

 Could The 1-MSB Input Difference Be The Fastest
Collision Attack For MD5 ?

Tao Xie+ FanBao Liu DengGuo Feng

The State Key Laboratory on Information Security, Chinese Academy of Science, Beijing

The Center for Soft-Computing and Cryptology, NUDT, Changsha, China
(hamishxie@vip.sina.com)

Abstract: So far, two different 2-block collision differentials have been found both with 3-bit input
differences for MD5, respectively by Wang etc in 2005 and Xie etc in 2008, and they have been
improved later on to generate a collision respectively within around one minute and a half hour on a
desktop PC. Can we again find a more efficient collision differential for MD5 ? In this paper, we
firstly propose the whole set of 1-bit to 3-bit input difference patterns that are probably qualified to
construct a feasible collision differential, and from which a new collision differential with only 1-bit
input difference is then developed, finally the performances are compared with the prior two 3-bit
collision attacks based on seven criteria. Two-block message, however, is still needed to produce a
collision, the first block being only one MSB different while the second block remains the same.
Although the differential path appears to be computationally infeasible, most of conditions can be
fulfilled by multi-step modifications, and the collision searching efficiency can be much improved
further by a specific divide-and-conquer technique, which transforms a multiplicative accumulation of
the computational complexities into an addition by properly grouping of the conditional bits. In
particular, a tunneling-like technique is also applied to enhance the attack algorithm by introducing
some additional conditions. As a result, a currently the fastest attack algorithm is obtained with an
averaged computational complexity of 3.212 MD5 operations, implying being able to search a
collision averagely in one second on a 2.66 Ghz Pentium4 PC for arbitrary random initial values. With
a reasonable probability a collision is found within milliseconds, allowing for instancing an attack
during the execution of a practical protocol.
Key Words: MD5, Collision Attack, Collision Differentials, Differential Path.

1 Introduction
A hash function is a cryptographic primitive which computes a fixed size message digest from

arbitrary size messages. The output value is used usually as the digital digest of the input message, so
that a single bit flip in the input would cause averagely a half of the digest bits to change. Therefore, a
cryptographic hash function is essentially a type of irreversible one-way functions built with nonlinear
operations. MD2, MD4 and MD5 are hash functions that were developed in the early1990’s by Ron
Rivest at MIT for RSA Data Security. A description of these hash functions can be found in RSA
Laboratories Technical Report TR-101 .
 This paper mainly focuses on collision attacks on MD5. While it is postulated in RFC [1]that the
difficulty of coming up with two messages having the same message digest is on the order of

642 operations, researches on collision attacks have never stopped since the publication of MD5. In
1992, Berson[2] showed that using differential cryptanalysis, it is possible in reasonable time to find
two messages that produce the same digest for a single-round MD5. In 1993, Den Boer and
Bosselaer[3] found pseudo-collisions for the compression function of MD5 with different initial
values but common input. In 1996, Dobbertin[4] constructed collisions of the MD5 compression
function, that is, MD5 collisions with a wrong initial value. In 2004, Wang et al.[5,6] succeeded in
producing real collisions for the full MD5 hash function as well as collisions in a host of other hash
functions including MD4, RIPEMD, and HAVAL-128.This new idea in their approach was to look for
a collision after processing not one but two blocks of the message. Again at 2005 CRYPTO
conference, Wang et al[7]. detailed the applications of their methods to the hash functions SHA0 and
SHA1, with a generated collision for SHA0, and a description on how to obtain collisions in SHA1.
Given the variety of hash functions efficiently attacked by Wang et al, it therefore seems worthwhile
to seek a complete understanding of how this approach works, how it can be improved, and how it can

2

be generalized .
Fundamentally, Wang’s differential collision attack is a hybrid differential cryptanalysis which

takes advantages of both the modular difference and the XOR difference together. Wang et al have
found a full two-block collision differential with its full differential path, which is computationally
feasible, and for the first time constructed a real collision for MD5. Wang ’s attack on MD5 has called
its security especially in digital signature into question. Since the publication of [6], quite a number of
researchers have worked on the optimization of the differential path and the set of sufficient conditions
and hence the collision searching algorithms, resulted in a great improvement on the collision
searching efficiency to 8.242 MD5 operations as declared in [8], implying that a collision can be found
around one minute on a desktop PC. Practical attacks on real protocols and applications based on
MD4 family functions have continuously been developed by different applications of Wang’s collision.
By using an if-then-else programming structure, two different Postscript files were created with the
same MD5 digest to result in different texts when screening [9], and this attack was extended to other
file formats in [10] . By Using Wang’s approach to find a near-collision for different IVs and further
using different differential paths to absorb the remaining difference, a pair of colliding X.509
certificates for two different distinguished name was found with the same MD5 digest [11]. Other
applications of Wang’s collision have been proposed to attack HMAC with several hash functions in
[12,13].

To date, however, the method used by Wang et al has been fairly difficult to grasp, and
furthermore, the lack of some technical details and some small perhaps deliberately made errors (bugs)
in the literature [6], might have constituted the appeal to have frustrated other cryptanalysts to grasp
their technique. What is really inexplicable consists in that, no new two-block collision differentials
have been published to be more efficient since Wang’s paper [6], and it seems to remain a
supernatural work to find a feasible collision differential and widely considered to be rely on one’s
experience and intuition. In 2007, an 1-bit input difference was used to construct a new collision
attack[14], with a computational complexity of 422 MD5 operations, but no details is known. In the
same year, however, we have found the second 3-bit collision differential, which resulted in an initial
collision search algorithm with a computational complexity of 362 MD5 operations[15] and an
improvement has been made later on to reduce the computational complexity to 302 MD5
operations[16]. The authors of this paper, believed that, nevertheless there must exist other more
efficient collision differentials than Wang’s. In this paper, however, a whole set of 1-bit to 3-bit input
differences is provided for the first time, one of the 1-bit input differences is then present with its full
differential path and sufficient conditions. Based on these sufficient conditions, finally a currently the
fastest collision searching algorithm is developed with an averaged computational complexity of

3.212 MD5 operations, implying that a collision can be found within around one second on a desktop
PC.

The rest of this paper is organized as follows: In section 2, the definitions for the XOR difference,
the modular difference as well as the signed difference are given, some properties especially with
respect to the differential path design and extra condition derivation are presented. In section 3, the
basic principle on how to find collision differentials is described, and a whole set of 1-bit to 3-bit input
difference patterns is made public for the first time, in which the two published MD5 collision
differentials are included, and a new 2-block collision differential with only 1-bit input difference is
presented with the design of its full differential path. In section 4, some general and basic principles
for differential path design are described, the basic condition derivation rules implicit in the auxiliary
functions are presented, some extra conditions for preventing unexpected modular differences are also
derived, and a specific divide-and-conquer technique is proposed to reduce the computational
complexity. In section 5, a divide-and-conquer based collision searching algorithm is specialized for
the 1-bit collision differential, and a tunnel-like technique is applied to enhance the algorithm by
introducing some additional conditions. Finally, in section 6, some evaluation criteria on collision
differentials are given, and based on these criteria a comparison is made among the three collision
differentials, and some suggestions for future researches on hash collision attacks are given. In
appendix A, a concise description of the MD5 algorithm is given to help understand this paper.

3

2 Some Properties of the Signed Difference

In this paper, s<<< denotes a left rotation of a word by s-bit, and ‘+’ denotes an addition
()322mod , ||denotes a concatenation operation, LSB and MSB denote respectively the least and

most significant bit of a word.
Let nF2, ∈•XX , X⊕Δ denotes the XOR difference defined as a bitwise XOR difference

between X and •X , X+Δ denotes the modular difference as a modular integer subtraction
between X and •X , and X±Δ denotes the signed difference as a bitwise difference
between X and •X . For example, let =n 10, X =1001000101, •X =0000111010, X⊕Δ , X+Δ and

X±Δ are computed, respectively as follows:

•⊕ ⊕=Δ XXX = •

=

⊕ ii

n

i

XX||
1

=1001111111;

() () ()n
n

i

i
i

n

i

i
i

n 2mod222mod
1

1

1

1 ⎟
⎠

⎞
⎜
⎝

⎛
−=−=Δ ∑∑

=

−•

=

−•+ XXXXX =1000001011;

X±Δ = ()•
=

− ii

n

i

XX||
1

=1001-1-1-11-11.

For the sake of simplicity, we omit those “0”s in the signed difference X±Δ , but index the
signed difference bits (+1 or -1) with their position identity instead, starting from 0 (the LSB) in X .
Using 10-bit word as an example, the signed difference (1001-1-1-11-11) can be indexed as
(9,6,-5,-4,-3,2,-1,0).

Theorem 1[17]. Let nF2, ∈•XX with some fixed signed difference, then the XOR difference

X⊕Δ and the modular difference X+Δ are uniquely determined.

Proof：A more comprehensible proof than that in [17] is given here.
By the definitions of XOR difference X⊕Δ and signed difference X±Δ between nF2, ∈•XX ,

() i

n

i
ii

n

i
ii

n

i
XXXXXX ±

=

•

=

•

=

⊕ Δ=−=⊕=Δ
111

|||||| , i.e. the XOR difference X⊕Δ is uniquely

determined by X±Δ . For each iX±Δ = •− ii XX , iX±Δ has three possible cases 0, 1 and -1:

when iX±Δ =0, we have •= ii XX , which contributes nothing to the modular difference X+Δ ;

when iX±Δ =1, we have 1=iX and 0=•
iX , which contributes 12 −i to X+Δ ;

when iX±Δ =-1, we have 0=iX and 1=•
iX , which contributes - 12 −i to X+Δ .

Then, we have

() () () XXXXXX +

=

−±±

=

•

=

± Δ=Δ≡Δ=−=Δ ∑
n

i

ni
ii

n

i
ii

n

i 1

1
2mod

11

2mod2
n

|||| .

That means, X+Δ is uniquely determined by X±Δ . □
Theorem 2. Let nF2, ∈•XX , then the modular difference X+Δ is equivalent to the signed

difference X±Δ in modulo n2 , i.e. the X±Δ is the signed difference representation of the X+Δ

with the corresponding XOR difference X⊕Δ . By formularization, we have

4

() ()n2mod•+ −=Δ XXX = () ()n
n

i

i
ii 2mod2

1

1∑
=

−•− XX
()n2mod
≡ ()•

=

− ii

n

i

XX||
1

= X±Δ .

Proof: We have the deduction step by step as follows:
() () 2mod n•+ −=Δ XXX

() 2mod22
1

1

1

1 n
n

i

i
i

n

i

i
i ⎟

⎠

⎞
⎜
⎝

⎛
−= ∑∑

=

−•

=

− XX

() () () ()
 2mod2 2mod2

2mod

1

1

1

1 XXXX ±

=

−±

=

−• Δ≡Δ=−= ∑∑
n

n
n

i

i
i

n
n

i

i
ii

 Thus, theorem 2 is proved! □
Theorem 1 and 2 reveal that a bijective mapping does exist between the signed difference X±Δ

and the XOR difference X⊕Δ plus the modular difference X+Δ , given nF2, ∈•XX .

Proposition 3. Given the modular difference k2 between nF2, ∈•XX , there exist 1+− kn signed

differences that match it; similarly, given the modular difference k2− between nF2, ∈•XX , there
also exist 1+− kn signed differences that match it.
Proof：Consecutively, we can simply have the equivalent transformations as follows:

() ()nknnknnkkkkkk 2mod222222222222 2121121 +⋅⋅⋅++−=−⋅⋅⋅−−=⋅⋅⋅=−−=−= −−−−+++

() ()nknnknnkkkkkk 2mod222222222222 2121121 +⋅⋅⋅++=+⋅⋅⋅++−=⋅⋅⋅=++−=+−=− −−−−+++

In particular, we always have ()nnn 2mod22 11 −− −= . Thus, proposition 3 is proved. □

Directly by proposition 3, the following scaling rules for the signed difference notation hold in
terms of equivalent modular difference:
[] [] ()[] ()[] ()[]knknnkkkkkk −⋅⋅⋅−−=−⋅⋅⋅−−−=⋅⋅⋅=−+−+=−+= ,,1,,2,1,1,2,1 ;
[] ()[] () ()[] ()[] []knknnkkkkkk ,,1,,2,1,1,2,1 ⋅⋅⋅−=⋅⋅⋅−−−=⋅⋅⋅=++−=+−=− .

For example: 3= -3,4 = -3,-4,5 =-3,-4,-5,-6,-7,-8,9= -3,-4,-5,-6,-7,-8,-9
-7,6,-5,-3,-2,-1,0 = 9,8,7,6,-5,-3,-2,-1,0 =-6,-5,-4,1,0 = -7,4,1,0

Theorem 4. Let k2=Δ+X , ()[]klklk −⋅⋅⋅−+−+=Δ± ,,1,X , 11 −−≤≤ knl . If

1−≤++ nslk , then () ()nsks 2mod2 +<<<+ =Δ X ; otherwise, () () ()nsks 2mod12 +=Δ +<<<+X .

Similarly, let k2−=Δ+X , ()[]klklk ,,1, ⋅⋅⋅−++−=Δ±X , 11 −−≤≤ knl . If

1−≤++ nslk , then () ()nsks 2mod2 +<<<+ −=Δ X ; otherwise,

() () ()nsks 2mod12 +−=Δ +<<<+X .

Proof: For the first half of this proof, if 1−≤++ nslk , then we have

() ()[]
() ()[]

()nsk

ss

skslkslk
klklk

2mod2
,,1,

,,1,

+

<<<<<<+

=

+−⋅⋅⋅−++−++=
−⋅⋅⋅−+−+=Δ X

 ;

If 1−>++ nslk , then we have

5

() ()[]
() () ()[]

() ()nsk

ss

nslknslkskn
klklk

2mod12
0,,1,,,,1

,,1,

+=

−⋅⋅⋅−+−+−−+++−⋅⋅⋅−−=
−⋅⋅⋅−+−+=Δ

+

<<<<<<+X
.

Thus, the first half of theorem 4 is proved.
Similarly, the second half can be proved as above. □

Theorem 5. Let k2=Δ+X , ()[]kn −⋅⋅⋅−−=Δ± ,,1X , then

() () ()nssks 2mod122 +−=Δ +<<<+X .Similarly, let k2−=Δ+X , ()[]kn ,,1 ⋅⋅⋅−=Δ±X , then

() () ()nssks 2mod122 −+−=Δ +<<<+X .
Proof: Actually, theorem 5 is the extreme representation of theorem 4.

We have consecutive deduction of the first half as follows:

() ()[]
() () () ()[]

() ()nssk

ss

ssskn
kn

2mod122
0,,2,1,,,1

,,1

+−=

−⋅⋅⋅−−−−+−⋅⋅⋅−−=
−⋅⋅⋅−−=Δ

+

<<<<<<+X

The second half of theorem 5 can be proved similarly as above. □
Theorem 4 and 5 reveal how the carries due to modular addition or subtraction bring about some

unexpected modular difference when bit rotations are applied in the differential path, and from which
some extra conditions can be derived to prevent the occurrence of unexpected modular differences.

3 Collision Differential Selection For MD5

3.1 General Principles
Single block or multi-block collision differentials always exist for any iterated hash function based

on Merkle-Damgard theory, and the number of collision differentials may be numerous, but finite
given the fact that MD5 puts a limit on the length of the message. To carry out a successful collision
attack, the first and crucial step is to find an input difference pattern which can be controlled in the
differential propagation process, so that the input differences can be eliminated by a single or multiple
iterations in the final steps (four steps for MD5).

Given an input message difference, if a differential path exists that leads to a collision, then it is
called a feasible collision differential, hence a feasible differential path, otherwise an infeasible
collision differential and path. If the probability to fulfill the set of necessary conditions that maintain
the differential path is computationally feasible, then we call it a computationally feasible collision
differential, hence a computationally feasible differential path, otherwise a computationally infeasible
collision differential and path. In general, firstly a good collision differential should result in smaller
and smaller differences beginning from round 2, so that an elimination of all differentials or most
differentials can be achieved in the final round; secondly, the start differences in round 1 should be as
far away as possible from the first step to ensure enough free message words in round 1, so that some
states in round 2 can also be directly satisfied by these free message words through multi-step
modifications. Wang has given the first collision differential [8] which properly meets the principles
described above.

3.2 Input Difference Patterns
The first successful attack on the compression function of MD5 was proposed by Dobbertin[4].

The basic idea of Dobbertin’s attack, is to describe the whole compression function as a system of
equations. As variables these equations include the contents of the registers after various steps and the
message words, while the equations are mainly derived from the step operation and the message
expansion. Using the concepts of inner collision and inner almost collision, the system of equations
can be extremely simplified such that it becomes solvable with some special techniques including

6

evolutionary approaches. Dobbertin’s method can be used to produce real collisions for MD4 and
collisions for the compression function of MD5, which is a pseudo collision attack for MD5. Inspired
by Dobbertin’s attack, Wang developed her new technique of attack on MD4-like hash function,
which can produce real collisions for MD5 and other MD4-like hash functions efficiently. The success
of both Dobbertin’s and Wang’s attacks depends on selecting an appropriate input difference pattern
so that the number of equations or the avalanche effects of the step operation can be minimized. In
Dobbertin’s attacks, only 1-bit input difference patterns are considered, while in Wang’s attack, 3-bit
input difference pattern is used.

By Dobbertin’s attack, the system of equations consists of two inner collisions, one starting from
step 0p in the first round and ending at step 1p in the second round, the other one starting from step

2p in the third round and ending at step 3p in the fourth round, both inner collisions are connected by

a non-differential chain starting from step 11 +p and ending at step 12 −p . The selection of 1-bit
input difference pattern is to minimize the number of equations which depends significantly on the
two inner collisions and thus on the choice of the initial bit difference step 0p . Considering the

round-wise permutations ()ikσ , a complete list of 1-bit difference patterns is given in [17], which

shows 150 =p would be the best choice in terms of the number of equations to solve, but Dobbertin’s

choice was actually 9,14m with 140 =p instead taking into account the inner almost collision.

 Figure1: Overview Of The Differential Collision Attack On MD5

Wang’s attack on MD5 completely differs from Dobbertin’s in that it uses the first block to
produce a near collision which can be further eliminated by the second block to generate a real
collision. An input difference pattern should be selected such that in the first block there exist four
differential sections, respectively denoted as I,II,III and IV. Section I is a non-differential area without
input differences, section II is a near (almost) collision area spanning across the first and second
rounds, section III is a non-differential area plus MSB-only differential chain starting from the first
input difference of the third round if section II is an inner collision, or a MSB-only differential chain
directly derived from section II if section II is an inner almost collision. Section IV is a near collision
area consisting of at least the last four consecutive steps, which are summed with the initial variables
to be the chain input differences of the second block. Due to the chain input differences, there does not

I: Non-differential

II: Inner Almost Collision

III: MSB Differential

15

31

47

IV: Near Collision 63

0

31

47

III: MSB Differential

0
-4

63

15

IV: Full Collision

II: Inner Almost Collision

The First Block The Second Block

7

exist section I in the second block, the chain input differences propagate all the way to the beginning
of section II and constitute a lengthened section II starting from step 0, and the section III and IV in
the second block correspond to the section III and IV in the first block, except that the differences in
the last four consecutive steps are eliminated, i.e. turning a near collision into a full collision. This can
be illustrated in figure 1 by an overview of the differential scheme of the collision attack on MD5.

Despite of over 3-bit input differences, if only 1-bit to 3-bit input difference patterns are
considered, we can thus make a list of all possible input difference patterns that are probably qualified
to construct a feasible collision differential.

Table 1.The Most Probable Input Difference Patterns For Collision Attacks On MD5
Bit Differences Number Section I Section II Section III Section IV

20,4m , 31,7m , 31,13m 3-bit 1-4 5-31 32-60 61-64

8,6m , 31,9m , 31,15m 3-bit 1-6 7-25 26-58 59-64

31,2m , 27,9m , 31,12m 3-bit 1-2 3-32 33-63 64-64

31,4m , 15,11m , 31,14m 3-bit 1-4 5-26 27-61 62-64

7,2m 1-bit 1-2 3-30 31-62 63-64

20,4m 1-bit 1-4 5-24 25-60 61-64

8,6m 1-bit 1-6 7-18 19-58 59-64

27,9m 1-bit 1-9 10-25 26-63 64-64

15,11m 1-bit 1-11 12-19 20-61 62-64

10,5m , 27,9m 2-bit 1-5 6-25 26-63 64-64

31,5m , 31,11m 2-bit 1-5 6-21 22-64

31,8m , 21,11m 2-bit 1-8 9-31 32-64

 III + IV = MSB Diff. Chain

31,5m 1-bit 1-5 6-21 22-64

31,8m 1-bit 1-8 9-28 29-64

31,11m 1-bit 1-11 12-19 20-64

31,14m 1-bit 1-14 15-26 27-64

10,5m 1-bit 1-5 6-29 30-64

25.8m 1-bit 1-8 9-30 31-64

21,11m 1-bit 1-11 12-31 32-64

16,14m 1-bit 1-14 15-32 33-64

1-Bit Input Difference: If only 1-bit input difference is considered, the beginning MSB difference in
section III must be derived from section II such that the differential can propagate along all the MSBs
in section III to the beginning of section IV. By this specific requirement and some principles in
section 3.1, a group of MSB-differences including 31,5m , 31,8m , 31,11m , 31,14m , and a group of

non-MSB differences including 7,2m , 20,4m , 10,5m , 8,6m , 25.8m 27,9m , 15,11m and 16,14m are probably
qualified to construct a feasible collision differential.

2-Bit Input Difference: Since 2-bit input differences can not themselves produce a section III (MSB
differential chain) in the third round, at least one MSB difference at the beginning steps in section III
must be derived from section II so that 3-bit input differences (1-bit plus 2-bit) can be combined in the
third round to form a section III. By this specific requirement and some principles in section 3.1, an

8

appropriate composition of two 1-bit input difference can be a 2-bit input difference that is probably
qualified to construct a feasible collision differential. Basically, there exist three ways of combination
which are respective the two 1-bit input differences are selected both from the MSB-difference group,
or from the non-MSB difference group, or one from each group. Therefore, many 2-bit input
differences can be selected by the way of combination. As for examples, a couple of two
MSB-differences 31,5m and 31,11m or 31,8m and 31,14m , a couple of two non-MSB differences

10,5m and 27,9m , and a couple of MSB-difference 31,8m and non-MSB difference 10,5m can all be
qualified to construct a feasible collision differential. For the sake of limited space, we only give three
different compositions in table 1.

3-Bit Input Difference: Since 3-bit input differences can themselves produce a section III (a MSB
differential chain) in the third round, no derivation of differences from section II is needed. The 3-bit
input differences should be arranged in such a way that, after left rotations the first bit difference in the
third round must be a MSB, and this MSB difference is combined with the second and third MSB
input differences within four steps to build a consecutive MSB difference, which will propagate along
the way to the beginning of section IV. By this specific requirement and some principle in section 3.1,
only the corresponding bit differences of 2m , 4m , 6m , 9m , 11m , 13m and 15m in the end of the fourth
round can be used to produce the beginning MSB difference in the third round. Due to the round-wise
message permutation in the third round, 2m and 15m can not be the beginning MSB difference, while

the corresponding bit differences in 4m , 6m , 9m , 11m and 13m are qualified as the first input

difference, namely, 20,4m , 8,6m , 27,9m , 15,11m and 27,13m . Therefore, we have five groups of 3-bit
input difference patterns, each consisting of 3 words, each word having 1-bit difference, respectively

20,4m , 31,7m and 31,13m constitute the first group, 8,6m , 31,9m and 31,15m the second

group, 27,9m , 31,12m and 31,2m the third group, 15,11m , 31,14m and 31,4m the fourth group, and

27,13m , 31,0m and 31,6m the fifth group. Being required of enough free message words in the first round ,
the fifth group can not be a good collision differential.

For the sake of clarity, we make a list of the whole set of input difference patterns in table 1, that
are most probably qualified to construct a feasible collision attack on MD5. In particular, all the
collision differentials that have already been published are included in this table. From table 2, we can
see that Wang’s choice is perhaps the best one in the four groups of 3-bit input differences, the 2-bit
input differences are derived from the 1-bit input differences, and can be regarded as compositions of
them. What is really noticeable consists in these 1-bit input differences. However, it does not seem
obviously which 1-bit input difference is more appropriate for collision differential, before your work
is finished.

3.3 Three Feasible Collision Differentials

For comparison, in table 2 we make a list of all the collision differentials that have been published,
with their chain output differential together.

Table 2. The Three 2-Block Collision Differentials Published For MD5
+Δ No.1 Collision Differential[6] No.2 Collision Differential[15] No.3 Collision Differential

0M+Δ 0,0,0,0,231,0,0,0,0,0,0,215,0,0,231,0 0,0,0,0,0,0,-28,0,0, 231,0,0,0,0,0, 231 0,0,0,0,0,0,0,0,231,0,0,0,0,0,0,0

1M+Δ 0,0,0,0,231,0,0,0,0,0,0,-215,0,0,231,0 0,0,0,0,0,0,28,0,0, 231,0,0,0,0,0, 231 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1H+Δ 231, 231+225, 231+225, 231+225 231-223, 231-223, 231-223, 231-223 231, 231, 231, 231

2H+Δ 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

9

4 Design of Differential Paths

4.1 General Principles
When an input difference pattern is found to be probably qualified to construct a feasible collision

differential, the next work is to design a feasible differential path which leads to a collision. The basic
design criterion is to minimize the Hamming weight of the differential path, which counts the
number of bit differences in the differential path, especially the differential section III and IV. In
addition, section II is the critical part of the differential path, a successful design of the differential
path usually depends on it. When designing a differential path, an intelligent trial-and-error method is
necessary in the backward-and-forward construction process. To design a good differential path with
as small Hamming weight as possible, the following principles would be benefited from if observed.
1) Deduce a differential path bottom-up in a backward way, starting from the first inner collision in

section II (in the second round), up to four or five steps away from the first input difference step in
the first round;

2) Deduce the differential up-down from the first input difference step in the first round so that it can
link up with the bottom-up differential;

3) In general, the start input difference in section II is applied in the step operation in such a way that,
all differences that are needed by the bottom-up differential can be generated within five steps;

4) Employ the properties implicit in the signed difference to extend the signed differences as required
in each backward or forward step, and this is the basic rule suitable for any hash functions;

5) Use the generation and elimination rules implicit in the auxiliary functions in each backward or
forward step, and these are the special rules derived from the particular hash function.

4.2 MD5 Differential Propagation
A MD5 differential path is composed of 64 consecutive steps of state differences.
Four consecutive signed differences (in order of a±Δ , d±Δ , c±Δ and b±Δ) are employed as

inputs to the step operation function to generate the next signed difference •±Δ a , we call this
computation a step of MD5 differential iteration.

In a MD5 step of differential iteration, the modular differences in the next step can be :
1) Directly derived from the modular difference of a±Δ in state variable a ;
2) Directly derived from the modular difference of b±Δ in state variable b ;
3) Indirectly generated by the auxiliary function, provided that at least one signed difference exists at

the same bit position in the last three state variables b , c and d :
i) A modular difference can be generated in quite a few ways;
ii) Actually, modular differences can be generated from the last three state variables b , c and d

in an arbitrary way, by utilizing both the properties implicit in the signed difference and the
rules implicit in the auxiliary functions;

iii) Almost all intelligence of differential path designing is focused here, and for the basic
differential propagation rules with respect to the four auxiliary functions, please refer to [15].

4) The modular difference generated by the auxiliary function can be used to cancel out those modular
differences derived directly from the top or last state variables a and b .

With the properties implicit in the signed difference, in each forward or backward differential
iteration step, the critical technique will most probably be, on the one hand, to employ the auxiliary
functions to generate those modular differences, required by the next output signed
differences •±Δ a but not directly derived from the top or last signed differences a±Δ and b±Δ ; on the
other hand, to employ the auxiliary functions to generate the complementary modular differences for
those directly derived from the top and last signed differences a±Δ and b±Δ , but not required by the
next output signed differences •±Δ a , so that two complementary signed differences be eliminated
together.

4.3 Basic conditions due to signed differences
A bit that must be specified a value to keep control of the differential path, is called a conditional

10

bit, a set of bit specifications on all the conditional bits is called sufficient if it will definitely leads to a
collision when all are imposed on. In particular, two bits may be relatively specified to include two
situations, for example, jiji da ,, = or jiji da ,, ≠ .

All the bit specifications due to the signed difference bits in the state variables are called basic
conditions. Every basic condition is incidental to a signed difference bit in a state variable within two
steps, in other words, a bit can not become a basic condition if there exist no signed difference bit on
the same position in a state variable within two steps. Each state variable works as different
component in three consecutive step operations, consequently a bit difference in a state variable will
produce at most five basic conditions, which are uniquely determined by the auxiliary function applied.
As for the ITE function used in the first round, one condition is the difference bit itself, one or two
conditions depend on if there are modular differences derived from when it works as the selection
component, two conditions are defined by the bit of being selected or not in the ITE function. For the
three different auxiliary functions of MD5, we give the basic condition derivation rules in table 3.

In table 3, each auxiliary function has one bit signed difference at respectively one of the three

components, denoted in order as ii cb , and id . When the component b has signed difference ib±Δ ,

the other two component bits ic and id must be (or relatively) specified according to the output bit

signed difference iF±Δ , iH±Δ or iI±Δ as required by the differential path. The condition
derivation rules are listed in the columns of every auxiliary function, each having three situations. The
‘0’s in the iF±Δ , iH±Δ and iI±Δ rows represent non-difference output, while the ‘0’s in other rows
represent the conditional bit value. The asterisk “﹡”denotes an arbitrarily specified bit.

Table 3. Basic Condition Derivation Rules For Auxiliary Functions In MD5
() () ()iiiiiii dbcbdcbF ∧∨∧=,, , 320 <≤ i

iF±Δ 0 -1 +1 iF±Δ 0 1± iF±Δ 0 1±

id 0 1 0 1 1 0 id ﹡ ﹡ id±Δ 1± 1±

ic 0 1 1 0 0 1 ic±Δ 1± 1± ic ﹡ ﹡

ib±Δ 1± -1 +1 -1 +1 ib 0 1 ib 1 0

() iiiiii dcbdcbH ⊕⊕=,, , 320 <≤ i

iH±Δ 1± 1m iH±Δ 1± 1m iH±Δ 1± 1m

id 0 1 0 1 id 0 1 0 1 id±Δ 1±

ic 0 1 1 0 ic±Δ 1± ic 0 1 0 1

ib±Δ 1± ib 0 1 1 0 ib 0 1 1 0

() ()iiiiii dbcdcbI ∨⊕=,, , 320 <≤ i

iI±Δ 0 -1 +1 iI±Δ 1m 1± iI±Δ 0 1± 1m

id 0 1 1 id 0 0 1 1 id±Δ 1±

ic ﹡ 0 1 1 0 ic±Δ 1± ic ﹡ 0 1

ib±Δ 1± -1 +1 -1 +1 ib 0 1 1 0 ib 1 0

By the principles and rules in section 4.1 to 4.3, we give the basic differential paths with respect

to the described input bit difference 31
8 2=Δ+m for two blocks, respectively in table 6 and table 8.

4.4 Extra Conditions Due to Carries and Rotation

11

Besides the basic conditions that must be fulfilled, some extra conditions must be satisfied to
prevent the occurrence of some possible unexpected modular differences due to the carries or overflow.
By the theorem 4 and 5 in section 2, unexpected carries and even overflows are always possible when
the part ∑ ia of step operation is implemented, since ∑ ia will probably have a much lengthened
signed difference representation of a equal modular difference, and probably again the rotation
operation will just break off it. Therefore, the set of sufficient conditions must include both the basic
conditions and the extra conditions, and fortunately, most of the extra conditions are fulfilled with
much high probabilities.

By the theorem 4 and 5, no extra conditions are needed for the differential path of the second
block, and the extra conditions for the first block are included with the following groups of equations:

019~6,3 =∑d , 024~21,4 =∑a , 024~22,5 =∑a , 031~29,5 =∑d , 017~7,5 =∑c , 126~24,6 =∑a ,

022~11,6 =∑d , 031~21,6 =∑c , 10111~9,6 ≠∑b , 131~15,6 =∑b , 126,7 =∑a or 1125~24,7 =∑a ,

017~7,7 =∑c ,∑ = 131~29,7b . As for example, 019~6,3 =∑d means at least one equation of

06,3 =∑d , 07,3 =∑d ,…, 019,3 =∑d must hold.

4.5 Condition Fulfillment: Divide-and-Conquer
There always exist conditions that can not be satisfied by direct modifications, these conditions

have to be probabilistically fulfilled through random or brute force search, which compose the
computational complexity of collision attack algorithm. For example, if there exist k conditions that
can only be probabilistically fulfilled in the round 2, 3 and 4, then the computational complexity will
be around k2 hash operations, which is a multiplicative accumulation on the conditions. One idea is
to change the multiplicative accumulation of computational complexities, into an additional
accumulation by properly grouping the conditional bits that can not be directly modified, so that the
previously fulfilled groups of conditions will not be violated by later searches. This will result in a
specific divide-and-conquer technique for hash collision attacks, which will greatly reduce the
computational complexity to be determined actually by the maximal group of conditions.

To be more precise, if the k conditions can be divided into p groups, namely 1G , 2G … and

pG , kG
p

i
i =∑

=1

 and { }pGGGG ,,,max 21max ⋅⋅⋅= , which is the largest group with the most

conditions; if groups 1G to iG will not be violated by the search of group 1+iG ’s satisfaction and so
on. Then the computational complexity for the k conditions will be reduced to an additive
accumulation of the complexities for groups 1G , 2G … and pG instead, and the group maxG will be
representative of the whole computational complexity, provided that there exist enough free message
bits to be searched for each group.

According to the principle that the previously used message words or bits must not be further
modified later, these probabilistically satisfied conditions can be grouped mainly by the step orders. In
this way, the conditions in round 2,3 and 4 can be divided into three groups, respectively 5a , 5d and 5c

constitute the first group, 5b , 6a , 6d and 6c the second group, finally the state variables from 6b to

the end 16b the third group. The first group relies directly on the brute force search on the free bits of

5a , but indirectly on 1m to fulfill the conditions that can not be satisfied by direct modification

in 5d and 5c . The second group relies directly on the brute force search on the free bits of 5b , but

indirectly on 0m to fulfill the conditions in 6a , 6d and 6c , which are all probabilistically satisfied.

Besides the conditions in 7a are satisfied directly through a brute force search on the four selected

12

bits in 3a but indirectly on 9m , the third group relies mainly on the brute force search directly on the

free bits of 1b , but indirectly on 3m , 4m and 7m (and 8m , 9m and 12m due to the selected bits

search on 3a) to fulfill the conditions in the state variables from 6b to the end 16b .

4.6 Additional Conditions: Change Absorption
Take the first block as an example. In the third group, the brute-force search on the free bits of

1b will certainly make changes on 2d and 2c , and indirectly on 5m and 6m if the 2d and 2c

remain the same, this will result in a conflict with the previously used message words 5m and 6m ,

since 5m and 6m are used respectively in state variables 5d (in the first group) and 6a (in the

second group). To avoid this type of conflicts, as components of the choose function ()ZYXF ,, the
state variables 2a and 2d need to be 0x00000000 and 0Xffffffff, respectively, so that the brute force
search on the state variable 1b will be absorbed in the recomputation of 2d and 2c . For the same
reason, the four couples of bits (namely, 1,3d , 2,3d , 17,3d and 31,3d , 1,3c , 2,3c , 17,3c and 31,3c) in the

state variables 3d and 3c need to be 0 and 1, respectively, so that the brute force search on the four free

bits of 3a can be absorbed in the recomputation of 3d and 3c , resulting in no changes on the

previously used 10m and 11m . The second block is treated in a similar way.
Table 7 and table 9 are obtained by respectively modifying table 6 and table 8 as described above,

additional conditions are appended for absorbing the changes due to random or brute-force searches.

5 Collision Search Algorithms

In general, a collision searching algorithm is fundamentally determined by the corresponding
differential path, a good differential path will have an intrinsically efficient algorithm. The objective of
designing an algorithm for a collision differential path is to reduce the number of probabilistically
fulfilled conditions as many as possible, this can be achieved by some methods such as single-step
modification, multi-step modification and the tunneling-like techniques. In this paper, by properly
grouping of conditional bits, we particularly transform the multiplicative computational complexities
into additional accumulation, which is the divide-and conquer technique introduced in section 4.5 and
4.6. As a result, the actual computational complexity is much greatly reduced. The collision searching
algorithm, however, is very complex, but we suggest you visit the website
(http://www.is.iscas.ac.cn/gnomon) for a personal experience if you are interested in it, where the
computational efficiencies of the three collision differentials can be compared on the same machine.
For example, a collision pair is given in table 4 with its MD5 digest.

5.1 The Algorithm For The First Block
Step 1: Randomly initialize the state variables 1c and 1b , set 2a and 2d to be 0x00000000 and 0xffffffff,
randomly initialize the state variables from 2c to 5a but with all the conditions satisfied, check by the

extra conditions in section 4.4 if there exist invalid carries in 3d and 4a , then go to step 1 (do step1

again); otherwise, compute the message words from 6m to 15m according to their corresponding step

equations and based on the state variables from 1c to 4b ；
Step 2: Do the brute force search on the free bits of 5a one binary combination each time, if all
binary combinations of the free bits are searched over, then go to step 1;
Step 3: Randomly initialize 5d but with all its conditions satisfied, compute 6m according to the 5d

step equation, then make an update of 2c . If there exist conditions unsatisfied in 2c , go to step 2;

13

Step 4: Compute 5c , if there exist conditions unsatisfied for 5c , then modify 2b and 3a or

directly 4c to compute 11m , so that the conditions for 5c can be satisfied from the less significant

bit to more significant bits. If 020,5 =c or 121,5 =c , go to step 2 since no modifications can be

applied; otherwise, initialize 5b so that its conditions are all satisfied, and compute 1m according

to the 5a step equation;

Step 5: Do the brute force search on the free bits of 5b one binary combination each time. Compute

0m according to the 5b step equation, then make an update of 1a and 1d , and compute 5m according to

the 2d step equation. If all binary combinations of the free bits in 5b are searched over, go to step 2;

Step 6: Compute 6a , check if there exist any conditions unsatisfied for 6a , then go to step 5;

Step 7: Compute 6d , check if there exist any conditions unsatisfied for 6d , then go to step 5;

Step 8: Compute 6c , check if there exist any conditions unsatisfied for 6c , then go to step 5;

otherwise, compute 2m , 3m and 4m according to the 1c , 1b and 2a step equations;

Step 9: Do the brute force search on the free bits of 1b , compute 4m according to the 2a step equation
to make an update of 6b . Check if all conditions for 6b are satisfied, then compute 3m and 7m ;

otherwise go to step 9 (do step9 again). If all binary combinations of the free bits in 1b are searched
over, go to step 5;
Step 10: Do the brute force search on the four free bits (1,3a , 2,3a , 17,3a and 31,3a) of 3a one binary

combination each time, compute 9m according to the 3d step equation to make an update of 7a .

Check if all conditions for 7a are satisfied, then compute 8m and 12m ; otherwise go to step 10. If all

binary combinations of the free bits in 3a are searched over, go to step 9;
Step 11: Compute the next step operation till the last one, check if all the conditions are satisfied, then
output the chain variables 016 aa + , 016 bb + , 016 cc + and 016 dd + to the algorithm for the
second block; otherwise, go to step 10.

5.2 The Algorithm For The Second Block
Step 1: Randomly initialize 1a and 1b but with all their conditions satisfied; set 2a and 2d to be
0x00000000 and 0x7fffffff so that their conditions are satisfied; randomly initialize the state variables
from 2c to 3a but with all the conditions satisfied; set 3d and 3c to be 0x00000000 and 0x7fffffff so

that their conditions are satisfied; randomly initialize the state variables from 3b to 4c but with all the

conditions satisfied. Compute the message words from 0m to 14m according to their corresponding

step equations and based on the state variables from 1a to 4c ；
Step 2: Randomly initialize 4b but with all its conditions satisfied, do the random search on the free
bits of 4b .If the prescribed limit on the number of random search tries is over, then go to step 1;
Step 3: Compute the state variables from 5a to 6c , check if there exist any conditions unsatisfied for

the state variables from 5a to 6c , then go to step 2;

Step 4: Randomly initialize 1b but with all its conditions satisfied. Do the brute force search on the free
bits of 1b one binary combination each time, compute 4m according to the 2a step equation to make an
update of 6b . Check if there exist any conditions unsatisfied for 6b , go to step 4 (do step4 again);

14

otherwise, compute 3m and 7m . If the prescribed limit on the number of brute force search tries is over,
go to step2;
Step 5: Randomly initialize 3a but with all its conditions satisfied. Do the brute force search on the

free bits of 3a one binary combination each time, compute 9m according to the 3d step equation to

make an update of 7a . Check if there exist any conditions unsatisfied for 7a , go to step 5 (do step5

again); otherwise, compute 8m and 12m . If the prescribed limit on the number of brute force search
tries is over, go to step4;
Step 6: Compute the next step operation till the last one, check if all the conditions are satisfied, then
output the collision blocks; otherwise, go to step 5.

Table 4. A Collision Example With The MD5 Digest (Underlined Bits With Difference）

0M 0x6f5405b5, 0xb891efe, 0xae153522, 0x3dd541ab, 0x77cfac08, 0xb4ae7077, 0xb14ec779, 0xa7ccf30,

0xf1c56954, 0x70dc3345, 0x5eda46a1, 0xc9fc1730, 0x948b9be, 0x2ef76cad, 0x86149360, 0x3bcecd25

1M 0x1dea12a, 0x50179204, 0x6a2ab7f9, 0x80e06efa, 0x1da137c9, 0x22032f7e, 0x3af27c94, 0xbfd0dda2,

0x54dd5054, 0xde27de3, 0x328eb6dc, 0x1da31980, 0xf0a9c456, 0x720e6177, 0xe5ac6c8f, 0x15ab7afc
∗
0M 0x6f5405b5, 0xb891efe, 0xae153522, 0x3dd541ab, 0x77cfac08, 0xb4ae7077, 0xb14ec779, 0xa7ccf30,

0x71c56954, 0x70dc3345, 0x5eda46a1, 0xc9fc1730,0x948b9be, 0x2ef76cad, 0x86149360, 0x3bcecd25
∗
1M 0x1dea12a, 0x50179204, 0x6a2ab7f9, 0x80e06efa, 0x1da137c9, 0x22032f7e, 0x3af27c94, 0xbfd0dda2,

0x54dd5054, 0xde27de3, 0x328eb6dc, 0x1da31980, 0xf0a9c456, 0x720e6177, 0xe5ac6c8f, 0x15ab7afc
 MD5 value: 0x281e1404 0x596131cd 0x9cd2262c 0xa5aa822f

5.3 Computational Complexity Analysis

There totally exist 47 and 31 conditions respectively in the first block and the second block
starting from the second round, which must be probabilistically fulfilled, the computational
complexity would be around 472 and 312 MD5 operations if only multi-step modifications are
applied. When the divide-and-conquer technique is applied, these conditions are divided into three
groups, each group of conditions are independently and probabilistically fulfilled without violating
each other, resulting in a great decrease in the computational complexity. In details, the condition
fulfillment in the first block can be divided into four phases as follows:

Phase 1: Phase 1 includes step 1 and step 2. Since in this phase only direct modifications are needed,
the computational complexity is a constant defined as C ;

Phase 2: Phase 3 includes step 3 and step 4. Direct modifications coexist with probabilistic condition
fulfillment in this phase, and only three conditions (one for step 5d and two for step 5c) are
probabilistically fulfilled without violating the previously satisfied conditions in phase 1, resulting in a
computational complexity of around 32 MD5 operations;

Phase 3: Phase 3 includes step 5 to step 8. In this phase, totally 15 conditions are probabilistically
fulfilled without violating the previously satisfied conditions in phase 1 and phase 2, resulting in a
computational complexity of around 152 MD5 operations;

Phase 4: Phase 4 includes step 9 to step 11. There totally exist 29 conditions that can only be
probabilistically fulfilled without violating the previously satisfied conditions in phase 1, 2 and 3.
Since a single try involves (3+3+41) steps of operation, it results in an averaged computational

complexity of 3.2164
4729

22 ≈
×

MD5 operations.

15

Due to the separation of the four phases above, the total computational complexity for the first
block is an additive accumulation of that in all the four phases, which means that the computational
complexity is 3.21153 222 +++C , instead of a multiplicative accumulation, which would
be 4729153 2222 ≈××+C . A similar analysis on the second block shows that the averaged

computational complexity for the second block is 6.1764
4724

22 ≈
×

MD5 operations.

6 Summary, Comparison and Suggestions

In this paper, firstly, a whole list of 1-bit to 3-bit eligible input differences is presented, and the
supernatural appearance of collision differential selection is thus unclosed. Secondly, a new 1-bit input
difference pattern is developed to be the currently fastest collision attack algorithm for MD5, with an
averaged computational complexity of 3.212 MD5 operations, implying that a common desktop PC
can produce a MD5 collision within around one second. Thirdly, a divide-and-conquer technique
specific for hash collision attacks is proposed with a concrete application of it. Finally, some technical
details related to the derivation of the basic conditions and the extra conditions are presented. This
paper will help the cryptology community to further grasp the recent techniques on hash cryptanalysis.

A collision differential can be evaluated according to the following five criteria:
1) Whether the differential path depends on the fixed IVs of hash function or not?
2) The number of message blocks comprising of the collision differential;
3) The number of free words in the message;
4) The number of bit differences in the messages;
5) The number of all sufficient conditions which must be satisfied to make collision;
6) The number of all conditions excluding the first round;
7) The averaged computational complexity of finding a collision.

Considering the real-world cryptanalytic attacks, a differential path which does not rely on the
fixed initial IVs will obviously be better than that must rely on it, a collision differential which has
more free words, less input differences and sufficient conditions will be more easily used to construct
meaningful attacks, a collision differential with less message blocks and probabilistically fulfilled
conditions will be more efficient for practical attacks. The less the conditions necessary to maintain
the full differential path, the higher the density of collision message will be; the less the average
computational complexity of finding a collision, the more feasible an attack on practical protocols
based on hash function will be. For the three collision differentials that have been published, we make
a comparison in table 5 based on the above criteria. From table 5, the 1-bit input difference exceeds
the other two 3-bit input differences, in terms of free message words, bit differences, sufficient
conditions and especially the computational complexity.

Table 5. Performance Comparison For The Three Collision Differentials
Items No.1 [6] No.2 [16] No.3 Comments
depend on fixed IVs not not not IVs are free
number of blocks 2 2 2 2-block collision
number of free words 1~2 1~4 1~6 Steps indexed by 1~64
number of diff. bits 3-bit/3-bit 3-bit/3-bit 1-bit/0-bit No.3 is specific
number of all conditions 290 / 309 205 / 306 264 / 47 exclude extra conditions
number of prob. conditions 43 / 36 38 / 35 84 / 31 exclude extra conditions
computational complexity 8.242 302 3.212 averaged
time / a collision (averaged.) 1 min. 30 min. 1 sec. 2.66 GHZ PC

By the seven criteria above, in this paper the 1-MSB input difference 32,8m may not be the best

choice for the MD5 collision differential, probably there exists better choice from the other input

16

differences in table 1, as the 32,8m -based collision differential was developed before the whole set of
input differences is found. Hence, a continue work on finding a more efficient input difference from
the table 1 is suggested and encouraged, perhaps a collision attack algorithm based on a better input
difference can generate hundreds of collisions one second.

 While it will no longer be regarded as a more or less supernatural work that mainly relies on one’s
intuition since this paper, it probably remains a challenging work to design a good differential path.
Despite of some initial work in this direction[14,18], it is worth a further and deep study on how to
intelligently and automatically design a good differential path, perhaps some heuristic methods like
evolutionary approaches may help a lot.

References
1. Ron Rivest. The MD5 message-digest algorithm. Internet Request for Comment RFC 1321, Internet Engineering

Task Force, April 1992.
2. T. A. Berson. Differential Cryptanalysis Mod 232 with application to MD5. In Advances in Cryptology,

Proceedings of EUROCRYPT’92, pages71~80, 1992.
3. B. den. Boer, A. Bosselaers. Collisions for the compression function of MD5, Advances in Cryptology,

Eurocrypt’93 Proceedings, Springer-Verlag, 1994.
4. H. Dobbertin. Cryptanalysis of MD5 compress, presented at the rump session of Eurocrypt’96.
5. X.Y. Wang, F.D. Guo, X.J. Lai, H.B. Yu, Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD,

rump session of Crypto’04, E-print, 2004.
6. X.Y. Wang, Hongbo Yu, How to Break MD5 and Other Hash Functions, EUROCRYPT 2005, LNCS 3494,

pp.19-35, Springer-Verlag, 2005.
7. X.Y Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1, Crypt’2005, LNCS 3621,

pp17~36.
8. Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology ePrint Archive,

Report 2006/105, 2006. http://eprint.iacr.org/.
9. Magnus Daum and Stefan Lucks. Hash Collisions (The Poisoned Message Attack) “The Story of Alice and her

Boss”. Presented at the rump session of Eurocrypt ’05.

10. Max Gebhardt, Georg Illies, and Werner Schindler. A Note on the Practical Value of Single Hash Collisions for

Special File Formats. In Jana Dittmann, editor, Sicherheit, volume 77 of LNI, pages 333–344. GI, 2006.
11. Marc Stevens, Arjen Lenstra, and Benne de Weger. Chosen-prefix collisions for MD5 and colliding X.509

certificates for different identities, EUROCRYPT 2007 (Moni Naor, ed.), LNCS, vol. 4515, Springer, 2007, pp.
1–22.

12. Scott Contini and Yiqun Lisa Yin. Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash

Collisions. In Xuejia Lai and Kefei Chen, editors, ASIACYPT, volume 4284 of Lecture Notes in Computer

Science. Springer, 2006.

13. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Security of HMAC and NMAC Based on

HAVAL, MD4, MD5, SHA-0 and SHA-1. In Roberto De Prisco and Moti Yung, editors, SCN, volume 4116 of

Lecture Notes in Computer Science, pages 242–256. Springer, 2006.
14. Y. Sasaki, L. Wang, N. Kunihiro, and K. Ohta. New Message Differences for Collision Attacks on MD4 and MD5.

IEICE Transactions, 91-A(1):55-63, 2008.
15. Tao Xie, Dengguo Feng, Fanbao Liu. A New Collision Differential For MD5 With Its Full Differential Path,

Cryptology ePrint Archive (2008/230), http://eprint.iacr.org/.
16. Tao Xie, Dengguo Feng, Fanbao Liu. An Improved Path for Xie’s first Collision Differential of MD5, technical

paper, 2008.6.
17. M. Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-University of Bochum, 2005.
18. C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Results and Applications. In X. Lai

and K. Chen, editors, Advances in Cryptology - ASIACRYPT 2006, Proceedings, volume 4284 of Lecture Notes
in Computer Science, pages 1-20. Springer, 2006.

17

Appendix A MD5 Function

Practically, a Merkle-Damgard structure-based hash function is iterated by a compression function
()XfY = , which compresses l -bit message block X to a s -bit hash valueY , where sl > . For

MD5, 512=l , 128=s . For a padded message M with multiple (t) of l -bit blocks, the iteration
process can be described as: ()iii MHfH ,1 =+ , 10 −≤≤ ti , where ()110 ,...,, −= tMMMM ,

iH is the 128-bit chaining variables (including four 32-bit words) which is updated during the

processing of each block, 0H is the prescribed initial value IVs in MD5 algorithm, and the final tH is
the digest that we expect to obtain. The concrete padding rule is omitted here, since it has no influence
on our attack.

The whole processing of the thi block ()ii MHf , can be defined as follows:

() ()()()()iiiiiiiii HMFFMGGMHHMIIHMHfH ,,,,,1 +==+ , where four round functions
FF , GG , HH and II are involved. All round functions are similar to one another in structure. The
chaining variable iH is treated as a four-element shift register, with each element being one 32-bit

word wide, referred to as 0a , 0b , 0c and 0d , respectively. Each 512-bit block iM is divided into 16

32-bit words, denoted as ()1510 ,...,, mmmM i = , each round consists of 16 steps of operation, in each

step operation the register is used with one word from iM . The 64 step operations are formulated as a

system of equations: ()()()js
jjiiijiii twdcbaba <<<

+ ++Φ++= ,,1 , 160 ≤≤ i , 641 ≤≤ j .

Where iii cba ,, and ib are the internal state variables, with 161 ≤≤ i ; ()ZYXj ,,Φ is an auxiliary

function which varies from round to round; jw is a word chosen from ()1510 ,...,, mmm by a

round-wise message permutation ()ikσ , 3,2,1,0=k , 15,...,1,0=i ; jt and js are constant
parameters associated with step j . Note that each step operation involves four modular additions

(322mod), one auxiliary function and one <<< operation. As the step operation of MD5 is
reversible, the compression function ()ii MHf , uses a feed-forward operation which adds the initial

value iH of the register to their final values, so that ()ii MHf , cannot be inverted.

The auxiliary function and the round-wise permutation ()ikσ for each round are given as follows:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤
<≤

<≤

=
+

+
+

.6448,
;4832,
;3216,

 16;j0 ,

16mod7

16mod35

16mod51
1

jm
jm
jm

m

w

j

j

j

j

j

Where ZYX ,, are 32-bit words. The auxiliary functions ()ZYXj ,,Φ each takes three

consecutive 32-bit words from the register of chaining variables and produces one 32-bit word as
output. The four words in the chaining variable register are initialized as

=a 0x67452301, =b 0xefcdab89, =c 0x98badcfe, =d 0x10325476.
For the sake of understanding how and where some extra conditions are derived from late in

section 5, which are used to prevent the possible unexpected modular differences due to the joint
effect of both modular addition and left rotation, we define part of the step operation
as () jjiiijii twdcbaa ++Φ+=∑ + ,,1 .

For a detailed description of MD5 algorithm, please refer to [1].

() () () ()ZXYXZYXFZYXj ∧∨∧==Φ ,,,, , 161 ≤≤ j ;

() () () ()ZYZXZYXGZYXj ∧∨∧==Φ ,,,, , 3217 ≤≤ j ;

() () ZYXZYXHZYXj ⊕⊕==Φ ,,,, , 4833 ≤≤ j ;

() () ()ZXYZYXIZYXj ∨⊕==Φ ,,,, , 6449 ≤≤ j .

18

Appendix B The Differential Paths

t Bits Qt: a0…a31 #
-3
-2
-1
0

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +

1~31
32~47
48~63

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +

0
0
1
1
31
0
16

Notes: In tables 6,7,8 and 9, + denotes a positive flip(0->1), - denotes a negative flip(1->0), 0(1)
denote the conditional bit value, ^ denotes the bit equal to the up bit, ! denotes the bit not equal
to the up bit, * denotes free bit, t denotes the step, # denotes the number of conditions for each
step.

t Bits Qt: a0…a31 #
1~6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31~47
48~55

56
57
58
59
60
61
62
63
64

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * 1 * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * 0 * 0 * * * * * * * * * * * 0 * * * * * * * * * 1 * * *
* * * * 1 ^ + ^ ^ ^ ^ * * 0 * 1 0 * 0 ^ ^ ^ ^ ^ ^ ^ ^ ^ 0 ^ ^ *
* * * * 0 1 - - - - + * * 1 ^ 0 1 * + + + + + + + + + + + + - *
^ * * ^ 1 1 + 0 0 0 1 ^ ^ + + + - 1 - 0 0 1 1 1 0 0 0 0 0 0 0 *
+ * * - + + - 0 1 1 0 + + 0 0 0 0 0 + + + + - 1 1 0 0 0 1 0 1 *
0 * * 0 0 1 1 * 1 * * 0 0 1 1 1 0 - 1 0 0 0 0 * * * * * + 0 1 ^
1 1 * 1 1 1 0 * + * * 1 0 * * * * 0 1 1 1 1 1 * * * * 0 0 - - +
* 1 * - 0 * 0 0 + * * * * * * * * 1 * * * * 1 * * * * 0 1 0 0 0
* - 1 * 1 * 1 0 0 * * * * * * * * 0 0 0 0 * + * * * * - * 0 0 1
* * 0 ^ + * + - 0 * * * * * * * * 1 1 1 1 1 * * ^ * * * * * * *
* ^ * * * * * * * 0 1 * * * * 0 * - - - + 1 ^ * * * * ^ * * * *
* * * * ^ * ^ ^ * 1 1 * * * * 0 * * * 0 1 + * * 0 0 * * * * * *
* * * * * * * * * + + * * * * - * ^ ^ 1 0 * * * 1 1 * * * * * *
* * * 0 * * * * * * * * * * * * * * * * * ^ * * - - * * * * * *
* * * 1 * * * * * ^ ^ * * * * ^ * * * * * * * * * * * * * 0 0 *
* * * + * * * * * * * * * * * * * * * * * * * * ^ ^ * * * 1 1 *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * + + *
* * * ^ * * * * * * * * * * * * * 0 * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * 1 * * * * * * * * * * * ^ ^ *
* * * * * * * * * * * * * * * * * + * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * ^ * * * * * * * * * * * * * 0
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +

0
1
4
23
24
29
29
22
20
13
15
12
11
11
9
4
6
5
2
2
3
1
0
2
0
0
8
1
1
1
1
1
1
1
1
0

t Bits Qt: a0…a31 #
1~4
5_t
6_t
7
8
9

10_t
11_t
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31~47
48~55

56
57
58
59
60
61
62
63
64

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
* * * * * * 1 * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * 0 * 0 * * * * * * * * * * * 0 * * * * * * * * * 1 * * *
* * * * 1 ^ + ^ ^ ^ ^ * * 0 * 1 0 * 0 ^ ^ ^ ^ ^ ^ ^ ^ ^ 0 ^ ^ *
* 0 0 * 0 1 - - - - + * * 1 ^ 0 1 0 + + + + + + + + + + + + - 0
^ 1 1 ^ 1 1 + 0 0 0 1 ^ ^ + + + - 1 - 0 0 1 1 1 0 0 0 0 0 0 0 1
+ * * - + + - 0 1 1 0 + + 0 0 0 0 0 + + + + - 1 1 0 0 0 1 0 1 *
0 * * 0 0 1 1 * 1 * * 0 0 1 1 1 0 - 1 0 0 0 0 * * * * * + 0 1 ^
1 1 * 1 1 1 0 * + * * 1 0 * * * * 0 1 1 1 1 1 * * * * 0 0 - - +
* 1 * - 0 * 0 0 + * * * * * * * * 1 * * * * 1 * * * * 0 1 0 0 0
* - 1 * 1 * 1 0 0 * * * * * * * * 0 0 0 0 * + * * * * - * 0 0 1
* * 0 ^ + * + - 0 * * * * * * * * 1 1 1 1 1 * * ^ * * * * * * *
* ^ * * * * * * * 0 1 * * * * 0 * - - - + 1 ^ * * * * ^ * * * *
* * * * ^ * ^ ^ * 1 1 * * * * 0 * * * 0 1 + * * 0 0 * * * * * *
* * * * * * * * * + + * * * * - * ^ ^ 1 0 * * * 1 1 * * * * * *
* * * 0 * * * * * * * * * * * * * * * * * ^ * * - - * * * * * *
* * * 1 * * * * * ^ ^ * * * * ^ * * * * * * * * * * * * * 0 0 *
* * * + * * * * * * * * * * * * * * * * * * * * ^ ^ * * * 1 1 *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * + + *
* * * ^ * * * * * * * * * * * * * 0 * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * 1 * * * * * * * * * * * ^ ^ *
* * * * * * * * * * * * * * * * * + * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * ^ * * * * * * * * * * * * * 0
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +

0
32
32
1
4

23
28
32
29
22
20
13
15
12
11
11
9
4
6
5
2
2
3
1
0
2
0
0
8
1
1
1
1
1
1
1
1
0

t Bits Qt: a0…a31 #
-3
-2
-1
0

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +

1~4
5_t
6_t
7~9
10_t
11_t

12~31
32~47
48~63

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +

0
0
1
1
4

32
32
3

32
32
20
0

16

Table 6: The Basic Differential Path Using
31

8 2=Δ+m (Block1).
Table 8: The Modified Differential Path With
Additional Absorbing Bits (Block1).

Table 7: The Basic Differential Path Using
160 ,0 <≤=Δ+ imi (Block2).

Table 9: The Modified Differential Path With
Additional Absorbing Bits (Block2).

