understood, but a wider audience
of scholars in the humanities and social sciences grasped eagerly
at the conclusion that scientific knowledge was ‘a social construct’.
The notion became something of a premature orthodoxy, and too
little was done to clarify what the ambiguous phrase meant.... In
consequence, when some natural scientists reacted with hostility to
the notion of social construction (in the ‘science wars’ debate...),
the field was not as well placed as it might have been.

In addition, it is easier for sociologists of technology to get a sympathetic re-
ception from practitioners, because most leaders of the field are fully conscious of
the role that economic, social and political factors play in the adoption of certain
technologies and the rejection of others. A famous example was Thomas Edison
(see [40, 41]), who was as much an entrepreneur as an inventor. Few technologists
would see their work as being entirely removed from the cultural environment. In
contrast, researchers in the basic sciences — especially the physical sciences and
mathematics — tend to see their work as a process of discovering a set of truths
that transcend the exigencies of the moment.

However theoreticians in math and physics might view their work, practitioners
in applied fields such as cryptography would have to be very naive in order to
believe that their ideas and protocols have some sort of intrinsic value apart from
human culture. It is quite a stretch to visualize RSA or ECC inhabiting a realm of
Platonic Ideals side-by-side with the perfect circle, the Pythagorean theorem, and
the Heisenberg uncertainty principle.

13.5. Conclusion. To what extent can ideas from “social construction of technol-
ogy” help us to understand the paradigm shift from RSA to ECC? Certain broad
social categories do not appear to be relevant to this history; to the best of our
knowledge questions of gender, race, or class have nothing to do with this story. It
is perhaps particularly surprising that gender has played no discernible role, since
the popular history of cryptography is intimately tied up with the military and is
full of male-dominated stories of intrigue. Certainly David Kahn’s famous history
of cryptography [46] has a notably sexist slant:

Four officers in GY [the cryptanalysis section of U.S. Navy intelli-
gence in 1941], assisted by chief petty officers, stood round-the-clock
watches.... GY had others on its staff, such as girl typists who also
did the simple deciphering of some diplomatic messages after the
watch officers and other cryptanalysts had found the keys. ([46],
p. 11)

Nevertheless, we are aware of no examples of gender, race, or class bias influencing
the direction of public key cryptography.

Nor are we aware of evidence that women are especially put off by the disciplinary
culture of the field — any more than in other areas of computer science, engineer-
ing, and mathematics. In fact, the proportion of prominent women researchers is
probably greater than that in most of the allied fields of science. This flies in the
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face of some currently popular notions about women in science, according to which
women by nature avoid fields where conflict and confrontation are common (see,
for example, [5, 32]). In the case of cryptography, adversarial behavior is central
to the very definition of the subject, and the “spy vs. spy” mentality of intense
rivalry often seems to permeate the research community as well. Heated disputes
might involve the relative merits of different types of cryptography or of differ-
ent approaches to evaluating them, or such mundane matters as which of several
contending research groups deserves credit for advancing a particular subfield.

Just as we reject technological determinism, we should also avoid a type of
equally simplistic sociological determinism that is sometimes called essentialism. In
thinking about disciplines such as cryptography, some feminist theoreticians would
reason more or less as follows: “Women by their nature are less confrontational and
militaristic than men, and hence are less likely to be attracted to a field whose entire
purpose is to combat adversarial behavior.” And postmodern feminist philosophers
of science would also see a gender subtext in the debate over whether cryptography
is more a science or an art. They would most likely claim that the very term
“science” is so tied to masculinity that some cryptographers’ fixation on the word
“science” to describe their field (see §12.3) is prima facie evidence of a male bias.
(See [49] for a discussion of some of the fallacies in postmodern feminist views of
science.)

Similarly, in trying to explain the dramatic contrast between the recommen-
dations of Brainpool and of Voltage (see §11) some might be tempted to resort
to popular stereotypes of national character: “Germans are risk-averse by na-
ture, whereas Americans have a penchant for high-stakes gambling, so that’s why
German-led Brainpool was extra-cautious, whereas the American security company
Voltage happily endorsed a supersingular curve.” In our opinion such attempts at
explanation based on gender or national character are far-fetched and untenable.

The social influences on the course of public key cryptography appear to have
come not from such broad categories as gender, race, class, or nationality, but rather
from certain aspects of the professional culture. This is not unusual in the history
of technology. As MacKenzie and Wajcman put it,

...‘social shaping’ does not necessarily involve reference to wider so-
cietal relations such as those of class, gender and ethnicity. These
are sometimes directly crucial... but often what is more immedi-
ately relevant are ‘local’ considerations, such as engineers’ mem-
bership of professional communities, the reward structures of those
communities, and so on. ([72], pp. 18-19)

Our examination of the history of ECC offers no support to those who would
argue that technology follows an inevitable path that is independent of societal
constraints. Rather, the evidence points toward ways in which technology is socially
constructed:

• path-dependence — the importance of timing, the role of happenstance;
• the role of the military in intervening at crucial stages to send the technology

in a different direction from that favored by market forces;
• closure — the need eventually to reach a consensus and stop most debate, even

if some basic questions remain unanswered;



38 ANN HIBNER KOBLITZ, NEAL KOBLITZ, AND ALFRED MENEZES

• narrative inversion — a desire to use high-status terms such as “science” and
“mathematical proof” that becomes more fervent even as the field is showing itself
again and again to be as much an art as a science.
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