
Two New Efficient CCA-Secure Online Ciphers:

MHCBC and MCBC ∗

Mridul Nandi
National Institute of Standards and Technology

mridul.nandi@gmail.com

September 20, 2008

Abstract

Online ciphers are those ciphers whose ciphertexts can be computed in real time by using a length-
preserving encryption algorithm. HCBC1 and HCBC2 are two known examples of Hash Cipher Block
Chaining online ciphers. The first construction is secure against chosen plaintext adversary (or called
CPA-secure) whereas the latter is secure against chosen ciphertext adversary (or called CCA-secure). In
this paper, we have provided simple security analysis of these online ciphers. We have also proposed two
new more efficient chosen ciphertext secure online ciphers modified-HCBC (MHCBC) and modified-CBC
(MCBC). If one uses a finite field multiplication based universal hash function, the former needs one
less key and one less field multiplication compared to HCBC2. The MCBC does not need any universal
hash function and it needs only one blockcipher key unlike the other three online ciphers where two
independent keys (hash function and blockcipher) are required.

Keywords: online cipher, CBC, universal hash function, random permutation.

1 Introduction

In this paper we fix a finite group (G,+) (e.g., {0, 1}n with bitwise addition ⊕ for some fixed positive integer
n). An element of G is called a block. A cipher over a domain D ⊆ G+ := ∪i≥1G

i is a keyed function family
{FK}K∈K, where K is a key space and for each key K, FK : D → D is a length-preserving permutation
on D (i.e., for each x ∈ D ∩ Gi, FK(x) ∈ Gi). Any cipher over domain G is called a blockcipher. An
important blockcipher is AES [6] with domain G = {0, 1}128. The pseudorandom permutation or PRP and
strong pseudorandom permutation [10] or SPRP are two well known security notions for ciphers. They are
also called chosen plaintext secure or CPA-secure and chosen ciphertext secure or CCA-secure. Intuitively, a
cipher is called PRP (or SPRP) if it is indistinguishable from the ideal cipher based on encryption queries (or
both encryption and decryption queries respectively). Intuitively an ideal cipher on D is chosen at random
from Perm(D), the set of all permutations on D. If D is an infinite set then we define the ideal cipher
runtime as queries being asked to it. A similar definition can be found for an ideal online cipher as defined
in figure 1. In this paper we are interested in online cipher with domain G+ whose ith ciphertext block
C[i] is computable from the first i plaintext blocks M [1], · · · ,M [i]. The computation of the ith ciphertext
is determined by a function called block function. The above property is popularly called online property.
One can show that online ciphers can not be PRP since the online property itself can be used to distinguish
it from an ideal cipher. The appropriate security notions are CPA-online secure and CCA-online secure [1].
Informally an online cipher is CPA-online secure (or CCA-online secure) if it is indistinguishable from an

∗A preliminary version of this paper appears in Advances in Cryptology - INDOCRYPT 2008, Lecture Notes in Computer
Science Vol. ???, pp. ???, Springer-Verlag, 2008. This is the full version.

1

ideal online cipher (see figure 1) based on only encryption queries (or encryption and decryption queries both
respectively). The possible candidates of online ciphers are in [3, 5, 8], most of which are different variants
of Cipher Block Chaining modes or CBC. If e ∈ Perm(D) then the CBC based on e with an initial value IV
is defined as e+(x1, · · · , xm) = (y1, · · · , ym) where yi = EK(yi−1 + xi), 1 ≤ i ≤ m and y0 = IV. One can
see that CBC based on any blockcipher is an online cipher. In [1] authors have shown that CBC with public
or secret IV [3] and ABC [8] ciphers (another example of online cipher) are not CPA-secure online ciphers.
In the same paper [1] a CPA-secure HCBC1 online cipher and CCA-secure HCBC2 online cipher have been
proposed. These online ciphers need two keys, one is for blockcipher and other is for Almost XOR Universal
Hash family or AXU-hash family [15], a special case of ∆universal hash family [9, 14, 16].

Applicability of online ciphers. The known online ciphers Hash-CBC namely, HCBC1, HCBC2 and our
constructions need current and previous plaintext block and previous cipher block to compute the current
cipher block. Thus, online cipher could be used where encryption is made in an online manner with a very
small amount of memory or buffer. It could be useful in scenarios where there is a constraint requiring
length-preserving ciphertext. For example, one can think some ciphers dealing with fixed packet formats,
legacy code and disk-sector encryption. In this situation, a length preserving PRP or SPRP can be used but
potentially these may be costlier than online ciphers as these are stronger security notions than a CPA or
CCA online secure.

Name of CPA-secure CCA-secure # field # BC Key-size
Online cipher multiplication
HCBC1 [2] X × m m n + kBC

HCBC2 [2] X X 2m m 2n + kBC

MHCBC X X m m n + kBC

MCBC X X 0 2m + 1 kBC

Table 1: In this comparison universal hash function is based on the field multiplication as given in example 2.1.
Here, G = {0, 1}n, the set of blocks and kBC denotes the key size of the blockcipher. The number of
multiplications and block-cipher (BC) invocations are given to encrypt a plaintext with m blocks.

Our contributions. In this paper we have provided simple as well as concrete security analysis of HCBC1
and HCBC2. The proof idea can also be used in other online ciphers. For example, we have used the
same approach to have security proof of our new proposals MHCBC and MCBC. These two new online
ciphers have many advantages over the previous ciphers. MHCBC needs a universal hash function from G
to G whereas HCBC2 needs a universal hash function from G2 to G, which makes it a potential efficient
candidate. For example, if we use field multiplication based universal hash function then we need one less
field multiplication and one less key (see example 2.1). Our second construction modified-CBC or MCBC
does not need any universal hash function. It needs only one blockcipher key. One can definitely replace the
universal hash function of MHCBC by a blockcipher (since an ideal blockcipher is ∆universal hash function,
see example 2.2) at the cost of an extra new independent blockcipher key which eventually causes an extra
key-scheduling algorithm. In this paper we have shown that if we use same blockcipher key then MHCBC is
not CCA-secure. Thus, the security of MCBC indeed is not straightforward from that of MHCBC. Table 1
provides a comparison of these four online ciphers.

2 Basic Definition and Results

We write M = (M [1], · · · ,M [m]) where M [i] ∈ G is the ith block of M . For 1 ≤ i ≤ j ≤ m, M [i..j]
represents (M [i],M [i + 1], · · · ,M [j]). If j < i then by convention M [i..j] = λ, the empty string. X

∗← S
means that the random variable X is chosen uniformly from a finite set S and it is independent with all
previously defined random variables. An equivalent phrase “at random” is also widely used in cryptology.
Let F : K ×D → R where K is a finite set. By abuse of notation we denote f

∗← F to mean that f := FK

where K
∗← K. The interpolation probability of F for any fixed tuple τ := ((M1, C1), · · · , (Mq, Cq)) is the

probability Pr[f(M1) = C1, · · · , f(Mq) = Cq]. We define the set of all non-empty prefixes of M1, · · · ,Mq ∈ G+

as
PM = P(M1, · · · ,Mq) := {N ∈ G+ : N ≺ Mi for some i ≤ q}.

We denote σ := σ(M1, · · · ,Mq) = |P(M1, · · · ,Mq)|. Clearly, σ ≤ ∑q
i=1 ‖Mi‖. For p ∈ G+ with ‖p‖ =

m, we define chop(p) = p[1..m − 1] and last(p) = p[m]. In other words, p = (chop(p), last(p)) where
last(p) ∈ G and chop(p) ∈ G∗. Note that if p ∈ G then chop(p) = λ and last(p) = p. By our convention,
last(λ) = 0. Now we define P′M = P′(M1, · · · ,Mq) := {p′ ∈ G∗ : p′ = chop(p) for some p ∈ PM}. Let
P(N, k) := N(N − 1) · · · (N − k + 1) for any positive integer k < N . A function H : K×D → G is called ε-
∆universal hash function with domain D and key-space K if Pr[h(x1) = h(x2) + y] ≤ ε,∀x1 6= x2 ∈ D, y ∈ G
where h denotes H(K, ·) and K is chosen uniformly from K. Now we state a simple and useful property
of ε-∆universal hash function and provide two examples of universal hash function. An uniform random
permutation or URP over G is a random variable Eu ∗← Perm(G) (it means that Eu is chosen uniformly and
independently from Perm(G)). It is an ideal candidate of a blockcipher.

Lemma 2.1 Let H be an ε-∆universal hash function and let (x1, y1), · · · , (xσ, yσ) ∈ D × G be distinct.
Then, Pr[h(xi) + yi = h(xj) + yj , 1 ≤ i 6= j ≤ σ] ≤ εσ(σ−1)

2 .

Proof. We prove that for any pair (i, j) with 1 ≤ i < j ≤ σ, Pr[h(xi) + yi = h(xj) + yj] ≤ ε. The rest is
clear by summing over all possible pairs (i, j).
Case xi 6= xj : From the definition of ∆universal hash function Pr[h(xi) = h(xj) + (yj − yi)] ≤ ε.
Case xi = xj : Since (xi, yi) 6= (xj , yj) we have yi 6= yj and hence Pr[h(xi) + yi = h(xj) + yj] = 0.

Example 2.1 Suppose (G, +, ·) is a finite field. Let D = G = K then H(K, x) = K · x is 1
N -∆universal

hash function. This is true since the number of K’s such that K · (x1 − x2) = y is at most one. Similarly
D = G2 = K. Let H((K1, K2), (x, y)) = K1 · x + K2 · y then it is a 1

N -∆universal hash function.

Example 2.2 Let Eu ∗← Perm(G) then for any x1 6= x2 ∈ G and y ∈ G \ {0} we have Pr[Eu(x1) =
Eu(x2) + y] = 1

N−1 . If y = 0 then Pr[Eu(x1) = Eu(x2) + y] = Pr[Eu(x1) = Eu(x2)] = 0. Hence Eu is
1

N−1 -∆universal hash function.

By using a simple counting argument we can show that for any distinct x1, · · · , xk ∈ G and distinct
y1, · · · , yk ∈ G

Pr[Eu(x1) = y1, · · · , Eu(xk) = yk] =
1

P(N, k)
(1)

Since the number of permutations π ∈ Perm(G) such that π(x1) = y1, · · · , π(xk) = yk is (N − k)! and
|Perm(G)| = N !. The above may not be true if xi’s and yi’s are random variables but we have similar result
when these are independent with the uniform random permutation Eu.

Proposition 2.2 Let X1, Y1, · · · , Xk, Yk be random variables taking values on G and Eu ∗← Perm(G). Let
COLLin denote the event that Xi’s are not distinct, COLLout denote the event that Yi’s are not distinct then

Pr[Eu(X1) = Y1, · · · , Eu(Xk) = Yk] ≥ 1− Pr[COLLin]− Pr[COLLout]
P(N, k)

. (2)

Proof. We have Pr[COLL] ≤ Pr[COLLin] + Pr[COLLout]. Let D = {a = (a1, · · · , ak) ∈ Gk : ai’s are distinct}
then DIST is true if and only if (X1, · · · , Xk), (Y1, · · · , Yk) ∈ D. We denote a = (a1, · · · , ak) ∈ Gk and

b = (b1, · · · , bk) ∈ Gk. Now,

Pr[Eu(X1) = Y1, · · · , Eu(Xk) = Yk]
≥ Pr[Eu(X1) = Y1, · · · , Eu(Xk) = Yk ∧ DIST]

=
∑

a,b∈D

Pr[Eu(a1) = b1, · · · , Eu(ak) = bk, X1 = a1, Y1 = b1, · · · , Xk = ak, Yk = bk]

=
∑

a,b∈D

Pr[Eu(a1) = b1, · · · , Eu(ak) = bk]× Pr[X1 = a1, Y1 = b1, · · · , Xk = ak, Yk = bk]

(since (X1, Y1, · · · , Xq, Yq) is independent with Eu)

=
1

P(N, k)
×

∑

a,b∈D

Pr[X1 = a1, Y1 = b1, · · · , Xk = ak, Yk = bk] (using equation 1)

=
1

P(N, k)
× Pr[DIST] (DIST is true if and only if (X1, · · · , Xk), (Y1, · · · , Yk) ∈ D)

≥ 1− Pr[COLLin]− Pr[COLLout]
P(N, k)

.

We say a distinguisher is (q, σ)-CPA if it asks at most q encryption queries such that total number of
blocks in all queries is at most σ. Similarly we can define (q, σ)-CCA distinguisher where it can ask both
encryption and decryption queries. Let F : K×D → D be a cipher with finite key-space K. Suppose an oracle
algorithm or distinguisher A has access of a cipher with domain D. Now AF ⇒ b represents the event that
A outputs b after interacting with FK where K

∗← K. Similarly we define AF,F−1 ⇒ b. The CPA advantage
of oracle algorithms for a blockcipher E : K × G → G is AdvCPA

A (E,Eu) = Pr[AE ⇒ 1] − Pr[AEu ⇒ 1].
The prp-insecurity of E is Insecprp

E (q, σ) = maxAAdvCPA
A (E, Eu) where maximum is taken over all (q, σ)-

CPA distinguishers. CCA advantage of A and sprp-insecurity of a blockcipher can be defined similarly. Let
AF,F−1

be an oracle algorithm having access of an online cipher and its inverse. Responses of an ideal online
cipher or uniform random online permutation (UROP) oracle Πu and its inverse oracle (Πu)−1 is defined
below in figure 1. Like insecurity of a blockcipher we can define Insecprop

F (q, σ) and Insecsprop
F (q, σ) where

F is an online cipher. It is the maximum CPA or CCA advantage for (q, σ) distinguishers distinguishing F
from the ideal online cipher Πu.

Initially P = ∅ and a function Γ : P→ Perm(G).

On encryption query M ∈ Gm

1. for i = 1 to m
2. p = M [1..i− 1];
3. if p ∈ P then C[i] = Γ(p)(M [i]);
4. else

5. Πu
p
∗← Perm(G);

6. P← P ∪ {p};
7. Γ(p) = Πu

p ;
8. C[i] = Γ(p)(M [i]);
9. endif
10. endfor
11. return C = C[1..m];

On decryption query C ∈ Gm

1. for i = 1 to m
2. p = M [1..i− 1];
3. if p ∈ P then M [i] = Γ(p)−1(C[i]);
4. else

5. Πu
p
∗← Perm(G);

6. P← P ∪ {p};
7. Γ(p) = Πu

p ;
8. M [i] = Γ(p)−1(C[i]);
9. endif
10. endfor
11. return M = M [1..m];

Figure 1: Responses of a UROP oracle Πu and its inverse oracle (Πu)−1.

The longest common prefix of M, M ′ ∈ G∗ (or LCP(M, M ′)) is the block-sequence N ∈ G` such that
N is a longest common prefix of M and M ′. One can check that LCP(M, M ′) always exists and it is
unique. The length of the longest common prefix is denoted by `M,M ′ . Any element of the form τ =

((M1, C1), · · · , (Mq, Cq)) ∈ T := ((G+)2)+ is known as qr-tuple or query-response tuple1 where Mi’s and
Ci’s are block-sequences.

A qr-tuple τ = ((M1, C1), · · · , (Mq, Cq)) is said to be online-compatible if `Mi,Mj
= `Ci,Cj

, for all
1 ≤ i, j ≤ q. Let Toc be the set of all online-compatible qr-tuples. Let τ = ((M1, C1), · · · , (Mq, Cq)) ∈ Toc

be a qr-tuple then for any p ∈ PM := P(M1, · · · ,Mq) we define the corresponding block-sequence
qp ∈ PC := P(C1, · · · , Cq) by Ci[1..j] where p = Mi[1..j]2.

Now we provide bounds of interpolation probability of UROP Πu.

Lemma 2.3 (Interpolation probability of UROP)
Let Pr := Pr[Πu(M1) = C1, · · · , Πu(Mq) = Cq] = 0 where Πu is an UROP. Now 1

Nσ ≤ Pr ≤ 1
P(N,σ) if

((M1, C1), · · · , (Mq, Cq)) is an online-compatible, otherwise Pr = 0, where σ0σ(M1, · · · ,Mq).

Proof. The first part of the lemma is clearly true since for any online permutation f , ((M1, f(M1)), · · · ,
(Mq, f(Mq))) is online-compatible.

Now we prove the for online-compatible tuple. Let p ∈ P := P(M1, · · · ,Mq). We denote yp = last(qp) =
Ci[j] where p = Mi[1..j]. Now given p1 6= p2 such that chop(p1) = chop(p2) we have last(p1) 6= last(p2)
(since p1 6= p2) and yp1 6= yp2 (since the tuple is online-compatible). Recall that P′ := P′(M1, · · · ,Mq) =
{p′ ∈ G∗ : p′ = chop(p), p ∈ P}. Now one can see that

Pr[Πu(M1) = C1, · · · , Πu(Mq) = Cq] = Pr[Πu
chop(p)(last(p)) = yp ∀p ∈ P(M1, · · · ,Mq)]

= Pr[Πu
p′(x) = y ∀p′ ∈ P′, p = (p′, x) ∈ P, y = yp]

=
∏

p′∈P′
Pr[Πu

p′(x) = y, ∀x, y, such that p = (p′, x) ∈ P, y = yp]

(since responses of Πu
p′ independently distributed)

=
∏

p′∈P′

1
P(N, dp′)

(for each p′, Πu
p′ is URP)

where dp′ = |{x : (p′, x) ∈ P}| and σ′ = |P′(M1, · · · , Mq)|. Note that
∑

p′∈P′ dp′ = σ and hence
∏

p′∈P′
1

P(N,dp′)
≤

1
P(N,σ) . Trivially

∏
p′∈P′

1
P(N,dp′)

≥ 1
Nσ . This completes the proof.

Now we define an important object called view or transcript3 of a distinguisher which actually contains
all query-responses in the form of tuple.

Definition 2.1 (view or transcript of an adversary) Let g : G+ → G+ be an oracle and τ = ((M1, C1), · · · ,
(Mq, Cq)) ∈ T , for some q ≥ 1.

(1) Chosen Plaintext Adversary : τ is called a view of Ag and denoted as view(Ag) if M1, · · · ,Mq are
all the queries made by A and C1, · · · , Cq are the corresponding responses.

(2) Chosen Ciphertext Adversary : τ is called a view of Ag,g−1
and denoted as view(Ag,g−1

), if Mi is the
query and Ci is the response whenever the ith query is g-query or if Ci is query and Mi is response whenever
ith query is g−1-query4.

We say that a tuple τ := ((M1, C1) ,· · · , (Mq, Cq)) ∈ T is A-compatible if for all 1 ≤ i ≤ q, Mi

(or Ci) will be the ith g-query (or g−1-query respectively) when (M1, C1),· · · , (Mi−1, Ci−1) are given as

1Later we see that the pair (Mi, Ci) corresponds to a query-response pair where Mi is encryption query and Ci is response
or Ci is decryption query and Mi is response.

2Clearly, j = ||p|| but there can be more than one choices of i. So we need to check well defined-ness of qp. Suppose
p = Mi[1..j] = Mi′ [1..j] for some i, i′ ≤ q and hence `Mi,Mi′ ≥ j. Since τ is online compatible, `Ci,Ci′ = `Mi,Mi′ ≥ j. Thus,

Ci[1..j] = Ci′ [1..j].
3the term “transcript” has been used in many literatures, but in this paper we mainly use the word view as it really signifies

the view of the oracle which is obtained by the distinguisher after having query-responses.
4in both cases we have g(Mi) = Ci.

query-responses for the first (i−1) queries. Clearly, a view view(Ag) or view(Ag,g−1
) is always A-compatible.

A-compatibility of a tuple is completely independent with oracles. Let τ be a A-compatible tuple. Then,

g(M1) = C1, · · · , g(Mq) = Cq if and only if view(Ag,g−1
) = τ or view(Ag) = τ.

Lemma 2.4 Let τ = ((M1, C1) ,· · · , (Mq, Cq)) be a A-compatible tuple. Then for an oracle g we have,

Pr[g(M1) = C1, · · · , g(Mq) = Cq] = Pr[view(Ag) = τ] A is a CPA-distinguisher (3)

= Pr[view(Ag,g−1
) = τ] A is a CCA-distinguisher (4)

Now we define some views, subsets of Toc, called bad views and bound the probability that a bad view
occurs when a distinguisher is interacting with uniform random online permutation Πu. These bad views will
be considered as bad views for the online ciphers HCBC1, HCBC2, MHCBC and MCBC. Define xp = last(p)
and yp = last(qp) where .

Vbad,1 = {τ ∈ Toc : yp1 = yp2 or yp1 = 0, for some p1 6= p2 ∈ PM}
Vbad,2 = {τ ∈ Toc : (yp1 , xp1) = (yp2 , xp2) or (yp1 , xp1) = (0,0), p1 6= p2 ∈ PM}
Vbad,3 = {τ ∈ Toc : yp1 + xp1 = yp2 + xp2 or yp1 + xp1 = 0, p1 6= p2 ∈ PM}.
Vbad,4 = {τ ∈ Toc : yp1 + xp1 = yp2 + xp2 or yp1 + xp1 = 0 or 1, p1 6= p2 ∈ PM}.

Proposition 2.5 For any (q, σ) CPA-distinguisher A interacting with a uniform random online permutation
Πu, Pr[view(AΠ) ∈ Vbad,1] ≤ σ(σ−1)

2N . For any (q, σ) CCA-distinguisher A interacting with a uniform random
online permutation Πu and its inverse (Πu)−1, Pr[view(AΠu,(Πu)−1

) ∈ Vbad,i] ≤ (σ+2)(σ+3)
N , i = 2, 3, 4.

Proof. Let us consider dictionary order ≺ on the set of pairs (i, j). Thus, (i′, j′) ≺ (i, j) if either i′ < i or
i = i′ and j′ < j.

If view(AΠ) ∈ Vbad,1 then there must exist smallest5 (i, j) such that Ci[j] = Ci′ [j′] for some (i′, j′) ≺ (i, j)
or Ci[j] = 0. Since Ci[j] = Πu

Mi[1..j−1](Mi[j]) the above event holds with probability at most 1
N−k+1 (≤ k−1

N)
where k is the number of times line 8 of figure 1 is executed till the computation of Ci[j]. In other words the
size of P at the time of computation of Ci[j]. Note that k varies from 1 to σ = |P(M1, · · · ,Mq)|. Summing
over possible pairs (i, j) we obtain that Pr[view(AΠ) ∈ Vbad,1] ≤

∑σ
k=1

k−1
N ≤ σ(σ−1)

2N .
Note that if τ ∈ Vbad,4 then trivially τ ∈ Vbad,j for j = 2, 3. Thus we need to prove only for τ ∈ Vbad,4.

A similar approach as described for Vbad,1 can be applied.
If view(AΠ) ∈ Vbad,4 then there must exist smallest (i, j) such that Mi[j] + Ci[j] = Mi′ [j′] + Ci′ [j′]

for some (i′, j′) ≺ (i, j) or Mi[j] + Ci[j] = 0 or 1. Since either Ci[j] = Πu
Mi[1..j−1](Mi[j]) (if ith query is

encryption query) or Mi[j] = (Πu)−1
Ci[1..j−1](Ci[j]) (if ith query is decryption query) is uniformly distributed

over a set of size at least N−k+1, the above event holds with probability at most 3
N−k+1 (≤ k+2

N). Summing

over possible pairs (i, j) we obtain that Pr[view(AΠ) ∈ Vbad,4] ≤
∑σ

k=1
k+2
N ≤ (σ+2)(σ+3)

2N .

Theorem 2.6 (Strong interpolation theorem)
Suppose g0 and g1 are two probabilistic oracles and A is a CPA or CCA distinguisher. Let TA = Vgood∪Vbad.
Suppose the following conditions hold.

(1) Pr[g0(M1) = C1, · · · , g0(Mq) = Cq] ≥ (1− ε1)× Pr[g1(M1) = C1, · · · , g1(Mq) = Cq]

∀((M1, C1), · · · , (Mq, Cq)) ∈ Vgood.

(2) Pr[view(Ag1,g−1
1) ∈ Vbad] ≤ ε2 (or Pr[view(Ag1 ∈ Vbad] ≤ ε2 when A is a CPA-distinguisher).

5for the first time in line 8 of fig 1 the bad property holds.

Then we have AdvA(g0, g1) ≤ ε1 + ε2.

Proof. Here we denote τ = ((M1, C1), · · · , (Mq, Cq)). Now,

AdvA(g0, g1) =
∑

τ∈TA
(Pr[g0(M1) = C1, · · · , g0(Mq) = Cq]− Pr[g1(M1) = C1, · · · , g1(Mq) = Cq])

=
∑

τ∈Vgood

(Pr[g0(M1) = C1, · · · , g0(Mq) = Cq]− Pr[g1(M1) = C1, · · · , g1(Mq) = Cq])

+
∑

τ∈Vbad

(Pr[g0(M1) = C1, · · · , g0(Mq) = Cq]− Pr[g1(M1) = C1, · · · , g1(Mq) = Cq])

≤
∑

τ∈Vgood

ε1 × Pr[g1(M1) = C1, · · · , g1(Mq) = Cq] + Pr[view(Ag1,g−1
1) ∈ Vbad]

≤ ε1 × Pr[view(Ag1,g−1
1) ∈ Vgood] + ε2 ≤ ε1 + ε2.

Now we state an important result which is corollary from strong interpolation theorem (see theorem 2.6),
interpolation probability for UROP (see lemma 2.3) and the above proposition 2.5. This result is going to
be used for obtaining bound for advantages of online ciphers considered in this paper.

Proposition 2.7 (main tool of the paper)
Let F be an online cipher. Suppose for some 1 ≤ k ≤ 4 and for all τ ∈ Toc \ Vbad,i, the interpolation
probability of F satisfies the following equation

Pr[F (M1) = C1, · · · , F (Mq) = Cq] ≥ (1− ε)
P(N, σ)

(5)

where τ = ((M1, C1), · · · , (Mq, Cq)) and σ is the total number of blocks in q plaintexts. Then F is (q, σ, ε +
(σ+2)(σ+3)

2N)-CCA secure when i = 2, 3, 4 or F is (q, σ, ε + σ(σ−1)
2N)-CPA secure when i = 1.

3 Two known online ciphers : HCBC1 and HCBC2

3.1 HCBC1 [1]

Given a permutation π ∈ Perm(G) and a hash function h : G → G, we define HCBC1[π, h] online permutation.
Let xi, yi ∈ G, 1 ≤ i ≤ m, y0 = 0. Now,

HCBC1[π, h](x1, · · · , xm) = (y1, · · · , ym), yi = π(h(yi−1) + xi), 1 ≤ i ≤ m.

Note that HCBC1[π, h] is an online permutation. The online property can be proved by induction as the ith

output block only depends on (i − 1)th output block and ithinput block. It is also a permutation and its
inverse is defined as

HCBC1[π, h]−1(y1, · · · , ym) = (x1, · · · .xm), xi = π−1(yi)− h(yi−1), 1 ≤ i ≤ m.

Let Eu ∗← Perm(G) be a URP or uniform random permutation, e
∗← E be a block cipher and h

∗← H be an
ε-∆universal hash function from G to G. We define H1 := HCBC1[Eu, h], H1′ := HCBC1[e, h].

Interpolation probability of H1

We compute q-interpolation probability of H1 for a type-1 qr-tuple τ := ((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,1,
i.e., we compute Pr[H1(M1) = C1, · · · , H1(Mq) = Cq].

H v

m1

0 = y0

H v

m2

y1

H v

m i

yi-1y2 yi

Figure 2: Hash-CBC online function HCBC1[e, h] where the underlying group is ({0, 1}n,⊕).

From the definition of HCBC1 one can verify the following equivalences.

H1(M1) = C1, · · · , H1(Mq) = Cq

⇔ bH1(Mi[1..j]) = Ci[j], 1 ≤ j ≤ ‖Mi‖, 1 ≤ i ≤ q

⇔ Eu(h(last(qchop(p))) + last(p)) = last(qp) ∀p ∈ PM

Thus while computing the interpolation we have (h(last(qchop(p))) + last(p))p∈PM
corresponding to the all

inputs of Eu and (last(qp))p∈PM corresponding to the all outputs of Eu. Since τ ∈ Vgood,1, last(qp)’s
are distinct for all p ∈ PM . Thus, all outputs of Eu are distinct. Now we prove that for all p ∈ PM ,
(last(qchop(p)), last(p))’s are distinct. Suppose for some p1, p2, (last(qp′1), last(p1)) = (last(qp′2), last(p2))
where p′i = chop(pi). Now last(qp′1) = last(qp′2) implies that p′1 = p′2 and hence p1 = p2 (since last(p1) =
last(p2)). By using lemma 2.1 we have Pr[(h(last(qchop(p))) + last(p))’s are distinct] ≥ 1 − ε

(
σ
2

)
. Thus, all

inputs of Eu are distinct with probability at least 1−ε
(
σ
2

)
. Moreover, the inputs and outputs are independent

with Eu since h is independent with Eu. So Pr[Eu(h(last(qchop(p)))+last(p)) = last(qp) ∀p ∈ PM] ≥ 1−ε(σ
2)

P(N,σ) .
Recall that, τ is type-1 qr tuple i.e., τ ∈ Vgood,1 if for all p ∈ P∗ = PM ∪ {λ}, last(qp)’s are distinct.

Note that qλ = λ, last(λ) = 0 and qp = Ci[1..j] where p = Mi[1..j]. PM is the set of non-empty prefixes of
{M1, · · · ,Mq} and P′M = {p′ : p′ = chop(p), p ∈ PM},
Theorem 3.1 (interpolation probability of HCBC1)

Pr[H1(M1) = C1, · · · ,H1(Mq) = Cq] ≥
1− ε

(
σ
2

)

P(N, σ)
∀((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,1 (6)

Corollary 3.2 Let A be a (q, σ)-CPA distinguisher then we have

AdvCPA
A (H1) ≤

(
σ

2

)
(ε +

1
N

),

AdvCPA
A (H1′) ≤

(
σ

2

)
(ε +

1
N

) + InsecCPA
E (σ)

where H1 is based on ε-∆universal hash function. If we consider the finite field multiplication based universal
hash function then AdvCPA

A (H1′) ≤ σ(σ−1)
N + InsecCPA

E (σ).

3.2 HCBC2 [1]

Now we make similar study for HCBC2. We follow same notations as given in HCBC1 except that h : G2 → G,
h is ε-∆universal hash from G2 to G and x0 = 0. H2 := HCBC2[Eu, h], H2′ := HCBC2[e, h] where

HCBC2[π, h](x1, · · · , xm) = (y1, · · · , ym), yi = π(h(xi−1, yi−1) + xi) + h(xi−1, yi−1), 1 ≤ i ≤ m.

HCBC2[π, h]−1(y1, · · · , ym) = (x1, · · · .xm), xi = π−1(yi − h(xi−1, yi−1))− h(xi−1, yi−1), 1 ≤ i ≤ m.

H v

m1

0=y0

H v

m2

y1

m1

H v

m i

yi-1

mi-1

y2

m2

yi
0=y0

Figure 3: Hash-CBC online function HCBC2[e, h] where the underlying group is ({0, 1}n,⊕).

Interpolation probability of H2

We compute q-interpolation probability of H2 for any given type-2 qr-tuple τ := ((M1, C1), · · · , (Mq, Cq)) ∈
Vgood,2. From the definition of HCBC2 we have the following equivalences.

H2(M1) = C1, · · · , H1(Mq) = Cq

⇔ Eu(zchop(p) + last(p)) = last(qp) + zchop(p) ∀p ∈ PM

where zp = h(last(p), last(qp)). Thus while computing the interpolation, (zchop(p) + last(p))p∈PM are all
inputs of Eu and (zchop(p) + last(qp))p∈PM are all outputs of Eu. Since τ ∈ Vgood,2, by using a similar
argument, as given for Vgood,1, we can show that ((last(chop(p)), last(qchop(p))), last(p))’s are distinct and
((last(chop(p)), last(qchop(p))), last(qp))’s are distinct for all p ∈ PM . By using lemma 2.1 we have

Pr[zchop(p) + last(p))’s are distinct] ≥ 1− ε

(
σ

2

)

Pr[zchop(p) + last(qp))’s are distinct] ≥ 1− ε

(
σ

2

)
.

Thus, all inputs and outputs of Eu are distinct with probability at least 1 − 2ε
(
σ
2

)
and the inputs and

outputs are independent with Eu (since h is independent with Eu). So by applying the proposition 2.2,

Pr[Eu(zchop(p) + last(p)) = last(qp) + zchop(p) ∀p ∈ PM] ≥ 1−2ε(σ
2)

P(N,σ) .

Theorem 3.3 (interpolation probability of HCBC2)

Pr[H2(M1) = C1, · · · ,H2(Mq) = Cq] ≥
1− 2ε

(
σ
2

)

P(N, σ)
∀((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,2 (7)

Corollary 3.4 Let A be a (q, σ)-CCA distinguisher then we have

AdvCCA
A (H2) ≤

(
σ

2

)
(2ε +

1
N

),

AdvCCA
A (H2′) ≤

(
σ

2

)
(2ε +

1
N

) + InsecCCA
E (σ)

where H2 is based on ε-∆universal hash function. If we consider the finite field multiplication based universal
hash function then AdvCCA

A (H2′) ≤ 3σ(σ−1)
2N + InsecCCA

E (σ).

4 Two new online ciphers : MHCBC and MCBC

4.1 MHCBC

With the same notation as in HCBC1 we define

MHCBC[π, h](x1, · · · , xm) = (y1, · · · , ym), yi = π(h(xi−1 + yi−1) + xi) + h(xi−1 + yi−1), 1 ≤ i ≤ m

MHCBC[π, h]−1(y1, · · · , ym) = (x1, · · · , xm), xi = π−1(yi − h(xi−1 + yi−1))− h(xi−1 + yi−1), 1 ≤ i ≤ m.

v

m1

y0 = 0

m0 = 0

v

m2

y1

m1

v

m i

y2

m2

yi

H H H

Figure 4: MHCBC or Modified-Hash CBC online cipher

H3 := MHCBC[Eu, h].
H3′ := MHCBC[e, h].
Note that MHCBC uses (G,G) universal hash function similar to HCBC1 and still it is CCA-secure.

This is true since both plaintext and ciphertext blocks are xored and hence the adversary does not have any
control on the XOR. In case of HCBC2, these two blocks are inputs of a (G2, G) universal hash function.

Now we will compute interpolation probability for type-3 qr tuples Vgood,3. Recall that a qr-tuple
((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,3 if and only if (last(p) + last(qp))’s are distinct for all p ∈ P ∪ {λ}.
Basic idea of the computation pf interpolation is similar for online cipher constructions considered here. We
first provide an equivalent representation of interpolation as interpolation of URP and hence it is sufficient
to calculate interpolation probability of URP for a specific tuple. Then we calculate the probability that all
inputs and outputs of URP. Finally by using proposition 2.2 we have interpolation probability.

Theorem 4.1 (interpolation probability of MHCBC)

Pr[H3(M1) = C1, · · · , H3(Mq) = Cq] ≥
1− ε

(
2σ
2

)

P(N, σ)
∀((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,3 (8)

Proof.

¦ From the definition of HCBC3 we have the following equivalences.

H3(M1) = C1, · · · , H3(Mq) = Cq

⇔ Eu(zchop(p) + last(p)) = last(qp) + zchop(p) ∀p ∈ PM

where zp = h(last(p) + last(qp)). Thus while computing the interpolation, (zchop(p) + last(p))p∈PM are
all inputs of Eu and (zchop(p) + last(qp))p∈PM

are all outputs of Eu.

¦ ((last(chop(p)) + last(qchop(p))), last(p))’s and ((last(chop(p)) +last(qchop(p))), last(qp))’s are distinct
for all p ∈ PM (since τ ∈ Vgood,3). By using lemma 2.1 we have

Pr[zchop(p) + last(p))’s are distinct] ≥ 1− ε

(
σ

2

)

Pr[zchop(p) + last(qp))’s are distinct] ≥ 1− ε

(
σ

2

)
.

Thus, all inputs and outputs of Eu are distinct with probability at least 1− 2ε
(
σ
2

)
and these are inde-

pendent with Eu (since h is independent with Eu). So by applying the proposition 2.2, Pr[Eu(zchop(p)+

last(p)) = last(qp) + zchop(p) ∀p ∈ PM] ≥ 1−2ε(σ
2)

P(N,σ) .

Corollary 4.2 Let A be a (q, σ)-CCA distinguisher then we have

AdvCCA
A (H3) ≤

(
σ

2

)
(2ε +

1
N

),

AdvCCA
A (H3′) ≤

(
σ

2

)
(2ε +

1
N

) + InsecCCA
E (σ)

where H3 is based on ε-∆universal hash function. If we consider the finite field multiplication based universal
hash function then AdvCCA

A (H3′) ≤ 3σ(σ−1)
2N + InsecCCA

E (σ).

4.2 MCBC or modified-CBC

A simple replacement of H of MHCBC by v (note that, from example 2.2 we know that v is universal hash
function) would not make CCA-secure. So define H′3(x1, · · · , xm) = (y1, · · · , ym) where yi = π(π(xi−1 +
yi−1)+xi)+π(xi−1 +yi−1), 1 ≤ i ≤ m. It is easy to see that H’3−1(0) = v(0) = v0 (known to us) and hence
H’3(0) = v0 ⊕ v(v0). So v(v0) is also known to us and call it v1. Now, H’3(v0, v1) = (0, v1 ⊕ v0) always true
where this is true with probability close to 1/N for the ideal online cipher. Thus we can have CCA-attack
by making only three queries with four blocks.

Let π ∈ Perm(G) then we define MCBC or modified CBC online permutation as follows :

MHCBC[π](x1, · · · , xm) = (y1, · · · , ym), yi = π(π(xi−1 + yi−1) + xi) + K + xi, 1 ≤ i ≤ m

where K = π(1). We write MC := MCBC[Eu] and MC′ := MCBC[e] for a chosen block cipher e
∗← E.

v

m1

v v

m2

y1

m1

v v

m i

v

y2

m2

yi

K1 K1 K1

0

v1

Figure 5: MCBC or Modified-CBC online cipher

MCBC does not use any universal hash function since the underlying block cipher is used in the place
of the universal of hash function. Thus we are able to remove extra key storage as well as an extra design
of universal hash function. The proof idea for MCBC is similar to MHCBC except the fact that we have
to consider all inputs and outputs of the underlying block ciphers. We have to be little bit careful while
computing interpolation probability. We first see all inputs and outputs of the uniform random permuta-
tion Eu during the computations of interpolation probability of MC(M1) = C1, · · · ,MC(Mq) = Cq where
((M1, C1), · · · (Mq, Cq)) ∈ Vgood,4. Let P := P(M1, · · · ,Mq). Now one can check that

1. K := Eu(1), zchop(p) := Eu(wchop(p)) and (last(qp) − K − zchop(p)) are all outputs of Eu, p ∈ PM

where wp := last(p) + last(qp).

2. 0,1, wp, zchop(p) + last(p), p ∈ PM are all inputs of Eu.

Since ((M1, C1), · · · (Mq, Cq)) ∈ Vgood,4, for all p ∈ P∪{λ}, (last(p)+ last(qp))’s are distinct and different
from 1. All inputs and outputs are completely determined once zp and K is defined. Let A be the number
of possible values of zp and K such that

1, wp, zchop(p) + last(p), p ∈ PM are distinct and

K, zchop(p), last(qp)−K − zchop(p) p ∈ PM are distinct .

We estimate A by counting the complement. The above conditions are not true due to following possibilities.
Recall that σ′ = |P′|.

1. wp = 1 or wp1 = wp2 for some p1 6= p2 ∈ P′ and p ∈ P. This is not possible since ((M1, C1), · · · (Mq, Cq)) ∈
Vgood,4.

2. zchop(p1) + last(p1) = wp2 or zchop(p1) + last(p1) = 1 for some p1 6= p2, p1 ∈ P, p2 ∈ P′. There are at
most Nσ′ × σ × (σ′ + 1)(≤ Nσ′ × σ2) solutions.

3. Similarly, zchop(p1) + last(p1) = zchop(p2) + last(p2) for some p1 6= p2 ∈ P. There are at most Nσ′ × σ2

solutions.

4. zchop(p) and K are not distinct. There are at most Nσ′ × σ2 solutions.

5. K or zchop(p1) is same as last(qp2)−K − zchop(p2) for some p1 6= p2 ∈ P. There are Nσ′ × σ2 solutions.

6. (last(qp)−K − zchop(p))’s are not distinct. There are Nσ′ × σ2 solutions.

So there are 5Nσ′σ2 cases where the above is not true. Thus the number of possible solutions is at least
Nσ′+1 − 5Nσ′σ2 and hence A ≥ Nσ′+1(1 − 5σ2

N). For each such solution of zchop(p) and K such that the
above is true we have

Pr[Eu(1) = K,Eu(wp) = zp, E
u(zchop(p) + last(p)) = last(qp)−K −wchop(p), ∀p ∈ PM] =

1
P(N,σ + σ′ + 1)

.

Summing over A solutions we have

Pr[MC(M1) = C1, · · · ,MC(Mq) = Cq] ≥ A

P(N,σ + σ′ + 1)

≥ Nσ′+1(1− 5σ2

N)
P(N,σ + σ′ + 1)

≥ (1− 5σ2

N)
P(N, σ)

.

Thus we have the following main theorem for MCBC.

Theorem 4.3 (interpolation probability of MCBC)

Pr[MC(M1) = C1, · · · , MC(Mq) = Cq] ≥ 1− 5σ2/N

P(N, σ)
∀((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,4 (9)

Corollary 4.4 Let A be a (q, σ)-CCA distinguisher then we have

AdvCCA
A (MC) ≤ 11σ2

2N
,

AdvCCA
A (MC′) ≤ 11σ2

2N
+ InsecCCA

E (2σ).

5 Conclusion

In this paper we analyze known online ciphers namely HCBC1 and HCBC2 and propose two new online
ciphers MHCBC and MCBC which have several advantages over the previous ones. In particular, MHCBC
is more efficient than HCBC2 and still has CCA-security. MCBC online cipher does not need any universal
hash function and hence it has better performance as well as smaller key size. Our security analysis is
somewhat different from the usual game based security analysis. We believe that our proof technique would
be useful in many areas where indistinguishability is concerned. One of the research goal we can think is
to provide online ciphers for incomplete plaintext blocks. One can analyze the hardware performance of all
these online ciphers.

Acknowledgement. We would like to acknowledge Professor Palash Sarkar who had inspired us to write
this paper. We also would like to thank anonymous reviewers whose comments helped us to modify our
earlier draft.

References

[1] M. Bellare, A. Boldyreva, L. Knudsen and C. Namprempre. On-Line Ciphers and the Hash-CBC con-
structions. Advances in Cryptology - CRYPTO 2001. Lecture Notes in Computer Science, Volume 2139,
pp 292-309.

[2] M. Bellare, A. Boldyreva, L. Knudsen and C. Namprempre. On-Line Ciphers and the Hash-CBC Con-
structions. Cryptology eprint archive, http://eprint.iacr.org/2007/197.

[3] M. Bellare, J. Killan and P. Rogaway. The security of the cipher block chanining Message Authentication
Code. Advances in Cryptology - CRYPTO 1994. Lecture Notes in Computer Science, Volume 839, pp
341-358.

[4] Daniel J. Bernstein. A short proof of the unpredictability of cipher block chaining (2005). URL:
http://cr.yp.to/papers.html#easycbc.

[5] J. Black and P. Rogaway. CBC MACs for arbitrary length messages. Advances in Cryptology - CRYPTO
2000. Lecture Notes in Computer Science, Volume 1880, pp 197-215.

[6] J. Daemen and V. Rijmen. Resistance Against Implementation Attacks. A Comparative Study of the
AES Proposals. In Proceedings of the Second AES Candidate Conference (AES2), Rome, Italy, March
1999. Available at http://csrc.nist.gov/encryption/aes/aes home.htm.

[7] Alison L. Gibbs and Francis Edward Su. On Choosing and Bounding Probability Metrics, Jan 2002.

[8] L. Knudsen. Block chaining modes of operation. Symmetric Key Block Cipher Modes of Operation
Workshop, http://csrc.nist.gov/encryption/modes/workshop1/, Oct. 2000.

[9] H. Krawczyk. LFSR-based hashing and authenticating. Advances in Cryptology, CRYPTO 1994, Lecture
Notes in Computer Science, Volume 839, pp 129-139, Springer-Verlag 1994.

[10] M. Luby and C. Rackoff. How to construct pseudo-random permutations from pseudo-random functions.
Advances in Cryptology, CRYPTO’ 85, Lecture Notes in Computer Science, Volume 218, pp 447, Springer-
Verlag 1985.

[11] C. Meyer and Matyas. A new direction in Computer Data Security. John Wiley & Sons, 1982.

[12] M. Nandi. A Simple and Unified Method of Proving Indistinguishability. Indocrypt 2006, Lecture
Notes in Computer Science, Volume 4329, pp 317-334.

[13] M. Nandi. Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC. eprint archive
http://eprint.iacr.org/2008/xxx.

[14] W. Nevelsteen and B. Preneel. Software performance of universal hash functions. Advances in Cryp-
tology, EUROCRYPT ’99, Lecture Notes in Computer Science, Volume 1592, pp 24-41, Springer-Verlag
1999.

[15] P. Rogaway. Bucket Hashing and Its Application to Fast Message Authentication. Advances in Cryp-
tology, CRYPTO 1995, Lecture Notes in Computer Science, Volume 963, pp 29-42, Spronger-Verlag,
1995.

[16] D. R. Stinson. On the connections between universal hashing, combinatorial designs and error-correcting
codes. Congressus Numerantium 114, 1996, pp 7-27.

[17] S. Vaudenay. Decorrelation : A Theory for Block Cipher Security. Journal of Cryptology, vol 16, no
4/sep, 2003, pp 249-286.

