
Asynchronous Multiparty Computation:
Theory and Implementation

Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen?

Dept. of Computer Science, University of Aarhus, Denmark
{ivan,mg,mk,buus}@cs.au.dk

Abstract. We propose an asynchronous protocol for general multiparty computation with per-
fect security and communication complexity O(n2|C|k) where n is the number of parties, |C| is
the size of the arithmetic circuit being computed, and k is the size of elements in the underly-
ing field. The protocol guarantees termination if the adversary allows a preprocessing phase to
terminate, in which no information is released. The communication complexity of this protocol
is the same as that of a passively secure solution up to a constant factor. It is secure against
an adaptive and active adversary corrupting less than n/3 players. We also present a software
framework for implementation of asynchronous protocols called VIFF (Virtual Ideal Function-
ality Framework), which allows automatic parallelization of primitive operations such as secure
multiplications, without having to resort to complicated multithreading. Benchmarking of a
VIFF implementation of our protocol confirms that it is applicable to practical non-trivial
secure computations.

? Supported by Ministry of Science, Technology and Innovation

Table of Contents

Asynchronous Multiparty Computation: Theory and Implementation i
Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, Jesper Buus Nielsen
1 Introduction . 1
2 Preliminaries . 3
3 Overview and Security Model . 3

3.1 Overview of the Protocol . 3
Preprocessing and input phase. 4
Computation phase. 5

3.2 Security Model . 6
4 Protocol for Preprocessing . 7

4.1 Preprocessing based on Hyperinvertible Matrices . 7
Generating Multiplication Triples. 8

4.2 Preprocessing based on Pseudorandom Secret-Sharing . 8
Pseudorandom Secret-Sharing. 9
Pseudorandom Zero-Sharing. 9
Making triples using PRSS and PRZS. 10
Security of the PRSS approach. 10

5 VIFF . 11
5.1 Implementing VIFF . 12

6 Benchmark Results . 13
7 Conclusion . 14
A Multiplication in VIFF. 17

1 Introduction

A general multiparty computation protocol is an extremely powerful tool that allows n parties
to compute any agreed function f(x1, ..., xn), where each input xi is privately held by the i’th
player Pi, and where only the intended result becomes known to the players. The function is
often represented by an arithmetic circuit C over some suitable finite field F. It is required
that privacy of the inputs and correctness of the result is ensured even in the presence of an
adversary who may corrupt some number t of the players.

From the basic feasibility results of the late 80-ties [3, 6], it follows that any efficiently
computable function may be computed securely in the model where players have secure
point-to-point channels, if and only if t < n/3. In case the adversary is passive, i.e., corrupted
players follow the protocol, the bound is t < n/2. Under computational assumptions, t < n/2
corruptions can be tolerated even if the adversary is active, i.e., corrupt players behave
arbitrarily [9].

The solution from [3] with passive security can lead to quite practical solutions, when
combined with later techniques for optimizing the efficiency of particular primitives, such
as integer comparison – even to the point where large-scale practical applications can be
handled [4].

On the other hand, this type of solution is not satisfactory in all cases. It is of course
desirable to provide security against active cheating. However, this usually incurs a large cost
in terms of efficiency. Techniques have been proposed to reduce this cost [10], but they – like
most previous protocols – are designed for synchronous communication. Common ways to
communicate such as the Internet are arguably better modeled as asynchronous networks,
where there is no guarantee that a message is delivered before a certain time. Note that the
way we model the network can have dramatic consequences for the practical efficiency of
a protocol. Consider a network that usually delivers messages fast, but occasionally takes
much longer time. If we run a synchronous protocol on top of such a network, we are forced
to make every round last enough time so that we can be sure that all messages from honest
players have been delivered. Otherwise, we may conclude that an honest player is corrupt
because he did not send the message he was supposed to, and take action accordingly. Now,
of course, the protocol is no longer secure. A synchronous protocol may therefore be much
slower in practice than an asynchronous one, where every player may continue as soon as he
has enough information to do so.

In the project reported on in this paper, our goal was therefore to develop and implement a
practical general MPC protocol, with active security on an asynchronous network. Compared
to the usual model for asynchronous MPC, we make two modifications, both of which we
believe are well motivated:

– We allow our protocol to have one synchronization point. More precisely, the assumption
is that we can set a certain time-out, and all messages sent by honest players before the
deadline will also be delivered before the deadline.

– We do not guarantee that the protocol always terminates and gives output to all honest
players. Instead we require the following: The preprocessing phase of the protocol, up
to the synchronization point, never releases any new information to the adversary. The
adversary may cause the preprocessing to fail, but if it terminates successfully, the entire
protocol is guaranteed to terminate with output to all honest parties.

A discussion of this model: Without the first assumption, i.e., if the protocol is fully
asynchronous, one cannot guarantee that all honest players will be able to contribute input

1

since the protocol cannot distinguish between t corrupt players that have not sent anything,
and t honest players whose messages have been delayed. We believe that in most practical
applications, this is not acceptable, and this is why we introduce the synchronization point,
it is a minimal assumption allowing all honest players to provide input. We stress that the
protocol is asynchronous both before and after the synchronization point. In other words, a
protocol in this model is free to harvest the efficiency gain that follows from players being able
to proceed as soon as possible. The only constraint we put is that honest players must reach
the deadline on time, so we can have agreement on whether the preprocessing succeeded.

On the second point, although we do give the adversary extra power to stop the protocol,
this is arguably of no use in practice: If the corrupted players stop the protocol at a point
where no information is released, why play the game in the first place?

In this model, assuming secure point-to-point channels and that Byzantine agreement
is available, we present a protocol that is perfectly secure against an adaptive and active
adversary corrupting less than n/3 of the players. The communication and computational
complexities (total communcation and work done) are O(n2|C|k) where |C| is the size of the
arithmetic circuit being computed and k is the bit length of elements in the field used. It
is noteworthy that a straightforward implementation with only passive security would have
the same asymptotic complexity, all other things being equal.

As for any protocol in the point-to-point model, the exact security properties of an
actual implementation of our protocol depend on how the point-to-point channels and – in
our case – the Byzantine agreement are implemented. The choice of implementation does
not, however, affect the complexities since the Byzantine agreement is only used once. In a
typical implementation where one goes for efficiency – such as the one we present below –
one would use standard encryption tools to implement the channels and do the Byzantine
agreement based on public-key signatures. This gives a protocol with computational security
against a static adversary (although it may also be secure against an adaptive adversary).

In recent concurrent work, Hirt et al. [11] construct an asynchronous protocol of similar
asymptotic complexity as ours. This protocol is fully asynchronous, so it does not guarantee
that all honest parties can provide inputs, it is computationally secure, against a static
adversary. In another recent work Beerliová-Trub́ıniová et al. [2] present a protocol with a
single synchronization point like we have. This protocol guarantees termination, has a better
security threshold (n/2), but is only computationally secure against a static adversary, and
has larger asymptotic complexity than our protocol. Both [2] and [11] make use of expensive
public-key techniques throughout the protocol, making them less efficient in practice than
our construction.

Thus, our result is incomparable to previous work, and we believe it provides a new
tradeoff between security properties that is attractive in practice. We later give more exact
numeric evidence of the efficiency.

Our protocol is based on Beaver’s well known circuit randomization techniques, where
one creates in a preprocessing phase shared random values a, b, c with ab = c. We show two
techniques for generating these triples efficiently. One is a variant of the protocol from [1],
the other is based on pseudorandom secret sharing [7], it is much faster for a small number of
players, but only gives computational security. Both protocols are actually synchronous, but
we handle this via a new technique that may be of independent interest, namely a general
method by which – if one accepts that the protocol may abort – a synchronous protocol can
be executed in an asynchronous fashion, using a single synchronization point to decide if the
protocol succeeded.

2

A crucial observation we make is that if the protocol is based on Shamir secret sharing
with threshold less than n/3, then the computation phase can be done asynchronously and
still guarantee termination, if the preprocessing succeeded.

Another contribution of our paper is a software framework called VIFF, short for Virtual
Ideal Functionality Framework. It provides a platform on which general MPC protocols can
be implemented, and we use it later in the paper to benchmark our protocol. Protocols im-
plemented in VIFF can be compositions of basic primitives like addition and multiplication
of secret-shared values, or one can implement new primitives. VIFF is basically asynchronous
and operates on the principle that players proceed whenever possible (but can handle synchro-
nization points when asked to do so). This allows us to provide all protocol implementations
with automatic parallel scheduling of the operations, i.e., the programmer does not have to
explicitly use multithreading, for instance, or specify any explicit timing of operations.

When players distributed across a large network execute a large protocol, it is very
important to be able to run as much as possible in parallel in order to lower the cost per
operation of the network delays. Round-trip times across the Internet are typically in the
order of 100–200 milliseconds, but when executing many multiplications in parallel we are
able to obtain an average time of just 2 milliseconds per secure multiplication of 32-bit
numbers, using a standard implementation based on Shamir secret-sharing, for 3 players and
passive security.

Furthermore, the ability to program asynchronously is very important towards having
simpler code: If the protocol to be implemented is synchronous, one has to implement waiting
to make sure that all messages from the current round have arrived, and the actual waiting
time has to be chosen correctly with respect to the network we use. This means that the
software now depends on the underlying network which is clearly undesirable, as it creates
an extra source of errors, insecurity, or both.

2 Preliminaries

For an element x ∈ F we let [x]d denote a set of Shamir shares [13] of x computed using
threshold/degree d. We use the shorthand [x] for sharings [x]t where t is the number of
corrupted players, so that t < n/3. We use the notation [x] + a[y] where a is a public
constant to denote the set of shares obtained by locally adding the share of x to the share
of y times a. Since Shamir sharing is linear, we have [x] + a[y] = [x+ ay].

When in the following, we say that x is publicly reconstructed from [x]t, where at most
t < n/3 players are actively corrupted, this simply means that each player sends his share
to all other players. This allows all honest players to reconstruct x using standard decoding
techniques since t < n/3. We may also privately open x to player Pi by sending shares only
to him.

3 Overview and Security Model

The goal of the protocol is to securely compute (y1, . . . , yn) = f(x1, . . . , xn). For notational
convenience we assume that all inputs and outputs are single field elements. In addition each
yi can assume the value yi = ⊥, which indicates to Pi that the computation failed.

3.1 Overview of the Protocol

Our protocol consists of two phases, the preprocess and input phase and the computation
phase.

3

Preprocessing and input phase. In the preprocessing phase, we can make use of any
protocol that can generate a given number of multiplication triples, i.e., random secret-
shared values [a], [b], [c] where ab = c. In addition, for each player Pi, it should construct a
secret sharing [ri] where ri is random and reveal ri privately to Pi. The protocol ends by
outputting “success” or “failure” to all players, depending on whether the required values
were successfully constructed or not. The purpose of [ri] is to allow Pi to contribute his input
xi securely by broadcasting ri + xi.

Instead of attempting to build such a protocol directly for the asynchronous model, it
is much easier to design a protocol for the synchronous model with broadcast, we give two
examples of this in Section 4. We then show below a special way to run any such protocol in
an asynchronous way, i.e., we can avoid the use of timeouts after each communication round
and we avoid having to implement broadcast. The price we pay for this is that the adversary
can force the preprocessing to fail.

The basic idea is that in each round all parties just wait for messages from all other
parties and progress to the next round immediately if and when they all arrived. Some
extra technicalities are needed to make sure there is agreement at the end on whether the
preprocessing succeeded, and to make sure that no information on the inputs is revealed
prematurely.

To emulate a synchronous protocol with R rounds, each Pj proceeds as follows:

1. Wait for an input begin preprocess. Let r = 1 and for each Pi compute the message mj,i,1

to be sent to Pi in the first round of the synchronous protocol. Also compute the message
mj,1 to be broadcast in the first round.

2. Send (mj,i,1,mj,1) to Pi.
3. While r ≤ R:

(a) Wait until a message (mi,j,r,mi,r) arrived from all Pi.
(b) From the incoming messages ((m1,j,r,m1,r), . . . , (mn,j,r,mn,r)) compute the messages

(mj,1,r+1, . . . ,mj,n,r+1) that the preprocessing protocol wants to send in the next
round, and the message mj,r+1 to be broadcast.

(c) r : = r + 1.
4. Let gj ∈ {preprocess success, preprocess failure} denote the output of the preprocessing

protocol and let Mj consist of the broadcast messages mi,r for i = 1, . . . , n and r =
1, . . . , R. Send (check, gj ,Mj) to all parties.

5. Wait until all n−1 other parties Pi send (check, gi,Mi). If all Pi sent gi = preprocess success
and Mi = Mj , then send si = xi + ri to all parties.

6. Wait to receive sj from all other parties, let Sj = (s1, . . . , sn) and send Sj to all parties.
7. If all n − 1 other parties Pi sent some Si before the timeout and all Si = Sj , then let
qi = success. Otherwise, let qi = failure.

8. Run a Byzantine agreement (BA) on the qi to agree on a common value q ∈ {failure, success}.
Being a BA this protocol ensures that if qi = success for all honest parties, then q =
success, and if qi = failure for all honest parties, then q = failure.

We assume that the preprocessing phase is started enough in advance of the time-out to
guarantee that it will terminate successfully on time when there is no cheating. However, as
mentioned in the introduction, the adversary can stop the preprocessing, in particular if a
corrupted party does not send a message the preprocessing dead-locks.

Note that if just one honest party outputs qi = success, then the preprocessing protocol
terminated successfully before the timeout and all the values si were consistently distributed.

4

In particular, if q = success, then qi = success for at least one honest Pi, and therefore the
preprocessing and inputting were successful.

As for security, if after each communication round in Step 3 the parties compared the
messages mi,r and terminated if there was disagreement, then it is clear that a secure syn-
chronous protocol1 run asynchronously this way is again secure. The only loss is that the
adversary can now deprive some parties of their input. The reason why it is secure to post-
pone the check of consistency of the broadcasted message until Step 5 is that the inputs xi

do not enter the computation until Step 6 and that there are no other secrets to be leaked,
like secret keys. Sending inconsistent broadcast messages before Step 6 will therefore yield
no information leakage. After Step 5 it is known that the preprocessing was an emulation of
a consistent synchronous execution, at which point it becomes secure to use the result ri to
mask xi.

This way to emulate a syncronous protocol in an asyncronous environment is generic and
does not just apply to our protocols here.

Computation phase. If q = failure, then all parties output yi = ⊥. If q = success, then
the parties compute [xi] = si − [ri] for all Pi and run the asynchronous protocol described
below which compute sharings [yi] of the outputs from the sharings [xi], making use of the
multiplication triples from the preprocessing. Finally the shares of [yi] are sent privately to
Pi which computes yi.

We may assume that for each multiplication we have to do, a triple [a], [b], [c] as described
above is constructed in the preprocessing. To handle any arithmetic circuit describing the
desired function, we then only need to describe how to deal with linear combinations and
multiplications of shared values.

Linear Combinations: Shamir sharing is linear, and any linear function of shared values
can therefore be computed locally by applying the same linear function to the shares.

Multiplication: Consider some multiplication gate in the circuit and let [a], [b], [c] be the
triple constructed for this gate. Assume we have computed sharings of the two input
values [x] and [y], so we now wish to compute [xy]. Note that

xy = ((x− a) + a)((y − b) + b)
= de+ db+ ae+ ab,

where d = x− a and e = y− b. We may now publicly reconstruct d and e, since they are
just random values in F. The product can then be computed locally as

[xy] = de+ d[b] + [a]e+ [c] .

The overall cost of this multiplication is the cost of two public reconstructions and a
constant number of local arithmetic operations.

A crucial observation is that this protocol (assuming the triples are given) can be executed in
a completely asynchronous fashion, and is guaranteed to terminate: At each multiplication
gate, each player simply waits until he has received enough shares of d and e and then
reconstructs them. More precisely, we need that at least n − t shares of each value have
arrived, and that at least n− t of them are consistent with some polynomial. Since there are
1 The synchronous security should be against a rushing adversary.

5

n− t honest players, n− t consistent shares will eventually arrive. Moreover, if n− t shares
are found to be consistent, since t < n/3, these must include at least t+1 shares from honest
players, and so the correct value is always reconstructed. One can test if the conditions are
satisfied using standard error correction techniques.

3.2 Security Model

The security of our protocol can be phrased in the UC framework [5]. For the protocol we
assume the standard asynchronous communication model of the UC model, except that we
let the timeout of Pi be called by the adversary by inputting timeout to that party, and that
we assume secure point to point channels where the adversary can decide when a message
sent is delivered. Our protocols are secure and terminate no matter when the timeouts are
called. They provide outputs, 6= ⊥, if all parties behave honestly in the preprocessing and
the timeouts are called after the preprocessing succeeded at all honest parties. We formalize
that by implementing an ideal functionality.

For a function f : Fn → Fn, let Ff
fsfe be the following ideal functionality for fair secure

function evaluation.

1. On input begin preprocess from Pi, output (Pi, begin preprocess) to the adversary.
2. On input xi from Pi, output (Pi, gave input) to the adversary.
3. If the adversary inputs early timeout, then output yi = ⊥ to all Pi, and terminate.
4. If all Pi have input both begin preprocess and xi and the adversary then inputs late timeout,

then compute (y1, . . . , yn) = f(x1, . . . , xn) and output yi to all Pi, and terminate.

Note that the adversary can always make the evaluation fail, but must do so in a fair
way: Either no party learns anything, or all parties learn a correct output. Our protocol
securely implements this ideal functionality when t < n/3 parties are corrupted. If the BA
is modeled as an ideal functionality, then our implementation is perfectly secure. We will
not give the full simulation proofs below, as they follow more or less straightforwardly using
known techniques.

On a high level, however, the simulation proceeds as follows: First the simulator simulates
the first 4 steps by following the protocol. This is possible as the secret inputs xi are not
used.

If some honest Pj computed gj = preprocess failure, then the simulator inputs early timeout

to Ff
fsfe, which will make it output yi = ⊥ to all Pi. Clearly the same happens in the simu-

lated execution since Pj sends gj = preprocess failure to all honest parties.
If all honest Pj compute gj = preprocess success, then the preprocessing was secure. This

ensures that the sharings [ri] are consistent, and since the simulator knows the shares of all
honest parties, it can compute all ri. From the si broadcast by the corrupted parties in the
simulation it computes xi = si − ri and inputs these to Ff

fsfe on behalf of the corrupted
parties. It broadcasts random si’s on behalf of honest players.

Then the simulator finishes the execution of the preprocess and input phase. If during
this the adversary cheats or calls the timeouts at a time which makes the BA terminate
with q = failure, then the simulator inputs early timeout to Ff

fsfe, which will make it output
yi = ⊥ to all Pi. Clearly the same happens in the simulated execution.

If q = success in the simulation, then the simulator inputs late timeout to Ff
fsfe, and learns

the output for corrupted parties. It can now simulate the computation phase using standard
techniques until all parties have computed their outputs2. Namely, since the computation
2 In this process, the simulator may need to control the time at which results are delivered to honest parties,

depending on when the adversary chooses to deliver the messages in the simulated execution.

6

phase is a sequence of public reconstructions, the simulator for each reconstruction selects
the value to be opened, either a random value or a result yi, as appropriate. It then computes
shares to send on behalf of the honest players such that they are consistent with the opened
value and the shares held by corrupted players.

4 Protocol for Preprocessing

In this section, we describe the techniques used in the preprocessing phase. One version of
the preprocessing is obtained by simplifying in a straightforward way the protocols from
Hirt and Beerliová-Trub́ıniová in [1], where hyperinvertible matrices are used to generate
multiplication triples. Another version is based on pseudorandom secret-sharing [7].

4.1 Preprocessing based on Hyperinvertible Matrices

In this subsection we will show how the preprocessing and input phase works. This amounts
to showing how to generate the multiplication triples.

The key element in the way we generate triples is that while in [1], a player elimination
step is run whenever a fault occurs, we accept the possibility that our protocol will not
terminate. Therefore we can simplify and speed up the protocols considerably by cutting
away the player elimination and simply aborting if a fault is detected. For completeness and
readability, we will describe the most important protocols here, but refer to [1] for security
proofs and some of the tools.

In order for us to be able to generate multiplication triples, we first need to be able
to generate double sharings of random element – that is, two Shamir sharings of the same
random element, possibly with different thresholds. In other words we wish to generate for
a random r ∈ F sharings [r]d and [r]d′ , where d and d′ are the degrees or thresholds. A more
compact notation for the double sharing is [r]d,d′ .

We will need some facts from [1] on reconstructing shared values, namely how to re-
construct a value robustly to one player using O(nk) bits of communication and how to
reconstruct up to T = n− 2t values publicly using O(n2k) bits, where k is the size of a field
element.

The following is based on the concept of hyperinvertible matrices. “Hyperinvertible” is
defined as in [1], where a straightforward way to construct such a matrix is also presented:

Definition 1. An m × n matrix M is hyperinvertible if for any selection R ⊆ {1, . . . ,m}
of rows and C ⊆ {1, . . . , n} of columns such that |R| = |C| > 0, the square matrix MR

C

consisting of the intersections between rows in R and columns in C is invertible.

The protocol for generating T = n− 2t double sharings now works as follows (it assumes
the existence of an publicly known n× n hyperinvertible matrix M):

1. Each player Pi Shamir shares a random value si to the others using both d and d′ as
degrees. Every Pi now knows shares of [s1]d,d′ , . . . , [sn]d,d′ , but shares from corrupted
players may be incorrect.

2. The players locally compute

([r1]d,d′ , . . . , [rn]d,d′) = M([s1]d,d′ , . . . , [sn]d,d′) .

Note that there are actually two vectors here, and the matrix is applied to both, creating
two new vectors.

7

3. All sharings [si]d,d′ are verified for i = T + 1, . . . , n. They are verified by having each Pj

send his share of [si]d,d′ to Pi. Each Pi that is given shares must then check whether they
are consistent and that both parts of the double sharing represent the same value. If not,
Pi sets an unhappy flag to indicate the fault.

4. The double sharings [r1]d,d′ , . . . , [rT]d,d′ are the output.

The double sharing protocol is guaranteed to either output T = n − 2t correct and
random double sharings that are unknown to the adversary or cause at least one honest
player to become unhappy. This is proved in [1], along with the fact that the communication
complexity is O(n2k) bits. In our case, if an honest player becomes unhappy at any point, all
other players are informed and the honest players will abort, as described in the Section 3.
That is, we skip the player elimination used in [1].

If we only wanted to generate a set of T single Shamir sharings, it is easy to see that we
can use the protocol above but considering only sharings using degree d for each step. The
complexity of this is half that of creating double sharings. This is used for generating the
sharings [ri] of a random ri for each player Pi, that we promised in the Section 3.

Generating Multiplication Triples. Given sharings

[a1]t, . . . , [aT]t, [b1]t, . . . , [bT]t

and
[r1]t,2t, . . . , [rT]t,2t

of random and independent numbers ai, bi, ri ∈ F, we can generate T multiplication triples
as follows:

1. The players compute [ai]t[bi]t − [ri]2t = [aibi − ri]2t for i = 1, . . . , T .3 They then attempt
to publicly reconstruct all of the aibi− ri. If the reconstruction of any of the values fails,
an honest player becomes unhappy and we abort.

2. The players locally compute [aibi]t = aibi − ri + [ri]t. All honest players now own shares
of the [aibi]t, the [ai]t and the [bi]t for i = 1, . . . , T .

This protocol is clearly secure, assuming that the sharings we start from have been securely
constructed. The simulator would choose random values si to play the role of aibi − ri, it
would then expand the set of shares known by corrupt players of [aibi− ri] to a complete set
consistent with si and use these shares as those sent by honest players. For details, see [1].

The communication complexity is O(n2k) bits for the reconstructions and therefore a
total of O(n2k) bits including the generation of the double sharings. That is, we can recon-
struct T = n − 2t = Θ(n) shares with a communication complexity of O(n2k), where k is
the bit length of the field elements.

4.2 Preprocessing based on Pseudorandom Secret-Sharing

We show here how to do the preprocessing based on pseudorandom secret-sharing. The tech-
niques used are described in detail in [8], but we present here an overview for completeness.

3 The notation [ai]t[bi]t means that each player multiplies its shares of [ai]t and [bi]t. This gives a 2t sharing
of aibi.

8

Pseudorandom Secret-Sharing. Let A be a set of players of size n− t. We can create a
random, shared secret by defining for each set A a random value rA and give it to all players
in A. The secret is then given by

s =
∑
A

rA .

Now every maximal unqualified set {1, . . . , n} \A misses exactly one value, namely rA.
Keeping the above in mind, pseudorandom secret-sharing (PRSS) is then based on the

observation that we can create many random shared secrets by distributing once and for all
one set of rA values.

The trick is to use a pseudorandom function ψrA with rA as its key. If the parties agree
on some publicly known value a, they can generate the random values they need as ψrA(a).
So the secret is now

s =
∑
A

ψrA(a) .

What we actually want, however, is a Shamir sharing. This can be fixed as follows. Define
a degree at most t polynomial fA by fA(0) = 1 and fA(i) = 0 ∀i ∈ {1, . . . , n} \ A. Now
each player Pi computes its share

si =
∑

A⊂{1,...,n}:
|A|=n−t,i∈A

ψrA(a)fA(i) .

This is in fact a Shamir sharing of s, since it defines the polynomial

f(x) =
∑

A⊂{1,...,n}:
|A|=n−t

ψrA(a)fA(x) .

It is easy to see that this polynomial has degree at most t and that

f(0) =
∑

A⊂{1,...,n}:
|A|=n−t

ψrA(a) = s ,

which means that it shares the right secret. It is also clear that si = f(i), which means that
our sharing is a correct Shamir sharing.

Pseudorandom Zero-Sharing. We will need one more tool to be able to generate multi-
plication triples, and that is what is defined in [8] as pseudorandom zero-sharing (PRZS).

Like PRSS, it is meant to create a Shamir sharing using only local computations, but in
this case it is a sharing of 0. We also make it a sharing of degree 2t because that is what we
need in the following, but the approach works just as well with other thresholds. First define
for a set A the set

GA = {g ∈ Zp[x] | deg(g) ≤ 2t ∧ g(0) = 0 ∧ (j 6∈ A⇒ g(j) = 0)} .

This is a subspace of the vector space of polynomials of degree at most 2t. Because every
polynomial in the set has t+ 1 zeros, the subspace must have dimension 2t+ 1− (t+ 1) = t.
The construction from [8] needs a basis for this subspace, but no explicit construction was
given there. We suggest to use the following:

(g1
A, . . . , g

i
A, . . . , g

t
A) = (xfA, . . . , x

ifA, . . . , x
tfA),

9

where the fA is defined as above. It is a basis because it has t elements of GA which are all
of different degrees and therefore linearly independent. Exactly as for PRSS, we assume that
we have values rA known (only) by players in A. Now we define the share at player j as

sj =
∑

A⊂{1,...,n}:
|A|=n−t,j∈A

t∑
i=1

ψrA(a, i)gi
A(j) .

Note here that the inner sum is a pseudorandom choice of a polynomial from GA, evaluated
in the point j. Now we want to show that this leads to a Shamir sharing of 0, so we define
the corresponding polynomial as

g0(x) =
∑

A⊂{1,...,n}:
|A|=n−t

t∑
i=1

ψrA(a, i)gi
A(x).

The degree of g0 is clearly at most 2t, and it is also easy to see that it is consistent with the
shares above and that g0(0) = 0.

Making triples using PRSS and PRZS. In order to make multiplication triples, we
already know that it is enough if we can build random sharings [a]t, [b]t, and a double sharing
[r]t,2t.

Using PRSS, it is easy to construct the random degree t sharings. A double sharing can
be constructed as follows: Create using PRSS a random sharing [r]t and use PRZS to create
a sharing of zero [0]2t. Now

[r]2t = [r]t + [0]2t

is clearly a sharing of r of degree 2t. We can therefore use pseudorandom secret sharing and
pseudorandom zero sharing to locally compute all the values needed to make multiplication
triples. The only interaction needed is one public opening for each triple as described in
Section 4.1.

This is faster than using hyperinvertible matrices for a small number of players, but
does not scale well: Since n − t = Θ(n), the local computation is in exponential in n, as
clearly seen from the benchmark results in Section 6. The break-even point between PRSS
and hyperinvertible matrices depends both on local computing power and on the cost of
communication.

Security of the PRSS approach. We claim that the overall protocol is secure against a
computationally bounded and static adversary, when based on PRSS.

To argue this, consider some adversary who corrupts t players, and let A be the set of
n−t honest players. Now let πrandom be the protocol that runs as described above, but where
the function ψrA is replaced with a truly random function.4

When we execute PRSS or PRZS in πrandom , all secrets and sets of shares held by the
honest players are uniformly random, with the only restriction that they are consistent with
the shares held by corrupt players. We can therefore use the proof outlined in Section 3.2 to
show that πrandom implements Ff

fsfe (with perfect security).
4 This can be formalized by assuming an ideal functionality that gives oracle access to the function for the

honest players as soon as the adversary has corrupted a set of players initially.

10

For the rest of the argument, we refer to the protocol using the pseudorandom function
as πpseudo . We claim that real-world executions of πrandom and πpseudo are computationally
indistinguishable. Assume for contradiction that there exists some computationally bounded
environment Z that can distinguish between the two with a non-negligible advantage.

From Z we can now build a new machineM, which gets oracle access to some function f
and outputs its guess of whether the function is pseudorandom or truly random.
M simply runs the protocol with f inserted in the place of ψrA (i.e., it runs either πrandom

or πpseudo) for Z. If Z outputs “πrandom”, M outputs “truly random”, otherwise it outputs
“pseudorandom”. Clearly, M can distinguish between a pseudorandom function and a truly
random function with a non-negligible advantage, breaking the security of our PRF.

Combining this with the fact that πrandom securely realizes F , we see that the same holds
for πpseudo (with computational security): The simulator that works for πrandom also works
for πpseudo.

5 VIFF

The Virtual Ideal Functionality Framework, VIFF, is a library with building blocks for
developing cryptographic protocols. The goal is to provide a solid basis on which practical
applications using MPC can be built. It is also our hope that the framework offered by VIFF
will help facilitate rapid prototyping of new protocols by researchers and so lead to more
protocols with practical applications.

VIFF aims to be usable by parties connected by real world networks. Such networks are
all asynchronous which means that no upper bound can be given on the message delivery
time. A well-known example is the Internet where the communication from A to B must
go through many hops, each of which introduces an unpredictable delay. Targeting networks
with this kind of worst-case behavior from the beginning means that VIFF works well in all
environments, including local area networks which behave in a more synchronous manner.

To deal with the asynchronous setting the VIFF runtime system tries to avoid waiting
unless it is explicitly asked to do so. In a synchronous setting all parties wait for each other
at the end of each round, but VIFF has no notion of “rounds”. What determines the order of
execution is solely the inherent dependencies in a given program. If two parts of a program
have no mutual dependencies, then their relative ordering in the execution is unpredictable.
This assumes that the calculations remain secure when executed out-of-order. Protocols
written for asynchronous networks naturally enjoy this property since the adversary can
delay packets arbitrarily, which makes the reordering done by VIFF a special case.

As an example, consider the simple program in Figure 1 for three players, n = 3. It starts
by reading some input from the user (an integer) and then defines the field Z1031 where the
toy-calculation will take place. All three players then take part in a Shamir sharing of their
respective inputs, this results in three Share objects being defined. A fourth Share object is
generated using pseudorandom secret sharing [7].

Here all variables represent secret-shared values – VIFF supports Shamir secret sharing
for when n ≥ 3 and additive secret shares for when n = 2. The execution of the above
calculation is best understood as the evaluation of a tree, please see Figure 2. Arrows denote
dependencies between the expressions that result in the calculation of the variable z.

The two variables x and y are independent, and so one cannot reliably say which will be
calculated first. But more importantly: We may calculate x and y in parallel. It is in fact
very important for efficiency reasons that we calculate x and y in parallel. The execution
time of a multiparty computation is limited by the speed of the CPUs engaged in the local

11

(Standard program setup not shown.)

input = int(raw input(”Your input: ”))
Zp = GF(1031)
a, b, c = rt.shamir share([1, 2, 3], Zp, input)
d = rt.prss share random(Zp)

x = a ∗ b
y = c ∗ d
z = x + y

Fig. 1. Program, rt is a Runtime object.

z

+

x

∗

a b

y

∗

c d

shamir share prss share random

Fig. 2. Expression tree.

computations and by the delays in the network. Network latencies can reach several hundred
milliseconds, and will typically dominate the running time. So when we say parallel we mean
that when the calculation of x waits on network communication from other parties, then it is
important that the calculation of y gets a chance to begin its network communication. This
puts maximum load on both the CPU and the network.

5.1 Implementing VIFF

VIFF is written in Python, a modern object-oriented procedural language. Programs using
VIFF are normal Python programs, and yet we have described how operations may be
executed in a random order. This is possible by using a technique where we only work with
deferred results and never with the results themselves. A deferred result is something that
will eventually materialize, but we do not know when and the only available operation is to
add callbacks to the result. Callbacks are simply function pointers, and each deferred result
keeps a list of such pointers. The callbacks will be executed when the result is ready, typically
when some share has arrived over the network. This programming style is well-known from
graphical user interfaces where the programmer also attaches callbacks to certain events in
the user interface. In VIFF this is implemented using the Twisted network library, specifically
using the Deferred class provided by Twisted. An example of how Twisted works is this
program which retrieves a page from the Internet and prints out the contents:

def print contents(contents):
print ”The Deferred has called us with:”
print contents

deferred = getPage(’http://example.net/’)
deferred.addCallback(print contents)

The getPage function returns a Deferred which will eventually hold the HTML of the
fetched page. When it does, it will call its callbacks in sequence. If we had retrieved several
pages, and attached different callbacks to each, then the execution of those callbacks would
depend on which page arrives first.

VIFF uses the Deferred class extensively. In Figure 2 the variables are Share objects, a sub-
class of Deferred. Using suitable operator overloading we are able to allow the programmer
to do arithmetic with Share objects and so treat them like normal numbers. Key to the

12

implementation of VIFF is a function gather shares which takes a list of Share objects as
input and returns a new Share. This Share will call its callbacks when all Share objects in
the list have called their callbacks. We use this to make Share objects that wait on other
Share objects. Figure 4 in Appendix A shows the implementation of a standard multiplication
protocol in VIFF, and uses gather shares to make the product wait on the two operands to
the multiplication.

The big advantage of this system is that it automatically runs the operations in parallel:
The calculations implicitly create the tree shown in Figure 2, and this tree is broken down as
fast as possible when operands become ready. There is no predefined execution order in the
tree – it is deconstructed from the leaves inwards at the same speed as the needed operands
arrive.

Also, by making this automatic scheduling implicit the parallelization is done on all levels:
Application programmers might define new convenience functions that use primitives offered
by VIFF, and these new functions will also be executed in parallel.

Executing things in this way changes the semantics of a program using VIFF from that
of a normal Python program. Each statement is no longer executed when it is encountered,
it is merely scheduled for execution and then executed later when the operands are available.
The semantics of a program using VIFF is thus more like that of a declarative programming
language where you declare your intentions but where the compiler takes care of scheduling
the calculations in the optimal order.

6 Benchmark Results

In order to measure the efficiency of our implementation, we have run a number of tests
using the techniques described above on a set of computers on a fast local area network. The
computers had Intel Celeron CPUs with a clock speed of 2.40 GHz, 1 GiB of RAM and were
running Red Hat Enterprise Linux 5.2, Python 2.4.3, and VIFF 0.7.

We ran benchmarks with n = 4, 7, . . . , 25 corresponding to thresholds t = 1, 2, . . . , 8,
respectively. In each test we secret-shared 2,000 random 32-bit numbers and multiplied the
1,000 pairs in parallel. The results in Table 1 is the average online time spent per multi-
plication (columns 2, 3, and 5) and the average offline time spent per multiplication triple
(columns 4 and 6).

Table 1. Benchmark results.

(n, t) Passive Active PRSS Active Hyper Ratio

(4, 1) 2 ms 4 ms 5 ms 4 ms 20 ms 2.6
(7, 2) 3 ms 6 ms 22 ms 6 ms 42 ms 2.2

(10, 3) 4 ms 8 ms 130 ms 8 ms 82 ms 2.0
(13, 4) 6 ms 10 ms 893 ms 10 ms 136 ms 1.7
(16, 5) 8 ms — — 12 ms 208 ms 1.6
(19, 6) 10 ms — — 14 ms 287 ms 1.5
(22, 7) 12 ms — — 17 ms 377 ms 1.3
(25, 8) 15 ms — — 19 ms 501 ms 1.3

Table 1 also includes a column giving the ratio between the online time for the multi-
plication protocol described here using multiplication triples, and the time for a standard
multiplication protocol which is only secure against passive adversaries. The passively secure

13

multiplication protocol consists of a local multiplication followed by a resharing in which ev-
erybody communicates with everybody else. The actively secure multiplication, as described
above, consists of local multiplications and two openings, which also involves quadratic com-
munication.

The average online time per multiplication appears to grow linearly in the number of
players, both in the case of passive and active adversaries. The total amount of network
traffic is quadratic in the number of players (in both protocols), but the work done by each
player grows only linearly. Our results therefore suggest that the players are CPU bound
instead of being slowed down by the network. In the test setup all 25 machines were located
on a fast LAN with ping times of about 0.1 ms, so this is to be expected. We hope to setup
a better test environment with a controllable network delay in order to do more realistic
testing in the future.

The average time per multiplication triple produced via hyperinvertible matrices grows
quadratically, please see Figure 3. Fitting a curve f(n) = an2 + bn+ c gives a = 0.8, b = −1,
c = 10 as a best fit, and plotting this curve on top of our data points shows an exact match.

Players (n)

T
im

e
(m

s)

0 4 7 10 13 16 19 22 25

100

200

300

400

500

600

700

800

900 PRSS

Hyper

Fig. 3. Preprocessing time per multiplication triple as a function of the number of players.

As expected, the PRSS based preprocessing is faster for a small number of players but
does not scale well, and we had to abandon it for n > 13. The amount of work per player
depends on the number of subsets of size n−t and with

(
n

n−t

)
subsets this gives an exponential

growth.

7 Conclusion

We have presented an efficient protocol for general multiparty computation secure against
active and adaptive adversaries. The protocol provides a new tradeoff between guaranteeing
termination and efficiency which we believe is relevant in practice. To demonstrate this we
have implemented the protocol in a framework for secure multiparty computation called
VIFF. This allowed us to show that achieving active security costs only about a factor of
two in online time, if one is willing to accept that the preprocessing step might fail without
revealing any private data. We believe this to be well-suited for practical applications where
the parties typically have a much stronger incentive to participate in the computation than
to halt it.

Even though the cost of preprocessing is larger than the online cost, it is certainly not
prohibitive: For instance, for 4 players, 1000 multiplications can be prepared in 5 seconds.

14

Currently VIFF supports the fast arithmetic using standard Shamir shares for the case
with three or more players, and has support for much slower arithmetic with additive shares in
the two player case. Using the additively homomorphic Paillier public key cryptosystem [12],
our benchmarks show an average time per multiplication of 300 ms for 32-bit numbers.5 This
is with a straightforward implementation of the cryptosystem in Python and we expect to
gain some performance by reimplementing it as a C extension instead.

In the two player case we have t = n− 1, also known as self trust since every player only
need to trust himself to be honest. We would like to develop protocols for t = n− 1, but for
n > 2. Such a high threshold will again require public key cryptography, so we expect this
to be expensive, but nevertheless interesting since there might be some situations where the
parties are willing to wait longer in return for this level of security.

The VIFF source code is freely available at the VIFF homepage (no link provided due to
anonymity) and it is hoped that others can verify our measurements and expand on it with
other protocols.

5 The implementation actually allows multiplication of much larger numbers, up to about 500 bits with a
marginal performance penalty.

15

References

1. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear communication com-
plexity. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer Science, pages 213–230.
Springer, 2008.

2. Zuzana Beerliová-Trub́ıniová, Martin Hirt, and Jesper Buus Nielsen. Almost-asynchronous multi-party
computation with faulty minority. Manuscript, 2008.

3. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In STOC, pages 1–10. ACM, 1988.

4. Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas Jakobsen, Mikkel
Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach,
and Tomas Toft. Multiparty computation goes live. Cryptology ePrint Archive, Report 2008/068, 2008.
http://eprint.iacr.org/.

5. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145. IEEE, 2001.

6. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols. In
STOC, pages 11–19. ACM, 1988.

7. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and
applications to secure computation. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer
Science, pages 342–362. Springer, 2005.

8. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and
applications to secure computation. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer
Science, pages 342–362. Springer, 2005.

9. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game – a completeness
theorem for protocols with honest majority. In STOC, pages 218–229. ACM, 1987.

10. Martin Hirt and Ueli M. Maurer. Robustness for free in unconditional multi-party computation. In Joe
Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 101–118. Springer,
2001.

11. Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party computation with
quadratic communication. To appear at ICALP 2008, 2008.

12. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques Stern,
editor, EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer, 1999.

13. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, November 1979.

16

A Multiplication in VIFF

As an example of real VIFF code, we have included the implementation of the standard
multiplication protocol which is secure against passive adversaries, please see Figure 4.

def mul(self, share a, share b):
2 assert isinstance(share a, Share) or isinstance(share b, Share), \

”Either share a or share b must be a Share.”
4

if not isinstance(share a, Share):
6 # Then share b must be a Share => local multiplication. We

clone first to avoid changing share b.
8 result = share b.clone()

result.addCallback(lambda b: share a ∗ b)
10 return result

if not isinstance(share b, Share):
12 # Likewise when share b is a constant.

result = share a.clone()
14 result.addCallback(lambda a: a ∗ share b)

return result
16

At this point both share a and share b must be Share objects. We
18 # wait on them, multiply, reshare, and recombine.

result = gather shares([share a, share b])
20 result.addCallback(lambda (a, b): a ∗ b)

self.schedule callback(result, self. shamir share)
22 self.schedule callback(result, self. recombine, threshold=2∗self.threshold)

return result

Fig. 4. The standard multiplication protocol for passive adversaries.

The code handles both local multiplication and multiplication involving network traffic.
First, if either share a or share b is a not a Share object, i.e., one of them is a constant
integer or a FieldElement, then we do a quick local multiplication. Assume that share a is
the constant and share b is the Share (lines 5–10). We cannot simply multiply share a and
share b since share b is a Deferred and might not have a value yet. The solution is to clone
share b and add a callback to it. This callback is simply a lambda expression (an anonymous
function) that takes care of the correct multiplication when share b eventually gets a value
(line 9). The opposite case is handled in the same way (lines 11–15).

If it is established that both share a and share b are Share objects we create a new Share
which waits on both of them (line 19). We then add several callbacks: First we multiply, then
we reshare, and finally we recombine. These three operations will be executed in sequence
when both share a and share b have received their values due to incoming network traffic.
The last two callbacks involve network traffic, and must be added using a more expensive
mechanism which ensures that everybody agree on the labels put on the data as it is sent
over the network.

17

In all three cases the mul method returns result to the caller (lines 10, 15, or 23). Note
that result probably does not have a value at this point, but result is a Share that we have
prepared in such a way that it will receive the correct value at some point in the future.
All VIFF methods work like this: They return Share objects which will eventually get the
correct value when other Share objects arrive over the network.

18

