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Abstract: So far, two different 2-block collision differentials have been found both with 3-bit input 
differences for MD5, respectively by Wang etc in 2005 and Xie etc in 2008, and they have been 
improved later on to generate a collision respectively within around one minute and a half hour on a 
desktop PC. Can we again find a more efficient collision differential for MD5 ? In this paper, we 
firstly propose the whole set of 1-bit to 3-bit input difference patterns that are probably qualified to 
construct a feasible collision differential, and from which a new collision differential with only 1-bit 
input difference is then developed, finally the performances are compared with the prior two 3-bit 
collision attacks based on seven criteria. Two-block message, however, is still needed to produce a 
collision, the first block being only one MSB different while the second block remains the same. 
Although the differential path appears to be computationally infeasible, most of conditions can be 
fulfilled by multi-step modifications, and the collision searching efficiency can be much improved 
further by a specific divide-and-conquer technique, which transforms a multiplicative accumulation of 
the computational complexities into an addition by properly grouping of the conditional bits. In 
particular, a tunneling-like technique is also applied to enhance the attack algorithm by introducing 
some additional conditions. As a result, a currently the fastest attack algorithm is obtained with an 
averaged computational complexity of 3.212 MD5 operations, implying being able to search a 
collision averagely in one second on a 2.66 Ghz Pentium4 PC for arbitrary random initial values. With 
a reasonable probability a collision is found within milliseconds, allowing for instancing an attack 
during the execution of a practical protocol. 
Key Words: MD5, Collision Attack, Collision Differentials, Differential Path. 

1 Introduction 
A hash function is a cryptographic primitive which computes a fixed size message digest from 

arbitrary size messages. The output value is used usually as the digital digest of the input message, so 
that a single bit flip in the input would cause averagely a half of the digest bits to change. Therefore, a 
cryptographic hash function is essentially a type of irreversible one-way functions built with nonlinear 
operations. MD2, MD4 and MD5 are hash functions that were developed in the early1990’s by Ron 
Rivest at MIT for RSA Data Security. A description of these hash functions can be found in RSA 
Laboratories Technical Report TR-101 .  
 This paper mainly focuses on collision attacks on MD5. While it is postulated in RFC [1]that the 
difficulty of coming up with two messages having the same message digest is on the order of 

642 operations, researches on collision attacks have never stopped since the publication of MD5. In 
1992, Berson[2] showed that using differential cryptanalysis, it is possible in reasonable time to find 
two messages that produce the same digest for a single-round MD5. In 1993, Den Boer and 
Bosselaer[3] found pseudo-collisions for the compression function of MD5 with different initial 
values but common input. In 1996, Dobbertin[4] constructed collisions of the MD5 compression 
function, that is, MD5 collisions with a wrong initial value. In 2004, Wang et al.[5,6] succeeded in 
producing real collisions for the full MD5 hash function as well as collisions in a host of other hash 
functions including MD4, RIPEMD, and HAVAL-128.This new idea in their approach was to look for 
a collision after processing not one but two blocks of the message. Again at 2005 CRYPTO 
conference, Wang et al[7]. detailed the applications of their methods to the hash functions SHA0 and 
SHA1, with a generated collision for SHA0, and a description on how to obtain collisions in SHA1. 
Given the variety of hash functions efficiently attacked by Wang et al, it therefore seems worthwhile 
to seek a complete understanding of how this approach works, how it can be improved, and how it can 
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be generalized . 
Fundamentally, Wang’s differential collision attack is a hybrid differential cryptanalysis which 

takes advantages of both the modular difference and the XOR difference together. Wang et al have 
found a full two-block collision differential with its full differential path, which is computationally 
feasible, and for the first time constructed a real collision for MD5. Wang ’s attack on MD5 has called 
its security especially in digital signature into question. Since the publication of [6], quite a number of 
researchers have worked on the optimization of the differential path and the set of sufficient conditions 
and hence the collision searching algorithms, resulted in a great improvement on the collision 
searching efficiency to 8.242 MD5 operations as declared in [8], implying that a collision can be found 
around one minute on a desktop PC. Practical attacks on real protocols and applications based on 
MD4 family functions have continuously been developed by different applications of Wang’s collision. 
By using an if-then-else programming structure, two different Postscript files were created with the 
same MD5 digest to result in different texts when screening [9], and this attack was extended to other 
file formats in [10] . By Using Wang’s approach to find a near-collision for different IVs and further 
using different differential paths to absorb the remaining difference, a pair of colliding X.509 
certificates for two different distinguished name was found with the same MD5 digest [11]. Other 
applications of Wang’s collision have been proposed to attack HMAC with several hash functions in 
[12,13]. 

To date, however, the method used by Wang et al has been fairly difficult to grasp, and 
furthermore, the lack of some technical details and some small perhaps deliberately made errors (bugs) 
in the literature [6], might have constituted the appeal to have frustrated other cryptanalysts to grasp 
their technique. What is really inexplicable consists in that, no new two-block collision differentials 
have been published to be more efficient since Wang’s paper [6], and it seems to remain a 
supernatural work to find a feasible collision differential and widely considered to be rely on one’s 
experience and intuition. In 2007, an 1-bit input difference was used to construct a new collision 
attack[14], with a computational complexity of 422 MD5 operations, but no details is known. In the 
same year, however, we have found the second 3-bit collision differential, which resulted in an initial 
collision search algorithm with a computational complexity of 362 MD5 operations[15] and an 
improvement has been made later on to reduce the computational complexity to 302 MD5 
operations[16]. The authors of this paper, believed that, nevertheless there must exist other more 
efficient collision differentials than Wang’s. In this paper, however, a whole set of 1-bit to 3-bit input 
differences is provided for the first time, one of the 1-bit input differences is then present with its full 
differential path and sufficient conditions. Based on these sufficient conditions, finally a currently the 
fastest collision searching algorithm is developed with an averaged computational complexity of 

3.212 MD5 operations, implying that a collision can be found within around one second on a desktop 
PC.  

The rest of this paper is organized as follows: In section 2, the definitions for the XOR difference, 
the modular difference as well as the signed difference are given, some properties especially with 
respect to the differential path design and extra condition derivation are presented. In section 3, the 
basic principle on how to find collision differentials is described, and a whole set of 1-bit to 3-bit input 
difference patterns is made public for the first time, in which the two published MD5 collision 
differentials are included, and a new 2-block collision differential with only 1-bit input difference is 
presented with the design of its full differential path. In section 4, some general and basic principles 
for differential path design are described, the basic condition derivation rules implicit in the auxiliary 
functions are presented, some extra conditions for preventing unexpected modular differences are also 
derived, and a specific divide-and-conquer technique is proposed to reduce the computational 
complexity. In section 5, a divide-and-conquer based collision searching algorithm is specialized for 
the 1-bit collision differential, and a tunnel-like technique is applied to enhance the algorithm by 
introducing some additional conditions. Finally, in section 6, some evaluation criteria on collision 
differentials are given, and based on these criteria a comparison is made among the three collision 
differentials, and some suggestions for future researches on hash collision attacks are given. In 
appendix A, a concise description of the MD5 algorithm is given to help understand this paper. 
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2 Some Properties of the Signed Difference 

In this paper, s<<<  denotes a left rotation of a word by s-bit, and ‘+’ denotes an addition 
( )322mod , ||denotes a concatenation operation, LSB and MSB denote respectively the least and 

most significant bit of a word. 
Let nF2, ∈•XX , X⊕Δ  denotes the XOR difference defined as a bitwise XOR difference 

between X and •X , X+Δ  denotes the modular difference as a modular integer subtraction 
between X and •X , and X±Δ  denotes the signed difference as a bitwise difference 
between X and •X . For example, let =n 10, X =1001000101, •X =0000111010, X⊕Δ , X+Δ and 

X±Δ  are computed, respectively as follows: 
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For the sake of simplicity, we omit those “0”s in the signed difference X±Δ , but index the 
signed difference bits (+1 or -1) with their position identity instead, starting from 0 (the LSB) in X . 
Using 10-bit word as an example, the signed difference (1001-1-1-11-11) can be indexed as 
(9,6,-5,-4,-3,2,-1,0).  

Theorem 1[17]. Let nF2, ∈•XX  with some fixed signed difference, then the XOR difference 

X⊕Δ  and the modular difference X+Δ  are uniquely determined. 

Proof：A more comprehensible proof than that in [17] is given here.  
By the definitions of XOR difference X⊕Δ and signed difference X±Δ  between nF2, ∈•XX , 
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determined by X±Δ . For each iX±Δ = •− ii XX , iX±Δ has three possible cases 0, 1 and -1: 

when iX±Δ =0, we have •= ii XX , which contributes nothing to the modular difference X+Δ ; 

when iX±Δ =1, we have 1=iX and 0=•
iX , which contributes 12 −i to X+Δ ; 

when iX±Δ =-1, we have 0=iX and 1=•
iX , which contributes - 12 −i to X+Δ . 

Then, we have 
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That means, X+Δ  is uniquely determined by X±Δ .                              □ 
Theorem 2. Let nF2, ∈•XX , then the modular difference X+Δ  is equivalent to the signed 

difference X±Δ  in modulo n2 , i.e. the X±Δ  is the signed difference representation of the X+Δ  

with the corresponding XOR difference X⊕Δ . By formularization, we have 
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Proof: We have the deduction step by step as follows: 
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 Thus, theorem 2 is proved!                                               □ 
Theorem 1 and 2 reveal that a bijective mapping does exist between the signed difference X±Δ  

and the XOR difference X⊕Δ plus the modular difference X+Δ , given nF2, ∈•XX . 

Proposition 3. Given the modular difference k2 between nF2, ∈•XX , there exist 1+− kn  signed 

differences that match it; similarly, given the modular difference k2− between nF2, ∈•XX , there 
also exist 1+− kn  signed differences that match it. 
Proof：Consecutively, we can simply have the equivalent transformations as follows: 

( ) ( )nknnknnkkkkkk 2mod222222222222 2121121 +⋅⋅⋅++−=−⋅⋅⋅−−=⋅⋅⋅=−−=−= −−−−+++

( ) ( )nknnknnkkkkkk 2mod222222222222 2121121 +⋅⋅⋅++=+⋅⋅⋅++−=⋅⋅⋅=++−=+−=− −−−−+++

In particular, we always have ( )nnn 2mod22 11 −− −= . Thus, proposition 3 is proved.          □ 
                                                                  

Directly by proposition 3, the following scaling rules for the signed difference notation hold in 
terms of equivalent modular difference: 
[ ] [ ] ( )[ ] ( )[ ] ( )[ ]knknnkkkkkk −⋅⋅⋅−−=−⋅⋅⋅−−−=⋅⋅⋅=−+−+=−+= ,,1,,2,1,1,2,1 ; 
[ ] ( )[ ] ( ) ( )[ ] ( )[ ] [ ]knknnkkkkkk ,,1,,2,1,1,2,1 ⋅⋅⋅−=⋅⋅⋅−−−=⋅⋅⋅=++−=+−=− . 

For example: 3= -3,4 = -3,-4,5 =-3,-4,-5,-6,-7,-8,9= -3,-4,-5,-6,-7,-8,-9 
-7,6,-5,-3,-2,-1,0 = 9,8,7,6,-5,-3,-2,-1,0 =-6,-5,-4,1,0 = -7,4,1,0 

 
Theorem 4.  Let k2=Δ+X , ( )[ ]klklk −⋅⋅⋅−+−+=Δ± ,,1,X , 11 −−≤≤ knl . If 

1−≤++ nslk , then ( ) ( )nsks 2mod2 +<<<+ =Δ X ; otherwise, ( ) ( ) ( )nsks 2mod12 +=Δ +<<<+X . 

Similarly, let k2−=Δ+X , ( )[ ]klklk ,,1, ⋅⋅⋅−++−=Δ±X , 11 −−≤≤ knl . If 

1−≤++ nslk , then ( ) ( )nsks 2mod2 +<<<+ −=Δ X ; otherwise, 

( ) ( ) ( )nsks 2mod12 +−=Δ +<<<+X . 
 
Proof: For the first half of this proof, if 1−≤++ nslk , then we have 
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Thus, the first half of theorem 4 is proved. 
Similarly, the second half can be proved as above.                                □                         

 
Theorem 5.  Let k2=Δ+X , ( )[ ]kn −⋅⋅⋅−−=Δ± ,,1X , then 

( ) ( ) ( )nssks 2mod122 +−=Δ +<<<+X .Similarly, let k2−=Δ+X , ( )[ ]kn ,,1 ⋅⋅⋅−=Δ±X , then 

( ) ( ) ( )nssks 2mod122 −+−=Δ +<<<+X . 
Proof: Actually, theorem 5 is the extreme representation of theorem 4.  

We have consecutive deduction of the first half as follows: 
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The second half of theorem 5 can be proved similarly as above.                  □ 
Theorem 4 and 5 reveal how the carries due to modular addition or subtraction bring about some 

unexpected modular difference when bit rotations are applied in the differential path, and from which 
some extra conditions can be derived to prevent the occurrence of unexpected modular differences. 

3   Collision Differential Selection For MD5 

3.1 General Principles  
Single block or multi-block collision differentials always exist for any iterated hash function based 

on Merkle-Damgard theory, and the number of collision differentials may be numerous, but finite 
given the fact that MD5 puts a limit on the length of the message. To carry out a successful collision 
attack, the first and crucial step is to find an input difference pattern which can be controlled in the 
differential propagation process, so that the input differences can be eliminated by a single or multiple 
iterations in the final steps (four steps for MD5).  

Given an input message difference, if a differential path exists that leads to a collision, then it is 
called a feasible collision differential, hence a feasible differential path, otherwise an infeasible 
collision differential and path. If the probability to fulfill the set of necessary conditions that maintain 
the differential path is computationally feasible, then we call it a computationally feasible collision 
differential, hence a computationally feasible differential path, otherwise a computationally infeasible 
collision differential and path. In general, firstly a good collision differential should result in smaller 
and smaller differences beginning from round 2, so that an elimination of all differentials or most 
differentials can be achieved in the final round; secondly, the start differences in round 1 should be as 
far away as possible from the first step to ensure enough free message words in round 1, so that some 
states in round 2 can also be directly satisfied by these free message words through multi-step 
modifications. Wang has given the first collision differential [8] which properly meets the principles 
described above. 

3.2  Input Difference Patterns 
The first successful attack on the compression function of MD5 was proposed by Dobbertin[4]. 

The basic idea of Dobbertin’s attack, is to describe the whole compression function as a system of 
equations. As variables these equations include the contents of the registers after various steps and the 
message words, while the equations are mainly derived from the step operation and the message 
expansion. Using the concepts of inner collision and inner almost collision, the system of equations 
can be extremely simplified such that it becomes solvable with some special techniques including 
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evolutionary approaches. Dobbertin’s method can be used to produce real collisions for MD4 and 
collisions for the compression function of MD5, which is a pseudo collision attack for MD5. Inspired 
by Dobbertin’s attack, Wang developed her new technique of attack on MD4-like hash function, 
which can produce real collisions for MD5 and other MD4-like hash functions efficiently. The success 
of both Dobbertin’s and Wang’s attacks depends on selecting an appropriate input difference pattern 
so that the number of equations or the avalanche effects of the step operation can be minimized. In 
Dobbertin’s attacks, only 1-bit input difference patterns are considered, while in Wang’s attack, 3-bit 
input difference pattern is used.  

By Dobbertin’s attack, the system of equations consists of two inner collisions, one starting from 
step 0p in the first round and ending at step 1p in the second round, the other one starting from step 

2p in the third round and ending at step 3p in the fourth round, both inner collisions are connected by 

a non-differential chain starting from step 11 +p  and ending at step 12 −p . The selection of 1-bit 
input difference pattern is to minimize the number of equations which depends significantly on the 
two inner collisions and thus on the choice of the initial bit difference step 0p . Considering the 

round-wise permutations ( )ikσ , a complete list of 1-bit difference patterns is given in [17], which 

shows 150 =p would be the best choice in terms of the number of equations to solve, but Dobbertin’s 

choice was actually 9,14m with 140 =p  instead taking into account the inner almost collision. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     Figure1: Overview Of The Differential Collision Attack On MD5 

Wang’s attack on MD5 completely differs from Dobbertin’s in that it uses the first block to 
produce a near collision which can be further eliminated by the second block to generate a real 
collision. An input difference pattern should be selected such that in the first block there exist four 
differential sections, respectively denoted as I,II,III and IV. Section I is a non-differential area without 
input differences, section II is a near (almost) collision area spanning across the first and second 
rounds, section III is a non-differential area plus MSB-only differential chain starting from the first 
input difference of the third round if section II is an inner collision, or a MSB-only differential chain 
directly derived from section II if section II is an inner almost collision. Section IV is a near collision 
area consisting of at least the last four consecutive steps, which are summed with the initial variables 
to be the chain input differences of the second block. Due to the chain input differences, there does not 
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exist section I in the second block, the chain input differences propagate all the way to the beginning 
of section II and constitute a lengthened section II starting from step 0, and the section III and IV in 
the second block correspond to the section III and IV in the first block, except that the differences in 
the last four consecutive steps are eliminated, i.e. turning a near collision into a full collision. This can 
be illustrated in figure 1 by an overview of the differential scheme of the collision attack on MD5. 

Despite of over 3-bit input differences, if only 1-bit to 3-bit input difference patterns are 
considered, we can thus make a list of all possible input difference patterns that are probably qualified 
to construct a feasible collision differential.  

Table 1.The Most Probable Input Difference Patterns For Collision Attacks On MD5 
Bit Differences Number Section I Section II Section III Section IV 

20,4m , 31,7m , 31,13m  3-bit 1-4 5-31 32-60 61-64 

8,6m , 31,9m , 31,15m  3-bit 1-6 7-25 26-58 59-64 

31,2m , 27,9m , 31,12m  3-bit 1-2 3-32 33-63 64-64 

31,4m , 15,11m , 31,14m  3-bit 1-4 5-26 27-61 62-64 

7,2m  1-bit 1-2 3-30 31-62 63-64 

20,4m  1-bit 1-4 5-24 25-60 61-64 

8,6m  1-bit 1-6 7-18 19-58 59-64 

27,9m  1-bit 1-9 10-25 26-63 64-64 

15,11m  1-bit 1-11 12-19 20-61 62-64 

10,5m , 27,9m  2-bit 1-5 6-25 26-63 64-64 

31,5m , 31,11m  2-bit 1-5 6-21 22-64 

31,8m , 21,11m  2-bit 1-8 9-31 32-64 

 III + IV = MSB Diff. Chain 

31,5m  1-bit 1-5 6-21 22-64 

31,8m  1-bit 1-8 9-28 29-64 

31,11m  1-bit 1-11 12-19 20-64 

31,14m  1-bit 1-14 15-26 27-64 

10,5m  1-bit 1-5 6-29 30-64 

25.8m  1-bit 1-8 9-30 31-64 

21,11m  1-bit 1-11 12-31 32-64 

16,14m  1-bit 1-14 15-32 33-64 

1-Bit Input Difference: If only 1-bit input difference is considered, the beginning MSB difference in 
section III must be derived from section II such that the differential can propagate along all the MSBs 
in section III to the beginning of section IV. By this specific requirement and some principles in 
section 3.1, a group of MSB-differences including 31,5m , 31,8m , 31,11m , 31,14m , and a group of 

non-MSB differences including 7,2m , 20,4m , 10,5m , 8,6m , 25.8m 27,9m , 15,11m and 16,14m are probably 
qualified to construct a feasible collision differential.  

2-Bit Input Difference: Since 2-bit input differences can not themselves produce a section III (MSB 
differential chain) in the third round, at least one MSB difference at the beginning steps in section III 
must be derived from section II so that 3-bit input differences (1-bit plus 2-bit) can be combined in the 
third round to form a section III. By this specific requirement and some principles in section 3.1, an 
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appropriate composition of two 1-bit input difference can be a 2-bit input difference that is probably 
qualified to construct a feasible collision differential. Basically, there exist three ways of combination 
which are respective the two 1-bit input differences are selected both from the MSB-difference group, 
or from the non-MSB difference group, or one from each group. Therefore, many 2-bit input 
differences can be selected by the way of combination. As for examples, a couple of two 
MSB-differences 31,5m and 31,11m  or 31,8m and 31,14m , a couple of two non-MSB differences 

10,5m and 27,9m , and a couple of MSB-difference 31,8m and non-MSB difference 10,5m  can all be 
qualified to construct a feasible collision differential. For the sake of limited space, we only give three 
different compositions in table 1. 

3-Bit Input Difference: Since 3-bit input differences can themselves produce a section III (a MSB 
differential chain) in the third round, no derivation of differences from section II is needed. The 3-bit 
input differences should be arranged in such a way that, after left rotations the first bit difference in the 
third round must be a MSB, and this MSB difference is combined with the second and third MSB 
input differences within four steps to build a consecutive MSB difference, which will propagate along 
the way to the beginning of section IV. By this specific requirement and some principle in section 3.1, 
only the corresponding bit differences of 2m , 4m , 6m , 9m , 11m , 13m and 15m in the end of the fourth 
round can be used to produce the beginning MSB difference in the third round. Due to the round-wise 
message permutation in the third round, 2m and 15m can not be the beginning MSB difference, while 

the corresponding bit differences in 4m , 6m , 9m , 11m and 13m  are qualified as the first input 

difference, namely, 20,4m , 8,6m , 27,9m , 15,11m and 27,13m . Therefore, we have five groups of 3-bit 
input difference patterns, each consisting of 3 words, each word having 1-bit difference, respectively 

20,4m , 31,7m and 31,13m constitute the first group, 8,6m , 31,9m and 31,15m  the second 

group, 27,9m , 31,12m and 31,2m the third group, 15,11m , 31,14m and 31,4m the fourth group, and 

27,13m , 31,0m and 31,6m the fifth group. Being required of enough free message words in the first round , 
the fifth group can not be a good collision differential.  

For the sake of clarity, we make a list of the whole set of input difference patterns in table 1, that 
are most probably qualified to construct a feasible collision attack on MD5. In particular, all the 
collision differentials that have already been published are included in this table. From table 2, we can 
see that Wang’s choice is perhaps the best one in the four groups of 3-bit input differences, the 2-bit 
input differences are derived from the 1-bit input differences, and can be regarded as compositions of 
them. What is really noticeable consists in these 1-bit input differences. However, it does not seem 
obviously which 1-bit input difference is more appropriate for collision differential, before your work 
is finished. 
 
3.3 Three Feasible Collision Differentials  

For comparison, in table 2 we make a list of all the collision differentials that have been published, 
with their chain output differential together. 

Table 2. The Three 2-Block Collision Differentials Published For MD5 
+Δ  No.1 Collision Differential[6] No.2 Collision Differential[15] No.3 Collision Differential 

0M+Δ  0,0,0,0,231,0,0,0,0,0,0,215,0,0,231,0 0,0,0,0,0,0,-28,0,0, 231,0,0,0,0,0, 231 0,0,0,0,0,0,0,0,231,0,0,0,0,0,0,0 

1M+Δ  0,0,0,0,231,0,0,0,0,0,0,-215,0,0,231,0 0,0,0,0,0,0,28,0,0, 231,0,0,0,0,0, 231 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

1H+Δ  231,  231+225,  231+225,  231+225 231-223,  231-223,  231-223,  231-223 231,  231,  231,  231 

2H+Δ  0,  0,  0,  0 0,  0,  0,  0 0,  0,  0,  0 
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4  Design of Differential Paths 

4.1 General Principles 
When an input difference pattern is found to be probably qualified to construct a feasible collision 

differential, the next work is to design a feasible differential path which leads to a collision. The basic 
design criterion is to minimize the Hamming weight of the differential path, which counts the  
number of bit differences in the differential path, especially the differential section III and IV. In 
addition, section II is the critical part of the differential path, a successful design of the differential 
path usually depends on it. When designing a differential path, an intelligent trial-and-error method is 
necessary in the backward-and-forward construction process. To design a good differential path with 
as small Hamming weight as possible, the following principles would be benefited from if observed. 
1) Deduce a differential path bottom-up in a backward way, starting from the first inner collision in 

section II (in the second round), up to four or five steps away from the first input difference step in 
the first round; 

2) Deduce the differential up-down from the first input difference step in the first round so that it can 
link up with the bottom-up differential; 

3) In general, the start input difference in section II is applied in the step operation in such a way that, 
all differences that are needed by the bottom-up differential can be generated within five steps; 

4) Employ the properties implicit in the signed difference to extend the signed differences as required 
in each backward or forward step, and this is the basic rule suitable for any hash functions; 

5) Use the generation and elimination rules implicit in the auxiliary functions in each backward or 
forward step, and these are the special rules derived from the particular hash function. 

4.2 MD5 Differential Propagation 
A MD5 differential path is composed of 64 consecutive steps of state differences. 
Four consecutive signed differences (in order of a±Δ , d±Δ , c±Δ and b±Δ ) are employed as 

inputs to the step operation function to generate the next signed difference •±Δ a , we call this 
computation a step of MD5 differential iteration. 

In a MD5 step of differential iteration, the modular differences in the next step can be : 
1) Directly derived from the modular difference of a±Δ in state variable a ; 
2) Directly derived from the modular difference of b±Δ in state variable b ; 
3) Indirectly generated by the auxiliary function, provided that at least one signed difference exists at 

the same bit position in the last three state variables b , c and d : 
i) A modular difference can be generated in quite a few ways; 
ii) Actually, modular differences can be generated from the last three state variables b , c and d  

in an arbitrary way, by utilizing both the properties implicit in the signed difference and the 
rules implicit in the auxiliary functions; 

iii) Almost all intelligence of differential path designing is focused here, and for the basic 
differential propagation rules with respect to the four auxiliary functions, please refer to [15].  

4) The modular difference generated by the auxiliary function can be used to cancel out those modular 
differences derived directly from the top or last state variables a and b . 

With the properties implicit in the signed difference, in each forward or backward differential 
iteration step, the critical technique will most probably be, on the one hand, to employ the auxiliary 
functions to generate those modular differences, required by the next output signed 
differences •±Δ a but not directly derived from the top or last signed differences a±Δ and b±Δ ; on the 
other hand, to employ the auxiliary functions to generate the complementary modular differences for 
those directly derived from the top and last signed differences a±Δ and b±Δ , but not required by the 
next output signed differences •±Δ a , so that two complementary signed differences be eliminated 
together. 

4.3 Basic conditions due to signed differences 
A bit that must be specified a value to keep control of the differential path, is called a conditional 
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bit, a set of bit specifications on all the conditional bits is called sufficient if it will definitely leads to a 
collision when all are imposed on. In particular, two bits may be relatively specified to include two 
situations, for example, jiji da ,, =  or  jiji da ,, ≠ . 

All the bit specifications due to the signed difference bits in the state variables are called basic 
conditions. Every basic condition is incidental to a signed difference bit in a state variable within two 
steps, in other words, a bit can not become a basic condition if there exist no signed difference bit on 
the same position in a state variable within two steps. Each state variable works as different 
component in three consecutive step operations, consequently a bit difference in a state variable will 
produce at most five basic conditions, which are uniquely determined by the auxiliary function applied. 
As for the ITE function used in the first round, one condition is the difference bit itself, one or two 
conditions depend on if there are modular differences derived from when it works as the selection 
component, two conditions are defined by the bit of being selected or not in the ITE function. For the 
three different auxiliary functions of MD5, we give the basic condition derivation rules in table 3. 

  
In table 3, each auxiliary function has one bit signed difference at respectively one of the three 

components, denoted in order as ii cb , and id . When the component b has signed difference ib±Δ , 

the other two component bits ic and id  must be (or relatively) specified according to the output bit 

signed difference iF±Δ , iH±Δ  or iI±Δ as required by the differential path. The condition 
derivation rules are listed in the columns of every auxiliary function, each having three situations. The 
‘0’s in the iF±Δ , iH±Δ and iI±Δ rows represent non-difference output, while the ‘0’s in other rows 
represent the conditional bit value. The asterisk “﹡”denotes an arbitrarily specified bit. 

Table 3. Basic Condition Derivation Rules For Auxiliary Functions In MD5 
( ) ( ) ( )iiiiiii dbcbdcbF ∧∨∧=,, , 320 <≤ i  

iF±Δ  0 -1 +1 iF±Δ 0 1±  iF±Δ 0 1±  

id  0 1 0 1 1 0 id  ﹡ ﹡ id±Δ 1±  1±  

ic  0 1 1 0 0 1 ic±Δ 1± 1±  ic  ﹡ ﹡ 

ib±Δ  1±  -1 +1 -1 +1 ib  0 1 ib  1 0 

( ) iiiiii dcbdcbH ⊕⊕=,, , 320 <≤ i  

iH±Δ  1±  1m   iH±Δ 1± 1m  iH±Δ 1±  1m  

id  0 1 0 1  id  0 1 0 1 id±Δ 1±  

ic  0 1 1 0  ic±Δ 1±  ic  0 1 0 1 

ib±Δ  1±   ib  0 1 1 0 ib  0 1 1 0 

( ) ( )iiiiii dbcdcbI ∨⊕=,, , 320 <≤ i  

iI±Δ  0 -1 +1 iI±Δ 1m  1± iI±Δ 0 1± 1m

id  0 1 1 id  0 0 1 1 id±Δ 1±  

ic  ﹡ 0 1 1 0 ic±Δ 1±  ic  ﹡ 0 1 

ib±Δ  1±  -1 +1 -1 +1 ib  0 1 1 0 ib  1 0 
 
By the principles and rules in section 4.1 to 4.3, we give the basic differential paths with respect 

to the described input bit difference 31
8 2=Δ+m for two blocks, respectively in table 6 and table 8. 

 
4.4 Extra Conditions Due to Carries and Rotation 
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Besides the basic conditions that must be fulfilled, some extra conditions must be satisfied to 
prevent the occurrence of some possible unexpected modular differences due to the carries or overflow. 
By the theorem 4 and 5 in section 2, unexpected carries and even overflows are always possible when 
the part ∑ ia of step operation is implemented, since ∑ ia will probably have a much lengthened 
signed difference representation of a equal modular difference, and probably again the rotation 
operation will just break off it. Therefore, the set of sufficient conditions must include both the basic 
conditions and the extra conditions, and fortunately, most of the extra conditions are fulfilled with 
much high probabilities. 

By the theorem 4 and 5, no extra conditions are needed for the differential path of the second 
block, and the extra conditions for the first block are included with the following groups of equations: 

019~6,3 =∑d , 024~21,4 =∑a , 024~22,5 =∑a , 031~29,5 =∑d , 017~7,5 =∑c , 126~24,6 =∑a , 

022~11,6 =∑d , 031~21,6 =∑c , 10111~9,6 ≠∑b , 131~15,6 =∑b , 126,7 =∑a or 1125~24,7 =∑a , 

017~7,7 =∑c ,∑ = 131~29,7b . As for example, 019~6,3 =∑d  means at least one equation of 

06,3 =∑d , 07,3 =∑d ,…, 019,3 =∑d  must hold.  

4.5 Condition Fulfillment: Divide-and-Conquer 
There always exist conditions that can not be satisfied by direct modifications, these conditions 

have to be probabilistically fulfilled through random or brute force search, which compose the 
computational complexity of collision attack algorithm. For example, if there exist k conditions that 
can only be probabilistically fulfilled in the round 2, 3 and 4, then the computational complexity will 
be around k2  hash operations, which is a multiplicative accumulation on the conditions. One idea is 
to change the multiplicative accumulation of computational complexities, into an additional 
accumulation by properly grouping the conditional bits that can not be directly modified, so that the 
previously fulfilled groups of conditions will not be violated by later searches. This will result in a 
specific divide-and-conquer technique for hash collision attacks, which will greatly reduce the 
computational complexity to be determined actually by the maximal group of conditions.  

To be more precise, if the k conditions can be divided into p groups, namely 1G , 2G … and 

pG , kG
p

i
i =∑

=1

 and { }pGGGG ,,,max 21max ⋅⋅⋅= , which is the largest group with the most 

conditions; if groups 1G to iG  will not be violated by the search of group 1+iG ’s satisfaction and so 
on. Then the computational complexity for the k conditions will be reduced to an additive 
accumulation of the complexities for groups 1G , 2G … and pG instead, and the group maxG will be 
representative of the whole computational complexity, provided that there exist enough free message 
bits to be searched for each group.  

According to the principle that the previously used message words or bits must not be further 
modified later, these probabilistically satisfied conditions can be grouped mainly by the step orders. In 
this way, the conditions in round 2,3 and 4 can be divided into three groups, respectively 5a , 5d and 5c  

constitute the first group, 5b , 6a , 6d and 6c the second group, finally the state variables from 6b  to 

the end 16b  the third group. The first group relies directly on the brute force search on the free bits of 

5a , but indirectly on 1m  to fulfill the conditions that can not be satisfied by direct modification 

in 5d and 5c . The second group relies directly on the brute force search on the free bits of 5b , but 

indirectly on 0m  to fulfill the conditions in 6a , 6d and 6c , which are all probabilistically satisfied. 

Besides the conditions in 7a  are satisfied directly through a brute force search on the four selected 
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bits in 3a but indirectly on 9m , the third group relies mainly on the brute force search directly on the 

free bits of 1b , but indirectly on 3m , 4m  and 7m  (and 8m , 9m and 12m due to the selected bits 

search on 3a ) to fulfill the conditions in the state variables from 6b  to the end 16b .  

4.6 Additional Conditions: Change Absorption  
Take the first block as an example. In the third group, the brute-force search on the free bits of 

1b will certainly make changes on 2d and 2c , and indirectly on 5m  and 6m  if the 2d  and 2c  

remain the same, this will result in a conflict with the previously used message words 5m  and 6m , 

since 5m  and 6m  are used respectively in state variables 5d  (in the first group) and 6a (in the 

second group). To avoid this type of conflicts, as components of the choose function ( )ZYXF ,, the 
state variables 2a and 2d  need to be 0x00000000 and 0Xffffffff, respectively, so that the brute force 
search on the state variable 1b will be absorbed in the recomputation of 2d and 2c . For the same 
reason, the four couples of bits (namely, 1,3d , 2,3d , 17,3d and 31,3d , 1,3c , 2,3c , 17,3c and 31,3c ) in the 

state variables 3d and 3c need to be 0 and 1, respectively, so that the brute force search on the four free 

bits of 3a  can be absorbed in the recomputation of 3d  and 3c , resulting in no changes on the 

previously used 10m and 11m . The second block is treated in a similar way. 
Table 7 and table 9 are obtained by respectively modifying table 6 and table 8 as described above, 

additional conditions are appended for absorbing the changes due to random or brute-force searches. 

5 Collision Search Algorithms  

In general, a collision searching algorithm is fundamentally determined by the corresponding 
differential path, a good differential path will have an intrinsically efficient algorithm. The objective of 
designing an algorithm for a collision differential path is to reduce the number of probabilistically 
fulfilled conditions as many as possible, this can be achieved by some methods such as single-step 
modification, multi-step modification and the tunneling-like techniques. In this paper, by properly 
grouping of conditional bits, we particularly transform the multiplicative computational complexities 
into additional accumulation, which is the divide-and conquer technique introduced in section 4.5 and 
4.6. As a result, the actual computational complexity is much greatly reduced. The collision searching 
algorithm, however, is very complex, but we suggest you visit the website 
(http://www.is.iscas.ac.cn/gnomon) for a personal experience if you are interested in it, where the 
computational efficiencies of the three collision differentials can be compared on the same machine. 
For example, a collision pair is given in table 4 with its MD5 digest. 

5.1 The Algorithm For The First Block 
Step 1: Randomly initialize the state variables 1c and 1b , set 2a and 2d to be 0x00000000 and 0xffffffff, 
randomly initialize the state variables from 2c to 5a but with all the conditions satisfied, check by the 

extra conditions in section 4.4 if there exist invalid carries in 3d and 4a , then go to step 1 (do step1 

again); otherwise, compute the message words from 6m to 15m according to their corresponding step 

equations and based on the state variables from 1c  to 4b ； 
Step 2: Do the brute force search on the free bits of 5a one binary combination each time, if all 
binary combinations of the free bits are searched over, then go to step 1; 
Step 3: Randomly initialize 5d but with all its conditions satisfied, compute 6m according to the 5d  

step equation, then make an update of 2c . If there exist conditions unsatisfied in 2c , go to step 2; 
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Step 4: Compute 5c , if there exist conditions unsatisfied for 5c , then modify 2b and 3a  or 

directly 4c  to compute 11m , so that the conditions for 5c can be satisfied from the less significant 

bit to more significant bits. If 020,5 =c  or 121,5 =c , go to step 2 since no modifications can be 

applied; otherwise, initialize 5b  so that its conditions are all satisfied, and compute 1m  according 

to the 5a  step equation; 

Step 5: Do the brute force search on the free bits of 5b one binary combination each time. Compute 

0m according to the 5b step equation, then make an update of 1a and 1d , and compute 5m according to 

the 2d step equation. If all binary combinations of the free bits in 5b are searched over, go to step 2; 

Step 6: Compute 6a , check if there exist any conditions unsatisfied for 6a , then go to step 5; 

Step 7: Compute 6d , check if there exist any conditions unsatisfied for 6d , then go to step 5; 

Step 8: Compute 6c , check if there exist any conditions unsatisfied for 6c , then go to step 5; 

otherwise, compute 2m , 3m and 4m according to the 1c , 1b and 2a step equations; 

Step 9: Do the brute force search on the free bits of 1b , compute 4m according to the 2a step equation 
to make an update of 6b . Check if all conditions for 6b are satisfied, then compute 3m and 7m ; 

otherwise go to step 9 (do step9 again). If all binary combinations of the free bits in 1b are searched 
over, go to step 5; 
Step 10: Do the brute force search on the four free bits ( 1,3a , 2,3a , 17,3a and 31,3a ) of 3a one binary 

combination each time, compute 9m  according to the 3d step equation to make an update of 7a . 

Check if all conditions for 7a are satisfied, then compute 8m and 12m ; otherwise go to step 10. If all 

binary combinations of the free bits in 3a are searched over, go to step 9; 
Step 11: Compute the next step operation till the last one, check if all the conditions are satisfied, then 
output the chain variables 016 aa + , 016 bb + , 016 cc + and 016 dd +  to  the algorithm for the 
second block; otherwise, go to step 10.  

5.2 The Algorithm For The Second Block 
Step 1: Randomly initialize 1a and 1b but with all their conditions satisfied; set 2a and 2d to be 
0x00000000 and 0x7fffffff so that their conditions are satisfied; randomly initialize the state variables 
from 2c to 3a but with all the conditions satisfied; set 3d and 3c to be 0x00000000 and 0x7fffffff so 

that their conditions are satisfied; randomly initialize the state variables from 3b to 4c but with all the 

conditions satisfied. Compute the message words from 0m to 14m according to their corresponding 

step equations and based on the state variables from 1a to 4c ； 
Step 2: Randomly initialize 4b but with all its conditions satisfied, do the random search on the free 
bits of 4b .If the prescribed limit on the number of random search tries is over, then go to step 1; 
Step 3: Compute the state variables from 5a to 6c , check if there exist any conditions unsatisfied for 

the state variables from 5a to 6c , then go to step 2; 

Step 4: Randomly initialize 1b but with all its conditions satisfied. Do the brute force search on the free 
bits of 1b one binary combination each time, compute 4m according to the 2a step equation to make an 
update of 6b . Check if there exist any conditions unsatisfied for 6b , go to step 4 (do step4 again); 
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otherwise, compute 3m and 7m . If the prescribed limit on the number of brute force search tries is over, 
go to step2; 
Step 5: Randomly initialize 3a but with all its conditions satisfied. Do the brute force search on the 

free bits of 3a one binary combination each time, compute 9m according to the 3d step equation to 

make an update of 7a . Check if there exist any conditions unsatisfied for 7a , go to step 5 (do step5 

again); otherwise, compute 8m and 12m . If the prescribed limit on the number of brute force search 
tries is over, go to step4; 
Step 6: Compute the next step operation till the last one, check if all the conditions are satisfied, then 
output the collision blocks; otherwise, go to step 5.  

Table 4. A Collision Example With The MD5 Digest (Underlined Bits With Difference） 

0M  0x6f5405b5, 0xb891efe, 0xae153522, 0x3dd541ab, 0x77cfac08, 0xb4ae7077, 0xb14ec779, 0xa7ccf30, 

0xf1c56954, 0x70dc3345, 0x5eda46a1, 0xc9fc1730, 0x948b9be, 0x2ef76cad, 0x86149360, 0x3bcecd25 

1M  0x1dea12a,  0x50179204, 0x6a2ab7f9, 0x80e06efa, 0x1da137c9, 0x22032f7e, 0x3af27c94, 0xbfd0dda2, 

0x54dd5054, 0xde27de3, 0x328eb6dc, 0x1da31980, 0xf0a9c456, 0x720e6177, 0xe5ac6c8f, 0x15ab7afc 
∗
0M  0x6f5405b5, 0xb891efe, 0xae153522, 0x3dd541ab, 0x77cfac08, 0xb4ae7077, 0xb14ec779, 0xa7ccf30,  

0x71c56954, 0x70dc3345, 0x5eda46a1, 0xc9fc1730,0x948b9be, 0x2ef76cad, 0x86149360, 0x3bcecd25 
∗
1M  0x1dea12a,  0x50179204, 0x6a2ab7f9, 0x80e06efa, 0x1da137c9, 0x22032f7e, 0x3af27c94, 0xbfd0dda2, 

0x54dd5054, 0xde27de3, 0x328eb6dc, 0x1da31980, 0xf0a9c456, 0x720e6177, 0xe5ac6c8f, 0x15ab7afc 
 MD5 value: 0x281e1404 0x596131cd 0x9cd2262c 0xa5aa822f 

5.3  Computational Complexity Analysis 

There totally exist 47 and 31 conditions respectively in the first block and the second block 
starting from the second round, which must be probabilistically fulfilled, the computational 
complexity would be around 472 and 312  MD5 operations if only multi-step modifications are 
applied. When the divide-and-conquer technique is applied, these conditions are divided into three 
groups, each group of conditions are independently and probabilistically fulfilled without violating 
each other, resulting in a great decrease in the computational complexity. In details, the condition 
fulfillment in the first block can be divided into four phases as follows: 

Phase 1: Phase 1 includes step 1 and step 2. Since in this phase only direct modifications are needed, 
the computational complexity is a constant defined as C ; 

Phase 2: Phase 3 includes step 3 and step 4. Direct modifications coexist with probabilistic condition 
fulfillment in this phase, and only three conditions (one for step 5d and two for step 5c ) are 
probabilistically fulfilled without violating the previously satisfied conditions in phase 1, resulting in a 
computational complexity of around 32 MD5 operations; 

Phase 3: Phase 3 includes step 5 to step 8. In this phase, totally 15 conditions are probabilistically 
fulfilled without violating the previously satisfied conditions in phase 1 and phase 2, resulting in a 
computational complexity of around 152 MD5 operations; 

Phase 4: Phase 4 includes step 9 to step 11. There totally exist 29 conditions that can only be 
probabilistically fulfilled without violating the previously satisfied conditions in phase 1, 2 and 3. 
Since a single try involves (3+3+41) steps of operation, it results in an averaged computational 

complexity of 3.2164
4729

22 ≈
×

MD5 operations. 
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Due to the separation of the four phases above, the total computational complexity for the first 
block is an additive accumulation of that in all the four phases, which means that the computational 
complexity is 3.21153 222 +++C , instead of a multiplicative accumulation, which would 
be 4729153 2222 ≈××+C . A similar analysis on the second block shows that the averaged 

computational complexity for the second block is 6.1764
4724

22 ≈
×

MD5 operations. 

6  Summary, Comparison and Suggestions 

In this paper, firstly, a whole list of 1-bit to 3-bit eligible input differences is presented, and the 
supernatural appearance of collision differential selection is thus unclosed. Secondly, a new 1-bit input 
difference pattern is developed to be the currently fastest collision attack algorithm for MD5, with an 
averaged computational complexity of 3.212 MD5 operations, implying that a common desktop PC 
can produce a MD5 collision within around one second. Thirdly, a divide-and-conquer technique 
specific for hash collision attacks is proposed with a concrete application of it. Finally, some technical 
details related to the derivation of the basic conditions and the extra conditions are presented. This 
paper will help the cryptology community to further grasp the recent techniques on hash cryptanalysis.  

A collision differential can be evaluated according to the following five criteria: 
1) Whether the differential path depends on the fixed IVs of hash function or not? 
2) The number of message blocks comprising of the collision differential; 
3) The number of free words in the message; 
4) The number of bit differences in the messages; 
5) The number of all sufficient conditions which must be satisfied to make collision; 
6) The number of all conditions excluding the first round; 
7) The averaged computational complexity of finding a collision. 

Considering the real-world cryptanalytic attacks, a differential path which does not rely on the 
fixed initial IVs will obviously be better than that must rely on it, a collision differential which has 
more free words, less input differences and sufficient conditions will be more easily used to construct 
meaningful attacks, a collision differential with less message blocks and probabilistically fulfilled 
conditions will be more efficient for practical attacks. The less the conditions necessary to maintain 
the full differential path, the higher the density of collision message will be; the less the average 
computational complexity of finding a collision, the more feasible an attack on practical protocols 
based on hash function will be. For the three collision differentials that have been published, we make 
a comparison in table 5 based on the above criteria. From table 5, the 1-bit input difference exceeds 
the other two 3-bit input differences, in terms of free message words, bit differences, sufficient 
conditions and especially the computational complexity. 
 

Table 5. Performance Comparison For The Three Collision Differentials 
Items  No.1 [6] No.2 [16 ] No.3  Comments 
depend on fixed IVs not not not IVs are free 
number of blocks 2 2 2 2-block collision 
number of free words 1~2 1~4 1~6 Steps indexed by 1~64 
number of diff. bits 3-bit/3-bit 3-bit/3-bit 1-bit/0-bit No.3 is specific 
number of all conditions 290 / 309 205 / 306 264 / 47 exclude extra conditions 
number of prob. conditions 43 / 36 38 / 35 84 / 31 exclude extra conditions 
computational complexity 8.242  302  3.212  averaged 
time / a collision (averaged.) 1 min. 30 min. 1 sec. 2.66 GHZ  PC 

 
By the seven criteria above, in this paper the 1-MSB input difference 32,8m may not be the best 

choice for the MD5 collision differential, probably there exists better choice from the other input 
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differences in table 1, as the 32,8m -based collision differential was developed before the whole set of 
input differences is found. Hence, a continue work on finding a more efficient input difference from 
the table 1 is suggested and encouraged, perhaps a collision attack algorithm based on a better input 
difference can generate hundreds of collisions one second. 

   While it will no longer be regarded as a more or less supernatural work that mainly relies on one’s 
intuition since this paper, it probably remains a challenging work to design a good differential path. 
Despite of some initial work in this direction[14,18], it is worth a further and deep study on how to 
intelligently and automatically design a good differential path, perhaps some heuristic methods like 
evolutionary approaches may help a lot. 
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Appendix A                  MD5  Function 

Practically, a Merkle-Damgard structure-based hash function is iterated by a compression function 
( )XfY = , which compresses l -bit message block X to a s -bit hash valueY , where  sl > . For 

MD5, 512=l , 128=s . For a padded message M with multiple ( t ) of l -bit blocks, the iteration 
process can be described as: ( )iii MHfH ,1 =+ , 10 −≤≤ ti , where ( )110 ,...,, −= tMMMM , 

iH is the 128-bit chaining variables (including four 32-bit words) which is updated during the 

processing of each block, 0H is the prescribed initial value IVs in MD5 algorithm, and the final tH is 
the digest that we expect to obtain. The concrete padding rule is omitted here, since it has no influence 
on our attack. 

The whole processing of the thi block ( )ii MHf , can be defined as follows: 

( ) ( )( )( )( )iiiiiiiii HMFFMGGMHHMIIHMHfH ,,,,,1 +==+ , where four round functions 
FF , GG , HH and II  are involved. All round functions are similar to one another in structure. The 
chaining variable iH is treated as a four-element shift register, with each element being one 32-bit 

word wide, referred to as 0a , 0b , 0c and 0d , respectively. Each 512-bit block iM is divided into 16 

32-bit words, denoted as ( )1510 ,...,, mmmM i = , each round consists of 16 steps of operation, in each 

step operation the register is used with one word from iM . The 64 step operations are formulated as a 

system of equations: ( )( )( )js
jjiiijiii twdcbaba <<<

+ ++Φ++= ,,1 , 160 ≤≤ i , 641 ≤≤ j . 

Where iii cba ,, and ib are the internal state variables, with 161 ≤≤ i ; ( )ZYXj ,,Φ  is an auxiliary 

function which varies from round to round; jw is a word chosen from ( )1510 ,...,, mmm by a 

round-wise message permutation ( )ikσ , 3,2,1,0=k , 15,...,1,0=i ; jt and js are constant 
parameters associated with step j . Note that each step operation involves four modular additions 

( 322mod ), one auxiliary function and one <<<  operation. As the step operation of MD5 is 
reversible, the compression function ( )ii MHf , uses a feed-forward operation which adds the initial 

value iH of the register to their final values, so that ( )ii MHf , cannot be inverted. 

The auxiliary function and the round-wise permutation ( )ikσ for each round are given as follows:  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤
<≤

<≤

=
+

+
+

.6448,
;4832,
;3216,

      16;j0       ,

16mod7

16mod35

16mod51
1

jm
jm
jm

m

w

j

j

j

j

j

 
Where ZYX ,, are 32-bit words. The auxiliary functions ( )ZYXj ,,Φ  each takes three 

consecutive 32-bit words from the register of chaining variables and produces one 32-bit word as 
output. The four words in the chaining variable register are initialized as  

=a 0x67452301, =b 0xefcdab89, =c 0x98badcfe, =d 0x10325476.  
For the sake of understanding how and where some extra conditions are derived from late in 

section 5, which are used to prevent the possible unexpected modular differences due to the joint 
effect of both modular addition and left rotation, we define part of the step operation 
as ( ) jjiiijii twdcbaa ++Φ+=∑ + ,,1 .  

For a detailed description of MD5 algorithm, please refer to [1]. 

( ) ( ) ( ) ( )ZXYXZYXFZYXj ∧∨∧==Φ ,,,, , 161 ≤≤ j ; 

( ) ( ) ( ) ( )ZYZXZYXGZYXj ∧∨∧==Φ ,,,, , 3217 ≤≤ j ; 

( ) ( ) ZYXZYXHZYXj ⊕⊕==Φ ,,,, , 4833 ≤≤ j ;     

( ) ( ) ( )ZXYZYXIZYXj ∨⊕==Φ ,,,, , 6449 ≤≤ j . 
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Appendix B  The Differential Paths   
 
 
 
 

 
 
 
 
 
 

t Bits Qt: a0…a31 #
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-2 
-1 
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* * * * * * * *   * * * * * * * *   * * * * * * * *   * * * * * * * +  
* * * * * * * *   * * * * * * * *   * * * * * * * *   * * * * * * * +  
* * * * * * * *   * * * * * * * *   * * * * * * * *   * * * * * * * +  
* * * * * * * *   * * * * * * * *   * * * * * * * *   * * * * * * * +

1~31 
32~47 
48~63 

* * * * * * * *   * * * * * * * *   * * * * * * * *   * * * * * * * +  
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* * * * * * * *   * * * * * * * *   * * * * * * * *   * * * * * * * +

0 
0 
1 
1 
31
0 
16

 
Notes: In tables 6,7,8 and 9, + denotes a positive flip(0->1), - denotes a negative flip(1->0), 0(1) 
denote the conditional bit value, ^ denotes the bit equal to the up bit, ! denotes the bit not equal 
to the up bit, * denotes free bit, t denotes the step, # denotes the number of conditions for each 
step.  
 
 
 
 
 
 

t Bits Qt: a0…a31 #
1~6 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
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24 
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26 
27 
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29 
30 

31~47 
48~55 
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57 
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61 
62 
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* * * * * * 1 *   * * * * * * * *   * * * * * * * *   * * * * * * * * 
* * * * 0 * 0 *   * * * * * * * *   * * 0 * * * * *   * * * * 1 * * * 
* * * * 1 ^ + ^   ^ ^ ^ * * 0 * 1   0 * 0 ^ ^ ^ ^ ^   ^ ^ ^ ^ 0 ^ ^ * 
* * * * 0 1 - -   - - + * * 1 ^ 0   1 * + + + + + +   + + + + + + - * 
^ * * ^ 1 1 + 0   0 0 1 ^ ^ + + +   - 1 - 0 0 1 1 1   0 0 0 0 0 0 0 * 
+ * * - + + - 0   1 1 0 + + 0 0 0   0 0 + + + + - 1   1 0 0 0 1 0 1 *
0 * * 0 0 1 1 *   1 * * 0 0 1 1 1   0 - 1 0 0 0 0 *   * * * * + 0 1 ^ 
1 1 * 1 1 1 0 *   + * * 1 0 * * *   * 0 1 1 1 1 1 *   * * * 0 0 - - + 
* 1 * - 0 * 0 0   + * * * * * * *   * 1 * * * * 1 *   * * * 0 1 0 0 0 
* - 1 * 1 * 1 0   0 * * * * * * *   * 0 0 0 0 * + *   * * * - * 0 0 1 
* * 0 ^ + * + -   0 * * * * * * *   * 1 1 1 1 1 * *   ^ * * * * * * * 
* ^ * * * * * *   * 0 1 * * * * 0   * - - - + 1 ^ *   * * * ^ * * * * 
* * * * ^ * ^ ^   * 1 1 * * * * 0   * * * 0 1 + * *   0 0 * * * * * * 
* * * * * * * *   * + + * * * * -   * ^ ^ 1 0 * * *   1 1 * * * * * * 
* * * 0 * * * *   * * * * * * * *   * * * * * ^ * *   - - * * * * * * 
* * * 1 * * * *   * ^ ^ * * * * ^   * * * * * * * *   * * * * * 0 0 * 
* * * + * * * *   * * * * * * * *   * * * * * * * *   ^ ^ * * * 1 1 * 
* * * * * * * *   * * * * * * * *   * * * * * * * *   * * * * * + + *
* * * ^ * * * *   * * * * * * * *   * 0 * * * * * *   * * * * * * * * 
* * * * * * * *   * * * * * * * *   * 1 * * * * * *   * * * * * ^ ^ * 
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* * * * * * * *   * * * * * * * *   * * * * * * * *   * * * * * * * *   
0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   
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Table 6: The Basic Differential Path Using 
31

8 2=Δ+m  (Block1). 
Table 8: The Modified Differential Path With 
Additional Absorbing Bits (Block1). 

Table 7: The Basic Differential Path Using 
160 ,0 <≤=Δ+ imi (Block2). 

Table 9: The Modified Differential Path With 
Additional Absorbing Bits (Block2). 


