
Indifferentiable Security Analysis of choppfMD,

chopMD, a chopMDP, chopWPH, chopNI,

chopEMD, chopCS, and chopESh Hash Domain

Extensions

Donghoon Chang1, Jaechul Sung2, Seokhie Hong1, and Sangjin Lee1

1 Center for Information Security Technologies(CIST), Korea University, Korea
pointchang@gmail.com

{hsh,sangjin}@cist.korea.ac.kr
2 Department of Mathematics, University of Seoul, Korea

jcsung@uos.ac.kr

Abstract. We provide simple and unified indifferentiable security anal-
yses of choppfMD, chopMD, a chopMDP (where the permutation P is to
be xored with any non-zero constant.), chopWPH (the chopped version of
Wide-Pipe Hash proposed in [16]), chopEMD, chopNI, chopCS, chopESh
hash domain extensions. Even though there are security analysis of them
in the case of no-bit chopping (i.e., s = 0), there is no unified way to
give security proofs. All our proofs in this paper follow the technique
introduced in [3]. These proofs are simple and easy to follow.

1 Introduction

Till now, known indifferentiable security analysis of hash domain extensions are
not easy and the proofs are very long. The following question is natural : how can
we easily and simply prove the indifferentiable security of any given hash domain
extension? Recently, Bertoni et al. [3] showed the possibility of simple indiffer-
entiable security. In this paper, we revisit their proof technique, and through
this work, we give the indifferentiable security of eight constructions and their
truncated versions. We hope that submitters of candidate of SHA-3 can prove the
indifferentiable security of their hash functions as we prove eight constructions
in this paper.

Remark. In the case of SHA-2 family, SHA-224 is defined by truncating the
least significant 32 bits of the final hash output. Likewise, SHA-384 is defined by
truncating the least significant 128 bits of the final hash output. The truncation
is attractive method to get a hash family for supporting variable output sizes.
Among eight constructions, in the case of WPH, there is no indifferentiable
security proof. Even though there security proofs for chopMD construction [9],
the proof is a little bit complicated. And in the case of choppfMD, there is only
a theorem statement without any security proof [19].

2 Some Notations and Results

In the keyless setting, we consider the compression function f : {0, 1}n×{0, 1}b →
{0, 1}n. We write ||m||b = t if m ∈ {{0, 1}b}t, where t is the b-bit block size.
Similarly, we write ||c||n = t if c ∈ {{0, 1}n}t, where t is the n-bit block
size. In the dedicated-key setting, we consider the compression function f :
{0, 1}k × {0, 1}n × {0, 1}b → {0, 1}n, where {0, 1}k is a key space. When a key
K is fixed, we write f with K by fK(·, ·) or f(K, ·, ·).

MD. The traditional Merkle-Damg̊ard extension (MD) [20, 11] works as follow:
for a message M = m1|| · · · ||mt, MDf (M) = f(· · · f(f(IV, m1), m2) · · · , mt),
where f is a compression function and IV is the initial value.

Padding. Except chopEMD, chopCS, chopESh, we say any injective and length-
consistent function g : {0, 1}∗ → ({0, 1}b)+ as a padding rule. In cases of
chopEMD, chopCS, chopESh, we say any injective and length-consistent function
g : {0, 1}∗ → ({0, 1}b)+ × {0, 1}b−n as a padding rule. We say g is a prefix-free
padding if for any M 6= M ′ g(M) is not a prefix of g(M ′).

chop. For 0 ≤ s ≤ n we define chops(x) = xL where x = xL ‖ xR and |xR| = s.

last. For 0 ≤ s ≤ n we define lasts(x) = xR where x = xL ‖ xR and |xR| = s.

pfMD. prefix-free MD (shortly, pfMD) is defined as follows : pfMDf
g (M) =

MDf (g(M)) where g is a prefix-free padding.

chopMD. For 0 ≤ s ≤ n we define chopMDf
g (M) = chops(MDf (g(M))), where

g is any padding rule.

choppfMD. chop-prefix-free MD (shortly, choppfMD) is defined as follows :
choppfMDf

g (M) = chops(MDf (g(M))) where g is a prefix-free padding. Note
that choppfMD with s = 0 is pfMD. In other words, pfMD is a special case of
choppfMD. HAIFA [7] is an example of choppfMD.

MDP. MD with a permutation (shortly, MDP) [12] is defined as follows :
MDPf

g (M) = f(P (MDf (chopb(g(M)))), lastb(g(M))) where P is a permutation,
g is any padding rule and lasts(x) = xR where x = xL ‖ xR and |xR| = s. And
P and P−1 is efficiently computable. In this paper, we only consider to be xored
with a non-zero constant P .

chopMDP. chopMDP is defined as follows : chopMDPf
g (M) = chops (f(P (MDf

(chopb(g(M)))), lastb(g(M)))) where P is a permutation, g is any padding rule
and lasts(x) = xR where x = xL ‖ xR and |xR| = s. And P and P−1 is efficiently
computable. Note that chopMDP with s = 0 is MDP. In other words, MDP is
a special case of chopMDP. In this paper, we only consider to be xored with a

non-zero constant P .

WPH. Wide-Pipe Hash (shortly, WPH) is proposed by Lucks [16]. Wide-Pipe
Hash use two independent functions f1 and f2, where f1 : {0, 1}w × {0, 1}b →
{0, 1}w and f2 : {0, 1}w → {0, 1}n and w ≥ 2n. Given any padding rule g, WPH
works as follows : for a message M , WPHf1,f2

g (M)=f2(MDf1 (g(M))), where the
initial value of IV is w-bit.

chopWPH. The chopped Wide-Pipe Hash (shortly, chopWPH) works as follows
: for a message M , chopWPHf1,f2

g (M)=chops(f2(MDf1 (g(M)))). In this paper,
we provide an indifferentiable security bound for any n and w. That is, there is
no restriction that w ≥ 2n. Note that chopWPH with s = 0 is WPH. In other
words, WPH is a special case of chopWPH.

EMD. EMD [5] is defined as follows : EMDf (M) = f(IV2, MDf (Q)||Mt), where
IV2 is a fixed value different from IV , Q||Mt = g(M) = M ||10r||bin64(|M |),
where |Mt| = b − n, bini(x) means the i-bit binary representation of x, r is the
smallest non-negative integer such that |g(x)| − (b − n) is a multiple of b.

chopEMD. chopEMD is defined as follows : chopEMDf (M) = chops(EMDf (M)).
Note that chopEMD with s = 0 is EMD. Since we focus on the indifferentiable
security of chopEMD, we assume that g is not such specific padding rule but any
padding rule.

NI. Nested Iteration (shortly, NI) [1] is defined as follows : NIfg (K1, K2, M) =

f(K2, MDfK1 (chopb(g(M))), lastb(g(M))), where g is any padding rule.

chopNI. Chopped Nested Iteration (shortly, chopNI) is defined as follows :
chopNIfg (K1, K2, M) = chops(NIfg (K1, K2, M)), where g is any padding rule.
Note that chopNI with s = 0 is NI.

CS. Chain Shift (shortly, CS) [18] is defined as follows : CSf
g (K, M)=f(K,IV2,

MDfK (chopb−n(g(M))), lastb−n(g(M))), where g is any padding rule.

chopCS. Chopped Chain Shift (shortly, chopCS) is defined as follows : chopCSf
g (K, M) =

chops(CSf
g (K, M)), where g is any padding rule. Note that chopCS with s = 0

is CS.

ESh. Enveloped Shoup (shortly, ESh) [6] is defined as follows : EShf
g (K, (K0,

· · · , Kr), M) = fK(IV2 ⊕ Kν(1), Shoupf

K,K
(M ′) ⊕ Kν(t), Mt), where ν2(i) = j if

2j |i and 2j+1 6 |i, for 1 ≤ i ≤ t − 1 |Mi| = b, |Mt| = b − n, Shoupf

K,K
(M ′) =

fK(· · · fK(fK(IV1 ⊕Kν(1), m1)⊕Kν(2), m2)⊕Kν(3), · · ·⊕Kν(t−1), mt−1), M ′ =

m1|| · · · ||mt−1, K = K1|| · · · ||Kν(t−1), g is any padding rule such that g(M) =

m1|| · · · ||mt.

chopESh. Chopped Enveloped Shoup (shortly, chopESh) is defined as follows :
chopEShf

g (K, M) = chops(EShf
g (K, M)), where g is any padding rule. Note that

chopESh with s = 0 is ESh.

Inequality. The following inequality will be used to prove Theorem 2-10.

Ineq 1. For any 0 ≤ ai ≤ 1,
∏q

i=1(1 − ai) ≥ 1 −
∑q

i=1 ai. One can prove
it by induction on q.

Random Oracle Model : f is said to be a random oracle from X to Y if
for each x ∈ X the value of f(x) is chosen randomly from Y [4]. More pre-
cisely, Pr[f(x) = y | f(x1) = y1, f(x2) = y2, . . . f(xq) = yq] = 1

T
, where

x /∈ {x1, . . . , xq}, y, y1, · · · , yq ∈ Y and |Y | = T . In the case that X = {0, 1}d

for a fixed value d, we say f is a FIL (Fixed Input Length) random oracle. In
the case that X = {0, 1}∗, we say f is a VIL (Variable Input Length) random
oracle. A VIL random oracle is usually denoted by R.

The cost of Queries. The security bound of a scheme is usually described
using the number q of queries and the maximum length l of each queries. On
the other hand, in [3], the notion cost is used to describe the security bound of
sponge construction. The notion cost denotes the total block length of q queries.
The notion cost is significant because the unit of time complexity corresponds
to the time of an underlying function call and the total time complexity depends
on how many the underlying function is called. The notion cost exactly reflects
how many the underlying function is called. So, we can consider two cases. The
first case is that the number of queries is bounded by q. The second case is that
the cost of queries is bounded by q. Without loss of generality, for describing
notions and some results in this section, we assume that the number of queries
is bounded by q.

View. A is a probabilistic algorithm with access to a tuple of oracles O =
(O1, O2, · · · , Ot). r is a random coin string of A. A can make a query adaptively
as follows. Let xi be a i-th query and yi be a response of a oracle for the i-th
query xi.

A(vi−1) = xi,

where vi−1 = ((x1, y1), · · · , (xi−1, yi−1)) and A(null) = x1 and v0 = null. When
the number of queries is q, vq is said to be a possible final view of A, which is
a tuple of query-response pairs. We may use the symbol v instead of vq. The
final view v is determined by a random coin string of A and that of the tuple of
oracles. The role of a random coin string of A helps A to randomly choose one
among possible choices during A’s execution. Without loss of generality, we can
assume that the bit-length of a random coin string of A is fixed, because we only

consider polynomial time algorithms. More precisely, since A is a polynomial
time algorithm, the bit-length of a random coin string is bounded by some tq,
where q is the number of queries of A. In the case that the bit-length of a random
coin string is less than tq, we can construct A′ by adding dummy random coin
tosses to A. Such A′ identically behaves as A. Therefore,

Pr[A(X) = Y] =
|{r|A′

r(X)=Y }|

2tq ,

where X can be vi−1 for 1 ≤ i ≤ q + 1, and Y can be xi’s 0 or 1. From now, we
assume that the bit-length of any random coin string is fixed as tq.

We define αA(v) = Pr[A(vi−1) = xi, ∀i, 1 ≤ i ≤ q], where A(null) = x1,
and v = ((x1, y1), · · · , (xq , yq)). We can also say that a view v is possible if
αA(v) 6= 0. The set of possible final views of A is denoted by VA. And for each
random coin r of A, we similarly define

αAr
(v) = Pr[Ar(vi−1) = xi, ∀i, 1 ≤ i ≤ q].

So, for any v ∈ VA, αAr
(v)=0 or 1, because Ar is a deterministic algorithm for

each r. Finally, A outputs 0 or 1 from the final view v, which consists of q query-
response pairs. More precisely, given a possible view v, The output value of A(v)
depends on the random coin tosses of A. We write V 1

A = {v|Pr[A(v) = 1] > 0}
and V 0

A = {v|Pr[A(v) = 0] > 0}. And we write β1
A(v) = Pr[A(v) = 1] and

β0
A(v) = Pr[A(v) = 0]. β1

Ar
(v) and β0

Ar
(v) are similarly defined. Since Ar with a

fixed r is a deterministic algorithm, we can also define the set of possible views
of Ar, which is denoted by VAr

. V 1
Ar

and V 0
Ar

are similar to V 1
A and V 0

A.

Computational Distance. Let F = (F1, F2, · · · , Ft) and G = (G1, G2, · · · , Gt)
be tuples of probabilistic oracle algorithms. We define the computational distance
of a probabilistic attacker A distinguishing F from G as

AdvA(F, G) = |Pr[AF = 1] − Pr[AG = 1]|.

Statistical Distance. Let F = (F1, F2, · · · , Ft) and G = (G1, G2, · · · , Gt) be
tuples of probabilistic oracle algorithms. We define the statistical distance of a
deterministic attacker A distinguishing F from G as

StatA(F, G) =
1

2

∑

v∈VA

|Pr[F = v] − Pr[G = v]|,

where Pr[O = v] denotes Pr[O(ci, xi) = yi, 1 ≤ i ≤ q, v = ((c1, x1, y1), · · · , (cq, xq, yq))],
where O(ci, xi) = Oci

(xi). And we let the maximum statistical distance of F and
G against any deterministic algorithm A be Stat(F, G), where the number of
queries of A is bounded by q.

Computational Distance vs. Statistical Distance

Lemma 1. Let F = (F1, F2, · · · , Ft) and G = (G1, G2, · · · , Gt) be tuples of
probabilistic oracle algorithms. For any probabilistic algorithm A which can make
at most q queries

AdvA(F, G) ≤ Stat(F, G).

Proof. Without loss of generality, we assume that A makes q queries. Since
for Ar with any fixed r Pr[AO

r = 1] + Pr[AO
r = 0] =

∑
v∈V 1

Ar

Pr[O = v] +
∑

v∈V 0
Ar

Pr[O = v] = 1, the following inequality 2 holds.

Ineq 2. |
∑

v∈V 1
Ar

(Pr[F = v] − Pr[G = v])| ≤ 1
2

∑
v∈VAr

|Pr[F = v] − Pr[G = v]|.

And,

Pr[AO = 1]
=

∑
v∈V 1

A
β1

A(v) · αA(v)PrA[O(ci, xi) = yi, ∀i, v = ((c1, x1, y1), · · · , (cq, xq, yq))]

=
∑

r∈{0,1}tq
1

2tq

∑
v∈V 1

A
β1

Ar
(v)αAr

(v)Pr[O(ci, xi) = yi, 1 ≤ i ≤ q, v = ((c1, x1, y1), · · · , (cq, xq, yq))]

=
∑

r∈{0,1}tq
1

2tq

∑
v∈V 1

Ar

Pr[O(ci, xi) = yi, 1 ≤ i ≤ q, v = ((c1, x1, y1), · · · , (cq, xq, yq))].

(The above last equality hold because for any v β1
Ar

(v) = 1 or 0 and αAr
(v) = 1

or 0.)

Therefore,

AdvA(F, G) = |Pr[AF = 1] − Pr[AG = 1]|
= |(

∑
v∈V 1

A
β1

A(v) · αA(v)Pr[F = v]) − (
∑

v∈V 1
A

β1
A(v) · αA(v)Pr[G = v])|

= |(
∑

r∈{0,1}tq
1

2tq

∑
v∈V 1

Ar

Pr[F = v])− (
∑

r∈{0,1}tq
1

2tq

∑
v∈V 1

Ar

Pr[G = v])|

= |
∑

r∈{0,1}tq
1

2tq

∑
v∈V 1

Ar

Pr[F = v] − Pr[G = v]|

≤
∑

r∈{0,1}tq
1

2tq · 1
2

∑
v∈VAr

(|Pr[F = v] − Pr[G = v]| by Ineq 1

≤ 1
2Maxr∈{0,1}tq (

∑
v∈VAr

|Pr[F = v] − Pr[G = v]|)

= 1
2

∑
v∈VA

r′
|Pr[F = v] − Pr[G = v]| (maximized by r = r′)

= StatAr′
(F, G) (Ar′ is a deterministic algorithm.)

≤ MaxB(StatB(F, G)). (for any deterministic algorithm B.)
= Stat(F, G).

Indifferentiability

We give a brief introduction of the indifferentiable security notion.

Definition 1. Indifferentiability. [17] A Turing machine H with oracle access
to an ideal primitive f is said to be (tD, tS , q, ε) indifferentiable from an ideal
primitive R if there exists a simulator S such that for any distinguisher D it
holds that :

|Pr[DH,f = 1] − Pr[DR,S = 1] < ε

The simulator has oracle access to R and runs in time at most tS. The distin-
guisher runs in time at most tD and makes at most q queries. Similarly, Hf is
said to be (computationally) indifferentiable from R if ε is a negligible function
of the security parameter k (for polynomially bounded by tD and tS).

The following Theorem [17] shows the relation between indifferentiable secu-
rity notion and the security of a cryptosystem.

Theorem 1. [17] Let P be a cryptosystem with oracle access to an ideal prim-
itive R. Let H be an algorithm such that Hf is indifferentiable from R. Then
cryptosystem P is at least as secure in the f model with algorithm H as in the
R model.

Above theorem says that if a domain extension (with a padding rule) based
on a FIL random oracle f is indifferentiable from a VIL random oracle R, then
a cryptosystem, which is proved in the VIL random oracle model, can use the
domain extension (with a padding rule) based on a FIL random oracle f instead
of R with negligible loss of security.

3 Construction of the Simulator

In this section, we define simulators as follows. In the next section, simula-
tors Schoppf , Schop, SchopMDP , SchopWPH , SchopEMD, SchopNI , SchopCS , and
SchopESh will be used in order to prove the indifferentiable security of choppfMD,
chopMD, chopMDP, chopWPH, chopEMD, chopNI, chopCS, and chopESh, re-
spectively. For defining the simulators, We follow the style of construction of the
simulator in [9].

Definition of Simulator Schoppf

Initialization :

1. A partial function e1 : {0, 1}n+b → {0, 1}n initialized as empty,
2. a partial function e∗1 = MDe1 : ({0, 1}b)∗ → {0, 1}n initialized as e∗1(λ) = IV.
3. a set C = {IV} and a set I = {λ}.

On query SR
choppf (x, m) :

001 if (e1(x, m) = x′)
return x′;

002 else if (∃ M ′ and M, e∗1(M
′) = x, g(M) = M ′||m))

y = R(M);
choose w ∈R {0, 1}s;
define e1(x, m) = z := y ‖ w;
return z;

003 else if (∃ M ′, e∗1(M
′) = x)

choose z ∈R {0, 1}n \ C ∪ I;
define e1(x, m) = z;
define C = C ∪ {z};
define e∗1(M

′, m) = z;
return z;

004 else

z ∈R {0, 1}n;
define e1(x, m) = z;
define I = I ∪ {x};
return z;

Definition of Simulator Schop

Initialization :

1. A partial function e1 : {0, 1}n+b → {0, 1}n initialized as empty,
2. a partial function e∗1 = MDe1 : ({0, 1}b)∗ → {0, 1}n initialized as e∗1(λ) = IV.
3. a set C = {IV} and a set I = {λ}.

On query SR
chop(x, m) :

001 if (e1(x, m) = x′)
return x′;

002 else if (∃ M ′ and M, e∗1(M
′) = x, g(M) = M ′||m))

y = R(M);
choose w ∈R {0, 1}s \ {w′ : y ‖ w′ ∈ C ∪ I};
define e1(x, m) = z := y ‖ w;
define C = C ∪ {z};
define e∗1(M

′, m) = z;
return z;

003 else if (∃ M ′, e∗1(M
′) = x)

choose z ∈R {0, 1}n \ C ∪ I;
define e1(x, m) = z;
define C = C ∪ {z};
define e∗1(M

′, m) = z;
return z;

004 else

z ∈R {0, 1}n;
define e1(x, m) = z ;
define I = I ∪ {x};
return z;

Definition of Simulator SchopMDP

Initialization :

1. A partial function e1 : {0, 1}n+b → {0, 1}n initialized as empty,
2. a partial function e∗1 = MDe1 : ({0, 1}b)∗ → {0, 1}n initialized as e∗1(λ) = IV.
3. a set C = {IV} and a set I = {λ}.

On query SR
chopMDP (x, m) :

001 if (e1(x, m) = x′)
return x′;

002 else if (∃ M ′ and M, e∗1(M
′) = x ⊕ P, g(M) = M ′||m))

y = R(M);
choose w ∈R {0, 1}s;
define e1(x, m) = z := y ‖ w;
return z;

003 else if (∃ M ′, e∗1(M
′) = x)

choose z ∈R {0, 1}n \ C ∪ {a⊕ P : a ∈ C} ∪ I ∪ {a ⊕ P : a ∈ I};
define e1(x, m) = z;
define C = C ∪ {z};
define e∗1(M

′, m) = z;
return z;

004 else

z ∈R {0, 1}n;
define e1(x, m) = z;
define I = I ∪ {x};
return z;

Definition of Simulator SchopW P H

Initialization :

1. A partial function e1 : {0, 1}w+b → {0, 1}w initialized as empty,
2. A partial function e2 : {0, 1}w → {0, 1}n initialized as empty,
3. a partial function e∗1 = MDe1 : ({0, 1}b)∗ → {0, 1}w initialized as e∗1(λ) = IV.
4. a set C = {IV} and a set I = {λ}.

On query SR
chopWPH(x, m) :

001 if (e1(x, m) = x′)
return x′;

002 else if (∃ M ′, e∗1(M
′) = x)

choose z ∈R {0, 1}n \ C ∪ I;
define e1(x, m) = z;
define C = C ∪ {z};
define e∗1(M

′, m) = z;
return z;

003 else

z ∈R {0, 1}n;
define e1(x, m) = z;
define I = I ∪ {x};
return z;

On query SR
chopWPH(x) :

004 if (e2(x) = x′)
return x′;

005 else if (∃ M ′ and M, e∗1(M
′) = x, g(M) = M ′))

y = R(M);
choose w ∈R {0, 1}s;
define e2(x) = z := y ‖ w;
return z;

006 else

z ∈R {0, 1}n;
define e2(x) = z;
define I = I ∪ {x};
return z;

Definition of Simulator SchopEMD

Initialization :

1. A partial function e1 : {0, 1}n+b → {0, 1}n initialized as empty,
2. a partial function e∗1 = MDe1 : ({0, 1}b)∗ → {0, 1}n initialized as e∗1(λ) = IV.
3. a set C = {IV, IV2} and a set I = {λ}.

On query SR
chopEMD(x, m) :

001 if (e1(x, m) = x′)
return x′;

002 else if (x = IV2 and ∃ M ′ and M, e∗1(M
′) = chopb−n(m), g(M) = M ′||m))

y = R(M);
choose w ∈R {0, 1}s;
define e1(x, m) = z := y ‖ w;
return z;

003 else if (∃ M ′, e∗1(M
′) = x)

choose z ∈R {0, 1}n \ C ∪ I;
define e1(x, m) = z;
define C = C ∪ {z};
define e∗1(M

′, m) = z;
return z;

004 else

z ∈R {0, 1}n;
define e1(x, m) = z;
define I = I ∪ {x};
return z;

Definition of Simulator SchopNI

Initialization :

1. given K1 and K2,
2. A partial function e1 : {0, 1}k × {0, 1}n × {0, 1}b → {0, 1}n initialized as

empty,
3. a partial function e∗1 = MDe1 : {K1} × ({0, 1}b)∗ → {0, 1}n initialized as

e∗1(λ) = IV, where e1 is only defined if its key is K1.
4. a set C = {IV} and a set I = {λ}.

On query SR
chopNI(K, x, m) :

001 if (e1(K, x, m) = x′)
return x′;

002 else if (K = K2 and ∃ M ′ and M, e∗1(M
′) = x, g(M) = M ′||m))

y = R(M);
choose w ∈R {0, 1}s;
define e1(K, x, m) = z := y ‖ w;
return z;

003 else if (∃ M ′, e∗1(M
′) = x)

choose z ∈R {0, 1}n \ C ∪ I;
define e1(K, x, m) = z;
define C = C ∪ {z};
if K = K1, define e∗1(M

′, m) = z;
return z;

004 else

z ∈R {0, 1}n;
define e1(K, x, m) = z;
define I = I ∪ {x};
return z;

Definition of Simulator SchopCS

Initialization :

1. given K,
2. A partial function e1 : {0, 1}k × {0, 1}n × {0, 1}b → {0, 1}n initialized as

empty,
3. a partial function e∗1 = MDe1 : {K} × ({0, 1}b)∗ → {0, 1}n initialized as

e∗1(λ) = IV, where e1 is only defined if its key is K.
4. a set C = {IV, IV2} and a set I = {λ}.

On query SR
chopCS(K ′, x, m) :

001 if (e1(K
′, x, m) = x′)

return x′;

002 else if (K ′ = K and x = IV2 and ∃ M ′ and M, e∗1(M
′) = chopn−s(m), g(M) =

M ′||m))
y = R(M);
choose w ∈R {0, 1}s;
define e1(K

′, x, m) = z := y ‖ w;
return z;

003 else if (∃ M ′, e∗1(M
′) = x)

choose z ∈R {0, 1}n \ C ∪ I;
define e1(K

′, x, m) = z;
define C = C ∪ {z};
if K ′ = K, define e∗1(M

′, m) = z;
return z;

004 else

z ∈R {0, 1}n;
define e1(K

′, x, m) = z;
define I = I ∪ {x};
return z;

Definition of Simulator SchopESh

Initialization :

1. given K and K,
2. A partial function e1 : {0, 1}k × {0, 1}n × {0, 1}b → {0, 1}n initialized as

empty,
3. a partial function e∗1 = Shoupe1

K,K
: ({0, 1}b)∗ → {0, 1}n initialized as e∗1(λ) =

IV ⊕ K0, where e1 is only defined if its key is K.
4. a set I = {IV ⊕ K0, IV2 ⊕ K0} and a set C = {λ}.

On query SR
chopESh(K ′, x, m) :

001 if (e1(K
′, x, m) = x′)

return x′;

002 else if (K ′ = K and x = IV2 ⊕ K0 and ∃ M ′ and M , e∗1(M
′) = Kµ(i) ⊕

chopn−s(m), g(M) = M ′||m, ||M ′||b = i − 1)
y = R(M);
choose w ∈R {0, 1}s;
define e1(K

′, x, m) = z := y ‖ w;
return z;

003 else if (∃ M ′, e∗1(M
′) = Kµ(i) ⊕ x, ||M ′||b = i − 1)

choose z ∈R {0, 1}n \ {c ⊕ Kµ(i+1) : c ∈ I} ∪ {a : (ia, a) ∈ C}
∪ {a ⊕ Kµ(ia) ⊕ Kµ(i+1) : (ia, a) ∈ C};

define e1(K
′, x, m) = z;

define C = C ∪ {(i + 1, z)};
if K ′ = K, define e∗1(M

′, m) = z;
return z;

004 else

z ∈R {0, 1}n;
define e1(K

′, x, m) = z;
define I = I ∪ {x};
return z;

Some Important Observations on the Simulator Schoppf

The bound of the number of queries. In line 003, the number q of queries
of S should be bounded by q < 2n in order to choose z. If q ≥ 2n, the simulator
may not work. So, we assume that q < 2n.

The bound of the number of possible input message. Firstly, in 002
and 003, there exists at most one M ′ such that e∗1(M

′) = x by the process of
selecting z which is not in the set C in line 003. This first observation corresponds
to Lemma 1 in [3]. Secondly, in line 003, by the process of selecting z which is
not in the set I, the following holds : if e1(x, m) is already defined under the
assumption that e∗1(M

′) 6= x for all previously defined M ′, no M can be newly
defined such that e∗1(M) = x. This second observation corresponds to the second
part of proof of Lemma 2 in [3].

Some Important Observations on the Simulator Schop

The bound of the number of queries. In line 002, the number q of queries
of S should be bounded by q < 2s in order to choose z. If q ≥ 2s, the simulator
may not work. So, we assume that q < 2s.

The bound of the number of possible input message. Firstly, in 002 and
003, there exists at most one M ′ such that e∗1(M

′) = x by the process of selecting

z which is not in the set C. This first observation corresponds to Lemma 1 in
[3]. Secondly, in line 003, by the process of selecting z which is not in the set
I, the following holds : if e1(x, m) is already defined under the assumption that
e∗1(M

′) 6= x for all previously defined M ′, no M can be newly defined such that
e∗1(M) = x. This second observation corresponds to the second part of proof of
Lemma 2 in [3].

Some Important Observations on the Simulator SchopMDP

The bound of the number of queries. In line 003, the number q of queries
of S should be bounded by q < 2n/2 in order to choose z. If q ≥ 2n/2, the
simulator may not work. So, we assume that q < 2n/2.

The bound of the number of possible input message. Firstly, in 002 and
003, there exists at most one M ′ such that e∗1(M

′) = x by the process of selecting
z which is not in the set C. This first observation corresponds to Lemma 1 in
[3]. Secondly, in line 003, by the process of selecting z which is not in the set
I, the following holds : if e1(x, m) is already defined under the assumption that
e∗1(M

′) 6= x and e∗1(M
′) 6= x ⊕ P for all previously defined M ′, no M can be

newly defined such that e∗1(M) = x or e∗1(M) = x ⊕ P . This second observation
corresponds to the second part of proof of Lemma 2 in [3].

Some Important Observations on the Simulator SchopW P H

The bound of the number of queries. In line 002, the number q of queries
of S should be bounded by q < 2n in order to choose z. If q ≥ 2n, the simulator
may not work. So, we assume that q < 2n.

The bound of the number of possible input message. Firstly, in 002 and
005, there exists at most one M ′ such that e∗1(M

′) = x by the process of selecting
z which is not in the set C. This first observation corresponds to Lemma 1 in
[3]. Secondly, in line 002, by the process of selecting z which is not in the set
I, the following holds : if e1(x, m) is already defined under the assumption that
e∗1(M

′) 6= x for all previously defined M ′, no M can be newly defined such that
e∗1(M) = x. This second observation corresponds to the second part of proof of
Lemma 2 in [3].

Some Important Observations on the Simulator SchopEMD

The bound of the number of queries. In line 003, the number q of queries
of S should be bounded by q < 2n − 1 in order to choose z. If q ≥ 2n − 1, the
simulator may not work. So, we assume that q < 2n − 1.

The bound of the number of possible input message. Firstly, in 002
and 003, there exists at most one M ′ such that e∗1(M

′) = x by the process of

selecting z which is not in the set C in line 003. This first observation corresponds
to Lemma 1 in [3]. Secondly, in line 003, by the process of selecting z which is
not in the set I, the following holds : if e1(x, m) is already defined under the
assumption that e∗1(M

′) 6= x for all previously defined M ′, no M can be newly
defined such that e∗1(M) = x. This second observation corresponds to the second
part of proof of Lemma 2 in [3].

Some Important Observations on the Simulator SchopNI

The bound of the number of queries. In line 003, the number q of queries
of S should be bounded by q < 2n in order to choose z. If q ≥ 2n, the simulator
may not work. So, we assume that q < 2n.

The bound of the number of possible input message. Firstly, in 002
and 003, there exists at most one M ′ such that e∗1(M

′) = x by the process of
selecting z which is not in the set C in line 003. This first observation corresponds
to Lemma 1 in [3]. Secondly, in line 003, by the process of selecting z which is
not in the set I, the following holds : if e1(K1, x, m) is already defined under the
assumption that e∗1(M

′) 6= x for all previously defined M ′, no M can be newly
defined such that e∗1(M) = x. This second observation corresponds to the second
part of proof of Lemma 2 in [3].

Some Important Observations on the Simulator SchopCS

The bound of the number of queries. In line 003, the number q of queries
of S should be bounded by q < 2n − 1 in order to choose z. If q ≥ 2n − 1, the
simulator may not work. So, we assume that q < 2n − 1.

The bound of the number of possible input message. Firstly, in 002
and 003, there exists at most one M ′ such that e∗1(M

′) = x by the process of
selecting z which is not in the set C in line 003. This first observation corresponds
to Lemma 1 in [3]. Secondly, in line 003, by the process of selecting z which is
not in the set I, the following holds : if e1(K, x, m) is already defined under the
assumption that e∗1(M

′) 6= x for all previously defined M ′, no M can be newly
defined such that e∗1(M) = x. This second observation corresponds to the second
part of proof of Lemma 2 in [3].

Some Important Observations on the Simulator SchopESh

The bound of the number of queries. In line 003, the number q of queries
of S should be bounded by q < (2n−1)/3 in order to choose z. If q ≥ (2n−1)/3,
the simulator may not work. So, we assume that q < (2n − 1)/3.

The bound of the number of possible input message. Firstly, in 002 and
003, there exists at most one M ′ such that e∗1(M

′) = x⊕Kµ(i) by the process of

selecting z unrelated to the set C in line 003. This first observation corresponds
to Lemma 1 in [3]. Secondly, in line 002 and 003, by the process of selecting z
which is not in the set I in line 003, the following holds : if e1(K, x, m) is already
defined under the assumption that e∗1(M

′) 6= x ⊕ Kµ(i) for for all previously
defined M ′, where ||M ′||b = i − 1, then no M can be newly defined such that
e∗1(M) = x ⊕ Kµ(j), where ||M ||b = j − 1. This second observation corresponds
to the second part of proof of Lemma 2 in [3].

4 Indifferentiable Security Analysis of choppfMD,

chopMD, chopMDP, chopWPH, chopEMD, chopNI,

chopCS, and chopESh Hash Domain Extensions

We will describe the indifferentiable security bound of each domain extension
using the notion cost of queries. We let the cost be q. For example, with the cost q
of queries, A can have access to O2 q times and no access to O1. By observations
of simulators described in previous section, the following Lemma holds, where for
choppfMD T = 2n, for chopMD T = 2s, for chopMDP T = 2n/2, for chopWPH
T = 2n, for chopEMD T = 2n − 1, for chopNI T = 2n, for chopCS T = 2n − 1,
and for chopESh T = (2n − 1)/3.

Lemma 2. Let q < T . When the total cost of queries to O1 is t less than q or
equal, the queries to O1 can be converted to t queries to O2, where O2 gives at
least the same amount of information to an attacker A and has no higher cost
than O1.

Proof. The proof is the same as that of Lemma 3 in [3]. �

Above Lemma says that to give all queries to O2 and no query to O1 is the
best strategy to obtain better computational distance. That is, when the cost of
queries is bound by q, for any A there is an attacker B such that the following
holds :

AdvA((Hf , f), (R, S)) ≤ AdvB(f, S),

where Hf=choppfMDf
g or chopMDf

g or chopMDPf
g or chopWPHf1,f2

g or Hf=chopEMDf
g

or chopNIfg or chopCSf
g or chopEShf

g , and S=SchoppfMD or SchopMD or SchopMDP

or SchopWPH or S=SchopEMD or SchopNI or SchopCS or SchopESh, respectively.
Therefore, we focus on computing the upper bound of the computational dis-
tance between f and S as shown in the following theorems.

Theorem 2. Let q < 2n be the number of queries and 0 ≤ s < n. f : {0, 1}n+b →
{0, 1}n is a FIL random oracle. SchoppfMD is the simulator defined in the pre-
vious section. Then for any (deterministic or probabilistic) algorithm A

AdvA(f, SchoppfMD) ≤ q(q+1)
2n+1 .

Proof. See the Appendix.

Theorem 3. Let q < min(2n−s−1, 2s) be the number of queries and 0 ≤ s < n.
f : {0, 1}n+b → {0, 1}n is a FIL random oracle. SchopMD is the simulator defined
in the previous section. Then for any (deterministic or probabilistic) algorithm
A

AdvA(f, SchopMD) ≤ (n−s)q
2s + q

2n−s .

Proof. See the Appendix.

Theorem 4. Let q < 2n/2 be the number of queries and 0 ≤ s < n. f :
{0, 1}n+b → {0, 1}n is a FIL random oracle. SchopMDP is the simulator defined
in the previous section. Then for any (deterministic or probabilistic) algorithm
A

AdvA(f, SchopMDP) ≤ q2

2n .

Proof. See the Appendix.

Theorem 5. Let q < 2n be the number of queries and 0 ≤ s < n. f1 :
{0, 1}w+b → {0, 1}w and f2 : {0, 1}w → {0, 1}n are independent FIL random
oracles. SchopWPH is the simulator defined in the previous section. Then for any
(deterministic or probabilistic) algorithm A

AdvA((f1, f2), SchopWPH) ≤ q(q+1)
2w+1 .

Proof. See the Appendix.

Theorem 6. Let q < 2n − 1 be the number of queries and 0 ≤ s < n. f :
{0, 1}n+b → {0, 1}n is a FIL random oracle. SchopEMD is the simulator defined
in the previous section. Then for any (deterministic or probabilistic) algorithm
A

AdvA(f, SchopEMD) ≤ q(q+3)
2n+1 .

Proof. See the Appendix.

Theorem 7. Let q < 2n be the number of queries and 0 ≤ s < n. f : {0, 1}n+b →
{0, 1}n is a FIL random oracle. SchopNI is the simulator defined in the previous
section. Then for any (deterministic or probabilistic) algorithm A

AdvA(f, SchopNI) ≤
q(q+1)
2n+1 .

Proof. See the Appendix.

Theorem 8. Let q < 2n − 1 be the number of queries and 0 ≤ s < n. f :
{0, 1}n+b → {0, 1}n is a FIL random oracle. SchopCS is the simulator defined in
the previous section. Then for any (deterministic or probabilistic) algorithm A

AdvA(f, SchopCS) ≤ q(q+3)
2n+1 .

Proof. See the Appendix.

Theorem 9. Let q < (2n − 1)/3 be the number of queries and 0 ≤ s < n.
f : {0, 1}n+b → {0, 1}n is a FIL random oracle. SchopESh is the simulator defined
in the previous section. Then for any (deterministic or probabilistic) algorithm
A

AdvA(f, SchopESh) ≤ q(3q+1)
2n .

Proof. See the Appendix.

From Lemma 2 and Theorem 2-10, we can get indiffrerentiable security
bounds of choppfMD, chopMD, chopMDP, chopWPH, chopEMD, chopNI, chopCS,
and chopESh as the following corollaries, respectively.

Corollary 1. Let q < 2n be the cost of queries and 0 ≤ s < n. f : {0, 1}n+b →
{0, 1}n is a FIL random oracle. SchoppfMD is the simulator defined in the pre-
vious section. Then for any attacker A

AdvA((choppfMDf
g , f), (R, SchoppfMD)) ≤ q(q+1)

2n+1 .

Corollary 2. Let q < min(2n−s−1, 2s) be the cost of queries and 0 ≤ s < n.
f : {0, 1}n+b → {0, 1}n is a FIL random oracle. SchopMD is the simulator defined
in the previous section. Then for any attacker A

AdvA((chopMDf
g , f), (R, SchopMD)) ≤ (n−s)q

2s + q
2n−s .

Corollary 3. Let q < 2n/2 be the cost of queries and 0 ≤ s < n. f : {0, 1}n+b →
{0, 1}n is a FIL random oracle. SchopMDP is the simulator defined in the previous
section. Then for any attacker A

AdvA((chopMDPf
g , f), (R, SchopMDP)) ≤ q2

2n .

Corollary 4. Let q < 2n be the cost of queries and 0 ≤ s < n. f1 : {0, 1}w+b →
{0, 1}w and f2 : {0, 1}w → {0, 1}n are independent FIL random oracles. SchopWPH

is the simulator defined in the previous section. Then for any attacker A

AdvA((chopWPHf1,f2
g , f), (R, SchopWPH)) ≤ q(q+1)

2w+1 .

Corollary 5. Let q < 2n − 1 be the cost of queries and 0 ≤ s < n. f :
{0, 1}n+b → {0, 1}n is a FIL random oracle. SchopEMD is the simulator defined
in the previous section. Then for any attacker A

AdvA((chopEMDf
g , f), (R, SchopEMD)) ≤ q(q+3)

2n+1 .

Corollary 6. Let q < 2n be the cost of queries and 0 ≤ s < n. f : {0, 1}n+b →
{0, 1}n is a FIL random oracle. SchopNI is the simulator defined in the previous
section. Then for any attacker A

AdvA((chopNIfg , f), (R, SchopNI)) ≤
q(q+1)

2n .

Corollary 7. Let q < 2n − 1 be the cost of queries and 0 ≤ s < n. f :
{0, 1}n+b → {0, 1}n is a FIL random oracle. SchopCS is the simulator defined in
the previous section. Then for any attacker A

AdvA((chopCSf
g , f), (R, SchopCS)) ≤ q(q+3)

2n+1 .

Corollary 8. Let q < (2n − 1)/3 be the cost of queries and 0 ≤ s < n. f :
{0, 1}n+b → {0, 1}n is a FIL random oracle. SchopESh is the simulator defined
in the previous section. Then for any attacker A

AdvA((chopEShf
g , f), (R, SchopESh)) ≤ q(3q+1)

2n+1 .

5 Conclusion

Till now, most of previous indifferentiable security analysis are difficult to follow
and check the validness of security. In this paper, we have provided indifferen-
tiable security anlalyses of eight constructions and their truncated versions with
the technique introduced in [3]. Our proof is clear and very easy to follow and
simple. We also give how to prove the indifferentiable security of any hash domain
extension. By similar methods, other different domain extensions including their
truncated versions can be proved. We expect that designers of new hash func-
tions can easily prove the indifferentiable security of their constructions. Even
though we only consider the security of single block length domain extensions
in the random oracle model, it is also easy to prove the security of constructions
based on a block cipher in the ideal cipher model and generalize our results into
any block length construction. We remain it as a future work.

References

1. J. H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Message au-
thentication under weakened assumptions. In Crypto’1999, volume 1666 of Lecture

Notes in Computer Science, pages 252–269, Springer-Verlag, 1999.

2. E. Andreeva, C. Bouillaguet, P. Fouque, J. J. Hoch, J. Kelsey, A. Shamir, and S.
Zimmer. Second Preimage Attacks on Dithered Hash Functions. In Eurocrypt’2008,
volume 4965 of Lecture Notes in Computer Science, pages 270–288, Springer-Verlag,
2008.

3. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the Indifferentiability
of the Sponge Construction. In Eurocrypt’2008, volume 4965 of Lecture Notes in

Computer Science, pages 181–197, Springer-Verlag, 2008.

4. M. Bellare and P. Rogaway. Random Oracles Are Practical : A Paradigm for De-
signing Efficient Protocols. In 1st Conference on Computing and Communications

Security, ACM, pages 62–73, 1993.

5. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In Asiacrypt’2006, volume 4284 of Lecture Notes in Com-

puter Science, pages 299–314, Springer-Verlag, 2006.

6. M. Bellare and T. Ristenpart. Hash Functions in the Dedicated-Key Setting : Design
Choices and MPP Transforms. In ICALP’2007, volume 4596 of Lecture Notes in

Computer Science, pages 399–410, Springer-Verlag, 2007.

7. E. Biham and O. Dunkelman. A Framework for Iterative Hash Functions - HAIFA.
In The second NIST Hash Workshop, 2006.

8. D. Chang, S. Lee, M. Nandi and M. Yung. Indifferentiable Security Analysis of
Popular Hash Functions with Prefix-Free Padding. In Asiacrypt’2006, volume 4284

of Lecture Notes in Computer Science, pages 283–298, Springer-Verlag, 2006.

9. D. Chang and M. Nandi. Improved Indifferentiability Security Proof of chopMD
Hash Function. In FSE’2008, volume 5086 of Lecture Notes in Computer Science,
pages 429–443, Springer-Verlag, 2008.

10. J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard Revisited:
How to Construct a Hash Function. In Advances in Cryptology-Crypto’2005, volume
3621 of Lecture Notes in Computer Science, pages 430–448, Springer-Verlag, 2005.

11. I. B. Damgard. A design principle for hash functions. In Advances in Cryptology-

Crypto’1989, volume 435 of Lecture Notes in Computer Science, pages 416–427,
Springer-Verlag, 1989.

12. S. Hirose, J. H. Park and A. Yun. A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In Asiacrypt’2007, volume 4833 of Lecture Notes in Computer

Science, pages 113–129, Springer-Verlag, 2007.

13. J. Kelsey and T. Kohno. Herding Hash Functions and the Nostradamus Attack. In
Advances in Cryptology-Eurocrypt’2006, volume 4004 of Lecture Notes in Computer

Science, pages 183–200, Springer-Verlag, 2006.

14. J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less
than 2n work. In Advances in Cryptology-Eurocrypt’2005, volume 3494 of Lecture

Notes in Computer Science, pages 474–490, Springer-Verlag, 2005.

15. X. Lai and J. L. Massey. Hash Functions Based on Block Ciphers. In Advances in

Cryptology-Eurocrypt’1992, volume 658 of Lecture Notes in Computer Science, pages
55–70, Springer-Verlag, 1993.

16. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Advances

in Cryptology-Asiacrypt’20052, volume 3788 of Lecture Notes in Computer Science,
pages 474–494, Springer-Verlag, 2005.

17. U. Maurer, R. Renner and C. Holenstein. Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. In TCC’2004,
volume 2951 of Lecture Notes in Computer Science, pages 21–39, Springer-Verlag,
2004.

18. U. Maurer and J. Sjödin. Single-key AIL-MACs from any FIL-MAC. In
ICALP’2005, volume 3580 of Lecture Notes in Computer Science, pages 472–484,
Springer-Verlag, 2005.

19. Ueli Maurer and Stefano Tessaro. Domain Extension of Public Random Functions:
Beyond the Birthday Barrier. In Advances in Cryptology-Crypto’2007, volume 4622

of Lecture Notes in Computer Science, pages 187–204, Springer-Verlag, 2007.

20. R. C. Merkle. One way hash functions and DES. In Advances in Cryptology-

Crypto’1989, volume 435 of Lecture Notes in Computer Science, pages 428–446,
Springer-Verlag, 1990.

21. R. L. Rivest. Abelian square-free dithering for iterated hash functions. In the

second NIST hash workshop, 2005.

Appendix.

Proof of Theorem 2. Let S be SchoppfMD. By Lemma 1, we only focus on
computing an upper bound of Stat(f, S). Note that Stat(f, S) is defined over all
deterministic algorithms. So when the oracle is f , the number of possible views
is 2nq. And for any deterministic algorithm A, each view occurs with probability
1/2nq. We let the set of 2nq possible views be VA. On the other hand, when the
oracle is S, the number of possible views is at least (2n − 1)(2n − 2) · · · (2n − q).
We let the set of least possible views be TS and the size of TS be rq. Since we
want to compute an upper bound of Stat(f, S), we assume that each of TS views
occurs with probability 1/rq. Therefore,

StatA(f, S)
= 1

2

∑
v∈VA

|Pr[f = v] − Pr[S = v]|

= 1
2

∑
v∈VA\TS

|Pr[f = v] − Pr[S = v]| + 1
2

∑
v∈TS

|Pr[f = v] − Pr[S = v]|

≤ 1
2

∑
v∈VA\TS

| 1
2nq − 0| + 1

2

∑
v∈TS

| 1
2nq − 1

rq
|

= 1
2 ·

2nq−rq

2nq + 1
2 · |

rq

2nq −
rq

rq
|

= 1
2 · (1 −

rq

2nq) + 1
2 · (1 −

rq

2nq)
= 1 −

rq

2nq

= 1 −
∏q

i=1(1 − i
2n)

≤
∑q

i=1(
i

2n) (by Ineq 1.)

= q(q+1)
2n+1 . �

Proof of Theorem 3. Let S be SchopMD. By Lemma 1, we only focus on com-
puting an upper bound of Stat(f, S). Note that Stat(f, S) is defined over all
deterministic algorithms. We define an event Bad as follows : for given a view v,
there is no r-multicollision in the most significant n− s bits of yi’s (which is the
most significant n−s bits of outputs of S or f) of the view v. when the oracle is f ,
the number of possible views is 2nq. And for any deterministic algorithm A, each
view occurs with probability 1/2nq. We let the set of 2nq possible views be VA.
On the other hand, when the oracle is S and Bad occurs, the number of possible
views is at least 2(n−s)q(2s − r)q by the process of choosing w and y in line 002
of S. We let the set of least possible views be TS and the size of TS be rq. Since
we want to compute an upper bound of Stat(f, S), we assume that each of TS

views occurs with probability 1/rq. And for f and S, the most significant n − s
bits of their outputs are chosen uniformly at random. So, the probability that
the event Bad does not occur is computed as follows : We let µ(n−s, r, q) be the
probability that there is a r-multicollision in the most significant n−s bits of yi’s
of the view v. As described in [9], by counting the number of r pairs computable

from q responses, we can know that µ(n− s, r, q) ≤
(q

r)
2(n−s)(r−1) . Especially, when

r = n − s, µ(n − s, r, q) ≤
(q

r)
2(n−s)(r−1) < qr

2n−s(r−1) = (q
2n−s)n−s−1 ≤ q

2n−s , where

q ≤ 2n−s−1. Therefore,

StatA(f, S)
= 1

2

∑
v∈VA∧Bad |Pr[F = v] − Pr[G = v]|

+ 1
2

∑
v∈VA∧Bad Pr[F = v] + 1

2

∑
v∈VA∧Bad Pr[G = v] (by Lemma 2.)

≤ 1
2

∑
v∈VA∧Bad |Pr[F = v] − Pr[G = v]| + 1

2
q

2n−s + 1
2

q
2n−s

= 1
2

∑
v∈(VA\TS)∧Bad |Pr[F = v] − Pr[G = v]|

+ 1
2

∑
v∈TS∧Bad |Pr[F = v] − Pr[G = v]| + q

2n−s

≤ 1
2

∑
v∈(VA\TS)∧Bad |

1
2nq − 0| + 1

2

∑
v∈TS∧Bad |

1
2nq − 1

rq
| + q

2n−s

≤ 1
2 · (2nq − rq) · |

1
2nq − 0| + 1

2 · rq · |
1

2nq − 1
rq
| + q

2n−s

= 1 −
rq

2nq + q
2n−s

= 1 −
∏q

i=1(1 − r
2s) + q

2n−s

≤
∑q

i=1(
r
2s) + q

2n−s (by Ineq 1.)

= rq
2s + q

2n−s = (n−s)q
2s + q

2n−s � (by r = n − s.)

Proof of Theorem 4. Let S be SchopMDP . By Lemma 1, we only focus on com-
puting an upper bound of Stat(f, S). Note that Stat(f, S) is defined over all
deterministic algorithms. So when the oracle is f , the number of possible views
is 2nq. And for any deterministic algorithm A, each view occurs with probability
1/2nq. We let the set of 2nq possible views be VA. On the other hand, when the
oracle is S, the number of possible views is at least (2n−1)(2n−3) · · · (2n−2q+1).
We let the set of least possible views be TS and the size of TS be rq. Since we
want to compute an upper bound of Stat(f, S), we assume that each of TS views
occurs with probability 1/rq. Therefore,

StatA(f, S)
= 1

2

∑
v∈VA

|Pr[f = v] − Pr[S = v]|

= 1
2

∑
v∈VA\TS

|Pr[f = v] − Pr[S = v]| + 1
2

∑
v∈TS

|Pr[f = v] − Pr[S = v]|

≤ 1
2

∑
v∈VA\TS

| 1
2nq − 0| + 1

2

∑
v∈TS

| 1
2nq − 1

rq
|

= 1
2 ·

2nq−rq

2nq + 1
2 · |

rq

2nq −
rq

rq
|

= 1
2 · (1 −

rq

2nq) + 1
2 · (1 −

rq

2nq)
= 1 −

rq

2nq

= 1 −
∏q

i=1(1 − 2i−1
2n)

≤
∑q

i=1(
2i−1
2n) (by Ineq 1.)

= q2

2n . �

Proof of Theorem 5. Let S be SchopWPH . By Lemma 1, we only focus on
computing an upper bound of Stat(f = (f1, f2), S). Note that Stat((f1, f2), S)
is defined over all deterministic algorithms. So when the oracles are (f1, f2), the
number of possible views is 2wq1+nq2 , where q = q1 + q2. And for any determin-
istic algorithm A, each view occurs with probability 1/2wq1+nq2 . We let the set
of 2wq1+nq2 possible views be VA. On the other hand, when the oracle is S, the
number of possible views is at least (2w − 1)(2w − 2) · · · (2w − q1)(2

n)q2 . We let
the set of least possible views be TS and the size of TS be rq . Since we want to
compute an upper bound of Stat(f, S), we assume that each of TS views occurs

with probability 1/rq. Therefore,

StatA(f, S)
= 1

2

∑
v∈VA

|Pr[f = v] − Pr[S = v]|

= 1
2

∑
v∈VA\TS

|Pr[f = v] − Pr[S = v]| + 1
2

∑
v∈TS

|Pr[f = v] − Pr[S = v]|

≤ 1
2

∑
v∈VA\TS

| 1
2wq1+nq2

− 0| + 1
2

∑
v∈TS

| 1
2wq1+nq2

− 1
rq
|

= 1
2 ·

2wq1+nq2−rq

2wq1+nq2
+ 1

2 · |
rq

2wq1+nq2
−

rq

rq
|

= 1
2 · (1 −

rq

2wq1+nq2
) + 1

2 · (1 −
rq

2wq1+nq2
)

= 1 −
rq

2wq1+nq2

= 1 −
∏q1

i=1(1 − i
2w)

≤
∑q1

i=1(
i

2w) (by Ineq 1.)

= q1(q1+1)
2w+1

≤ q(q+1)
2w+1 . �

Proof of Theorem 6. Let S be SchopEMD. By Lemma 1, we only focus on com-
puting an upper bound of Stat(f, S). Note that Stat(f, S) is defined over all
deterministic algorithms. So when the oracle is f , the number of possible views
is 2nq. And for any deterministic algorithm A, each view occurs with probability
1/2nq. We let the set of 2nq possible views be VA. On the other hand, when the
oracle is S, the number of possible views is at least (2n − 2)(2n − 3) · · · (2n − q).
We let the set of least possible views be TS and the size of TS be rq. Since we
want to compute an upper bound of Stat(f, S), we assume that each of TS views
occurs with probability 1/rq. Therefore,

StatA(f, S)
= 1

2

∑
v∈VA

|Pr[f = v] − Pr[S = v]|

= 1
2

∑
v∈VA\TS

|Pr[f = v] − Pr[S = v]| + 1
2

∑
v∈TS

|Pr[f = v] − Pr[S = v]|

≤ 1
2

∑
v∈VA\TS

| 1
2nq − 0| + 1

2

∑
v∈TS

| 1
2nq − 1

rq
|

= 1
2 ·

2nq−rq

2nq + 1
2 · |

rq

2nq −
rq

rq
|

= 1
2 · (1 −

rq

2nq) + 1
2 · (1 −

rq

2nq)
= 1 −

rq

2nq

= 1 −
∏q

i=1(1 − i+1
2n)

≤
∑q

i=1(
i+1
2n) (by Ineq 1.)

= q(q+3)
2n+1 . �

Proof of Theorem 7. Let S be SchopNI . By Lemma 1, we only focus on com-
puting an upper bound of Stat(f, S). Note that Stat(f, S) is defined over all
deterministic algorithms. So when the oracle is f , the number of possible views
is 2nq. And for any deterministic algorithm A, each view occurs with probability
1/2nq. We let the set of 2nq possible views be VA. On the other hand, when the
oracle is S, the number of possible views is at least (2n − 1)(2n − 2) · · · (2n − q).
We let the set of least possible views be TS and the size of TS be rq. Since we

want to compute an upper bound of Stat(f, S), we assume that each of TS views
occurs with probability 1/rq. Therefore,

StatA(f, S)
= 1

2

∑
v∈VA

|Pr[f = v] − Pr[S = v]|

= 1
2

∑
v∈VA\TS

|Pr[f = v] − Pr[S = v]| + 1
2

∑
v∈TS

|Pr[f = v] − Pr[S = v]|

≤ 1
2

∑
v∈VA\TS

| 1
2nq − 0| + 1

2

∑
v∈TS

| 1
2nq − 1

rq
|

= 1
2 ·

2nq−rq

2nq + 1
2 · |

rq

2nq −
rq

rq
|

= 1
2 · (1 −

rq

2nq) + 1
2 · (1 −

rq

2nq)
= 1 −

rq

2nq

= 1 −
∏q

i=1(1 − i
2n)

≤
∑q

i=1(
i

2n) (by Ineq 1.)

= q(q+1)
2n+1 . �

Proof of Theorem 8. Let S be SchopCS. By Lemma 1, we only focus on com-
puting an upper bound of Stat(f, S). Note that Stat(f, S) is defined over all
deterministic algorithms. So when the oracle is f , the number of possible views
is 2nq. And for any deterministic algorithm A, each view occurs with probability
1/2nq. We let the set of 2nq possible views be VA. On the other hand, when the
oracle is S, the number of possible views is at least (2n − 2)(2n − 3) · · · (2n − q).
We let the set of least possible views be TS and the size of TS be rq. Since we
want to compute an upper bound of Stat(f, S), we assume that each of TS views
occurs with probability 1/rq. Therefore,

StatA(f, S)
= 1

2

∑
v∈VA

|Pr[f = v] − Pr[S = v]|

= 1
2

∑
v∈VA\TS

|Pr[f = v] − Pr[S = v]| + 1
2

∑
v∈TS

|Pr[f = v] − Pr[S = v]|

≤ 1
2

∑
v∈VA\TS

| 1
2nq − 0| + 1

2

∑
v∈TS

| 1
2nq − 1

rq
|

= 1
2 ·

2nq−rq

2nq + 1
2 · |

rq

2nq −
rq

rq
|

= 1
2 · (1 −

rq

2nq) + 1
2 · (1 −

rq

2nq)
= 1 −

rq

2nq

= 1 −
∏q

i=1(1 − i+1
2n)

≤
∑q

i=1(
i+1
2n) (by Ineq 1.)

= q(q+3)
2n+1 . �

Proof of Theorem 9. Let S be SchopESh. By Lemma 1, we only focus on com-
puting an upper bound of Stat(f, S). Note that Stat(f, S) is defined over all
deterministic algorithms. So when the oracle is f , the number of possible views
is 2nq. And for any deterministic algorithm A, each view occurs with probability
1/2nq. We let the set of 2nq possible views be VA. On the other hand, when the
oracle is S, the number of possible views is at least (2n−2)(2n−5) · · · (2n−3q+1).
We let the set of least possible views be TS and the size of TS be rq. Since we
want to compute an upper bound of Stat(f, S), we assume that each of TS views

occurs with probability 1/rq. Therefore,

StatA(f, S)
= 1

2

∑
v∈VA

|Pr[f = v] − Pr[S = v]|

= 1
2

∑
v∈VA\TS

|Pr[f = v] − Pr[S = v]| + 1
2

∑
v∈TS

|Pr[f = v] − Pr[S = v]|

≤ 1
2

∑
v∈VA\TS

| 1
2nq − 0| + 1

2

∑
v∈TS

| 1
2nq − 1

rq
|

= 1
2 ·

2nq−rq

2nq + 1
2 · |

rq

2nq −
rq

rq
|

= 1
2 · (1 −

rq

2nq) + 1
2 · (1 −

rq

2nq)
= 1 −

rq

2nq

= 1 −
∏q

i=1(1 − 3i−1
2n)

≤
∑q

i=1(
3i−1
2n) (by Ineq 1.)

= q(3q+1)
2n+1 . �

