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Abstract. In Shamir’s (k, n)-threshold secret sharing scheme (threshold
scheme), a heavy computational cost is required to make n shares and
recover the secret. As a solution to this problem, several fast thresh-
old schemes have been proposed. This paper proposes a new (k, n)-
threshold scheme. For the purpose to realize high performance, the pro-
posed scheme uses just EXCLUSIVE-OR(XOR) operations to make shares
and recover the secret. We prove that the proposed scheme is a perfect
secret sharing scheme, every combination of k or more participants can
recover the secret, but every group of less than k participants cannot
obtain any information about the secret. Moreover, we show that the
proposed scheme is an ideal secret sharing scheme similar to Shamir’s
scheme, which is a perfect scheme such that every bit-size of shares
equals that of the secret. We also evaluate the efficiency of the scheme,
and show that our scheme realizes operations that are much faster than
Shamir’s. Furthermore, from the aspect of both computational cost and
storage usage, we also introduce how to extend the proposed scheme to a
new (k, L, n)-threshold ramp scheme similar to the existing ramp scheme
based on Shamir’s scheme.

Key words: secret sharing scheme, threshold scheme, threshold ramp
scheme, exclusive-or, entropy, random number, ideal secret sharing scheme

1 Introduction

A secret sharing scheme is an important tool for distributed file systems pro-
tected against data leakage and destruction, secure key management systems,
etc. The basic idea of secret sharing introduced by Shamir and Blakley inde-
pendently[1, 2] is that a dealer distributes a piece of information (called a share)
about the secret to each participant such that qualified subsets of participants
can recover the secret but unqualified subsets of participants cannot obtain any
information about the secret. Shamir’s threshold scheme is based on polynomial
interpolation (‘Lagrange interpolation’) to allow any k out of n participants to
recover the secret.
? An extended abstract of this paper appeared in ISC’08.
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However, Shamir’s scheme has two problems: large storage is required to
retain all the shares, and heavy computational cost is needed to make shares
and recover the secret due to processing a (k − 1)-degree polynomial.

In order to reduce each bit-size of shares in Shamir’s scheme, ramp secret
sharing schemes have been proposed [3–7] that involve a trade-off between se-
curity and storage usage. In ramp schemes, we can consider intermediate sets,
which are neither qualified nor forbidden sets to recover the secret, and hence,
partially leak information on the secret. For instance, in the (k, L, n)-threshold
ramp scheme[3, 4], we can recover the secret from arbitrary k or more shares,
but no information about the secret can be obtained from any k − L or less
shares. Furthermore, we can realize that every bit-size of shares is 1/L of the
bit-size of the secret. However, an arbitrary set of k− l shares is an intermediate
set which leaks information about the secret with equivocation (l/L)H(S) for
l = 1, 2, . . . , L, where S denotes the random variable induced by the secret s.

On the other hand, as a solution to the heavy computational cost problem
associated with Shamir’s scheme with no leak of information about the secret
from k− 1 or less shares, Ishizu et al. proposed a fast (2, 3)-threshold scheme[8].
By generalizing Ishizu et al.’s scheme for the number of participants, Fujii et
al. introduced a fast (2, n)-threshold scheme[9, 10]. These schemes enable fast
computation to make shares and recover the secret from two or more shares by
using just EXCLUSIVE-OR(XOR) operations. In these schemes, no information
about the secret can be obtained from one share, but the secret can be recovered
from each pair of shares. Furthermore, every bit-size of shares equals the bit-size
of the secret as with Shamir’s scheme. Especially, in Fujii et al.’s scheme, shares
are constructed by concatenating XORed terms of a divided piece of the secret
and a random number with the properties of prime numbers. These XORed
terms are circulated in a specific pattern and do not overlap with each other.
Kurihara et al. proposed a fast (3, n)-threshold scheme using XOR operations[11]
as an extension of Fujii et al.’s scheme by constructing shares with the secret and
two sets of random numbers, which are concatenated XORed terms of a divided
piece of the secret and two random numbers. This (3, n)-threshold scheme is an
ideal scheme as with Shamir’s and Fujii et al.’s. Since no method has ever been
investigated to extend the circulation property of this (3, n)-threshold scheme,
an extension of this (3, n)-threshold scheme has not been proposed before.

Shiina et al. proposed another fast (k, n)-threshold scheme using XOR or
additive operations[12]. This scheme can be applied to a cipher or signature
which uses a homomorphism, and leaks no information about the secret from
less than k shares. However, every bit-size of shares is (nCk−n−1Ck) = O(nk−1)
times as large as the bit-size of the secret. To address this efficiency problem,
Kunii et al. introduced an alternative method[13] to construct shares in Shiina
et al.’s scheme. However, the bit-size of shares is log2 n or more times larger than
the bit-size of the secret.

Thus, how to construct a fast (k, n)-threshold scheme using XOR operations
such that every bit-size of shares equals the bit-size of the secret, where k ≥ 4
and arbitrary n, remained an open question.
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Our Contributions. In this paper, we present a new (k, n)-threshold scheme
which realizes fast computation to make shares and recover the secret by using
just XOR operations. Our contribution can be summarized as follows:

– We realize a new (k, n)-threshold scheme by constructing shares with the
secret and k − 1 sets of random numbers, which are concatenated XORed
terms of a divided piece of the secret and k − 1 random numbers. These
XORed terms are circulated in a specific pattern with k dimensions, and do
not overlap with each other because the properties of prime numbers are
used.

– We show that the proposed scheme is a perfect secret sharing scheme, every
combination of k or more participants can recover the secret, but every group
of less than k participants cannot obtain any information about the secret.
We also show that the proposed scheme is an ideal secret sharing scheme
similar to Shamir’s scheme, which is a perfect scheme such that every bit-
size of shares equals that of the secret.

– By an implementation on a PC, we show that the proposed scheme is able
to make n shares from the secret and recover the secret from k shares more
quickly than Shamir’s scheme if n is not extremely large. Under our imple-
mentation, our scheme performs the operations 900-fold faster than Shamir’s
for (k, n) = (3, 11).

– We introduce how to extend our (k, n)-threshold scheme to a new (k, L, n)-
threshold ramp scheme which realizes not only fast computation but also
reduction of storage usage to retain n shares.

Organization. The rest of this paper is organized as follows: In Section 2,
we give several notations and definitions, and provide a definition of the secret
sharing scheme. In Section 3.1 of Section 3, we propose a new (k, n)-threshold
scheme using just XOR operations. Moreover, in Section 3.3, we prove that our
(k, n)-threshold scheme is an ideal secret sharing scheme as with Shamir’s, and
the efficiency of the proposed scheme is discussed in Section 4. In Section 5, we
introduce how to extend our (k, n)-threshold scheme to a new (k, L, n)-threshold
ramp scheme. Finally, we present our conclusions in Section 6.

2 Preliminaries

2.1 Notations and Definitions

Throughout this paper, we use the following notations and definitions:

– ⊕ denotes a bit-wise EXCLUSIVE-OR(XOR) operation.
– ‖ denotes a concatenation of binary sequences.
– n ∈ N denotes the number of participants.
– np is a prime number such that np ≥ n.
– Values of indexes of random numbers, divided pieces of the secret, pieces

of shares, their XORed terms, and their random variables are elements of
GF (np). Hence, Xc(a±b) denotes Xc(a±b) mod np

.
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– H(X) denotes Shannon’s entropy of a random variable X.
– |X | denotes the number of elements of a finite set X .
– 2X denotes the family of all subsets of X .

2.2 Secret Sharing Scheme

Let P = {Pi | 0 ≤ i ≤ n − 1, i ∈ N0} be a set of n participants. Let D(6∈ P)
denote a dealer who selects a secret s ∈ S and gives a share wi ∈ Wi to every
participant Pi ∈ P, where S denotes the set of secrets, and Wi denotes the set
of possible shares that Pi might receive.

The access structure Γ (⊂ 2P) is a family of subsets of P which contains
the sets of participants qualified to recover the secret. Especially, Γ of a (k, n)-
threshold scheme is defined by Γ = {A ∈ 2P | |A| ≥ k}.

Let S and Wi be the random variables induced by s and wi, respectively. A
secret sharing scheme is perfect if

H(S|VA) =
{

0 (A ∈ Γ )
H(S) (A 6∈ Γ ) , (1)

where A ⊂ P denotes a subset, and VA = {Wi | Pi ∈ A} denotes the set of
random variables of shares that are given to every participant Pi ∈ A. For any
perfect secret sharing scheme, the inequation H(S) ≤ H(Wi) is satisfied[14, 15].

Let p(s) and p(wi) be the probability mass functions of S and Wi defined
as p(s) = Pr{S = s} and p(wi) = Pr{Wi = wi}, respectively. In general, the
efficiency of a secret sharing scheme is measured by the information rate ρ [16]
defined by

ρ =
H(S)

max
Pi∈P

H(Wi)
.

The maximum possible value of ρ equals one for perfect secret sharing schemes.
When the probability distributions on S and Wi are uniform, i.e. p(s) = 1/|S|
and p(wi) = 1/|Wi|, the information rate is

ρ =
log2 |S|

max
Pi∈P

log2 |Wi|
,

that is, the ratio between the length (bit-size) of the secret and the maximum
length of the shares given to participants. A secret sharing scheme is said to be
ideal if it is perfect and ρ = 1 [16–18]. Shamir’s scheme[1] is recognized as being
a typical ideal secret sharing scheme.

3 A (k, n)-Threshold Scheme

In this section, we describe the proposed (k, n)-threshold scheme. This scheme
enables to make n shares (distribution) and recover the secret from k or more
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Table 1. Distribution Algorithm of Pro-
posed (k, n)-Threshold Scheme

INPUT : s ∈ {0, 1}d(np−1)

OUTPUT : (w0, . . . , wn−1)

1: s0 ← 0d, s1 ‖ · · · ‖ snp−1 ← s

2: for i ← 0 to k − 2 do

3: for j ← 0 to np − 1 do

4: ri
j ← GEN({0, 1}d)

5: end for

6: end for (discard r0
np−1)

7: for i ← 0 to n − 1 do

8: for j ← 0 to np − 2 do

9: w(i,j) ←
“

Lk−2
h=0 rh

h·i+j

”

⊕ sj−i

10: end for

11: wi ← w(i,0) ‖ · · · ‖ w(i,np−2)

12: end for

13: return (w0, . . . , wn−1)

Table 2. Recovery Algorithm of Pro-
posed (k, n)-Threshold Scheme

INPUT : (wt0 , wt1 , . . . , wtk−1)

OUTPUT : s

1: for i ← 0 to k − 1 do

2: w(ti,0) ‖ · · · ‖ w(ti,np−2) ← wti

3: end for

4: w ← (w(t0,0), . . . , w(t0,np−2), . . . ,

w(tk−1,0), . . . , w(tk−1,np−2))
T

5: M ← MAT (t0, . . . , tk−1)

6: (s1, . . . , snp−1)
T ← M · w

7: s ← s1 ‖ · · · ‖ snp−1

8: return s

shares (recovery) using just XOR operations, for arbitrary threshold k and the
number of participants n. We realize this scheme by extending the circulation
property of Kurihara et al.’s (3, n)-threshold scheme[11]. Moreover, we show that
our scheme is an ideal scheme as with Shamir’s.

3.1 Our Scheme

In this scheme, the secret s ∈ {0, 1}d(np−1) needs to be divided equally into
np − 1 blocks s1, s2, . . . snp−1 ∈ {0, 1}d, where np is a prime number such that
np ≥ n, and d > 0 denotes the bit-size of every divided piece of the secret.
Also, D uses n shares, w0, · · · , wn−1, of a (k, np)-threshold scheme to construct
a (k, n)-threshold scheme if the desired number of participants n is a composite
number.

Table 1 and Table 4 denote the distribution algorithm and the structure of
shares in our (k, n)-threshold scheme, respectively. To make shares, our (k, n)-
threshold scheme requires 3 steps, where line 1, lines 2-6 and lines 6-13 in Table 1
denote the first, second and third step, respectively: First, D divides the secret
s ∈ {0, 1}d(np−1) into np − 1 pieces of d-bit sequence s1, . . . , snp−1 ∈ {0, 1}d

equally at line 1, where s0 denotes a d-bit zero sequence, i.e. s0 = 0d and
s0 ⊕ a = a. We call this d-bit zero sequence a ‘singular point’ of divided pieces
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Table 3. Algorithm of the Function MAT ()

INPUT : t0, t1, . . . , tk−1

OUTPUT : M

1: for i ← 0 to k − 1 do

2: for j ← 0 to np − 2 do

3: v(ti,j) ← V EC(ti, j) =
h

i
np−1
j i

np

ti+j i
np

2ti+j . . . i
np

(k−2)ti+j i
np−1
j−ti−1

i

4: end for

5: end for

6: G ← (v(t0,0), . . . ,v(tk−1,np−2))
T

7:

"

G2 G1 J1

Ø G0 J0

#

← FG
`ˆ

G Ik(np−1)

˜´

=
ˆ

Ḡ J
˜

8: [Inp−1 M] ← BG ([G0 J0])

9: return M

Table 4. Structure of Shares of Proposed (k, n)-Threshold Scheme

j = 0 j = 1 · · · j = np − 2

w(0,j)

(

k−2
M

h=0

rh
0

)

⊕s0

(

k−2
M

h=0

rh
1

)

⊕s1 · · ·

(

k−2
M

h=0

rh
−2

)

⊕s−2

w(1,j)

(

k−2
M

h=0

rh
h

)

⊕s−1

(

k−2
M

h=0

rh
h+1

)

⊕s0 · · ·

(

k−2
M

h=0

rh
h−2

)

⊕s−3

...
...

...
. . .

...

w(n−1,j)

(

k−2
M

h=0

rh
h·(n−1)

)

⊕s−n+1

(

k−2
M

h=0

rh
h·(n−1)+1

)

⊕s−n+2 · · ·

(

k−2
M

h=0

rh
h·(n−1)−2

)

⊕s−n−1

of the secret.1 Next, at lines 2–6, (k − 1)np − 1 pieces of d-bit random number
r0
0, . . . , r

0
np−2, r1

0, . . . , r
1
np−1, . . . , r

k−2
0 , . . . , rk−2

np−1 are chosen from {0, 1}d indepen-
dently from each other with uniform probability 1/2d, where GEN(X ) denotes
a function to generate an (log2 |X |)-bit random number from a finite set X . At
lines 7–12, D makes pieces of shares by means of the following equation:

w(i,j) =

{
k−2⊕
h=0

rh
h·i+j

}
⊕ sj−i, (2)

1 It is not necessary for the singular point to be s0, i.e. we can set an arbitrary singular
point sm (0 ≤ m ≤ np − 1) and the others are np − 1 divided pieces of the secret.
For the sake of simplicity, we suppose that the singular point is s0 in this paper.
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where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ np − 2. Finally, D concatenates these pieces
and constructs shares wi = w(i,0) ‖ · · · ‖ w(i,np−2), and sends shares to each
participant through a secure channel. If n < np, lines 7–12 does not work for
0 ≤ i ≤ np − 1 but it does for 0 ≤ i ≤ n − 1, and hence D does not gener-
ate np − n shares wn, · · · , wnp−1. Thus, it is possible to add new participants
Pn, · · · , Pnp−1 after distribution by generating wn, · · · , wnp−1 anew as necessary.
However, to generate new shares, k existing shares should be gathered, and all
random numbers and the secret should be stored.

Eq.(2) shows that these pieces of shares are circulated in a specific pattern
with k dimensions by the indexes of a divided piece of the secret k random
numbers, and do not overlap with each other because the properties of prime
numbers are used.

Table 2 denotes the recovery algorithm in the scheme. First, each share is
divided into d-bit pieces at lines 1–3. Next, at line 4, k(np − 1)-dimensional
vector w is generated, which is a vector of divided pieces of shares. At line 5,
k(np − 1)× k(np − 1) binary matrix M is obtained by the function MAT (). All
divided pieces of the secret, s1, . . . , snp−1, are recovered by calculating M ·w at
line 6. Finally, the secret s is recovered by concatenating s1, . . . , snp−1 at line 7.

Table 3 denotes the algorithm of the function MAT () which makes the matrix
M. First, (knp − 2)-dimensional binary vector v(ti,j) is obtained from indexes ti
and j at lines 1–5. V EC() denotes the function to make v(ti,j), where ixy denotes
a x-dimentional binary row vector such that the only y-th element equals one
(0 ≤ y ≤ x− 1) and the others are zero. v(ti,j) is defined as the generator vector
of w(ti,j), i.e. w(ti,j) = v(ti,j) · e, where e is defined by

e = (r0
0,. . ., r

0
np−2, r

1
0,. . ., r

1
np−1, . . . , r

k−2
0 ,. . ., rk−2

np−1, s1,. . ., snp−1)T,

where s0 is omitted for the simple reason that s0 = 0d. For instance, v(0,1) =
(0100 01000 01000 1000) if k = 4 and np = 5. At line 6, the k(np−1)× (knp−2)
binary matrix G is generated by v(t0,0), . . . ,v(tk−1,np−2) as follows:

G =
(
v(t0,0), . . . ,v(t0,np−2), . . . ,v(tk−1,0), . . . ,v(tk−1,np−2)

)T
,

which is the generator matrix such that w = G · r. At line 7, the matrix
[G Ik(np−1)] is generated by column-wise concatenation, and transformed into
a row echelon form

[
Ḡ J

]
= FG

([
G Ik(np−1)

])
by performing the forward

elimination step of Gaussian elimination with the elementary row operations
on GF(2), where FG() and Ik(np−1) denote a forward elimination function and
the k(np − 1) × k(np − 1) identity matrix, respectively. Furthermore, Ḡ and J
correspond to the transformed matrices from G and Ik(np−1), respectively. And,[
Ḡ J

]
is divided into block matrices denoted as follows:

[
Ḡ J

]
=

[
G2 G1 J1

Ø G0 J0

]
,

where G0, G1 and G2 are an (np − 1) × (np − 1) block matrix, (k − 1)(np −
1) × (np − 1) block matrix and (k − 1)(np − 1) × (knp − np − 1) block matrix,
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respectively. J0 and J1 are an (np − 1) × k(np − 1) block matrix and a (k −
1)(np−1)×k(np−1) block matrix, respectively. Ø denotes a null matrix. Then,
the backward substitution part of Gaussian elimination is executed on [G0 J0],
and we obtain the matrix

[
Inp−1 M

]
= BG([G0 J0]), where BG() and M

denote the function of backward substitution and a transformed matrix from
J0, respectively. Finally, MAT () outputs M as a matrix to recover s1, . . . , snp−1

from divided pieces of shares.
Our (k, n)-threshold scheme proposed in this paper is a direct extension of

Kurihara et al.’s (3, n)-threshold scheme[11] and Fujii et al.’s (2, n)-threshold
scheme[9] in terms of the structure of shares. Accordingly, the distribution and
recovery algorithms of our (k, n)-threshold scheme for k = 3 and k = 2 can
be utilized as Kurihara et al.’s (3, n)-threshold scheme and Fujii et al.’s (2, n)-
threshold scheme, respectively.

3.2 Example

We present the recovery procedure of our (k, n)-threshold scheme for k = 4
and n = np = 5 as an example. Table 5 shows the structure of shares of the
(4, 5)-threshold scheme.

Suppose that the participants P0, P1, P2 and P4 agree to recover the secret s
with their shares w0, w1, w2 and w4. At lines 1-3 of Table 2, w0, w1, w2 and w4

are equally divided into d-bit pieces, w(0,i), w(1,i), w(2,i) and w(4,i) (0 ≤ i ≤ 3).
Next, we obtain a 16-dimensional vector of divided pieces of shares w at line 4
of Table 2, which is denoted as follows:

w = (w(0,0), w(0,1), w(0,2), w(0,3), w(1,0), w(1,1), w(1,2), w(1,3),

w(2,0), w(2,1), w(2,2), w(2,3), w(4,0), w(4,1), w(4,2), w(4,3))T.

At line 5 of Table 2, we execute the function MAT (0, 1, 2, 4) and obtain 16× 16
binary matrix M. In the function MAT (), first, we obtain the generator matrix
G from indexes of shares at lines 1-6 of Table 3, which is denoted as follows:

G =



1000 10000 10000 0000
0100 01000 01000 1000
0010 00100 00100 0100
0001 00010 00010 0010
1000 01000 00100 0001
0100 00100 00010 0000
0010 00010 00001 1000
0001 00001 10000 0100
1000 00100 00001 0010
0100 00010 10000 0001
0010 00001 01000 0000
0001 10000 00100 1000
1000 00001 00010 1000
0100 10000 00001 0100
0010 01000 10000 0010
0001 00100 01000 0001



.
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At line 7 of Table 3, we execute forward elimination step of Gaussian elimination
on [G I16] and obtain a row echelon matrix [Ḡ J] denoted as follows:

[Ḡ J] = FG([G I16])

=



1000 10000 10000 0000 1000 0000 0000 0000
0100 01000 01000 1000 0100 0000 0000 0000
0010 00100 00100 0100 0010 0000 0000 0000
0001 00010 00010 0010 0001 0000 0000 0000
0000 11000 10100 0001 1000 1000 0000 0000
0000 01100 01010 1000 0100 0100 0000 0000
0000 00110 00101 1100 0010 0010 0000 0000
0000 00011 10010 0110 0001 0001 0000 0000
0000 00000 10111 1101 0010 0110 0100 0000
0000 00000 01111 1011 0100 1100 1000 0000
0000 00000 00101 1001 1001 0100 1101 0000
0000 00000 00011 1000 0111 1001 1110 0000
0000 00000 00000 1001 1110 0011 1111 0010
0000 00000 00000 0101 0110 1100 0010 1000
0000 00000 00000 0010 0011 0110 0001 0100
0000 00000 00000 0001 0001 0010 1010 1001



.

And also, [Ḡ J] is divided into six block matrices, Ø,G0,G1,G2,J0 and J1,
at line 7 of Table 3. Then, [G0 J0] is denoted as follows:

[G0 J0] =

1001 1110 0011 1111 0010
0101 0110 1100 0010 1000
0010 0011 0110 0001 0100
0001 0001 0010 1010 1001

 .

At line 8 of Table 3, we perform backward substitution on [G0 J0], and obtain
the matrix [I4 M] denoted as follows:

BG([G0 J0]) = [I4 M]

=

1000 1111 0001 0101 1011
0100 0111 1110 1000 0001
0010 0011 0110 0001 0100
0001 0001 0010 1010 1001

 .

The function MAT () outputs the block matrix M as a result. We recover all
divided pieces of the secret at line 6 of Table 2 with M and w by the operation
(s1, s2, s3, s4)T = M · w, where each divided piece of the secret is obtained by
the following XOR operations:

s1 =w(0,0)⊕w(0,1)⊕w(0,2)⊕w(0,3)⊕w(1,3)⊕w(2,1)⊕w(2,3)⊕w(4,0)⊕w(4,2)⊕w(4,3),

s2 =w(0,1)⊕w(0,2)⊕w(0,3)⊕w(1,0)⊕w(1,1)⊕w(1,2)⊕w(2,0)⊕w(4,3),

s3 =w(0,2)⊕w(0,3)⊕w(1,1)⊕w(1,2)⊕w(2,3)⊕w(4,1),

s4 =w(0,3)⊕w(1,2)⊕w(2,0)⊕w(2,2)⊕w(4,0)⊕w(4,3),

respectively. Thus, we have recovered the secret s = s1 ‖ s2 ‖ s3 ‖ s4.
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Table 5. Structure of shares in (4, 5)-threshold scheme for np = 5

j = 0 j = 1 j = 2 j = 3

w(0,j) r0
0 ⊕ r1

0 ⊕ r2
0 ⊕ s0 r0

1 ⊕ r1
1 ⊕ r2

1 ⊕ s1 r0
2 ⊕ r1

2 ⊕ r2
2 ⊕ s2 r0

3 ⊕ r1
3 ⊕ r2

3 ⊕ s3

w(1,j) r0
0 ⊕ r1

1 ⊕ r2
2 ⊕ s4 r0

1 ⊕ r1
2 ⊕ r2

3 ⊕ s0 r0
2 ⊕ r1

3 ⊕ r2
4 ⊕ s1 r0

3 ⊕ r1
4 ⊕ r2

0 ⊕ s2

w(2,j) r0
0 ⊕ r1

2 ⊕ r2
4 ⊕ s3 r0

1 ⊕ r1
3 ⊕ r2

0 ⊕ s4 r0
2 ⊕ r1

4 ⊕ r2
1 ⊕ s0 r0

3 ⊕ r1
0 ⊕ r2

2 ⊕ s1

w(3,j) r0
0 ⊕ r1

3 ⊕ r2
1 ⊕ s2 r0

1 ⊕ r1
4 ⊕ r2

2 ⊕ s3 r0
2 ⊕ r1

0 ⊕ r2
3 ⊕ s4 r0

3 ⊕ r1
1 ⊕ r2

4 ⊕ s0

w(4,j) r0
0 ⊕ r1

4 ⊕ r2
3 ⊕ s1 r0

1 ⊕ r1
0 ⊕ r2

4 ⊕ s2 r0
2 ⊕ r1

1 ⊕ r2
0 ⊕ s3 r0

3 ⊕ r1
2 ⊕ r2

1 ⊕ s4

3.3 The Proof of the Ideal Secret Sharing Scheme

Here, we introduce the following two theorems.

Theorem 1. Let A denote an arbitrary set of participants such that |A| ≤ k−1.
Then, since A is not in Γ of our proposed scheme, we have

H(S|VA) = H(S), (3)

where VA denotes a set of random variables of shares that are given to each
participant in A.

Proof (proof of Theorem 1). Let A = {Pt0 , . . . , Ptk−2} denote a set of k − 1
participants, where t0, . . . , tk−2∈ GF (np) are arbitrary numbers such that 0 ≤
ti, tj ≤ n − 1 and ti 6= tj if i 6= j. Correspondingly, let VA = {Wt0 , . . . ,Wtk−2}
denote a set of k − 1 random variables, where Wt0 , . . . ,Wtk−2 are induced by
wt0 , . . . , wtk−2 , respectively. And also, W(ti,0), . . . ,W(ti,np−2) denotes random
variables induced by divided pieces of shares w(ti,0), . . . , w(ti,np−2).

The following condition is supposed: s1, . . . , snp−1, r0
0, . . . , r

0
np−2, . . . , r

k−2
0 , . . . , rk−2

np−1

are independent of each other. And, r0
0, . . . , r

0
np−2, . . . , r

k−2
0 , . . . , rk−2

np−1 are chosen
from the finite set {0, 1}d with uniform probability 1/2d.

We define generator matrices U and V which satisfy the following equation:

w = U · r ⊕ V · s,
=(w(t0,0),. . ., w(t0,np−2),. . ., w(tk−2,0),. . ., w(tk−2,np−2))T, (4)

where r and s are denoted by

r = (r0
0, . . . , r

0
np−2, r

1
0, . . . , r

1
np−1, . . . , r

k−2
0 , . . . , rk−2

np−1)
T,

s = (s1, . . . , snp−1)T,

respectively. Then, U and V are (k − 1)(np − 1) × (knp − 1) and (k − 1)(np −
1) × (np − 1) matrices, respectively. From Lemma 1, all rows of U are linearly
independent. Therefore, from Lemma 6, all the elements of the (k − 1)(np − 1)
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dimensional vector obtained by U·r are d-bit random numbers which are pairwise
independent and uniformly distributed over {0, 1}d. Thus, the vector U · r is
uniformly distributed over {0, 1}d(np−1)(k−1). We suppose that w′ denotes a fixed
value of w. Then, Eq.(4) means that w, which equals w′, can be obtained with
uniform probability (1/2)d(np−1)(k−1) from any arbitrary chosen s (and hence
V · s). Therefore, since s is independent from w, we have

H(S1,. . ., Snp−1|W(t0,0),. . ., W(t0,np−2),. . ., W(tk−2,0),. . ., W(tk−2,np−2))

= H(S|Wt0 , . . . , Wtk−2)

= H(S1, . . . , Snp−1) = H(S).

Therefore, H(S|VA) = H(S) is satisfied. ut

Theorem 2. Let A denote an arbitrary set of participants such that |A| ≥ k.
Then, the recovery algorithm shown in Table 2 and Table 3 can recover all the
divided pieces of the secret from shares given to each participant in A.

Proof (proof of Theorem 2). Let A = {Pt0 , . . . , Ptk−1} denote a set of k partici-
pants, where t0, . . . , tk−1∈ GF (np) are arbitrary numbers such that 0 ≤ ti, tj ≤
n − 1 and ti 6= tj if i 6= j. We define generator matrices U and V which satisfy
the following equation:

w=U · r ⊕ V · s,
=(w(t0,0),. . ., w(t0,np−2),. . ., w(tk−1,0),. . ., w(tk−1,np−2))T, (5)

where r and s are denoted by

r = (r0
0, . . . , r

0
np−2, r

1
0, . . . , r

1
np−1, . . . , r

k−2
0 , . . . , rk−2

np−1)
T,

s = (s1, . . . , snp−1)T,

respectively. Then,
[
U V

]
equals the generator matrix G at line 6 of Table 3.

We consider the elementary row operation on
[
U V

]
. Then, from Remark 1,

we can obtain
[
Ū V̄

]
from

[
U V

]
by the elementary row operation, which

satisfies the following equation:

[
Ū V̄

]
·
[
r
s

]
=



∗...
∗

(sα ⊕ sβ)
(sα+1 ⊕ sβ+1)

...
(sα−2 ⊕ sβ−2)


,

where α and β are denoted by

α = −
k−3∑
i=0

ti − tk−2 + tk−1, β = −
k−3∑
i=0

ti + tk−2 − tk−1,
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respectively. Thus, by the XOR operations with pieces of k shares, we can obtain
all the elements of the set X denoted by

X = {sα+m ⊕ sβ+m | 0 ≤ m ≤ np − 2} .

Then, since indexes are elements of GF (np), we can also obtain sα−1 ⊕ sβ−1

from all the elements of X as follows:

sα−1 ⊕ sβ−1 =
np−2⊕
m=0

(sα+m ⊕ sβ+m).

Hence, we can consider the set X ′ to recover the secret, which is defined by

X ′ = {xm = sα+m ⊕ sβ+m | 0 ≤ m ≤ np − 1} .

Then, the following set

{pC | 0 ≤ p ≤ np − 1} (mod np) = GF (np),

is a field with order np from Lemma 5, where C = 2(tk−2 − tk−1). Thus, the
following equation is satisfied:

{C, 2C,. . ., (np − 1)C}={1,. . ., np − 1} (mod np)
= GF (np)\{0}. (6)

s0 = 0d was inserted as a singular point. Therefore, we can recover all the
divided pieces of the secret sequentially as follows:

m = −α : sC = x−α,
m = C − α : s2C = xC−α ⊕ sC ,
m = 2C − α : s3C = x2C−α ⊕ s2C ,

...
...

m = (np − 1)C − α : s(np−1)C = x(np−1)C−α ⊕ s(np−2)C ,

and since only XOR operations using the property of GF (np) are used, this
sequential operation can be represented by the elementary row operation on[
Ū V̄

]
. From Eq.(6), the following equation is satisfied:{

sC , s2C , . . . , s(np−1)C

}
=

{
s1, s2, . . . , snp−1

}
.

Thus, all the divided pieces of the secret can be recovered from k shares by using
an elementary row operation on

[
U V

]
. The elementary row operations do not

change the solution set of the system of linear equations represented by a matrix.
If it is possible to obtain the solution set by arbitrary elementary row operations,
the corollary solution set is the same as the solution set obtained by Gaussian
elimination. Therefore, our recovery algorithm using Gaussian elimination at
lines 7-8 of Table 3 can recover all the divided pieces of the secret from k shares.

ut
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Table 6. Simulation Environment and Conditions

CPU / RAM : Pentium 4 3.0GHz / 2.0GB
Operating system : Debian GNU/Linux 4.0
Compiler : GCC 4.1
Source of random numbers : /dev/urandom

Size of the secret s : 4.5MB
(k, n) : (3, 11), (3, 59), (3, 109), (5, 11), (10, 11), (10, 23)

Implementation of Shamir’s scheme : SSSS Version 0.5[19]
Operating unit in Shamir’s scheme : 8 byte/operation

Theorem 2 means that the following equation is satisfied if |A| ≥ k:

H(S|VA) = 0,

where VA denotes a set of random variables of shares that are given to each
participant in A. Thus, from these two theorems, Eq.(1) is satisfied, and the
access structure Γ of our scheme is denoted by Γ = {A ∈ 2P | |A| ≥ k}.
Furthermore, since every bit-size of shares equals the bit-size of the secret if we
can suppose that s ∈ {0, 1}d(np−1) (d > 0), i.e. the size of the secret is d(np − 1)
bits, 2 the information rate ρ equals one. Thus, as with Shamir’s scheme, our
scheme is also ideal.

4 Evaluation of Efficiency

In this section, we evaluate the efficiency of our scheme by comparing it with
Shamir’s scheme. First, we show the result of computer simulation by imple-
menting both our scheme and Shamir’s. Next, we consider the two schemes from
the perspective of computational cost.

Computer Simulation. We compared the proposed scheme with that of Shamir’s
for (k, n) = (3, 11), (3, 59), (3, 109), (5, 11), (10, 11) and (10, 23) by implementa-
tion on a PC, where every scheme is implemented for n = np. Fig.1 denotes the
processing time required to make n(= np) shares from 4.5 MB data (secret) and
recover the 4.5 MB secret from k shares, w0, · · · , wk−1 by using our scheme and
Shamir’s scheme. The simulation environment and conditions are summarized
in Table 6. For the implementation of Shamir’s scheme, we used SSSS Version
0.5[19], which is a free software licensed under the GNU GPL. An 8-byte block
was processed in each cycle in the distribution and recovery operations under
Shamir’s scheme. In Fig.1, the horizontal axis and vertical axis denote pairs of
2 If the size of the secret s were not multiple of (np−1), it is required to apply padding

operations to the secret bit sequence to make shares and hence the bit-size of each
share is larger than that of the secret.
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Fig. 1. Distribution and Recovery Processing Time for n = np

threshold and the number of participants, i.e. (k, n), and the processing time,
respectively.

This graph shows that our scheme performed processing much faster than
Shamir’s. In (3, 11)-threshold schemes, our scheme was more than 900-fold faster
than Shamir’s in terms of both distribution and recovery. Similarly, in (3, 59),
(3, 109), (5, 11), (10, 11) and (10, 23)-threshold schemes, Fig.1 shows that our
scheme achieved far more rapid processing than Shamir’s.

Consideration. In our proposed distribution algorithm, step 9 at Table 1 re-
quires (k−2)d bitwise XOR operations to make one divided piece of share w(i,j)

which is constructed with s0, or else, (k − 1)d bitwise XOR operations to make
w(i,j) constructed without s0. Thus, (np − 2)(k− 1)d+(k− 2)d XOR operations
are required to make each share of w0, . . . , wnp−2. Furthermore, (np −1)(k−1)d
XOR operations are required to make wnp−1. Hence, the average number of

XOR operations to make one share is
{

(k − 1) − 1
np

}
· log2 |S|. Therefore, our

distribution algorithm requires an average of{
(k − 1) − 1

np

}
n · log2 |S| = O(kn) · log2 |S|,
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bitwise XOR operations to make n shares. If n = np, it equals {(k − 1)n −
1} · log2 |S|. Since the cost of modulo np operations on indexes can be regard
as being negligible by using the fixed generator matrix in a manner similar to
the recovery algorithm, we omit the cost of the operations here for the sake of
simplicity.

On the other hand, in the proposed recovery algorithm, we can assume that
at the most {k(np − 1)− 1}d XOR operations are required to recover one of the
divided pieces of the secret with all divided pieces of k shares, and at the most
{k(np−1)−2}d XOR operations are required to recover one of the other divided
pieces of the secret with k(np−1)−1 divided pieces of k shares. Thus, the upper
bound of the number of XOR operations required to recover the secret by using
a block matrix M is roughly denoted by{

k(np − 1) − 2np − 3
np − 1

}
· log2 |S| = O(knp) · log2 |S|.

The recovery algorithm also requires O(k3np
3) bitwise XOR operations to exe-

cute forward elimination (step 7 of Table 3) and partial backward substitution
(step 8 of Table 3) of Gaussian elimination as a pre-computation cost to obtain
M at the function MAT ().

On the other hand, in Shamir’s scheme, O(kn) and O(k log2 k) arithmetic
operations are required to make shares and recover the secret, respectively[1].

From Fig.1, it is evident that the processing time for distribution in both
Shamir’s and our scheme is linearly increasing with each of k and n. However,
though the processing time for recovery in Shamir’s scheme is constant and in-
dependent of n if threshold k is fixed, that of our scheme increases as the number
of participants n(= np) grows in Fig.1. The computational cost of recovery in
Shamir’s scheme depends only on k, but that in our scheme depends on both k
and np. Thus, though our scheme is much more efficient than Shamir’s for not
so large np as shown in Fig.1, our scheme will not perform faster processing to
recover the secret than Shamir’s if np is extremely large. We will determine the
upper bound of np for the value of k as a future work, in which our scheme will
be shown to be faster than Shamir’s.

5 How to Extend Our Scheme to a Fast Ramp Scheme

In terms of improved efficiency for both computational cost and storage usage,
a (k, L, n)-threshold ramp scheme[4, 3] based on our (k, n)-threshold scheme can
be realized. In this section, we briefly show how the new ramp scheme can be
constructed.

In the distribution phase of our (k, L, n)-threshold ramp scheme (1 ≤ L ≤
k − 1), the differences from our (k, n)-threshold scheme can be summarized as
follows:

– The secret s ∈ {0, 1}dL(np−1) is equally divided into L(np−1) pieces s0
0,. . . ,s

0
np−2

,. . . ,sL−1
0 ,. . . ,sL−1

np−2 ∈ {0, 1}d. And, the singular points in divided pieces of
the secret are s0

np−1, . . . , s
L−1
np−1 = 0d.
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– To make n shares, the dealer D generates k − L sets of random numbers
{r0

0, . . . , r
0
np−2}, {r1

0, . . . , r
1
np−1}, . . . , {rk−L−1

0 , . . . , rk−L−1
np−1 }, where the bit-

size of each element in every set is d.
– The dealer makes pieces of shares w(i,j) by the following equation:

w(i,j) =

(
k−L−1⊕

h=0

rh
h·i+j

)
⊕

(
L−1⊕
h=0

sh
(k−L+h)·i+j

)
.

The above differences mean that the ramp scheme can be realized by replacing
L − 1 sets of random numbers by an L − 1 set of divided pieces of the secret,
where each set of divided pieces of the secret has a singular point. On the other
hand, we can recover the secret from k shares by similar recovery algorithm
to our (k, n)-threshold scheme. The differences in the recovery phase are only
the area of the generator matrix on which the partial backward substitution is
performed and hence the size of matrix M.

Then, the bit-size of each share is 1/L of the bit-size of the secret, and the
efficiency in terms of computational cost for both distribution and recovery is

as follows: An average of O(kn) · log2 |S|
L

bitwise XOR operations is required

to make n shares. To generate matrix M, O(k3n3
p) bitwise XOR operations are

required. Also, the upper bound of bitwise XOR operations to recover the secret
by using M is O(knp) · log2 |S|.

In a manner similar to [4], it can be proved that the security property of this
ramp scheme is same as Yamamoto’s ramp scheme based on Shamir’s scheme.

6 Conclusion

In this paper, we proposed a new (k, n)-threshold secret sharing scheme which
uses just XOR operations to make shares and recover the secret, and we proved
that the proposed scheme is an ideal secret sharing scheme. We estimated the
computational cost in our scheme and Shamir’s scheme for values of k and n.
Also, we implemented our scheme on a PC for specific parameters, and showed
that our scheme was more efficient than Shamir’s in terms of computational cost
provided n is not extremely large. Moreover, we introduced an extension of our
scheme to a new (k, L, n)-threshold ramp scheme, which can realize both fast
computation and reduction of storage usage.
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Appendix 1 Lemma 1 - Linearly Independent and
Dependent

Lemma 1. Let t0, . . . , tL−1∈ GF (np) denote indexes of L shares, which are ar-
bitrary numbers such that 0 ≤ ti, tj ≤ n − 1 and ti 6= tj if i 6= j. The matrices
U and V denote generator matrices of L(np − 1) pieces of L shares such that

w = U · r ⊕ V · s′

=
(
w(t0,0), . . . , w(t0,np−2), . . . , w(tL−1,0), . . . , w(tL−1,np−2)

)T
,

r =
(
r0
0, . . . , r

0
np−2, r

1
0, . . . , r

1
np−1, . . . , r

k−2
0 , . . . , rk−2

np−1

)T

,

s′ =
(
s0, s1, . . . , snp−1

)T
,
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where though s0 = 0d is a singular point, we include s0 as a variable in s′ to
describe V briefly.

Then, the following equation is satisfied:

rank
([

U V
])

=
{

L(np − 1) (1 ≤ L ≤ k − 1)
k(np − 1) (L ≥ k) .

Also, we have

rank (U) =
{

L(np − 1) (1 ≤ L ≤ k − 1)
(k − 1)(np − 1) (L ≥ k) .

Remark 1.
[
U V

]
can be transformed into

[
Ū V̄

]
by the elementary row op-

eration if L = k, which satisfies the following equation:

[
Ū V̄

]
·
[

r
s′

]
=



∗...
∗

(sα ⊕ sβ)
(sα+1 ⊕ sβ+1)

...
(sα−2 ⊕ sβ−2)


, (7)

where α and β are denoted by

α = −
k−3∑
i=0

ti − tk−2 + tk−1, β = −
k−3∑
i=0

ti + tk−2 − tk−1,

respectively. We also describe the proof of this remark in the proof of Lemma 1.

Proof. U and V can be denoted by

U =


Inp−1 E(t0) E(2t0) · · · E((k−2)t0)

Inp−1 E(t1) E(2t1) · · · E((k−2)t1)

...
...

...
. . .

...
Inp−1 E(tL−1) E(2tL−1) · · · E((k−2)tL−1)

 ,

V =


E((np−1)t0)

E((np−1)t1)

...
E((np−1)tL−1)

 ,
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respectively. Inp−1 denotes an (np−1)×(np−1) identity matrix and E(j) (j ∈ GF (np))
denotes the following (np − 1) × np matrix:

E(j) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

ij
ij+1

...
inp−1

i0
i1
...

ij−2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

0 · · · 0 0
...

. . .
...

... Inp−j

0 · · · 0 0
0 0 · · · 0

Ij−1

...
...

. . .
...

0 0 · · · 0

1

C

C

C

C

C

C

A

.

First, we consider the elementary row operation on
[
U V

]
. The matrix U can

be transformed into the following matrix U′ by the elementary row operation:

U′ =

0

B

B

B

B

@

Inp−1 E(t0) E(2t0) · · · E((k−2)t0)

Ø E
(2)

(t0,t1) E
(2)

(2t0,2t1) · · · E
(2)

((k−2)t0,(k−2)t1)

...
...

...
. . .

...

Ø E
(2)

(t0,tL−1) E
(2)

(2t0,2tL−1) · · · E
(2)

((k−2)t0,(k−2)tL−1)

1

C

C

C

C

A

=

0

B

B

@

Inp−1 ∗
Ø
... U′′

Ø

1

C

C

A

,

where E(2)
(i,j) = E(i)⊕E(j). Correspondingly, V is transformed into V′ as follows:

V′ =


E((np−1)t0)

E(2)
((np−1)t0,(np−1)t1)

...
E(2)

((np−1)t0,(np−1)tL−1)

 =
(

E((np−1)t0)

V′′

)
.

Next, we consider the concatenated block matrix D which is defined by

D =
ˆ

U′′ V′′ ˜

=

0

B

B

@

E
(2)

(t0,t1) · · · E
(2)

((k−2)t0,(k−2)t1) E
(2)

((np−1)t0,(np−1)t1)

...
. . .

...
...

E
(2)

(t0,tL−1) · · · E
(2)

((k−2)t0,(k−2)tL−1) E
(2)

((np−1)t0,(np−1)tL−1)

1

C

C

A

.

Then, from Lemma 4, the rank of E(2)
i,j (i 6= j) is np − 1. Here, for the sake of

simple description of the elementary row operation on D, we define the np × np

matrix H(i,j) by adding one row to E(2)
(i,j) with all rows of E(2)

(i,j) as follows:

H(i,j) =

(
E(2)

(i,j)⊕np−2
l=0 (ii+l ⊕ ij+l)

)
.
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Since indexes are elements of GF (np), H(i,j) can be denoted as follows:

H(i,j) =

(
E(2)

(i,j)

ii−1 ⊕ ij−1

)
= Li ⊕ Lj ,

where Li is the rotated identity matrix which is defined by

Li =
(

E(i)

ii−1

)
=

(
Ø Inp−i

Ii Ø

)
.

Thus, Li ·Lj = Lj ·Li = Li+j is satisfied. Then, we consider the following matrix
M to describe briefly the elementary row operation on D, which is defined as
follows:

M =
ˆ

P Q
˜

=

0

B

@

M(1,1)

...
M(1,L−1)

1

C

A

=

0

B

@

P1 H((np−1)t0,(np−1)t1)

...
...

PL−1 H((np−1)t0,(np−1)tL−1)

1

C

A

,

P =

0

B

@

P1

...
PL−1

1

C

A

=

0

B

@

H(t0,t1) · · · H((k−2)t0,(k−2)t1)

...
. . .

...
H(t0,tL−1) · · · H((k−2)t0,(k−2)tL−1)

1

C

A

,

Q =

0

B

@

H((np−1)t0,(np−1)t1)

...
H((np−1)t0,(np−1)tL−1)

1

C

A

.

Since the np-th row of H(i,j) is generated from all rows of E(2)
(i,j), M is equivalent

to D. And hence, P and Q are equivalent to U′′ and V′′, respectively. Thus, the
following equations are satisfied:

rank (D) = rank (M) ,

rank
(
U′′) = rank (P) ,

rank
(
V′′) = rank (Q) .

The rank of block matrix M(1,l) (1 ≤ l ≤ L − 1) equals np − 1 from Lemma 4.
From Lemma 2, M can be transformed into the following matrix M̄ by the
elementary row operation if 1 ≤ L ≤ k − 1:

M̄ =
ˆ

P̄ Q̄
˜

=

0

B

B

B

@

M̄1

M̄2

...
M̄L−1

1

C

C

C

A

=

0

B

B

B

@

P̄1 H(−t0,−t1)

P̄2 H(f2(t2),g2(t2))

...
...

P̄L−1 H(fL−1(tL−1),gL−1(tL−1))

1

C

C

C

A

,
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where P̄ and Q̄ are denoted by

P̄ =

0

B

B

B

@

P̄1

P̄2

...
P̄L−1

1

C

C

C

A

=

0

B

B

B

@

H(t0,t1) ∗ · · · ∗ ∗ · · · ∗
Ø H(2t1,2t2) · · · ∗ ∗ · · · ∗
...

...
. . .

...
...

. . .
...

Ø Ø · · · H(2tL−2,2tL−1) ∗ · · · ∗

1

C

C

C

A

,

Q̄ =

0

B

B

B

@

H(−t0,−t1)

H(f2(t2),g2(t2))

...
H(fL−1(tL−1),gL−1(tL−1))

1

C

C

C

A

,

respectively. fm(ti) and gm(ti) are denoted by

fm(ti)=−
m−2∑
j=0

tj−tm−1+ti, gm(ti)=−
m−2∑
j=0

tj +tm−1−ti,

respectively. From Lemma 2 and Lemma 4, the XORed vectors from the first
row to the (np − 1)-th row of M̄i and P̄ (1 ≤ i ≤ L − 1) equal the np-th row as
follows:

m(i,np−1) =
np−2⊕
j=0

m(i,j), p(i,np−1) =
np−2⊕
j=0

p(i,j),

where m(i,j) and p(i,j) denote the j-th rows of M̄i and P̄i, denoted as follows,
respectively:

M̄i =

 m(i,0)...
m(i,np−1)

 , P̄i =

 p(i,0)...
p(i,np−1)

 .

Since the rank of H(i,j) equals np−1, rank(M̄i) = rank(P̄i) = np−1 is satisfied.
Hence, from the structure of M̄ and P̄, the following equation is satisfied:

rank(M̄) = rank(P̄) = (L − 1)(np − 1).

Thus, the following equation is satisfied:

rank(M) = rank(D) = rank(P) = rank(U′′)
= (L − 1)(np − 1).

Therefore, the rank of
[
U V

]
equals L(np − 1). and all rows of U are linearly

independent, i.e. rank(U) = L(np − 1), if 1 ≤ L ≤ k − 1.



22 Jun Kurihara et al.

In contrast, from Lemma 2, M can be transformed into the following matrix
M̄ if L ≥ k:

M̄=
ˆ

P̄ Q̄
˜

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

H(t0,t1) ∗ · · · ∗ H(−t0,−t1)

Ø H(2t1,2t2) · · · ∗ H(f2(t2),g2(t2))

...
...

. . .
...

...
Ø Ø · · · H(2tk−3,2tk−2) H(fk−2(tk−2),gk−2(tk−2))

Ø Ø · · · Ø H(fk−1(tk−1),gk−1(tk−1))

Ø Ø · · · Ø Ø
...

...
. . .

...
...

Ø Ø · · · Ø Ø

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Thus, from the structure of M̄, the following equations are satisfied:

rank(M) = rank(D) = (k − 1)(np − 1),
rank(P) = rank(U′′) = (k − 2)(np − 1).

Therefore, the rank of
[
U V

]
equals k(np − 1) and all rows of U are linearly

dependent, i.e. rank(U) = (k − 1)(np − 1), if L ≥ k. Moreover, we can obtain
the following vector with M̄:

H(fk−1(tk−1),gk−1(tk−1)) · s
′ =


(sfk−2(tk−2) ⊕ sgk−2(tk−2))

(sfk−2(tk−2)+1 ⊕ sgk−2(tk−2)+1)
...

(sfk−2(tk−2)−1 ⊕ sgk−2(tk−2)−1)

 .

Therefore, by the elementary row operation on
[
U V

]
, we can obtain the vector

denoted at Eq.(7) of Remark 1 if L = k. ut

Appendix 2 Lemma 2 - The Elementary Row Operations

In this appendix, all definitions, notations and suppositions are same as in
Lemma 1.

Lemma 2. Let X(h−1)
(i,j) be a np×np matrix whose np-th row equals XORed vector

of 1st row to (np − 1)-th row of X(h−1)
(i,j) . And let fm(ti) and gm(ti) be

fm(ti) = −
m−2∑
l=0

tl − tm−1 + ti, gm(ti) = −
m−2∑
l=0

tl + tm−1 − ti,

respectively.
Then, the matrix M(1)

M(1) =

0

B

@

H(t0,t1) · · · H((k−2)t0,(k−2)t1) H((np−1)t0,(np−1)t1)

...
. . .

...
...

H(t0,tL−1) · · · H((k−2)t0,(k−2)tL−1) H((np−1)t0,(np−1)tL−1)

1

C

A

,
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can be transformed into the following matrix by the elementary row operation
(2 ≤ m ≤ L − 1):

M(m) =


M(m)

(1,1) · · · M(m)
(L−1,k−1)

...
. . .

...
M(m)

(L−1,1) · · · M(m)
(L−1,k−1)

 =


M(m)

1
...

M(m)
L−1

 ,

where M(m)
(i,j) can be denoted by

M
(m)

(i,j) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

H(jt0,jt1) (i = 1, 1 ≤ j ≤ k − 2),
H(−t0,−t1) (i = 1, j = k − 1),
H(2ti−1,2ti) (2 ≤ i ≤ m, j = i),
H(2tm−1,2ti) (m + 1 ≤ i ≤ L − 1, j = m),
H(fi(ti),gi(ti)) (2 ≤ i ≤ m, j = k − 1),
H(fm(ti),gm(ti)) (m + 1 ≤ i ≤ L − 1, j = k − 1),

X
(i−1)

(i,j) (2 ≤ i ≤ m, i + 1 ≤ j ≤ k − 2),

X
(m−1)

(i,j) (m + 1 ≤ i ≤ L − 1, m + 1 ≤ j ≤ k − 2),

Ø (2 ≤ i ≤ m, 1 ≤ j ≤ i − 1),
Ø (m + 1 ≤ i ≤ L − 1, 1 ≤ j ≤ m − 1).

Remark 2. X(h−1)
(i,j) is denoted by

X
(h−1)

(i,j) =

j
M

v=h

v
M

λ0=h

λ0−1
M

λ1=h−1

λ1−1
M

λ2=h−2

· · ·
λh−4−1

M

λh−3=3

0

B

B

@

Lδh

⊕Lδh−(th−1−ti)

⊕Lδh−(λh−3−1)(th−1−ti)

⊕Lδh−(λh−3−2)(th−1−ti)

1

C

C

A

,

where δh denotes the following term:

δh =(j − v)t0+(v − λ0)t1+

h−4
X

l=0

(λl−λl+1−1)tl+2+(λh−3 − 1)th−1.

From Lemma 4, the np-th row of X(h−1)
(i,j) equals the XORed vector of the first

row to the (np − 1)-th row of X(h−1)
(i,j) .

Remark 3. If L = k − 1 and m = L − 1, M(L−1) can be denoted as follows:

M(L−1) = M(k−2)

=

0

B

B

B

B

@

H(t0,t1) H(2t0,2t1) · · · H((k−2)t0,(k−2)t1) H(−t0,−t1)

Ø H(2t1,2t2) · · · X
(1)

(2,k−2) H(f2(t2),g2(t2))

...
...

. . .
...

...
Ø Ø · · · H(2tk−3,2tk−2) H(fk−2(tk−2),gk−2(tk−2))

1

C

C

C

C

A

.
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And also, if L = k and m = L − 1, M(L−1) can be denoted as follows:

M(L−1) = M(k−1)

=

0

B

B

B

B

B

B

@

H(t0,t1) H(2t0,2t1) · · · H((k−2)t0,(k−2)t1) H(−t0,−t1)

Ø H(2t1,2t2) · · · X
(1)

(2,k−2) H(f2(t2),g2(t2))

...
...

. . .
...

...
Ø Ø · · · H(2tk−3,2tk−2) H(fk−2(tk−2),gk−2(tk−2))

Ø Ø · · · Ø H(fk−1(tk−1),gk−1(tk−1))

1

C

C

C

C

C

C

A

.

Proof (proof sketch). The proof of this lemma can be derived by the elementary
row operation on M(1) with mathematical induction.

We can obtain M(2) by the following elementary row operation on M(1):

M(2) =


M(1)

1

F(1)
2 · M(1)

1 ⊕ G(1)
2 · M(1)

2
...

F(1)
L−1 · M

(1)
1 ⊕ G(1)

L−1 · M
(1)
(L−1)

 .

where F(1)
i and G(1)

i (2 ≤ i ≤ L − 1) are defined as matrices to perform the
elementary row operation, and which are defined by

F(1)
i =

P
(1)
i⊕

j=1

Lj(t1−t0), G(1)
i =

Q
(1)
i⊕

j=1

Lj(ti−t0),

respectively. P
(1)
i and Q

(1)
i are the minimum conting numbers such that

Pi(t1 − t0) + t1 ≡ ti (mod np),
Qi(ti − t0) + ti ≡ t1 (mod np),

respectively.
Also, by using mathematical induction for m = 3, . . . , α, α + 1, it is shown

that M(m) can be derived by the following elementary row operation on M(m−1)

for m = 3, . . . , L − 1:

M(m) =

0

B

B

B

B

B

B

B

B

B

B

@

M
(m)
1

...

M
(m)
m−1

M
(m)
m

...

M
(m)
L−1

1

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

@

M
(1)
1

...

M
(m−1)
m−1

F
(m−1)
m · M(m−1)

m−1 ⊕ G
(m−1)
m · M(m−1)

m

...

F
(m−1)
L−1 · M(m−1)

m−1 ⊕ G
(m−1)
L−1 · M(m−1)

L−1

1

C

C

C

C

C

C

C

C

C

C

A

,

where F(m−1)
i and G(m−1)

i (m ≤ i ≤ L − 1) are defined as matrices to perform
the elementary row operation, and which are defined by

F(m−1)
i =

P
(m−1)
i⊕
j=1

L2j(tm−1−tm−2)−tm−1 , G(m−1)
i =

Q
(m−1)
i⊕
j=1

L2j(ti−tm−2)−ti
,
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where P
(m−1)
i and Q

(m−1)
i are the minimum counting numbers such that

2P
(m−1)
i (tm−1 − tm−2) + tm−1 ≡ ti (mod np),

2Q
(m−1)
i (ti − tm−2) + ti ≡ tm−1 (mod np),

respectively. Therefore, Lemma 2 is proved.
Also, in the case where m = k−1 if L ≥ k, M(k−1) (if L = k) can be denoted

by

M(k−1) =



M(1)
1
...

M(k−2)
k−2

H(fk−1(tk−1),gk−1(tk−1))

0 ...
H(fk−1(tL−1),gk−1(tL−1))


,

where 0 denotes (L − k + 1)np × (k − 2)np null matrix. Then, from Lemma 3,
M(k−1) can be transformed by the elementary row operation as follows:

M(k−1) =



M(1)
1
...

M(k−2)
k−2

H(fk−1(tk−1),gk−1(tk−1))

Ø

0 ...
Ø


.

ut

If we present a detailed description of this proof, it is not difficult to un-
derstand but it is too long to be described in full in this paper. Moreover, the
detailed proof can be easily derived from the definitions of the elementary row
operation denoted in the above proof sketch. Thus, we have omitted a detailed
proof here.

Appendix 3 Lemma 3

Lemma 3. Let H(i,j) denote the following np × np matrix:

H(i,j) = Li ⊕ Lj ,

where i, j ∈ GF (np), i 6= j, and Li denotes the following rotated identity matrix:

Li =
(

Ø Inp−i

Ii Ø

)
.

Then, it is possible to make an arbitrary vector from the XOR combination of
rows of H(i,j), whose hamming weight is an even number.
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Proof. We suppose that h(l)
(i,j) denotes the l-th row of H(i,j), which can be de-

noted as follows:

h(l)
(i,j) = ii+l ⊕ ij+l,

where l ∈ GF (np).Let v denote the arbitrary vector whose hamming weight is
two. Then, v can be denoted as follows:

v = iα ⊕ iβ ,

where α, β ∈ GF (np) and α 6= β. Then, we define p′ by the following equation
on GF (np):

p′ = (β − α)/(j − i) − 1 (mod np).

Since the indexes are elements of GF (np), the following equation is satisfied:

p′⊕
p=0

h(α−i+p(j−i))
(i,j) =

p′⊕
p=0

(
iα+p(j−i) ⊕ iα+(p+1)(j−i)

)
= iα ⊕ iα+(p′+1)(j−i)

= iα ⊕ iβ = v.

Thus, it is possible that the arbitrary vector whose hamming weight is two can
be generated by the XOR combination of rows of H(i,j).

On the other hand, we suppose that u denotes the vector whose hamming
weight is an even number greater than two and ||u|| denotes the hamming weight
of u. Then, ||u|| can be denoted by ||u|| = 2c, where c is a counting number more
than two. Thus, u can be denoted by the linear combination of vectors whose
hamming weight is two. Therefore, an arbitrary vector whose hamming weight is
an even number can be generated from the XOR combination of rows of H(i,j).

ut

Appendix 4 Lemma 4

Lemma 4. Suppose np is a prime number. Let X be a set of np-dimensional
binary vectors defined by

X = {ii+m ⊕ ij+m | 0 ≤ m ≤ np − 2} ,

where i, j ∈ GF (np), i 6= j and il denotes an np-dimensional vector such that

i0 = (1 0 0 . . . 0 0),
i1 = (0 1 0 . . . 0 0),

...
inp−1 = (0 0 0 . . . 0 1).

Then, all vectors in X are linearly independent.
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Proof. Let X ′ be the set defined by

X ′ = {ii+l ⊕ ij+l | 0 ≤ l ≤ np − 1}.

We define α by α = j− i (mod np). Since np is a prime number, from Lemma 5,
X ′ can be also denoted as follows:

X ′ = {ii+lα ⊕ ii+(l+1)α | 0 ≤ l ≤ np − 1}.

We suppose that ii+qα ⊕ ii+(q+1)α (q ∈ GF (np)) is an arbitrary element of
X ′. Then, since indexes are elements of GF (np), we can make the XORed vec-
tor identical to ii+qα ⊕ ii+(q+1)α if and only if we can use all the elements of
X ′\{ii+qα ⊕ ii+(q+1)α}. That is, we can make ii+qα ⊕ ii+(q+1)α only by the fol-
lowing operation:

ii+qα ⊕ ii+(q+1)α =
np−1⊕
l=0,
l 6=q

{
ii+lα ⊕ ii+(l+1)α

}

= (ii+qα ⊕ ii+(q+1)α) ⊕
np−1⊕
l=0

{
ii+lα ⊕ ii+(l+1)α

}
.

Therefore, since X can be denoted by

X = X ′\{ii−1 ⊕ ij−1},

it is impossible to make the XORed vector identical to ii+m ⊕ ij+m from the
elements of X\{ii+m ⊕ ij+m}. Thus, all vectors in X are linearly independent.

ut

Appendix 5 Lemma 5

This lemma indicates just a fact about arithmetic operations on GF (np). Thus,
we omit the poof of this lemma.

Lemma 5. Suppose x and y are arbitrary elements such that x ∈ GF (np)\{0},
y ∈ GF (np). Then, the following equation is satisfied:

{0, 1, 2, . . . , np − 1} = {y, y + x, y + 2x, . . . , y + (np − 1)x} (mod np)
= GF (np).

Appendix 6 Lemma 6

Same lemma and its proof are provided in [11]. Thus, we omit the poof of this
lemma.
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Lemma 6. Suppose that x0, . . . , xL−1 (L ∈ N, L ≥ 2) are random numbers
which are chosen from the finite set {0, 1}h (h > 0) independently from each
other with uniform probability 1/2h. Let X be the set defined by X = {x0, . . . , xL−1}.

Then, x0, . . . , xL−1 and all the XORed combinations of the elements in X
are random numbers which are pairwise independent and uniformly distributed
over {0, 1}h.


