

A UC/GUC-Secure Protocol for

Set-Intersection Computation1

TIAN Yuan1 and WANG Ying2

1 Software School of Dalian University of Technology, Dalian, Liaoning, 116620,

 tianyuan_ca@sina.com
2 Department of Mathematics, Dalian University of Technology, Dalian, Liaoning, 116620,

 wangying@dlut.edu.cn

Abstract Secure set-intersection computation is one of important problems
in the field of secure multiparty computation with valuable applications. We
propose a general construction for 2-party set-intersection computation
based-on anonymous IBE (identity-based encryption) scheme and its user
private-keys blind generation techniques. Compared with recently-proposed
set-intersection computation protocols, e.g., those of Freedman-Nissim-
Pinkas, Kissner-Song and Hazay-Lindell, this construction is provably
UC-secure in standard model with acceptable efficiency. After proving the
general construction’s UC-security, an efficient instantiation based-on the
anonymous Boyen-Watrers IBE scheme is presented. We further enhance the
UC-secure construction to be GUC-secure(in ACRS model), for this goal a
new notion of non-malleable zero-knowledge proofs of knowledge and its
general construction is presented.

Key words: Computer Security; Secure Set-Intersection Computation; Anonymous
Identity-based Encryption; Universally Compossable Security; Generalized
Universally Compossable Security.

1 Introduction

Secure set-intersection computation is one of important problems in the field of secure

multiparty computation, with valuable applications in, e.g., secure keyword searching,

pattern matching, private database processing, etc. In secure set-intersection

computation, participants with their own private data sets get the intersection of all

their private sets and nothing more(except for each private set’s cardinality). In this

paper, like most recent works, we are only focused on the 2-party case and make an

efficient UC-secure, standard model protocol for it.

1 An extended abstract(with only main notions and consequences) is submitted to TCC’09.

 - 1 -

Much work has been done in designing solutions to secure computation for

different cryptographic functions[1-2], but only few are about this special problem

among which [3,6-7] are most relevant to our paper. They are heuristic and valuable

works on secure set-intersection computation published most recently, each using

different techniques and security concepts and most of them(except [7]) mainly

dealing with the 2-party case. However, none reaches Canneti’s UC/GUC

security[14-15]. In [6] Freedman et al present provably-secure and efficient protocols

for this problem against semi-honst and malicious adversaries respectively based-on

polynomial interpolation and homomorphic encryption schemes. The solution against

malicious adversaries assumes the random oracle model. [7] solves this problem (and

more, e.g., union and element reduction operations) via smartly exploiting

mathematical properties of polynormials and has fully-simulatable security so that

their solution is securely compossable(the concept of fully-simulatable security can be

refered in [2], however, this security is still weak than Canetti’s concept of UC/GUC

security proposed in [14-15]). In addition, as indicated by [3], [7] executes lots of

zero-knowledge proofs of knowledge most of which are known how to efficiently

realize but not all. Most recently [3] proposes solutions to this problem via oblivious

pseudorandom function evaluation techniques. More interestingly, they work in two

relaxed adversary models to achieve security of “half-simulatability” and

full-simulatability against covert adversaries[4]. At the price of relaxation in security,

the protocols presented in [3] are highly efficient, so these solutions can be considered

as practical and reasonable compromise between security and efficiency.

1.1 Our Contributions

In this paper we construct a protocol for secure set-intersection computation in

standard model which is efficient and secure under the concept of Canneti’s UC/GUC

security. Like most previous works, we are mainly focused on the 2-party case,

however, there are substancial differences between our solution and the others. At first,

our construction is based-on anonymous IBE scheme and it’s user private-keys blind

 - 2 -

generation techniques(i.e., to generate the correct user private-key usk(a)=UKG(msk,a)

for the user-id a but without knowing anything about a). Our protocol is

constant-round in communications and linear-size in message-complexity (close to

[3,6]). In computation-complexity, one party is O(N1+N2) (close to [3,6]) and the

other is O(N1N2)(close to [7]) where N1, N2 are each party’s private set’s cardinality.

The construction is well-modularized, only executing few zero-knowledge proofs of

knowledge which can be efficiently realized(we present examples in this paper).

Second, our construction reaches Canneti’s UC/GUC security so that it is securely

compossable. More concretely, we propose two versions of our construction, one is in

the CRS model and UC-secure, another in the ACRS(augmented common reference

string) model and GUC-secure. Although in general the notion of GUC-security is

strictly stronger than that of UC-security, the two versions have the same structure

with only differences in their zero-knowledge proofs of knowledge subprotocols. We

present the UC-secure version and prove its security first and then systematically

enhance its security to the GUC notion, to make things simpler and clearer. More

importantly, since lots of UC-secure protocols are proposed and proved since the

publication of [14] and most of them are in CRS model, we are interested in what can

make a UC-secure protocol in CRS model become GUC-secure in ACRS model. For

this goal, we introduce the concept of identity-based non-malleable zero-knowledge

proofs of knowledge, present a general and efficient realization for this new concept

and apply it to enhance our UC-secure construction to be GUC-secure. We believe

such a method is valuable and helpful beyond the special problem in this paper.

1.2 Paper Organization

Section 2 presents some necessary concepts, preliminaries and tools. Section 3

presents the general construction based-on anonymous IBE and its user private-keys

blind generation protocol. Section 4 instantiates the general construction via

Boyen-Waters IBE scheme[12](in [12] two anonymous IBE schemes are proposed,

one is ordinary IBE another is HIBE. We only use the ordinary IBE scheme for

 - 3 -

efficiency) together with a efficient construction of Boyen-Waters IBE’s user

private-keys blind generation protocol. Now there are only few provably-anonymous

IBE schemes and our work shows again such IBE’s importance[11-13]2. Section 5

presents a systematic enhancement to make our UC-secure construction GUC-secure

in ACRS model.

1.3 Some Terminologies and Notations

P.P.T. means “probabilistic polynomial-time”, x||y means string x and y in

concatenation, |x| means string x’s size(in bits), a←$X means random selection of a

sample over the domain X. When X is explicit or not important to discussions, a

notation νa(“new a”) is also used.

k represents the complexity parameter, poly(k) means a given polynomial in k.

≈ PPT means computationally indistinguishable, ≈ PDF means perfectly

indistinguishable. IND_CPA means security against chosen plaintext attacks and

ANO_CPA means anonymity against chosen plaintext attacks.

2 Definitions and Tools

2.1 Secure Set-Intersection Computation and Its UC/GUC Security

Briefly speaking, UC/GUC-security means that any attacker against the real-world

protocol can be simulated by an adversary against the ideal-world functionality, both

have the outputs indistinguishable by the (malicious) environment. For space

limitation, we assume the reader familiar with the whole theory in [14-15] and only

make the necessary descriptions with respect to the secure set-intersection

computation problem here.

Similar to most previous work, we are focused on the unidirectional 2-party

scenario. The ideal cryptographic functionality for set-intersection computation is

defined as

2 IBE’s user private-keys blind generation techniques are also used in [8], however all realizations they present are
for non-anomynous IBE schemes so cannot be applied to our work directly. Interestingly, our construction in
section 4 can be applied to their general framework as an addition.

 - 4 -

 FINT: (X1,X2) → (|X2|, |X1|||(X1∩X2))

The bi-directional functionality is defined as

 F*INT: (X1,X2) → (|X2|||(X1∩X2), |X1|||(X1∩X2))

and can be constructed by combining two FINT's in both directions.

Let P*1, P*2 be parties in ideal model with private sets X1 and X2 respectively,

N1=|X1|, N2=|X2|, S be the adversary in ideal model. The ideal model works as

follows:

On receiving message (sid,“input”,X1) from P*1, FINT records X1

and sends message (sid,“input”,N1) to P*2 and S; On receiving message

(sid,“input”,X2) from P*2, FINT records X2 and sends (sid,“input”,N2) to

P*1 and S.

On receiving message (sid,“intersection”) from P*2, FINT responses

P*2 with message (sid,“intersection”, X1∩X2).

At last P1* outputs N2, P2* outputs N1||(X1∩X2).

Let ψ be the real-world protocol, each party Pi of ψ corresponds to an ideal-world

party P*i. A is the real-world adversary attacking ψ, Z is the environment in which the

real protocol/ideal functionality executes. According to [14-15], Z is a P.P.T. machine

modeling all malicious behaviors against the protocol’s execution. Z is empowered to

provide inputs to parties and interactions with A and S, e.g., to give special inputs or

instructions to A/S, collects outputs from A/S to make some analysis, etc. In UC

theory [14], Z cannot access parties’ shared functionality (such shared functionality is

specified in specific protocol) while in the improved GUC theory [15] Z is enhanced

to do this, i.e., to provide inputs to and get outputs from it. As a result, in GUC theory

Z is strictly stronger and more realistic than in UC theory.

Let outputZ(ψ,A) denote the outputs (as one joint stochastic variable)from ψ’s

parties P1, P2 under Z and A, outputZ(FINT,S) denote the similar thing under Z and S.

During the real/ideal protocol’s execution, Z (as an active distinguisher) interacts with

A/S and raises its final output, w.l.o.g., 0 or 1. Such output is denoted as

Z(outputZ(ψ,A),u) and Z(outputZ (FINT,S),u) respectively, where u is the auxiliary

information. In the following we present the GUC-security’s definition, however,

 - 5 -

when the environment Z is replaced with that in UC theory, it naturally becomes the

concept of UC-security.

Defition 2.1(GUC security[15]) If for any (active) P.P.T. adversary A in real-world,

there exists a P.P.T. adversary S in ideal-world, both corrupt the same party, such that

for any environment Z the function |P[Z(outputZ(ψ,A),u)=1]-

P[Z(outputZ(FINT,S),u)=1]| is negligible in complexity parameter k (Hereafter denote

this fact as outputZ(ψ,A)≈PPT outputZ(FINT,S)), then we define that ψ GUC-emulates

FINT or simply call that ψ is GUC-secure, denoted as ψ→GUCFINT.

S is called A’s simulator. In case of UC-emulation, we use the notation

ψ→UCFINT.

The most important and valuable property of the concept of GUC-emulation is

the universal composition theorem. Briefly speaking, given protocols φ2, φ1 and ψ(φ1)

where ψ(φ1) is the so-called φ1-hybrid protocol, if φ2→GUCφ1 then(under some natural

technical conditions, e.g., subroutine-respecting) ψ(φ2/φ1)→GUCψ(φ1) where ψ(φ2/φ1)

is a protocol in which every call to its subprotocol φ1 is replaced with a call to φ2.

Intuitively speaking, this guarantees a GUC-secure protocol can be composed in any

execution context while still preserving its proved security. Similar consequence is

also ture in UC theory but with some serious constraints. All details are presented in

[14-15]。

2.2 IBE Scheme, Anonymity and Blind User-Private Key Generation Protocol

In addition to data-privacy, anonymity(key-privacy) is another valuable property for

public-key encryption schemes[11-13]. An IBE scheme П=(Setup, UKG, E, D) is a

group of P.P.T. algorithms, where Setup takes as input the complexity parameter k to

generate master public/secret-key pair (mpk, msk), UKG takes as input msk and user’s

id a to generate a’s user private-key usk(a); E takes as input (mpk,a,M) where M is the

message plaintext to generate the ciphertext y=E(mpk,a,M), D takes as input

(mpk,usk(a),y) to do decryption. Altogether these algorithms satisfy the consistency

property: for any k, a and M

 - 6 -

P[(mpk,msk)←Setup(k); usk(a)←UKG(msk,a); y←E(mpk, a, M): D(mpk, usk(a),

y)=M]=1

Definition 2.2(IBE Scheme’s chosen plaintext anonymity[11]) Given an IBE scheme

Π=(Setup, UKG,E,D), for any P.P.T. attacker A=(A1,A2) consider the following

experiment:

CPAANO
AExp _

,Π (k):

 (mpk, msk)←Setup(k);
 (M*, a0*, a1*, St)←A1

UKG(msk,.) (mpk), a0*≠a1;
 b←${0,1};
 y*←E(mpk, ab*, M*);
 d←A2

 UKG(msk,.)(St,y*);
 output(d⊕ b);

A is contrained not to query its oracle U(msk,.) with a0* and a1*. Define

 as , if is negligible in k for any

P.P.T. A then П is defined as anonymous against chosen plaintext attack, briefly called

ANO_CPA. Denote
... TPPA∈

. In the above, if M* is

generated independent of mpk then П is called selective ANO_CPA.

CPAANO
AAdv _

,Π |1]1)([2| _
, −=Π kExpP CPAANO
A

CPAANO
AAdv _

,Π

)(sup)(_
,

_ kAdvkAdv CPAANO
A

CPAANO
ΠΠ ≡

Now we present the ideal functionality FП
Blind-UKG for an IBE scheme П’s user

private-key blind generation(note: even IBE scheme is not anonymous such

functionality still makes sense. However, in this paper only anonymous IBE’s such

protocol is needed). In the ideal model, one party generates(just one time) П’s master

public/secret key pair (mpk,msk) and provide it to FП
Blind-UKG ; FП

Blind-UKG generates

usk(a)=UKG(msk,a) for another party who provides its private input a(this

computation can take place any times and each time for a new a), revealing nothing

about a to the party who provides (mpk,msk) except how many private-keys are

generated. Formally, let S be the ideal adversary, P*1, P*2 the ideal party, sid and ssid

the session id and subsession id respectively, the ideal functionality works as follows:

P*1 selects a seed ρ at random, computes (mpk,msk)←Setup(ρ), sends

the message (sid,ρ,mpk||msk) to FП
Blind-UKG; FП

Blind-UKG sends message (sid,

mpk) to P*2 and S;

On receiving a message (sid||ssid, a) from P*2(ssid and a are fresh

everytime), in response FП
Blind-UKG computes usk(a)←UKG(msk,a), sends

 - 7 -

the message (sid||ssid, usk(a)) to P*2 and sends the message (sid||ssid, n) to

P*1 and S, where n is initialized to be 0 and increased by 1 everytime the

computation takes place.

At last, P1* outputs its last n, P2* outputs all its obtained usk(a)。

2.3 Non-malleable Zero-Knowledge Proofs of Knowledge and GMY/MY

Techniques

We need the non-malleable zero-knowledge proofs protocol in our construction. This

subsection presents this concept following [16-17] with small symbol modifications.

Let L be a NP language, R is its associated P-class binary relation. i.e., x∈L iff there

exists w such that R(x,w)=1. Let A, B be two machines, then A(x;B)[σ] represents A’s

output due to its interaction with B under a public common input x and common

reference string (c.r.s.) σ, trA,B(x)[σ] represents the transcript due to interactions

between A and B under a common input x and c.r.s.σ. When we emphasize A’s private

input, say y, we also use the expression Ay(x;B)[σ] and trA(y),B(x)[σ] respectively. Let

A=(A1,A2), B and C be machines where A1 can coordinate with A2 by transferring

state information to it, (<B,A1>,<A2,C>) represents the interactions between A1 and

B, (maybe concurrently) A2 and C. Due to such interactions, let tr be the transcripts

between A2 and C, u be the final output from A2 and v be the final output form C, then

(<B,A1>,<A2,C>)’s output is denoted as (u,tr,v).

 Two transcripts tr1 and tr2 are matched each other, if tr1 and tr2 are the same

message sequence(consisted of the same messages in the same order) and the only

difference is that any corresponding messages are in the opposite directions.

 Let A be a machine, the symbol A represents such a machine which accepts two

kinds of instructions: the first one is in form of (“start”, i,x,w) and A in response starts

a new instance of A, associates it with a unique name i and provides it with public

input x and private input w; the second is in form of (“message”,i,m) and A in

response sends message m to instance Ai and then returns Ai’s response to m.

Definition 2.3(Zero-Knowldeg Proof and Non-Malleable Zero-Knowledge Proof

 - 8 -

Protocol[16-17]) ZPoKR=(Dcrs,P,V,Sim=(Sim1,Sim2)) is a group of P.P.T. algorithms, k is

complexity parameter, Dcrs takes k as input and generates c.r.s. σ; P is called prover,

takes (σ,x,w) as input where R(x,w)=1 and generates a proof π; V is called verifier,

takes (σ,x) as input and generates 0 or 1; Sim1(k) generates (σ,s), Sim2 takes x∈L

and (σ,s) as input and generates the simulation. All algorithms except Dcrs and Sim1

take the c.r.s. σ as one of their inputs, so we no longer explicitly include σ in all the

following expressions unless for emphasis. Now ZPoKR is defined as a

zero-knowledge proof protocol for relation R(or equivalently for the language L), if

the following properties are satisfied:

(1) For any x∈L and σ←Dcrs, it’s always true that P[V(x;P)[σ]=1]=1;

(2) For any P.P.T. algorithm A, x ∉ L and σ←Dcrs, it’s always true that

P[V(x;A)[σ]=1]=03;

(3) For any P.P.T. algorithm A which outputs 0 or 1, let ε be empty string, the function

|P[σ←Dcrs; b←A(ε;P)[σ]: b=1] - P[(σ,s)←Sim1(k); b←A(ε;Sim2(s))[σ]: b=1]|

is always negligible in k, where we emphasize the fact by symbol Sim2(s) that all Sim2

instances have s as one of their inputs.

The non-malleable zero-knowledge proof protocol for relation R is defined as

NMZPoKR= (Dcrs,P,V,Sim=(Sim1,Sim2),Ext=(Ext1,Ext2)) where

(Dcrs,P,V,Sim=(Sim1,Sim2)) is a zero- knowledge proof protocol for relation R as

above, P.P.T. algorithm Ext1(k) generates (σ,s,τ) and P.P.T. algorithm Ext2(witness

extractor) takes (σ,τ) and protocol’s transcripts as its input and generates output w,

and the following property holds:

(4)There exists a negligible function η(k)(knowledge-error function), such that for any

P.P.T. algorithm A=(A1,A2) it’s true that

P[(σ,s,τ)←Ext1(k); (x,tr,(b,w))←(<Sim2(s),A1>,<A2,Ext2(τ)>)[σ]: b=1∧R(x,w)=1∧ tr

doesn’t match any transcripts generated by Sim2(s)]

> P[(σ,s)←Sim1(k); (x,tr,b)←(<Sim2(s),A1>,<A2,V>)[σ]: b=1∧tr doesn’t match any

transcripts generated by Sim2(s)] - η(k) .

3 Strictly this protocol should be called “zero-knowledge argument”, however, such difference is not essential in
this paper so we harmlessly abuse the terminology.

 - 9 -

 It’s easy to see that the above definition implies that NMZPoKR is a

zero-knowledge proof of knowledge. In [16-17] Garay-MacKenzie-Yang developed

an efficient method to derive non-malleable zero-knowledge proof protocol based-on

simulation-sound tag-based commitment scheme and Ω-protocol(proposed in [17]).

We’ll apply this technique in section 4 to instantiate our general construction for

private set-intersection computation protocol.

3 A General Protocol Construction for Private Set-Intersection Computation

Let Ψ denote the real-world private set-intersection computation protocol. П=(Setup,

UKG, E,D) is a selective ANO_CPA anonymous IBE scheme, ∆ПBlind-UKG is the

real-world protocol for П’s user private-keys blind generation. Let

NMZPoK(w:R(x,w)=1) denote a non-malleable zero-knowledge proof protocol for a

P-relation R, where w is the witness. C=(Cmt, φ, FakeCmt, FakeDmt) is a

non-interactive perfectly-hiding/computationally-binding equivocable commitment

scheme[9], H is a collision-free hash function. Let P1 and P2 be two real-world parties

with a public common plaintext M0 as the c.r.s. The general construction is in figure

1(recall that the symbol “νρ” means a random selection of ρ).

This Ψ is a ∆ПBlind-UKG-hybrid protocol and we require ∆ПBlind-UKG→UCFП
Blind-UKG.

However, this first construction cannot guarantee UC-security but only “half

UC-security” instead(i.e., the real adversary A corrupting P1 can be completely

simulated by an ideal adversary S but this is not true when A corrupts P2. Only

data-privacy can be proved in the latter case). In order to make the real adversary be

always completely simulatable in ideal world, some additional property is required for

∆ПBlind-UKG. This leads to definition 3.1 and it is not hard to verify that our concrete

construction of ∆ПBlind-UKG in next section really satisfies it.

Definition 3.1(IBE’s User Private-keys Blind Computation Protocol with Extractor)

given IBE scheme П=(Setup,UKG,E,D) and ∆ПBlind-UKG→UCFП
Blind-UKG , let P1, P2 be

∆ПBlind-UKG’s parties, where P2 provides user-id a and obtains usk(a), P1 owns msk and

 - 10 -

(blindly) provides usk(a) for P2(as in figure 1). σ denotes ∆ПBlind-UKG’s c.r.s. This

∆ПBlind-UKG is defined as extractable, if there exists P.P.T. algorithm ExtП=(ExtП,1,

ExtП,2) and a negligible function δ(k), called the error function, such that for any

user-id a, honest P1 and any P.P.T. algorithm A it is true that(via notations in

subsection 2.3):

(1) ExtП,1(k) outputs (σ0,τ) such that σ0
... TPP

≈ σ ;

(2) for any (σ0,τ)←ExtП,1(k): P[ExtП,2(mpk||τ ;A(a))[σ0]=a]>P[Aa(mpk; P1(mpk,msk))[σ0]=

UKG(msk,a)] - δ(k) where (mpk,msk) is П’s master public/secret-keys owned by P1 and a

is P*2’s private input.

P1(X1) M0 is a public common plaintext P2(X2)
νρ; (mpk, msk)←Setup(ρ);
for every data item xi in X1 compute

νri; ξi←E(mpk, xi, M0; ri);
h←H(ξ1||…||ξN1);
(cmt, dmt)←Cmt(h);
 mpk || cmt
 input y1||…||yN2 where yj

input(mpk, msk) goes all elements in X2

 obtain N2 obtain usk(y1),…, usk(yN2)

∆ПBlind-UKG

 ξ1||…||ξN1||dmt
 verify φ(cmt,dmt,H(ξ1||…||ξN1))=1
 /*φ is commitment scheme C’s verification function.*/
 NMZPoK ((xi,ri): ξi=E(mpk, xi, M0; ri),i=1,…,N1)
 X0←{yj∈X2: there exists ξi s.t. D(mpk, usk(yj), ξi)=M0}

output(N2) output(N1||X0)

Figure 1 Anonymous IBE scheme(Π) based Unidirectional Secure Set-Intersection Computation

Protocol Ψ(NMZPoK’s arrow points from the zero-knowledge proof’s prover to verifier).

We stress that both extractors in definition 2.3(non-malleable zero-knowledge

proof protocol) and definition 3.1 are non-rewinding, which is necessary for proving

UC-security.

Combined with all the instantiations of subprotocols(presented in next section)

in this general construction, it’s easy to see that we can get constant-round and

 - 11 -

O(N1+N2) message-complexity solution to this problem. Furthermore P1, P2 has

computation-complexity O(N1+N2) and O(N1N2) repectively. At last, all instantiated

subprotocols(also UC-secure) are in CRS-model, so is Ψ which c.r.s is concatenation

of M0 and all subprotocols’c.r.s.’s

Theorem 3.1 Suppose that П=(Setup,UKG,E,D) is a selective ANO_CPA

anonymous IBE scheme, ∆ПBlind-UKG→UC FП
Blind-UKG with extractor ExtП=(ExtП,1,

ExtП,2) and error function δ as in def.3.1, NMZPoK is a non-malleable

zero-knowledge proof protocol, C=(Cmt,φ,FakeCmt,FakeDmt) is a non-interactive

perfect-hiding/P.P.T.-binding trapdoor commitment scheme, H is a collision-free hash

function, then Ψ→UC FINT assuming static corruptions.

Proof At first its easy to verify that Ψ produces the correct intersection X1∩X2.

Now we prove UC-security in two cases that the real-world adversary A corrupts P1 or

P2 respectively.

(1)A corrupts P1: for simplicity we first make the proof in FП
Blind-UKG–hybrid model,

then complete the proof by universal composition theorem. Let X1={x*1,…,x*N1} be

A’s own set, X2={y*1,…,y*N2} be P*2’s own set. We need to construct an ideal

adversary S1. S1 corrupts P*1, runs A as a black-box and simulates the real-world

honest party P2 to interact with A:

On receiving the message (sid,“input”,N2) from FINT, S1 computes (σ,s,τ)←

NMZPoK::Ext1(k)(to avoid ambiguity, we use Γ::f to represent a protocol Γ’s function

f), generates N2 data-items y1,…,yN2 at random and then starts A(σ);

A sends mpk||cmt, S1 interacts with A as an honest party in model of FП
Blind-UKG

and obtains usk(y1),…,usk(yN2);

S1 intercepts the message ξ1||…||ξN1||dmt sent from A,verifys whether

φ(cmt,dmt,H(ξ1||…||ξN1))=1, participates in the zero-knowledge protocol

NMZPoK((x*i,ri): ξi=E(mpk, x*i, M0; ri), i=1,…,N1 as an honest verifier and calls the

extractor NMZPoK::Ext2(taking the trapdoor τ as one of its input) to extracts the

witness (x*i,ri), i=1,…,N1;

S1 sends the message (sid,“input”, {x*1,…,x*N1}) to FINT, then outputs whatever

A outputs to the environment.

 - 12 -

Let tr(A,S1) denote the transcripts due to the interation between S1 and A, trψ(A,

P2(X2)) denote the transcripts due to the interation between A and P2(X2) in the

real-world protocol Ψ(P2 is the real-world party possessing the same private set X2 as

P*2). From A’s perspective, the difference between tr(A,S1) and trψ(A, P2(X2)) is that

the former provides FП
Blind-UKG with {y1,…,yN2} as the input, the latter provides

FП
Blind-UKG with {y*1,…,y*N2}, but according to FП

Blind-UKG’s specification, A knows

nothing about what data-items are provided to FП
Blind-UKG by the other party except the

number N2, as a result, tr(A,S1)≈PDF trψ(A,P2(X2))(perfectly indistinguishable) from

A’s perspective. In particular, the distribution of A’s output due to interactions with S1

is the same as that (in real-world protocol Ψ) due to interactions with P2(X2). Let η be

NMZPoK’s error function, be attacker’s advantage against C’s binding

property, be attacker’s advantage against H’s collision-free property, all

are negligible functions in k, it’s not hard to show(by contradiction) that the

probability with which S

binding
CAdv

collision
HAdv

1 correctly extracts all A’s data-items {x*1,…,x*N1}is greater

than P[P2(mpk||ξ1||…||ξN1;A1)=1]-N1(η+)- ≥ P[Xbinding
CAdv collision

HAdv 0=X1∩X2] -

N1(η+)- , therefore, the difference between the probability with

which P*

binding
CAdv collision

HAdv

2(X2) outputs X1∩X2 under the ideal-world adversary S1 and the probability

with which P2(X2) outputs X1∩X2 under the real-world adversay A against Ψ is

upper-bounded by N1(η+)+ , also a negligible function in k.

Combining all the above facts, for any P.P.T. environment Z we have output

binding
CAdv collision

HAdv

Z(ψ,A)≈PPT

outputZ (FINT,S1).

Now replace the ideal functionality FП
Blind-UKG with ∆ПBlind-UKG in Ψ. By what is

just proved, ∆ПBlind-UKG→UC FП
Blind-UKG and the universal composable theorem, we

still have the above UC-emulation consequence. In addition, it’s not hard to estimate

S1’s time complexity TS1=TA+O(N2+N1Te) where TA and Te are A’s and the extractor’s

computation time.

(2) A corrupts P2: Denote A’s own set as X2={y*1,…,y*N2}, P*1’s own set as

X1={x*1,…,x*N1}, we need to construct an ideal adversary S2. S2 corrupts P*2,

generates (σ, s)←NMZPoK::Sim1(k), runs A(σ) as a black-box and simulates the

real-world honest party P1 to interact with A:

On receiving message (sid,“input”,N1) from FINT, S2 generates data-items

 - 13 -

x1,…,xN1 and a seed ρ at random, computes (mpk, msk)←Setup(ρ) and ξi←E(mpk, xi,

M0; ri) for every xi where ri is generated at random during the computation, computes

(pkC, cmt0, π)←FakeCmt(k), starts A and sends the message mpk||cmt0 to A;

S2 interacts with A as an honest participant in ∆ПBlind-UKG’s session and calls the

extractor ∆ПBlind-UKG::Ext∆ to extract y*1,…,y*N2, send message (sid,“input”,

{y*1,…,y*N2}) to FINT;

S2 sends (sid,“intersection”) to FINT and gets the response {y*j1,…,y*jt}(i.e., the

set-intersection. To simplify the symbol, denote this response set as {y*1,…,y*t}).

S2 computes νr*i.ξ*i←E(mpk, y*i, M0; r*i)(r*i’s are selected at random)for

i=1,…,t, replaces arbitrary t ξi’s with ξi*’s and keeps other N1-t ξi’s unchanged, to get

a new sequence denoted as ξ‘1||…||ξ‘N1, computes dmt0←FakeDmt(pkC,π,

H(ξ‘1||…||ξ‘N1)). S2 sends the message ξ‘1||…||ξ‘N1||dmt0 to A, interacts with A in

NMZPoK((x0
i,r‘i): ξ‘i=E(mpk, x0

i, M0; r‘i),i=1,…,N1)’s session as an honest prover,

where x0
i = y*i for t i’s and x0

i=xi for other i’s.

S2 outputs whatever A outputs to the environment.

Let tr(S2,A) denote the transcripts due to the interaction between A and S2,

trΨ(P1(X1),A) denote the transcripts due to the interaction between A and the

real-world party P1(X1)(which owns the same data set X1={x1*,…,x*N1} as the

ideal-world party P*1). From A’s perspective, the differences between these two

transcripts are: a)cmt in these two transcripts are cmt0 output by FakeCmt and cmt

output by Cmt(H(E(mpk, x*1, M0; r1)||…||E(mpk,x*N1, M0; rN1))) respectively; b) dmt

in these two transcripts are dmt0 output by FakeDmt and dmt output by Cmt(H(E(mpk,

x*1, M0; r1)||…||E(mpk,x*N1, M0; rN1))) respectively c)Among the ciphertext sequence

ξ1||…||ξN1 in these two transcripts, there are t ciphertexts ξi having the same id

public-key(i.e., x*i) but the remaining N1-t ciphertexts having different id public-keys;

d)there are t NMZPoK-witness’ with the same x0
i.

Because of C’s perfect hiding property, (cmt,dmt) has the same distribution in

both cases; because of IBE scheme Π’s selective ANO_CPA property, ξ1||…||ξN1||dmt

in both cases are P.P.T.-indistinguishable(otherwise suppose they are P.P.T.-

distinguishable with δ≥1/poly(k), it’s easy to construct a selective ANO_CPA attacker

 - 14 -

against Π with an advantage at least δ/N1, contradicting with Π’s selective ANO_CPA

anonymity). Now denote the ciphertext sequence ξ1||…||ξN1 in two cases as ξ1
(1)||…||

ξN1
(1) and ξ1

(2)||…||ξN1
(2) respectively, denote the transcripts in session of NMZPoK as

NMZPoK(1)(=trS2(x1,…,xN1),A(mpk||M0||ξ1
(1)||…||ξN1

(1))) and NMZPoK(2)(=trP1(x*1,…,x*N1),A

(mpk||M0||ξ1
(2)||…||ξN1

(2)))) respectively, by the above analysis we have ξ1
(1)||…||ξN1

(1)

≈PPT ξ1
(2)||…||ξN1

(2); by NMZPoK’s zero-knowledge property, we have

NMZPoK(1)≈PPT NMZPoK::Sim2(mpk||M0||ξ1
(1)||…||ξN1

(1), s)

and NMZPoK(2)≈PPT NMZPoK::Sim2(mpk||M0||ξ1
(2)||…||ξN1

(2), s)

so NMZPoK(1)≈PPT NMZPoK(2).

As a result, the transcripts received by A in both cases are P.P.T.-indistinguishable.

Let δ be ∆ПBlind-UKG’s extractor’s error function(negligible in k), then the

probability with which S2 correctly extracts A’s one data-item y*i is at least

P[A(mpk;P1(mpk,msk))=UKG(msk,y*i)]-δ, so the probability with which S2 correctly

extracts A’s all data-items {y*1,…,y*N2} is at least P[A(mpk;P1(mpk,

msk))=UKG(msk,y*i): i=1,⋯,N2]-N2δ≥P[X0=X1∩X2]-N2δ. As a result, S2’s output is

P.P.T.-indistinguishable from A’s output in Ψ with an error upper-bounded by

N1(k)) +N(_ kAdv CPAANO
Π 2δ, also negligibale in k. Note that in both cases the other

party P*1(X1) and P1(X1) always output the same N2, we have the consequence that

outputZ(ψ,A)≈PPToutputZ(FINT,S2) and it’s easy to estimate that S2’s time-complexity

TS2=TA+O(N1+N2Text) where TA and Text are A’s and extractor’s computation-time.

By all the facts, we have Ψ→UC FINT.

4 An Instantiation via Boyen-Waters IBE Scheme

Theorem 3.1 presents exact security conditions for general construction Ψ, among

which some are available from existing works, e.g., the commitment scheme can be

directly borrowed from the efficient scheme in [9]. In fact the subprotocols which

require new efficient constructions are only IBE scheme Π’s user private-keys

generation protocol and the related non-malleable zero-knowledge proof protocol

NMZPoK((a,r): ξ=E(mpk, a, M0; r)). In this section we develop all these

 - 15 -

sub-constructions based-on Boyen-Waters IBE scheme to obtain an efficient

instantiation of the general Ψ.

4.1 Boyen-Waters IBE[12]

Given an bilinear group pairing ensemble J={(p,G1,G2,e)}k where |G1|=|G2|=p, p is k-bit

prime number, P∈G1, e:G1×G1→G2 is a non-degenerate pairing, Boyen-Waters IBE

consists of:

Setup(k):

 g, g0, g1←
$G1; ω, t1, t2, t3, t4←

$Zp; Ω← ; ω21),(ttgge

v1←gt1; v2←gt2; v3←gt3; v4←gt4;
 mpk←(G1,G2,p,e, Ω, g, g0, g1, v1, v2, v3, v4);
 msk←(ω, t1, t2, t3, t4);
 return(mpk, msk);

UKG(msk, a), a∈Zp:
 r1, r2←

$Zp;
 usk(a)←(, ,); ,)(, 212432211

10
tratttrttr gggg −−+ ϖ 111)(10

trat ggg −−ϖ 42)(10
tragg − 32)(10

tragg −

 return(usk(a));
E(mpk, a, M), M∈G2:
 s, s1, s2←

$Zp; ξ←(ΩsM, , vsagg)(10 1
s-s1, v2

s1, v3
s-s2, v4

s2);
 return(ξ);
 D(mpk, usk(a), (ξ00, ξ0, ξ1, ξ2, ξ3, ξ4)), usk(a)≡(d0, d1, d2, d3, d4):

 T←e(d0, ξ0)e(d1, ξ1)e(d2, ξ2)e(d3, ξ3)e(d4, ξ4);
 return(ξ00T);

 [12] has proven that assuming the decisional bilinear Diffie-Hellman

problem(D-BDHP)’s hardness on J, this scheme is selective IND_CPA

secure(data-privacy); assuming the decisional linear problem(D-LP)’s hardness, this

scheme is selective ANO_CPA anonymous. Note that D-BDHP hardness implies

D-LP’s hardness, all the above consequences can be also obtained only under

D-BDHP’s hardness.

4.2 User Private-Keys Blind Generation Protocol and Its UC-Security WatersBoyen
UKGBlind
−
−∆

Figure 2 is the real-world user private-keys blind generation protocol for

Boyen-Waters IBE scheme. For simplicity we only present how to blindly generate

 - 16 -

usk(a) for a single user-id a, but generalization for multiple user-id’s a1||…||aN to

blindly generate usk(a1)||…||usk(aN) is trival and still constant-round, though the total

message-complexity is linearly increased.

P1(mpk, msk) P2(mpk||a)
 NMZPoKII(msk: mpk=Setup(msk)) νr1r2y1y2y3y4;

 Ui← irg , Vi← iragg −)(10 , i=1,2

 hj← ay gg j
1 , j=1,2,3,4

 U1||U2||V1||V2||h1||h2||h3||h4

NMZPoKIII ((a, r1, r2, y1, y2, y3, y4):∧i=1,2Ui= ∧i=1,2Vi= ∧j=1,2,3,4hj=) irg iragg −)(10
ay gg j
1

νσ r1' r2’; d0← ; 21
,

1)(1
ttr Ug σ 43

,
2)(2

ttr Ug σ

d1'← ; d1"← ; 2tg ϖ− 221
1

'
01)(ttr Vgh σ− 2

'
1trg

d2'← ; d2"← ; 1tg ϖ− 111
1

'
02)(ttr Vgh σ− 1

'
1trg

d3'← ; d3"← ; 442
2

'
03)(ttr Vgh σ− 4

'
2trg

d4'← ; d4"← ; 332
2

'
04)(ttr Vgh σ− 3

'
2trg

 d0||d1' ||d1"||d2' ||d2"|| d3' ||d3"||d4' ||d4"

dj← , j=1,2,3,4 jy
jjdd '''

 output(d0, d1, d2, d3, d4)

Figure 2 Boyen-Waters IBE’s user private-key blind generation protocol WatersBoyen
UKGBlind
−
−∆

(NMZPoK’s arrow points from zero-knowledge’s prover to verifier)

NMZPoKII and NMZPoKIII are two non-malleable zero-knowledge proof

protocols for the specific relations. Since in Boyen-Waters scheme msk itself is used as

the random seed in Setup so here we use a simpler expression Setup(msk).

It’s easy to see by direct calculation that this protocol outputs the correct

usk(a)=(d0,d1,d2,d3,d4) where d0 = , d1= ,

d2= , d3= , d4=).

43222111)'()'(ttrrttrrg σσ +++ 2112)'(
10)(trrat ggg σϖ +−−

1111)'(
10)(trrat ggg σϖ +−− 422)'(

10)(trragg σ+− 322)'(
10)(trragg σ+−

Theorem 4.1 If both NMZPoKII and NMZPoKIII are non-malleable zero-knowledge

proof protocols and the bilinear group pairing J has D-BDHP hardness, then

→WatersBoyen
UKGBlind
−
−∆ UC WatersBoyen

UKGBlindF −
− assuming static corruptions and satisfies

definition 3.1.

WatersBoyen
UKGBlind
−
−∆

Proof At first it’s easy to prove that there exists an extractor for to WatersBoyen
UKGBlind
−
−∆

 - 17 -

satisfy definition 3.1. In fact it is NMZPoKIII((a, r1, r2, y1, y2, y3, y4):∧i=1,2Ui= ∧

i=1,2Vi= ∧j=1,2,3,4hj=)’s extractor, where the to-be-extracted witness is

a.

irg
iragg −)(10

ay gg j
1

Now we prove ’s UC-security in two cases that the real-world

adversary A corrupts P1 or P2 respectively.

WatersBoyen
UKGBlind
−
−∆

(1)A corrupts P1: Suppose A’s private input is (mpk,msk), P*2’s private input is a*. we

need to construct an ideal adversary S1. S1 corrupts the ideal-world party P*1,

generates (σ,s,τ)←NMZPoKII::Ext1(k), runs A(σ) as a black-box. S1 simulates the

real-world honest party P2 to interact with A:

In session of NMZPoKII(msk:mpk=Setup(msk)) launched by A, S1 interacts with A

as an honest verifier, extracts msk via NMZPoKII::Ext2(taking τ as one of its inputs),

and sends message (sid, mpk||msk) to ; WatersBoyen
UKGBlindF −
−

S1 generates an user-id a at random, follows P2’s specification in fig.2 to

compute U1,U2,V1,V2,h1,h2,h3,h4, sends the message U1||U2||V1||V2||h1||h2||h3||h4 to A,

participates in NMZPoKIII as an honest prover;

 S1 outputs whatever A outputs to the environment.

Let W≡U1||U2||V1||V2||h1||h2||h3||h4. From A’s perspective, the transcripts due to its

interactions with S1 and the transcripts due to its interactions with the real-world party

P2(a*)(possessing the same private input as the ideal-world party P*2) differs in a)W

depends on a in the former case while depends on a* in the latter; b)NMZPoKIII’s

witness depends on a in the former case while depends on a* in the latter.

Let W(a), NMZPoKIII (a) and W (a*), NMZPoKIII(a*) denote protocol-messages

in these two cases respectively. Let g0≡ , g1≡ , expand W(a) to

|| || || || ||…|| and W (a*) to a similar expression

where a, a*, r1, r2, y1, y2, y3, y4, α and β are probabilistically independent and all are

unknown to A, so W(a)≈

αg βg
1rg 2rg 1)(rag βα +− 2)(rag βα +− βayg +1 βayg +4

PDFW(a*); by NMZPoKIII’s zero-knowledge property, there

exists NMZPoKIII’s simulator such that

 NMZPoKIII::Sim2(W (a), s)≈PPT NMZPoKIII(a)

and NMZPoKIII::Sim2(W (a*), s)≈PPT NMZPoKIII(a*)

so NMZPoKIII(a)≈PPT NMZPoKIII::Sim2(W (a), s)≈PDF NMZPoKIII::Sim2(W (a), s)≈PPT

NMZPoKIII(a*). As a result, from A’s perspective the transcripts due to its interactions

 - 18 -

with S1 has the same distribution as that due to its interactions with P2(a*), in

particular, the output of A due to its interactions with S1 has the same distribution as

its output due to its interactions with P2(a*) in .
WatersBoyen
UKGBlind
−
−∆

 Let ηII denote NMZPoKII’s knowledge extractor’s error function(a negligible

function in k)，then the probability with which P*2(a*) outputs UKG(msk,a*) under

S1’s attacks is at least P[P2 accepts mpk as a valid master public-key]-ηII, i.e., except

for an probability upper-bounded by ηII, P*2(a*)’s output under S1’s attacks is the

same as P2(a*)’s output under A’s attacks, in other words, for any P.P.T. environment

Z we have outputZ(,A1)≈WatersBoyen
UKGBlind
−
−∆ PPT outputZ(,S1) and it’s easy to

estimate S1’s time-complexity TS1=TA+TeII+O(1) where TA and TeII are A’s and

ExtII,2’s computation-time.

WatersBoyen
UKGBlindF −
−

(2)A corrupts P2: Let a denote A’s (private) input, (mpk*,msk*) denote the ideal-world

party P*1’s input where mpk*=(G1,G2,p,e, Ω*, g, g0, g1, v*1, v*2, v*3, v*4) and

msk*=(ω*, t1*, t2*, t3*, t4*). We need to construct an ideal-world adversary S2. S2

corrupts P*2, runs A as a black-box, simulates the honest real-world party P1 to

interact with A:

On receiving the message (sid,mpk*) from , S2 generates ω, t1, t2, t3, t4

at random, computes

WatersBoyen
UKGBlindF −
−

Ω← ; v1←gω21),(ttgge t1; v2←gt2; v3←gt3; v4←gt4;

mpk←(G1, G2, p,e, Ω, g, g0, g1, v1, v2, v3, v4);

msk←(ω, t1, t2, t3, t4);

(σ,s,τ)←NMZPoKIII::Ext1(k);

S2 starts A(σ) and launches NMZPoKII(msk:mpk=Setup(msk)) in role of an honest

prover.

When A sends U1||U2||V1||V2||h1||h2||h3||h4 and then launches NMZPoKIII ((a, r1, r2,

y1, y2, y3, y4):…), S2 participates the session as an honest verifier and calls

NMZPoKIII::Ext2(taking τ as one of its input) to extract (a, r1, r2, y1, y2, y3, y4);

S2 sends the message (sid||1,a) to and gets the response

(sid||1,UKG(msk*,a)) where UKG(msk*,a)≡(d0*, d1*, d2*, d3*, d4*);

WatersBoyen
UKGBlindF −
−

S2 generates dj“ at random, computes dj‘← , j=1,2,3,4, sends d*0||d1'

||d1"||d2' ||d2"||d3' ||d3"||d4' ||d4" to A.

jy
jj dd ''* /

Now we prove that from A’s perspective the transcripts due to its interactions

 - 19 -

with S2 and that due to its interactions with P1(mpk*, msk*)(a real-world party

possessing the same input as the ideal-world party P*1) are P.P.T.-indistinguishable.

At first, consider the transcripts in NMZPoKII’s session. Let NMZPoKII(*) and

NMZPoKII() denote the messages generated by P1(mpk*, msk*) and S2 in this session

respectively. By NMZPoKII’s zero-knowledge property, there exists the

P.P.T.-simulator such that

NMZPoKII::Sim2(mpk*, s)≈PPT NM ZPoKII(*)

and NMZPoKII::Sim2(mpk, s)≈PPT NMZPoKII()

Let ΩR denote a random element on group G2. Since ω*,ω, ti*, ti (i=1,2,3,4) are

probabilistically independent and all are unknown to A, from A’s perspectiove we

have mpk*≡(G1,G2,p,e, Ω*, g, g0, g1, v*1, v*2, v*3, v*4)

≈PPT (G1,G2,p,e, ΩR, g, g0, g1, v*1, v*2, v*3, v*4) (D-BDHP hard)

 ≈PDF (G1,G2,p,e, ΩR, g, g0, g1, v1, v2, v3, v4) (trivial)

 ≈PPT (G1,G2,p,e, Ω, g, g0, g1, v1, v2, v3, v4) (D-BDHP hard)

≡ mpk

So NMZPoKII(*)≈PPT NMZPoKII::Sim2(mpk*,s)≈PPT NMZPoKII::Sim2(mpk,s)≈PPT

NMZPoKII().

Now consider the last message, which are d*0||d1' ||d1"||d2' ||d2"||d3' ||d3"||d4' ||d4"

and d*0||d*1' ||d*1"||d*2' ||d*2"||d*3' ||d*3"||d*4' ||d*4" in these two cases(interacting with

S2 and with P1(mpk*, msk*)) respectively. Both messages have the same component

d*0, all other components are denoted as D and D* respectively. Expanding D we

have

D ≡ || || || || || || || 1''
1

*
1 / ydd ''

1d 2''
2

*
2 / ydd ''

2d 3''
3

*
3 / ydd ''

3d 4''
4

*
4 / ydd ''

4d

where d*1, d*2, d*3, d*4 come from UKG(msk*,a), i.e., d*1= *~
10

** 212)(trat ggg −−ϖ ,

d*2= *~
10

** 111)(trat ggg −−ϖ , d*3= *~
10

42)(tragg − , d*4= *~
10

32)(tragg − .

 Expanding D* we have

D* ≡ || || || || || ** 2tg ϖ− *
1

*'
01

221)(ttr Vgh σ− *2
'

1trg *1tg ϖ− *
1

*'
02

111)(ttr Vgh σ− *1
'

1trg *
2

*'
03

442)(ttr Vgh σ−

|| || || *4
'
2trg *

2
*'

04
332)(ttr Vgh σ− *3

'
2trg

where σ 、 ir~ 、ri’ and dj” are probabilistically independent and unkown to A, σ , ri’

are generated by P1, dj” by S2, by . ir~
WatersBoyen

UKGBlindF −
−

Since r1’ and r2’ are probabilistically independent, D*’s 4 leftmost-components

are probabilistically independent of those 4 rightmost-ones; note that t*1, t*2, t*3, t*4

 - 20 -

are also probabilistically independent，we finally partition D* into 4 independent

components Di* as:

D1* ≡ || D2* ≡ || ** 2tg ϖ− *
1

*'
01

221)(ttr Vgh σ− *2
'

1trg *1tg ϖ− *
1

*'
02

111)(ttr Vgh σ− *1
'

1trg

D3* ≡ || D4* ≡ || *
2

*'
03

442)(ttr Vgh σ− *4
'
2trg *

2
*'

04
332)(ttr Vgh σ− *3

'
2trg

Similarly partition D into 4 independent components Di as:

 D1 ≡ || D2 ≡ || D3 ≡ || D4 ≡ || 1''
1

*
1 / ydd ''

1d 2''
2

*
2 / ydd ''

2d 3''
3

*
3 / ydd ''

3d 4''
4

*
4 / ydd ''

4d

The problem is reduced to analysis about relationship between Di and D*i.

Consider D3* ≡ || and D3 ≡ || : obviously D3≈
*

2
*'

03
442)(ttr Vgh σ− *4

'
2trg 3''

3
*
3 / ydd ''

3d PDF

*~
03

42)(trgh − / || so it’s adequate to analyze the relationship between

 and

*4
'
23 tryg *4

'
2trg

*
2

*'
03

442)(ttr Vgh σ− *~
10

42)(tragg − / . Further note that ≈*4
'
23 tryg *'

03
42)(trgh − PDF *~

03
42)(trgh − ,

≈
*

2
4tVσ PDF *4

'
23 tryg − , *~

03
42)(trgh − and are independent each other, so D3*≈*4

'
2trg PDFD3.

For the same reason D4*≈PDFD4.

Consider D1* ≡ || and D1 ≡ || : obviously D1

≈

** 2tg ϖ− *
1

*'
01

221)(ttr Vgh σ− *2
'

1trg 1''
1

*
1 / ydd ''

1d
PDF *~

10
** 212)(trat ggg −−ϖ / || , by similar analysis as before we have D1*≈12

'
1 *ytrg *2

'
1trg PDF

D1. For the same reason D2*≈PDFD2. Therefore:

d*0||d1'||d1"||d2'||d2"||d3'||d3"||d4'||d4"≈PDFd*0||d*1'||d*1"||d*2'||d*2"||d*3'||d*3"||d*4' ||d*4"

In consequence, under the assumption of D-BDHP’s hardness on J, from A’s

perspective the transcripts due to its interactions with S2 and that due to its

interactions with P1(mpk*, msk*) are P.P.T.-indistinguishable. In particular, A’s output

in the former case is P.P.T.-indistinguishable from its output in the latter, the error is

(by some trivial calculation)upper-bounded by ηIII +2 where ηIII is

NMZPoKIII’sextractor’s error function. As a result, for any P.P.T. environment Z we

have outputZ(,A2)≈

)(kAdv BDHPD
J
−

WatersBoyen
UKGBlind
−
−∆ PPT outputZ(,S2) and it’s easy to estimate

S2’s time-complexity TS2=TA+TeIII+O(1) where TA and TeIII are A’s and NMZPoKIII’s

extractor’s computation-time.

WatersBoyen
UKGBlindF −
−

Combining all consequences in the above, the theorem is finally proved.

4.3 Non-Malleable Zero-Knowledge Proof Protocols’ Construction

The critical components in figure-1 and figure-2 are three non-malleable

zero-knowledge proof protocols NMZPoK, NMZPoKII and NMZPoKIII. We apply

GMY/MY techniques[16-17] to make our solutions. All contructions are

 - 21 -

constant-round and highly efficient. Note that by a general theorem proven in [16], the

non-malleable zero-knowledge proof protocol UC-emulates the ideal zero-knowledge

proof functionality, and that’s why our method can be successful to make Ψ

UC-secure and this feature can be even preserved when we develop the constructions

for GUC-secure Ψ.

4.3.1 Tools: Paillier Scheme, Ω-Protocol and GMY/MY Techniques

Some powerful tools are required. At first, we use a Paillier scheme revised by

Damgard and Catalano et al in [18-19]. Let N=p1p2 be a RSA modular, s<p1, p2, [18]

proved that the order of 1+N modulo Ns+1 is NS(Paillier’s original scheme has s=1).

[19]-revised scheme is: public-key pk=RSA public-key (e,N), private-key sk=d where

ed=1 mod φ(N), for plaintext m Z∈ N the encryption E(pk, m)=(1+mN)re mod N2

where r←$Z*N, the decryption on y is r←yd mod N and then m←((r– ey -1)mod N2) / N.

[19] proved that this scheme is IND_CPA secure under the decisional e-residues

hardness. All details can be found in [18-19] and note that this scheme is

homomorphic such that E(pk, m1)E(pk, m2)=E(pk, (m1+m2)mod N) mod N2.

 The second tool is the honest verifier zero-knowledge Ω-protocol proposed in [17]

and how to transform a Ω-protocol for relation R via the simulation-sound trapdoor

commitment scheme into a non-malleable zero-knowledge proof protocol for R. The

reader can refer [16-17](particularly [16]’s theorem 4.2)for all details.

Definition 4.1(Ω-protocol for relation R[17]) R’s Ω-protocol ΩR=(Dcrs,A,Z,Φ,Sim,

Ext=(Ext1,Ext2)) is a group of P.P.T. algorithms, where Dcrs(k) generates c.r.s. σ and all

other algorithms take σ as one of their inputs(so σ is no longer explicitly expressed in

these algorithms’ inputs unless for emphasis); A, Z, Φ are prover’s and verifier’s

algorithms. The protocol’s structure is as follows:

 P(x,w): R(x,w)=1 c.r.s. σ V(x)
 νr; a←A(x,w,r); a

 c νc;

 z←Z(x,w,r,c); z
 verify Φ(x,a,c,z)=1

 - 22 -

The simulator Sim(x,c) generates (a*, z*) for given c and x∈LR such that for the

transcript (a,c,z) between honest prover P(x,w) and verifier V it is true that

(a*,c,z*)≈P.P.T. (a,c,z).

For P.P.T. extractor Ext=(Ext1,Ext2)), Ext1(k) generates (σ1,τ) such that σ1≈P.P.T.σ ,

τ is called extractor trapdoor. Ext2 can always extracts some thing, however, if there

exist two transcripts (a,c,z) and (a,c’,z’) accepted by V but c≠c’(but the first messages

are the same a), i.e., Φ(σ1,x,a,c,z)=Φ(σ1,x,a,c’,z’)=1, then x∈LR and

Ext2(σ1,x,τ,(a,c,z)) generates a witness w: R(x,w)=1. We stress that Ext2 doesn’t

rewind P which is a significant feature in Ω-protocol.

Given relation R and its Ω-protocol ΩR, GMY/MY techniques transform ΩR into

R’s non-malleable zero-knowledge proof protocol via the following construction in

figure 3, where SIG1 is a one-time signature scheme, TC is a non-interactive

simulation-sound tag-based trapdoor commitment scheme, Cmt and Vf are TC’s

commiting and verifying algorithm, pk is TC’s public-key, A、Z、Φ are algorithms of

ΩR in definition 4.1. The protocol’s c.r.s. is σ||pjk.

P(x,w): R(x,w)=1 c.r.s. σ||pk V(x)
 (vk,sk)←SIG1::KGen(k);
 νr; a←A(σ,x,w,r);

(cmt,dmt)←TC::Cmt(pk, vk, a); vk||cmt
 c νc;

z←Z(σ,x,w,r,c); s←SIG1::Sign(sk,vk||cmt||c||a||dmt||z);
 a||dmt||z||s verify TC::Vf(pk, vk, a, cmt,dmt)=1

∧Φ(σ,x,a,c,z)=1∧SIG1::Vf(vk,vk||cmt||c||a||dmt||z,s)=1

Figure 3 Transformation from ΩR into NMZPoKR[16]

In figure 3 ΩR is the only R-specific constituent. Other constituents can all be

borrowed from existing works, e.g., some efficient constructions for TC are given in

[16-17](but not Ω-protocols). As a result, our efficient instantiation is finally reduced

to the efficient constructions for those mathematical relations in fig.1 and fig.2 with

respect to Boyen-Waters IBE scheme4.

4 Theoretically it’s also feasible to apply non-interactive non-malleable zero-knowledge proof schemes to

 - 23 -

4.3.2 Constructing NMZPoK, NMZPoKII and NMZPoKIII

In case of Boyen-Waters scheme NMZPoKII(msk: mpk=Setup(msk)) is

NMZPoK((ω, t1, t2, t3, t4): Ω= ∧v1=gω21),(ttgge t1∧v2=gt2∧v3=gt3∧v4=gt4)

Note that Ω= = so the desired protocol is equivalent to ω21),(ttgge ω),(21 vve

NMZPoK((ω, t1, t2, t3, t4): Ω= ∧v1=gω),(21 vve t1∧v2=gt2∧v3=gt3∧v4=gt4) (4-1)

Now we analyze how to construct

NMZPoKIII ((a, r1, r2, y1, y2, y3, y4):∧i=1,2Ui= ∧i=1,2Vi= ∧j=1,2,3,4hj=) irg iragg −)(10
ay gg j
1

Observe that (the pairing e is non-degenerate and G1, G2 are both prime-order)

Vi= iff = = = , i.e., iragg −)(10),(iVge 1),(−ar ggge i

),(iVge),(0gUe i

1
10),(−a

i ggUe 1
0),(−gUe i

a
i gUe −),(110

= ,i=1,2 a
i gUe −),(1

hj= iff = = , i.e., ay gg j
1),(01 jhgUe),(101

aggUe jygUe),(1
1

1),(−Vge jygUe),(1

 = ,j=1,2,3,4),(01 jhgUe),(1Vge jygUe),(1

The above expression is also true if U2 replaces U1. Denote publicly-computable items

Fi≡ , f i≡ , Hj≡ , h≡ , then

NMZPoKIII becomes

),(iVge),(0gUe i
1

1),(−gUe i),(01 jhgUe),(1Vge),(1 gUe

NMZPoK((a, r1, r2, y1, y2, y3, y4):∧i=1,2Ui= ∧i=1,2Fi= fi
irg a∧j=1,2,3,4Hj=) jyh

A further observation tells that F1= f1
a and F2= f2

a are not independent: in fact, let

F1= and F2= then via bilinear pairing we have = and

= , i.e., = iff a1=a2 so one statement of F1= f1

1
1

af 2
2

af),(21 Ffe 2),(21
affe

),(21 fFe 1),(21
affe),(21 Ffe),(21 fFe a or

F2= f2
a can imply another one by publicly checking = . Therefore

the desired NMZPoKIII is equivalent to

),(21 Ffe),(21 fFe

NMZPoK((a, r1, r2, y1, y2, y3, y4):∧i=1,2Ui= ∧F1= f1
irg a∧j=1,2,3,4Hj=) (4-2) jyh

 Now analyze NMZPoK((a,r): ξ=E(mpk, a, M0; r)). In case of Boyen-Waters

scheme, denote the public common plaintext as M0 and the scheme’s ciphertext as

ξ≡(ξ00, ξ0, ξ1, ξ2, ξ3, ξ4), then ZPoK((a,r): ξ=E(mpk, a, M0; r)) becomes

ZPoK((a,s,s1,s2): ξ00=ΩsM0∧ξ0= ∧ξ1=v1
sagg)(10

s-s1∧ ξ2=v2
s1∧ξ3=v3

s-s2∧ξ4=v4
s2).

Because in theorem 3.1’s proof what is needed is just the witness a, with respect to

protocol Ψ it’s adequate to construct NMZPoK((a,s): ξ00=ΩsM0∧ξ0=). sagg)(10

instantiate our UC/GUC-secure constructions, however, so far we don’t know how to construct such
non-interactive schemes for the desired relations in case of Boyen-Waters IBE(Groth et al’s work published at
Eurocrypt’08 cannot be directly applied here, their schemes are witness indistinguishable in general, only
zero-knowledge in some special conditions).

 - 24 -

Note that ξ00, Ω, M0∈G1 and ξ0,g0,g1∈G2. If G1=G2 then by

e(Ω,ξ0)=e(Ωs,g0)e(Ωs, it’s easy to see that the desired protocol is equivalent to

NMZPoK((a,s): ξ00M0

ag)1

-1=Ωs∧e(Ω,ξ0)e(ξ00M0
-1,g0)-1=e(ξ00M0

-1,), in the same form

as (4-1) and (4-2). Unfortnately, in general G1 and G2 are not the same group, e.g., G1

is usually a prime-order subgroup on elliptic curve while G2 is a multiplicative

subgroup in some finite field, so new approach is needed. In fact, denote χ00≡ξ00M0

ag)1

-1,

t≡as, then χ00=Ωs, ξ0= = and it’s easy to see that NMZPoK((a,s):

ξ00=Ω

sagg)(10
ts gg 10

sM0∧ξ0=)(a = tssagg)(10
-1 mod q) is equivalent to:

NMZPoK((s,t): χ00=Ωs∧ξ0=) (4-3) ts gg 10

 So far all desired non-malleable zero-knowledge proof protocols are explicitly

presented and all relations in them can be unified to a group of linear exponent

equations on prime-order group G in (4-4)(more generally each equation in (A-4) can

be on a different group, but this case can be processed by a trivial generalization of

the uniform case in which all equations are on the same group, so we only deal with

the latter):

 i=1,…,m (4-4) i

n

j

x
ij hB j =∏

=1

where Bij and hi are in G and xi’s are the integer witness. By GMY/MY techniques it’s

adequate to construct (4-4)’s efficient Ω-protocols. For simplicity but w.l.o.g., we

present a Ω-protocol only for (4-3), i.e., the relation χ00=Ωs∧ξ0= , in figure 4. ts gg 10

|G|=q,q is prime, the Ω-protocol has a RSA modular N as its c.r.s. where N=p1p2

and q can divide neither p1-1 nor p2-1(e.g., p1, p2>4q). Note that every eij is a Paillier

ciphertexts. The simulator Sim(N,c) is specified as follows and it’s easy to verify that

Sim(N,c) has zero-knowledge simulation property specified in definition 4.1:

z11, z12 ←$ Zq; z21, z22←$ Z*N; e11, e21←$
*

2NZ ;

 ; ; 1211
100
zzc gg−←Θ ξ 11

00
zcU Ω← −χ

 ; 2
21111112 mod)1(NzNzee qc +← −

 ; 2
22122122 mod)1(NzNzee qc +← −

 return(Θ||U ||e11||e12||e21||e22, z11||z12 ||z21||z22);

. For extractor Ext=(Ext1,Ext2), Ext1(k) is:

generate at random RSA primes p1, p2>q s.t. q dividing neither p1-1 nor p2-1;

 - 25 -

N←p1p2; σ←N; τ←φ(N) /*φ is Euler function.*/
 return(σ,τ); /*τ is extractor’s trapdoor.*/

Obviously the σ generated by Ext1(k) has the same distribution as c.r.s.
Ext2(N, τ, (Θ||U ||e11||e12||e21||e22, c, z11||z12 ||z21||z22)) is:

 Compute d: qd = 1 mod φ(N);
 α1←e11

d mod N; ←((α1ŝ - qe11 -1)mod N2) / N;
 α2←e21

d mod N; ←((α2t̂ - qe21 -1)mod N2) / N;
 return(, t); ŝ ˆ

P(χ00||Ω||ξ0||g0||g1, s||t) V(χ00||Ω||ξ0||g0||g1)

 r1,r2←$Zq; α1, α2, β1, β2←$Z*N;
 Θ← ; U← ; 21

10
rr gg 1rΩ

 e11←(1+sN) α1
q mod N2; e12←(1+r1N) β1

q mod N2;
 e21←(1+tN) α2

q mod N2; e22←(1+r2N) β2
q mod N2;

 Θ||U ||e11||e12||e21||e22

 c c←$Zq
 z11←r1+sc; z12←r2+tc;

z21←α1
cβ1 mod N; z22←α2

cβ2 mod N;
 z11||z12 ||z21||z22

 verify ∧
czz gg 010

1211 ξΘ= Ucz
00

11 χ=Ω
 ∧ 2

21111211 mod)1(NzNzee qc +=
∧ 2

22122221 mod)1(NzNzee qc +=

 Figure 4 Ω-protocol for NMZPoK((s,t): χ00=Ωs∧ξ0=)’s construction ts gg 10

To make sure this protocol is indeed a Ω–protocol, we need to prove the fact that when

there exist two transcripts (Θ||U ||e11||e12||e21||e22, c, z11||z12 ||z21||z22) and (Θ||U ||e11||e12||e21||e22, c’,

z’11||z’12 ||z’21||z’22) with c≠c’ mod q but all accepted by the verifier V, Ext2 really outputs a

witness (s,t). At first we observe that c≠c’ mod q implies g.c.d.(c-c’, N)=1, because N’s prime

factors p1, p2>q>|c-c’|, furthermore there exists (c-c’)-1 mod N. Now by

Ucz
00

11 χ=Ω and Ucz '
00

'11 χ=Ω

we have , i.e., (c’- c)s = z’11 – z 11 mod q; by cczz −− =Ω '
00

' 1111 χ
czz gg 010

1211 ξΘ= and '
0

'
1

'
0

1211 czz gg ξΘ=

we have and by (c’- c)s = z’11 – z 11 mod q we derive (c’- c)t = z’12 – z

12 mod q; by and (note that

1+mN=(1+N)

cczzzz gg −−− = '
0

'
1

'
0

12121111 ξ
2

21111211 mod)1(NzNzee qc += 2
211112

'
11 mod')'1(NzNzee qc +=

m mod N2) we have =

= (where u and ρ are unnecessary to be

qzzcc zzNe)'()1(1
2121

''
11

1111 −−− +=
quqscc zzN)'()1(1

2121
)'(−+−+ 2)'(mod)1(NN qscc ρ−+

 - 26 -

explicitly computed), and recall(in subsection 4.3.1)that the order of 1+N modular N2 is N,

now raise both sides to the power of (c-c’)-1 mod N (recall that (c-c’)-1 mod N exists)then

, i.e., e11 is s’s Paillier ciphertext, so =s. 2
11 mod)1()1(NsNNe qqs γγ +=+= ŝ

Finally by and we

have and by (c’-c)t = z’12 – z 12 mod q a similar

calculation derives , i.e., e21 is t’s Paillier ciphertext, so =t.

2
22122221 mod)1(NzNzee qc += 2

221222
'

21 mod')'1(NzNzee qc +=
21

2222
''

21 mod)'()1(1212 NzzNe qzzcc −−− +=
2

21 mod)1(NtNe qλ+= t̂

5 Generalization to GUC-Security

To generalize our UC-secure set-intersection computation protocol ψ to the

GUC-secure one, its structure(fig.1) is unchanged while only all the underlying

non-malleable zero-knowledge proof protocols are replaced with new, enhanced

zero-knowledge proof protocols, i.e., ID-augmented non-malleable zero-knowledge

proof protocols.

5.1 defines the new type of zero-knowledge proof protocol, 5.2 presents a general

framework to construct it, 5.3 applies this tool to obtain the GUC-secure protocol ψ*.

5.1 Basic Concepts

Recently [15] improves and generalizes the early UC-theory[14] to make a more

general and strictly stronger security notion. The universal composition theorem is

still true in this paradigm, however, the pre-setup needs to be strictly enhanced. In

GUC paradigm the CRS model is insufficient to implement general cryptographic

functionalities, instead we need a new pre-setup model called ACRS(augmented

common reference string). This pre-setup can be naturally performed via a shared

functionality UKGSetup
acrsG , with two parameter functions Setup and UKG similar to IBE

scheme’s master public/secret-key generator and its user private-keys generator.

UKGSetup
acrsG , ’s program is[15]:

Initialization Phase: generate ρ at random; compute (mpk, msk)←Setup(ρ);

store (mpk, msk);

Running Phase: on receiving message (“CRS request”, Pi*) from any party

 - 27 -

Pi*, send (“CRS”, mpk) to Pi* and the ideal-world adversay S;

On receiving message (“Retrieve”, sid, Pi*,σ)(σ is any element in UKG’s

domain) from corrupt party Pi*, compute usk(σ)←UKG(msk, σ) and return

the message (“Private-key”, sid, Pi*, usk(σ)) to Pi*; if Pi* is not corrupt party,

response nothing.

Our GUC-secure protocol is in the ACRS-model. For this goal we introduce

some new concepts about commitment and zero-knowledge proofs of knowledge.

Definition 5.1(Identity-based Trapdoor Commitment Sheme[15]) Let k be complexity

parameter, the non-interactive identity-based trapdoor commitment sheme IBTC=(D,

Setup, UKG, Cmt, Vf, FakeCmt, FakeDmt) is a group of P.P.T. algorithms, where D(k)

generates id, Setup(k) generates master public/secret-key pair (mpk, msk),

UKG(msk,id) generates id’s user private-key usk(id), Cmt(mpk,id, M) generates

message M’s commitment/decommitment pair (cmt,d), Vf(mpk, id, M, cmt, d) outputs

0 or 1, verifying whether cmt is M’s commitment with respect to id. These algorithms

have the consistency property, i.e., for any M and id

P[(mpk, msk)←Setup(k); (cmt,d)←Cmt(mpk,id, M): Vf(mpk, id, M, cmt,

d)=1]=1

FakeCmt(mpk,id,usk(id)) generates (cmt ,ξ), FakeDmt(mpk, M, ξ, cmt)

generates d (M)(w.l.o.g. ξ can contain id||usk(id) as one of its components so

FakeDmt doesn’t explicitly take id and usk(id) as its input).

 A secure IBTC scheme has three additional properties:

(1)Hiding: for any id and M0, M1, (cmti,di)←Cmt(mpk,id, Mi), i=0,1, then cmt0 ≈
P.P.T.cmt1;

(2)Binding: for any P.P.T. algorithm A, ≡P[(mpk, msk)←Setup(k); (id*,

cmt*, M0*, d0*, M1*, d1*)←A

)(, kAdvbinding
AIBTC

UKG(msk,.) (mpk): A doesn’t query oracle-U(msk,.) with

id*∧M0*≠M1*∧Vf(mpk, id*, M0*, cmt*, d0*)=Vf(mpk, id*, M1*, cmt*, d1*)=1] is

always a negligible function in k.

(3)Equivocability: For any P.P.T. algorithm A=(A1,A2) the following experiment

always has |P[b*=b]-1/2| upper-bounded by a negligible function in k:

 - 28 -

 (mpk, msk)←Setup(k);
(St, id*, M*)←A1

 (mpk,msk);
 usk(id*)←UKG(msk,id*); (cmt ,ξ)←FakeCmt(mpk,id*,usk(id*));
 d1←FakeDmt(mpk, M*, ξ , cmt);

d0←$ {0,1}|d1|;
b←$ {0,1};

 b*←A2
 (St,d b);

Note that equivocability implies P[Vf(mpk, id*, M*, cmt , d1*)=1]>1-γ(k) where γ(k)

is a negligible function in k. [15] presented an efficient IBTC construction and proved

its security.

Definition 5.2 and definition 5.3 introduce two powerful tools we need to make

GUC-security. They are identity-augmented Ω-protocol and identity-augmented

non-malleable zero-knowledge proof protocol. The former is denoted as IA-Ω

protocol, the latter IA-NMZPoK protocol.

Definition 5.2 (IA-Ω Protocol for Relation R) The IA-Ω protocol for relation R

idΩR=(D, Setup, UKG, A,Z,Φ, Sim, Ext=(Ext1,Ext2)) is a group of P.P.T. algorithms,

where D(k) generates identity σ, Setup(k) generates master public/secret-key pair

(mpk, msk), UKG(msk,σ) generates σ’s private-key usk(σ). More precisely, the valid σ

can only have a prefix “sim” or “ext”. UKG(msk,“sim”||σ0) is called

simulation-trapdoor, UKG(msk,“ext”||σ0) is called extraction-trapdoor and UKG

outputs nothing for any other σ. All other algorithms take (mpk,σ) as one of its inputs

so (mpk,σ) no longer explicitly appears unless for emphasis. The protocol has the

same structure and the same properties as the Ω-protocol in definition 4.1.

Definition 5.3(IA-NMZPoK Protocol for Relation R) The IA-NMZPoK Protocol for

relation R IA-NMZPoKR=(D,Setup,UKG,P,V,Sim=(Sim1,Sim2),Ext=(Ext1,Ext2)) is a

group of P.P.T. algorithms, where Setup(k) generates master public/secret-key pair

(mpk, msk), UKG(msk,σ) generates σ’s private-key usk(σ), all other algorithms take

(mpk,σ) as one of its inputs(so it no longer explicitly appears unless for emphasis).

The protocol has the same properties as R’s NMZPoK protocol(definition 2.3).

5.2 IB-NMZPoK Protocol’s Construction

 - 29 -

5.2.1 A Genral Construction

Theorem 5.1 presents a very general and systematic construction for IA-NMZPoK

protocol. It uses a secure(unforgeable) one-time signature scheme, an secure IBTC

sheme(definition 5.1) and IA-Ω protocol (definition 5.2) as components. Note that

among these components secure one-time signature scheme and IBTC scheme can all

be efficiently constructed and only the IA-Ω protocol relates to the specific relation R,

therefore theorem 5.1 can be regarded as a transformation from (comparatively weak)

IA-Ω protocol to the IA-NMZPoK protocol.

Theorem 5.1 Given a binary relation R and its IA-Ω protocol idΩR=(Dω, Setup, UKG,

A,Z,Φ,Sim, Ext=(Ext1,Ext2)) with its master public/secret-key pair (mpkω, mskω);

SIG1=(KGen, Sign, Vf) is a secure(UF_CMA(1)) one-time signature scheme;

IBTC=(DTC, Setup, UKG, Cmt, Vf, FakeCmt, FakeDmt) is a secure IBTC scheme

with its master public/secret-key pair (mpkTC,mskTC); H is a one-way function

mapping SIG1’s public-key space to Dω. The protocol IA-NMZPoKR is constructed in

Figure 5 where its master public-key mpk=mpkω||mpkTC, master secret-key

msk=mskω||mskTC, UKG(msk,“sim”||σ0) outputs IBTC::UKG(mskTC,σ0),

UKG(msk,“ext”||σ0) outputs idΩR::UKG(mskω,σ0) and outputs nothing for other input.

Under these conditions, IA-NMZPoKR is a IA-NMZPoK protocol for relation R.

Proof The proof is essentially a generalization of [16]’s theorem 4.2, for simplicity

here we only state the points which are different from there. IA-NMZPoKR’s

simulation algorithm Sim=(Sim1,Sim2) where Sim1(mpk) is specified as:

 (vk,sk)←SIG1::KGen(k); σ←H(vk);

s←UKG(msk,“sim”||vk);

/*s is the simulation trapdoor, msk=mskω||mskTC so s=uskTC(vk). This

computation is equal to sending message (“Retrieve”, sid, P, vk) to UKGSetup
acrsG ,

and then get the response s. This is consistent to UKGSetup
acrsG , ’s specification

since in the proof only the corrupted party needs to run the simulator. */

return(σ, s);

Sim2(mpk, σ, s, x, c) is:

 - 30 -

(cmt ,ξ)←IBTC::FakeCmt(mpkTC,vk, s);

 (a, z)←idΩR::Sim(mpkω, σ, x, c);

 d ←FakeDmt(mpkTC, a, ξ, cmt);

 s←SIG1::Sign(sk, vk|| cmt ||c||a|| d ||z);

 return(vk|| cmt , a|| d ||z||s);

The extractor Ext=(Ext1,Ext2) where Ext1(mpk) is:

 (vk,sk)←SIG1::KGen(k); σ←H(vk);

s←UKG(msk,“sim”||vk); τ←UKG(msk,“ext”||σ);

 /* s=uskTC(vk), τ=uskω(σ). Refer to comments in Sim1(mpk).*/

 return(σ,s,τ);

Ext2(mpk, σ,τ, (vk||cmt, c, a||dmt||z||s)) is:

 Run idΩR::V(mpkω, σ, x);

 if idΩR::V outputs 1 then w←idΩR::Ext2(mpkω, σ,τ, (a, c, z)) else w←⊥ ;

 return(w);

mpk=mpkω||mpkTC

P(x,w): R(x,w)=1 V(x)

 (vk,sk)←SIG1::KGen(k); σ←H(vk);

 νr; a←A(mpkω,σ,x,w,r);

(cmt,dmt)←IBTC::Cmt(mpkTC, vk, a);

 vk||cmt

 c c←${0,1}k;

z←Z(mpkω,σ,x,w,r,c); σ←H(vk);

s←SIG1::Sign(sk, vk||cmt||c||a||dmt||z);

 a||dmt||z||s

verify IBTC::Vf(mpkTC, vk, a, cmt, dmt)=1

∧Φ(mpkω,σ, x,a,c,z)=1∧SIG1::Vf(vk, vk||cmt||c||a||dmt||z,s)=1

Figure 5 IA-NMZPoK protocol IA-NMZPoKR for R

Now verify that Sim and Ext indeed satisfy the properties in definition 5.3 and

definition 2.3, but the analysis here is almost the same as in [16]’s theorem 4.2’s proof.

The only difference is symbolic: their sk should be replaced with s(sk is TC’s trapdoor

 - 31 -

there; the symbol sig_vk used there is vk used here, “tag” used there is IBTC scheme’s

id here)，so the details can be omitted and we only present the final consequences:

1)Sim satisfies the zero-knowledge simulation property; 2)the extractor’s error

function η(k)<O(n)(AdvH
OW(k)+ AdvSIG1

UF_CMA(1)(k))+ kbinding
IBTC kAdv −+ 2)(where n

the number of sessions， AdvH
OW(k), AdvSIG1

UF_CMA(1)(k) and are

attacker’s advantages for H, SIG1 and IBTC schemes, all are negligible in k.

)(kAdvbinding
IBTC

 Theorem 5.2 shows why IA-NMZPoK protocol is so powerful(we won’t apply it,

just put it here to show our method is reasonable).

Theorem 5.2 FR
ZK is the ideal zero-knowledge proof functionality for relation R,

IA-NMZPoKR is an IA-NMZPoK protocol for R, then IA-NMZPoKR→GUC FR
ZK

assuming static corruptions.

Proof The proof is essentially the same as [17]’s theorem 5.1.

5.2.2 Constructions of IA-NMZPoK, IA-NMZPoKII and IA-NMZPoKIII

Theorem 5.1 reduces IA-NMZPoK protocol’s construction to IBTC scheme and IA-Ω

protocol of the desired relation R. In fact [15] has presented an efficient realization of

the former, so we only need to make an efficient solution to the IA-Ω protocol’s

construction with respect to those relations in our instantiation. The tool is the elliptic

curve Paillier scheme proposed by Galbraith in [20].

Galbrith-Paillier scheme works on the elliptic curve E/ZN over the ring ZN, where

N is a RSA modular(N=p1p2, both (p1-1)/2 and (p2-1)/2 are also primes). On the

curve a point’s coordinate is represented in projective form [x,y,z]. Given A, B∈ZN

such that g.c.d.(N, 6(4A3+27B2))=1, the curve with coefficients A, B has the equation

 EA,B/ZN: y2z=x3 + Axz2 + Bz3

(when A, B is not important to discussions we simply use the expression E/ZN instead

and the cardinality of the point group on the curve is denoted as |E/ZN|).

Galbraith-Paillier scheme’s plaintext space is ZN. E/ZN can be also regarded as a curve

E/ over the larger ring and for m∈ZN denote the point [mN,1,0] on E/ 2N
Z 2N

Z 2N
Z

 - 32 -

as Pm. On the other hand, taking A, B modulo N’s prime factor p∈{p1, p2} then E/ZN

can be also regarded as the curve over the field Fp.

If N’s factors p1, p2 are known then an important quantity MA,B=l.c.m.(|E/Fp1|,|E/F

p2|) can be computed in polynomial-time, e.g., via Schoof-Atkin-Elkies algorithm, on

the reverse N can be effectively factorized given MA,B[10]. From this observation

Galbrith-Paillier scheme can be regarded as an IBE scheme (Setup,UKG,E,D) where

complexity parameter k is the bits of N’s prime factors, Setup(k) generates mpk=N

and msk=N’s prime factors (p1, p2); id is (A,B,NQ) where (A,B)∈ZN× ZN,

(N,6(4A3+27B2))=1, Q∈EA,B/ (so MA,BNQ=∞, i.e., “zero” in the group); For

(A,B,NQ)∈ID, UKG(msk,(A,B)) computes usk(A,B,NQ)=MA,B as the user

private-key of (A,B,NQ); the plaintext space is ZN, for m∈ZN the encryption

algorithm E(N, (A,B,NQ), m) selects r∈ZN at random then computes y= Pm + rQ0 on

E/ , where Q0=NQ and Pm is as the above; the decryption algorithm D(N,

usk(A,B,NQ), y) computes MA,By(=MA,BPm=[mMA,B N,1,0])’s x-coordinate Xy∈

and outputs MA,B

2N
Z

2N
Z

2N
Z

-1(Xy/N) mod N. Galbraith-Paillier scheme is also homomorphic. All

details of this scheme including its security conditions refer to [20].

Similar as in subsection 4.3, it’s demonstrative enough to construct the IA-Ω protocol for

the relation χ00=Ωs∧ξ0= on the prime-order group G, |G|=q. This IA-Ω protocol is in

figure 6 and in

ts gg 10

UKGSetup
acrsG , model, where msk=RSA primes (p1, p2), q divides neither p1-1

nor p2-1(e.g., p1, p2>4q), mpk=N=p1p2; c.r.s. σ is Galbraith-Paillier scheme’s “user-id”, i.e.,

(A,B,NQ) where the coefficients A, B and the random point Q on EA,B/ can be obtained

by hashing the protocol parties’ names(realistic hash functions make the probability of

g.c.d.(N,6(4A

2N
Z

3+27B2))=1 almost 1, otherwise N can be effectively factorized). For

simplicity, denote NQ as Q0 and the curve’s coefficients as P, V (so MP,VQ0=∞).Note that in

figure C.2 all eij are Galbraith-Paillier ciphertexts.

The protocol’s simulator Sim(N,c) is specified as:

z11, z12 ←$ Zq; z21, z22←$ Z*N; e11, e21←$ EP,V/
*

2NZ ;

 ; ; 1211
100
zzc gg−←Θ ξ 11

00
zcU Ω← −χ

 - 33 -

 ; 1102112 11
ceQqzPe z −+←

 ; 2102212 12
ceQqzPe z −+←

 return(Θ||U ||e11||e12||e21||e22, z11||z12 ||z21||z22) ;

It’s easy to verify that Sim(N,c) satisfies the zero-knowledge simulation property. The

extraction algorithm Ext=(Ext1,Ext2) where Ext1(k) is:

Generate RSA primes p1, p2>q and q evenly divides neither p1-1 nor p2-1;

N←p1p2;

Q←$ EP,V/ ; Q0←NQ; σ←(curve EP,V/ZN,Q0);
*

2NZ

τ←UKG(msk,(P,V));

/*i.e., τ is the extraction trapdoor MP,V . Refer to the comments for Sim1(mpk)

in theorem 5.1’s proof. */

 return(σ,τ);

c.r.s. σ=(curve EP,V/ZN, Q0)

P(χ00||Ω||ξ0||g0||g1, s||t) V(χ00||Ω||ξ0||g0||g1)

 r1,r2←$Zq; α1, α2, β1, β2←$Z*N;
 Θ← ; U← ; 21

10
rr gg 1rΩ

 e11←Ps + qα1Q0; e12←Pr1 + qβ1Q0;

 e21←Pt + qα2Q0; e22←Pr2 + qβ2Q0;

Θ||U ||e11||e12||e21||e22

 c c←$Zq

 z11←r1+sc; z12←r2+tc;

z21←cα1+β1; z22←cα2+β2; z11||z12 ||z21||z22

 verify ∧
czz gg 010

1211 ξΘ= Ucz
00

11 χ=Ω
 ∧ce11+e12= 02111

qQzPz +

∧ce21+e22= 02212
qQzPz +

Figure 6 IA-Ω protocol for relation χ00=Ωs∧ξ0= ts gg 10

Obviously the σ generated by Ext1(k) has the same distribution as the c.r.s. Ext2(N,

τ, (Θ||U ||e11||e12||e21||e22, c, z11||z12 ||z21||z22)) is:

 Compute (s ,) by Galbraith-Paillier decryption algorithm, ˆ t̂

i.e., ←D(N, τ, e11); ←D(N, τ, e21); ŝ t̂
 return(s , t); ˆ ˆ

 - 34 -

We need to prove that if there exist two transcripts (Θ||U ||e11||e12||e21||e22, c, z11||z12

||z21||z22) and (Θ||U ||e11||e12||e21||e22, c’, z’11||z’12 ||z’21||z’22) with the same first-message

but c≠c’ mod q and both accepted by V, then Ext2 extracts the real witness (s,t). In fact,

 and imply , i.e.,(c’- c)s = z’11 – z 11 mod q;

and imply , by (c’- c)s = z’11 –

z 11 mod q we have (c’- c)t = z’12 – z 12 mod q. Furthermore,

Ucz
00

11 χ=Ω Ucz '
00

'11 χ=Ω cczz −− =Ω '
00

' 1111 χ
czz gg 010

1211 ξΘ= '
0

'
1

'
0

1211 czz gg ξΘ= cczzzz gg −−− = '
0

'
1

'
0

12121111 ξ

ce11+e12= and c’e11+e12= 02111
qQzPz + 021' '

11
qQzPz +

imply (c’ – c)e11 = 02121'')'(
1111

qQzzPP zz −+− = 02121')'(
1111

qQzzP zz −+− =

(where |u|<q and unnecessary to be explicitly computed) so

the x-coordinate of MP,V(c’ – c)e11 is (z’11 – z 11+uq)NMP,V mod N

02121')'(
1111

qQzzP uqzz −++−

2; Acoording to

Galbraith-Paillier’s decryption algorithm D, the (=D(N, MP,V, e11), output by Ext2)

has the x-coordinated of MP,Ve11= MP,V N mod N

ŝ

ŝ 2, so the x-coordinate of (c’–

c)MP,Ve11=(c’–c) MP,VN mod Nŝ 2, hence (c’– c) s =z’11 – z 11 modq. By (c’- c)s=z’11 –

z 11 mod q, we get = s mod q. Finally, by ce21+e22= and

c’e21+e22= we can similarly get =t mod q.

ˆ

ŝ 02212
qQzPz +

022' '
12

qQzPz + t̂

 Now apply theorem 5.1 to the above construction we can get all IA-NMZPoK

protocols for the desired relations ((4-1)～(4-3)) in the instantiation.

5.3 ψ→GUC FINT和 →WatersBoyen
UKGBlind
−
−∆ GUC WatersBoyen

UKGBlindF −
−

So far all necessary tools are ready and we can get the final consequences.
Theorem 5.3 If all zero-knowledge proof protocols in (figure 2) are
IA-NMZPoK, then →

WatersBoyen
UKGBlind
−
−∆

WatersBoyen
UKGBlind
−
−∆ GUC WatersBoyen

UKGBlindF −
− and satisfies

definition 3.1 assuming static corruptions.

WatersBoyen
UKGBlind
−
−∆

Proof The proof’s logic is essentially the same as theorem 4.1, with only symbolic
differences: protocols NMZPoKII’s and NMZPoKIII’s simulation and extraction
algorithms are replaced with IA-NMZPoKII’s and IA-NMZPoKIII’s counterparts, in
particular, the simulation trapdoor s and extraction trapdoor τ corresponding to σ are
s=UKG(msk,“sim”||σ) and τ=UKG(msk,“ext”||σ) respectively; any other algorithms
take (mpk,σ) as one of their inputs. Since s and τ still work in the same way as in
theorem 4.1’s proof, the consequence can be obtained in the same way.

Theorem 5.4 Protocol is as the above, the zero-knowledge proof WatersBoyen
UKGBlind
−
−∆

 - 35 -

protocol in ψ(figure 1) is IA-NMZPoK and the commitment scheme C is secure IBTC,

then ψ→GUC FINT assuming static corruptions.

Proof Essentially the same as theorem 3.1 for the same reason as stated in theorem

5.3’s proof.

 - 36 -

REFERENCES

[1] R.Cramer, I. Damgard Multiparty Computation: an Introduction, In: Advanced Courses in Contemporary
ryptology, Berlin:Springer-Verlag, 41-88, 2005. C

[2] O.Goldreich Foundations of Cryptography, Vol 1. Basic Tools; Vol 2. Basic Applications, Cambridge
University Press, 2004.

[3] C.Hazay, Y.Lindell Efficient Protocols for Set Intersection and Pattern Matching with Security against
Malicious and Covert Adversaries, Proc. CT-RSA’08, 2008.

[4] Y. Aumann, Y.Lindell, Security against Covert Adversaries: Efficient Protocols for Realistic Adversaries,
TCC’07, LNCS Vol.4392, 137-156, 2007.

[5] M.Freedman, Y.Ishai, B.Pinkas et al Keyword Search and Oblivious Psedorandom Functions, TCC’05, LNCS
Vol.3378, 303-324, 2005.

[6] M.Freedman, K.Nissim, B.Pinkas Efficient Private Matching and Set Intersection, Eurocryp’04, LNCS
Vol.3027, 1-19, 2004.

[7] L.Kissner, D.Song Private-Preserving Set Operations, Crypto’05, LNCS Vol.3621, 241-257, 2005.

[8] M.Green, S.Hoenberger Blind Identity-based Encryption and Simulatable Oblivious Transfer, Asiacrypt’07,
LNCS Vol.4833, 265-282, 2007.

[9] G.Crescenzo, J.Katz, R.Ostrovsky et al, Efficient and Non-interactive Non-Malleable Commitment. 42nd
Foundations of Computer Science Conference, 2001.

[10] A.Engle Elliptic Curves and Their Applications to Cryptography, Kluwer Academic Publishers, 1999.
[11] M.Abdalla, M.Bellare, D.Catalano et al. Searchable Encryption Revisited: Consistency Properties, Relation to

nonymous IBE and Extensions. In Crypto’05, LNCS Vol. 3621, 205-222, 2005. A

[12]X.Boyen, B.Waters, Anonymous Hierarchical Identity-based Encryption without Random Oracles, Crypto’06,
LNCS Vol.4117, 290-307, 2006.

[13] M. Bellare, A. Boldyreva, A. Desai and D. Pointcheval. Key-Privacy in Public-key Encryption. In: C. Boyd ed,
Advances in Cryptology - Asiacrypt 2001 Proceedings, LNCS Vol. 2248, Goldcoast Australia:Springer-Verlag,
2001, 566-582.
[14] R.Canneti, Universally Composable Security: a New Paradgim for Cryptographic Protocols, 42nd Annual
Symposium on foundations of computer Science, IEEE Computer Society, 136-145, 2001.Updated in 2005,
eArchive Cryptology 2001/067.

[15] R.Canneti, Y.Dodis, R.Pass et al Universally Composable Security with Global-Setup, TCC’07, LCNS
Vol.4392, 61-85, 2007. Full version avaible at eArchive Cryptology 2007.

[16] P..MacKenzie, K.Yang On Simulation-Sound Trapdoor Commitments, Proc. Eurocrypt, LNCS Vol.3027,
382-400, 2004.

[17] J.Garay, P..MacKenzie, K.Yang Strengthening Zero-Knowledge Protocols using Signatures, Proc. Eurocrypt,
LNCS Vol.2656, 177-194, 2003.

[18] I.Damgard, M.Jurik, A Generalization, Simplificatiuon and Some Applications of Paillier’s Probabilistic
Public-Key Systems, Proc. Eurocrypt, LNCS Vol.1992, 229-243, 2001

[19] D.Catalano, R.Gennaro, N.Howgrave-Graham et al, Paillier’s Cryptosystem Revisted, 8th ACM Conf. on
Computer and Communications Security, 206-214, 2001.

[20] S.Galbraith Elliptic Curve Paillier Schemes, Jounal of Cryptology, 15(2):129-138, 2002, also available at
eArchive 2001/050.

[21] Y.Lindell, B.Pinkas Secure Multiparty Computation for Privacy-Preserving Data Mining eArchive 2008/147.
[22] R.Steinmetz, K.Wehrle(ed) Peer-to-Peer Systems and Applications, Part IV: Searching and
Mining, Springler-Verlag, 2005.

 - 37 -

	1.3 Some Terminologies and Notations

