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Abstract. Secure multiparty computation (MPC) allows a set of parties to securely eval-
uate any agreed function of their inputs, even when up to t of the n parties are faulty.
Protocols for synchronous networks (where every sent message is assumed to arrive within
a constant time) tolerate up to t < n/2 faulty parties, whereas in the more realistic asyn-
chronous setting (with no a priory information on maximal message delay) only security
against t < n/3 is possible. Note that even asynchronous Byzantine agreement requires
t < n/3.
In this paper, we are interested in the minimal synchronicity assumption for achieving
security against t < n/2. It turns out that the bottleneck of asynchronous MPC is the
distribution of the inputs: Once the inputs are correctly distributed, any deterministic
function can be computed over a fully asynchronous network with t < n/2. Furthermore,
we show that the inputs can be verifiably distributed with t < n/2, if a single round of
synchronous broadcast is available.
Composing the above, we obtain the first MPC protocol that achieves security against
t < n/2 without assuming a fully synchronous network. Actually our protocol guarantees
security against any faulty minority in an almost asynchronous network, i.e. in a network
with one single round of synchronous broadcast (followed by a fully asynchronous com-
munication). Furthermore our protocol takes inputs of all parties (in a fully asynchronous
network only inputs of n− t parties can be guaranteed), and so achieves everything that is
possible in synchronous networks (but impossible in fully asynchronous networks) at the
price of just one synchronous broadcast round.
As tools for our protocol we introduce the notions of almost non-interactive verifiable
secret-sharing and almost non-interactive zero-knowledge proof of knowledge, which are of
independent interest as they can serve as efficient replacements for fully non-interactive
verifiable secret-sharing and fully non-interactive zero-knowledge proof of knowledge.
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1 Introduction

1.1 Multiparty Computation

Secure multiparty computation (MPC) allows a set of n parties to securely evaluate
any agreed function of their inputs, even if t of the parties are corrupted by a central
adversary. In this paper we focus on an active adversary, that can take full control
over the corrupted parties (i.e., read their internal state and make them send wrong
messages). A protocol is called secure if the uncorrupted parties output the correct
function values (correctness), and if the adversary does not learn anything that cannot
efficiently be derived from the inputs and outputs of the corrupted parties (privacy).

The MPC problem dates back to Yao [Yao82], and the first generic solutions were
presented in [GMW87,CDG87]. These protocols are secure for t < n/2, and this is known
to be optimal when the protocols are guaranteed to be deadlock-free – i.e., they deliver
outputs even when the adversary actively tries to make this not happen.

1.2 Synchronous vs. Asynchronous Communication

The above mentioned protocols, and most protocols following
them [BGW88,CCD88,RB89,Bea89, . . . ], were for the synchronous model, where
it is assumed that the delay of messages in the network connecting the parties is
bounded by a known constant.

This synchronicity assumption is extremely powerful, because it allows MPC proto-
cols to proceed in rounds, with the guarantee that every message sent in some round will
be delivered at the beginning of the next round. This again allows a party Pj that did
not receive an expected message from another party Pi to conclude that Pi is corrupted.
A typical use of this ability is the following: If Pj does not receive some message mi,j that
should have been sent by Pi according to the protocol, then Pj broadcasts a complaint
on Pi. In response Pi must broadcast mi,j.

3 Now, all parties can see whether or not Pi

sends the message in question. So, either the protocol can continue, or all parties agree
that Pi is corrupted. In the last case, the secrets of Pi could be publicly reconstructed
to allow the other parties to proceed without the help of Pi.

On the negative side, the assumptions of the synchronous model forces the imple-
mentation of synchronization to be secure in a cryptographic sense. If a party Pi is
prevented from delivering a message, e.g. due to a cable being dug over or a flooding
attack by some hacker, this might affect the privacy of Pi, and maybe even the pri-
vacy of other honest parties.4 The security level of the synchronization protocol must
therefore be as high as that of e.g. the encryption schemes used by the protocol. To get
this high security against even such simple attacks as a broken cable and a flooding at-
tack, the timeouts probably should be hours, as a party taking part in the computation
should have time to recover from such events before their privacy is broken by the other
parties. Note that this has nothing to do with the round trip time of the network in
normal operation! To be cryptographically secure, the timeouts must be able to handle
any unintended delaying event which can occur with non-negligible probability. In fact,

3 Broadcasting mi,j is secure because either Pi did not send a message (and thus is corrupted) or Pj

is lying about not having received it (and thus is corrupted), meaning that mi,j is already known to
the adversary.

4 Some protocols publicly reconstruct the secrets of Pi, which might include its inputs and the shares
of the secrets of other parties.
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we do not know of a single published work which claims to implement a general syn-
chronization mechanism suitable for emulating the synchronous cryptographic model in
e.g. Internet-like environments.

Partially as a response to this, asynchronous protocols have been devel-
oped [CR93,BCG93,BKR94]. In the asynchronous model, arbitrary delays in the network
are allowed, with the only restriction that eventually every sent message must be deliv-
ered. In order to model the worst case, the adversary is allowed to control the scheduling
of messages in the network. The asynchronous model is much easier to implement. On
the Internet it is e.g. more or less implemented by the secure socket layer (SSL).5 Fur-
thermore, asynchronous protocols are best-effort protocols: When the message delays
are short, the protocols are fast. This contrasts synchronous protocols, which have to
allow each round to be long enough, such that all messages can get through, even in the
very worst case.

On the downside, protocols for the asynchronous model have two inherent drawbacks
when compared with their synchronous counterparts:

Input Deprivation: A slow honest party cannot be distinguished from a corrupted
party not sending messages at all, and can therefore not be waited for. Therefore
a fully asynchronous protocol will sometimes exclude up to t honest parties from
providing their input to the computation. For some computations like auctions and
elections, input deprivation is completely intolerable.

Lower Threshold: Since t honest parties can be excluded entirely from the com-
putation due to delay, the actual computation might be performed by just n − t
parties, of which t might be corrupted. Since honest majority is still needed between
the participating parties, this means that there must be t + 1 honest parties left
among the n− t parties, which requires that t < n/3. No fully asynchronous protocol
can tolerate t < n/2, opposed to the best synchronous protocols.

1.3 Hybrid Network

The problem of input deprivation was addressed recently in [HNP05] and [BH07].
In order to achieve input guarantee without assuming a fully synchronous network,
[HNP05] proposed a so-called hybrid network with few synchronous rounds followed by
a body of asynchronous computation. Later, [BH07] showed that input guarantee can
be achieved with only one synchronous round (followed by many asynchronous rounds).
This is clearly optimal in the number of synchronous rounds, and can be practical even
in settings where implementing synchronous communication is very inefficient. As an
example, to run an auction one can have an initial deadline of a week for sealed bids to
arrive – reasonable time to get a message through even when under attack. After this
deadline the result is then securely computed using a completely asynchronous protocol.

However, the above protocols still suffer from the second problem of asynchronous
protocols: they tolerate lower thresholds than their synchronous counterparts. In the
cryptographic model, this means tolerating only t < n/3 instead of t < n/2.

5 To implement that all messages eventually get delivered, all that is needed on top of the SSL is a way
to reestablish broken connections, resulting from e.g. broken cables or broken routers. This need not
be speedy and the time to reestablish connections only affect the running time of the protocol when
needed. So, connections just have to be reestablished eventually when they get broken – a manageable
requirement.
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1.4 Contributions

In this paper we present an MPC protocol for an almost-asynchronous network that
achieves everything that is possible in the synchronous world (input guarantee and
security threshold t < n/2). More precisely, we show that input guarantee and security
t < n/2 is achievable with one single round of synchronous broadcast (followed by
asynchronous computation). This way we get the best of both worlds: input guarantee
and security threshold t < n/2 on one hand and minimal synchronicity assumptions on
the other hand.

Our protocol starts by every party broadcasting an encryption of its inputs (along
with a non-interactive proof of plaintext knowledge). Then the circuit is asynchronously
evaluated gate-by-gate, such that every party eventually learns an encryption of every
intermediate result, leading into every party eventually learning an encryption of the
output, which is then decrypted.

However, as in a fully asynchronous network no Byzantine agreement is possible for
t ≥ n/3, after the synchronous broadcast round in the input phase our protocol runs
without any further agreement on whatsoever. In particular, this means that the parties
might get different encryptions of the (same correct) output.

Nevertheless, the following holds: once the encryptions of the inputs are consistently
distributed among the parties, it is possible to securely compute any deterministic func-
tion in a fully asynchronous network with honest majority (and thus without any further
agreement).

1.5 Related Work

The number of synchronous rounds of broadcast needed for a fully synchronous pro-
tocol has been studied in [BB89,BMR90,IK00,GIKR02], and is known to be 3. Lately
Katz, Koo and Kumaresan [KK06,KK07,KKK08] have done important progress on the
subject, by focusing on the number of synchronous rounds of point-to-point communi-
cation instead of insisting on all rounds being rounds of broadcast. This allows to do
much better than emulating each of the three needed rounds of broadcast individually.
Still, the models of Katz, Koo and Kumaresan insist on all rounds being synchronous,
and therefore fall pray to known lower bounds on the number of synchronous rounds
needed. Our result can, on the other hand, do with as little as one synchronous round
of point-to-point communication, as discussed in the conclusions of this paper.

2 Preliminaries

2.1 Model

We consider a set of n parties P = {P1, . . . , Pn}, each Pi holding an input xi.
The faultiness of parties is modeled by a central poly-time adversary who can corrupt

up to t < n/2 of the parties (for a given threshold t) and make them deviate from the
protocol in any desired matter. The number of actually corrupted parties is denoted by
f .

The parties are connected by a network of authenticated point-to-point channels.
Our protocol consists of two phases – a synchronous and a subsequent asynchronous
phase.

In the synchronous phase, all communication is synchronous – there is a common
clock and the message delay in the network is upper-bounded by a known constant.
The synchronous phase proceeds in rounds, and every message sent in some round is
delivered at the beginning of the next round.
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In the asynchronous phase, the messages can be delayed arbitrarily and the order of
the messages does not have to be preserved (however every sent message is eventually
delivered). In this phase, the computation proceeds in steps. In every step one party
is active – it is activated by receiving a message, then it performs some local compu-
tation and eventually sends out some messages. To model the worst case scenario of
asynchronous communication, we give the power to schedule the message delivery to the
adversary – he can choose in every step which of the messages in the network is to be
delivered.

Our protocol can be proved statically secure in the UC framework [Can01]. We
conjecture that using the techniques that were used by [DN03] in order to present an
adaptively UC-secure version of [CDN01], our protocol can be modified to be adaptively
secure in the UC framework as well. Since the focus of the present paper is not on
adaptive security, the considerable complications needed to obtain adaptive security
would, however, only blur the focus of the paper.

2.2 Threshold Signatures

We use a threshold signature scheme with threshold t, where t < n/2 is the maximal
number of corrupted parties the protocol is meant to tolerate. There is a publicly known
verification key vk and a secret signature key sk. Each Pi holds a signature key share
ski. Given a message m the party Pi can compute a signature share σi on m and can
prove to any other party, using a two-party zero-knowledge protocol, that σi is a correct
signature share on m. Given the verification key vk and t + 1 distinct, correct signature
shares, anyone can compute a signature σ = σsk(m). The system is unforgeable by
a poly-time adversary knowing up to t of the shares ski – it takes a signature share
from at least one honest party to create a valid signature on m under vk. The system
from [Sho00] meets these requirements.6

2.3 Threshold Homomorphic Encryption

Our protocols will use ideas from [HNP05], which uses threshold homomorphic encryp-
tion to implement asynchronous MPC. One possible instantiation of threshold homo-
morphic encryption is using Paillier’s encryption system [Pai99] as used in [CDN01].
The details are described in [HNP05], but all we need for the level of discussion in this
extended abstract is the following.

Threshold Decryption. In a threshold system, with threshold t, there is an encryption
key ek and a decryption key dk. The encryption key is known by all parties and dk is
shared among the parties, with each Pi holding a share dki. Given ek, a plaintext x
and a randomizer r anyone can compute a ciphertext X = Eek(x; r). For a ciphertext
X each Pi can compute a decryption share Xi and can prove, using a two-party zero-
knowledge protocol, that Xi is a correct decryption share. Given the encryption key
ek and t + 1 correct decryption shares, from different parties, anyone can compute the
plaintext x = Ddk(X). The system is IND-CPA secure against an adversary knowing t
of the shares dki.

If such a system has been setup and t < n/2, then any party Pd, which is allowed
to, can decrypt a ciphertext X asynchronously: The party sends X to all parties. Each
party which agrees that Pd is allowed to decrypt X sends a decryption share to Pd and

6 The system from [Sho00] uses the random oracle model to be non-interactive. To avoid the random
oracle we simply use interactive proofs, as described in e.g. [Nie02].
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proves to Pd that the decryption share is correct. The party Pd waits for n − t shares
to arrive for which valid proofs were provided. Since there are n − t honest parties, if
Pd is allowed to decrypt X, then this is deadlock free. And, since n− t ≥ t + 1, Pd gets
enough shares to compute x = D(X).

Homomorphic Encryption. We assume that the encryption is homomorphic modulo
some publicly known integer N . There exists some operation ⊞ on ciphertexts such
that Eek(x; r) ⊞ Eek(y; s) = Eek(x + y mod N ; t) for some randomizer t, which can
be computed efficiently from x, r, y, s if these are known. We also assume that given
X = Eek(x; r) one can compute X ′ = Eek(N − x; s) for some randomizer s, which can
be computed efficiently from x and r. We assume that these operations can be per-
formed efficiently given just the encryption key ek. We use C ∈ E(x) to mean that
there exists a randomizer r such that C = Eek(x; r). Note that by combining the ho-
momorphic properties one can take any ciphertext B ∈ E(b) and any integer a ∈ ZN

and efficiently compute an encryption C ∈ E(ab mod N) using double-and-add. We
call this multiplication by a constant and write C = a ⊡ B. We also assume that it is
possible to take any ciphertext C ∈ E(c) and efficiently compute a uniformly random
ciphertext C ′ ∈R E(c), using just the encryption key. We write C ′ ← [C] and call this
re-randomization. We write C ′ = [C](r) when we want to make explicit the randomness
r used for re-randomization. To guarantee robustness of some of our protocols we assume
that there exists a concurrent, non-malleable zero-knowledge (ZK) proof which allows a
party having computed C ′ = [a ⊡ B](r) to prove to another party that it knows a such
that there exists r such that C ′ = [a ⊡ B](r) – the verifier is expected to know just ek,
B and C ′.

2.4 Concurrent, Non-malleable ZK

All ZK proofs mentioned above, and in the following sections, can be implemented as
in [CDN01,HNP05] by transforming three-move, public-randomness, honest-verifier ZK
proofs as described in [Dam00]. This yields concurrent, non-malleable ZK proofs for
the common reference string model. The same transformation can be performed in the
model where each party has a registered public key. In fact, one can prove that the
resulting proof system is a static, universally composable ZK proof of membership in
this setting, and in addition a proof of knowledge when one is allowed to rewind the
adversary [Nie03, Corollary 5.2].7

3 Protocol Overview

Our protocol follows the standard approach with homomorphic threshold encryption,
along the lines of [FH96,CDN01,HNP05]. At the beginning, all parties distribute en-
cryptions of their inputs. Then, the agreed function is evaluated gate-by-gate, where
for each gate, an encryption of its value is computed. Finally, the value of the output
gate(s) is decrypted using threshold decryption.

As we require only t < n/2, no agreement on whatsoever can be achieved (provably,
with t ≥ n/3 BA is impossible). Hence, without any synchronicity assumptions, the

7 We note that the fact that the proofs are only proofs of knowledge when rewinding is allowed is not a
problem for the UC security, where the simulator is not allowed to rewind. The extractor will not be
used by the UC simulator, but by the analysis of the UC simulator. This is by now a standard trick
(cf. [DN03]). In Appendix B we sketch how our protocol is UC simulated using standard techniques.
In the main text we focus on describing the new techniques specific to our protocol.
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parties could not reach agreement on the encryptions of the inputs. We therefore employ
one round of synchronous broadcast which allows to consistently and verifiably distribute
the inputs.8 Once the inputs are distributed, the body of the computation is performed
fully asynchronously, without any further agreement, with t < n/2. This implies that
the function to be evaluated must be deterministic. However, probabilistic functions
can easily be computed by evaluating a deterministic function on the actual inputs and
some additional random inputs provided by the parties. Furthermore, for the sake of
simplicity we assume that the function has public outputs only. Also this restriction can
easily be overcome by letting the parties input random pads that are XORed on their
local outputs. Thus the function to be computed is deterministic with public outputs.
It is expressed as an arithmetic circuit over ZN – the plaintext space of the encryption
scheme. Each Pi has some input wires associated. Internal gates either add or multiply
modulo N , and then there are some output wires which will hold a representation of the
outputs.

In the following section, we describe the fully asynchronous MPC protocol with
predistributed inputs. In the subsequent section, we describe the input stage when given
a single round of synchronous broadcast. Finally, we discuss under which assumptions
this broadcast round can be simulated.

4 Fully-Asynchronous MPC with t < n/2 and Predistributed Inputs

In this section we present a fully asynchronous MPC protocol which allows to dis-
tributively evaluate an agreed function on predistributed inputs. This protocol tolerates
t < n/2 corrupted parties, which means (among other things), that Byzantine agreement
cannot be achieved.

The function is evaluated in the usual gate-by-gate manner. Starting with the given
input encryptions, the parties jointly compute encryptions of each intermediary value
(one after the other), until eventually an encryption of the output is available and jointly
decrypted (using threshold decryption). As asynchronous BA is not possible for t < n/2,
agreement on the encryptions of intermediary values cannot be guaranteed (however,
agreement on the intermediary values is possible, as they can be deterministically derived
from the predistributed inputs).

We solve the issue of inconsistent views on encryptions by evaluating the whole
circuit many times in parallel, once for every party, denoted as king. The other parties
act as slaves and help the king evaluating his copy of the circuit. When the king is
honest, then all slaves will have consistent views on all encryptions. When the king is
faulty, inconsistencies will occur, but we will show that they do not violate privacy (by
cheating the king learns either the correct output or some uniformly random value).

The protocol proceeds in two phases: In the computation phase, the circuit is evalu-
ated n times in parallel, once for every king. In the subsequent termination phase, the
parties ensure that all parties have learned the output, and hence all programs can safely
be stopped. Note that not necessarily all kings can (or must) finish their copy of the
circuit; once t + 1 kings have finished with the same output, then obviously this must be
the correct output, and all parties adopt this value and stop.

8 It is clear that in a real-life network, like the Internet, this round of broadcast itself has to be simulated
using synchronous point-to-point communication. We return to how this one round of broadcast can
be implemented in a point-to-point network in the conclusions of this paper.
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4.1 Computation Phase

We assume that for every input wire, the parties have agreement on the ciphertext
X = E(x) of the input value x. Then every king Pk runs (with the help of the other
parties acting as slaves) his own circuit evaluation, learning an encryption of the output
of every gate. Throughout the whole computation it holds that: whenever an honest
party holds a ciphertext X for the output wire of some gate, then indeed x = D(X)
is the correct value of that wire; however, we do not require that different slaves hold
the same encryption X of a wire when the king is faulty. To every gate a unique gate
id gid is assigned. In the following, we present the protocols for addition, output, and
multiplication gates.

Addition Gate:

Whenever a slave Pi of Pk holds ciphertexts X and Y of the input wires of an addition
gate gid, he computes Z = X ⊞ Y as encryption of the output wire.

Output Gates:

Whenever a slave Pi of Pk holds a ciphertext Z of an output gate gid, he sends to Pk a
decryption share of Z, and gives (interactive) proofs that the decryption share is correct
for Z. Once Pk holds a ciphertext Z of the output gate gid, and receives t + 1 valid
decryption shares for this Z, he computes the output z for gate gid.

Multiplication Gates:

For multiplication, first the slaves help the king to generate a random multiplication
triple [Bea91]. This triple consists of two encrypted random factors and the correspond-
ing encrypted product. The actual multiplication is then evaluated with help of this
prepared triple.

Intuitively, the generation of the multiplication triple proceeds as follows: Pk starts
with the initial triple (A0, B0, C0) =

(

E(1; ǫ), E(1; ǫ), E(1; ǫ)
)

, where ǫ denotes some
fixed agreed-upon randomness for encryption. Trivially, (A0, B0, C0) is a correct multi-
plication triple (though far from being random). Then, in turn for j = 0, . . . , t, Pk sends
(Aj , Bj , Cj) to some party, who randomizes it to (Aj+1, Bj+1, Cj+1) =

(

Aj ⊞E(u), Bj ⊞

E(v), Cj ⊞ E(uv) ⊞ (u ⊡ Bj)⊞ (v ⊡ Aj)
)

for randomly chosen u, v ∈ ZN , and sends back
to Pk the new triple (Aj+1, Bj+1, Cj+1) along with a ZK proof that it was correctly gen-
erated. Clearly, (At+1, Bt+1, Ct+1) is still a correct multiplication triple. Furthermore, as
t+1 parties have randomized the triple, at least one of them being honest, the resulting
triple is a random multiplication triple.

We first present the protocol that allows a party Pi to randomize a triple (Aj , Bj, Cj)
to (Aj+1, Bj+1, Cj+1), and get the new triple certified to be a correct j-th randomization
for gate gid by party Pi for king Pk.

Protocol RandomizeTriple:

0. Pi has input Pk, gid, j, and (Aj , Bj , Cj).

1. Pi picks uniformly random plaintexts u, v ∈R ZN and computes U ← E(u),
V ← E(v), X ← [u ⊡ Bj ], Y ← [v ⊡ Aj ] and Z ← [u ⊡ V ]. It sends (Aj , Bj, Cj)
and (U, V,X, Y, Z) to all parties and gives a concurrent, non-malleable ZK proof of
knowledge to each party of:

– u such that U ∈ E(u) and X ∈ [u ⊡ Bj ],

– v such that V ∈ E(v) and Y ∈ [v ⊡ Aj ], and
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– u such that U ∈ E(u) and Z ∈ [u ⊡ V ].

2. Any P ∈ P receiving (A,B,C) and (U, V,X, Y, Z), along with accepting proofs,
computes Aj+1 = Aj ⊞ U , Bj+1 = Bj ⊞ V , Cj+1 = Cj ⊞ X ⊞ Y ⊞ Z, and sends a
signature share on

(

(Aj , Bj , Cj), (Pk, gid, j, Pi), (Aj+1, Bj+1, Cj+1)
)

to Pi.

3. Pi waits for t + 1 valid signature shares on
(

(Aj , Bj , Cj), (Pk, gid, j, Pi), (Aj+1, Bj+1, Cj+1)
)

, computes a signature σ, and
outputs [(Aj , Bj, Cj), (Pk, gid, j, Pi , σ), (Aj+1, Bj+1, Cj+1)].

The following protocol allows the king (with help of the other parties) to generate
a random multiplication triple (with gid gid). The idea is to start with an initial triple
(i.e., encryption of (1, 1, 1)) and randomize it t+1 times – each time by a different party.
For this the king first sends a randomization request for the initial triple to every party.
Then he waits for the first correct answer and sends it as the second randomization
request to all other parties (except the provider of the first randomization). Then again
the first correct answer is used for the next randomization, etc. In every round, all but
the first correct answers are ignored.

Protocol GenerateTriple:

0. Pk: Initialize j = 0 and (A0, B0, C0) =
(

E(1; ǫ), E(1; ǫ), E(1; ǫ)
)

.

1. For j = 0 to t do

1.1 Send a randomization request [Pk, gid, j, (Aj , Bj , Cj)] to every party Pi of whom
no randomization for gid has been stored so far.

1.2 Pi: Upon receiving a randomization request [Pk, gid, j, (Aj , Bj , Cj)],
employ the protocol RandomizeTriple to obtain
[(Aj , Bj , Cj), (Pk, gid, j, Pi, σ), (Aj+1, Bj+1, Cj+1)], and send it to Pk. This
is performed only once per gid and j.

1.3 Pk: Upon receiving (from some party Pi for which no randomiza-
tion for gid is stored so far) the first (correct) randomization answer
[(Aj , Bj , Cj), (Pk, gid, j, Pi, σ), (Aj+1, Bj+1, Cj+1)], store this answer. Further an-
swers from other parties (for the same j) are ignored.

2. Pk: Send [(Aj , Bj , Cj), (Pk, gid, j, Pij , σj), (Aj+1, Bj+1, Cj+1)] for j = 0, . . . , t to every
Pi ∈ P, who accepts (A,B,C) = (At+1, Bt+1, Ct+1) as the final multiplication triple
for gid if the following holds: For j = 0, . . . , t, the j-th output triple is equal to
(j + 1)-th input triple, there are t + 1 different parties that have randomized, and
all transitions are correctly signed.

Given the multiplication triples (A,B,C) from GenerateTriple, and given encryptions
X and Y to be multiplied, the following protocol computes an encryption of the product
Z.

Protocol Multiply:

0. Every Pi has input (A,B,C), X and Y .

1. Pi: send to Pk and all slaves decryption shares of F = X ⊞ A and G = Y ⊞ B, and
give proofs that the decryption shares are correct.

2. Pi and Pk: If t + 1 valid decryption shares for F and G arrive, compute f = x +
a mod N and g = y + b mod N and let Z = E(fg) ⊞ (−f ⊡ B) ⊞ (−g ⊡ A) ⊞ C.

We first analyze the generation of the multiplication triple, then the multiplication
protocol.
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4.2 Analysis of Computation Phase

Analysis of GenerateTriple:

Although there is no agreement among the parties on the multiplication triple (A,B,C)
(as such an agreement cannot be achieved with t ≥ n/3) we are given certain guarantees
about the triple (except with negligible probability):

– When an honest slave Pi accepts a triple (A,B,C), then A and B are encryptions of
values a and b, and C is an encryption of ab. Furthermore, the set of corrupted par-
ties (the adversary) cannot distinguish a and b from uniformly random values. This
is formalized by a game, where the adversary has to distinguish (D(A),D(B),D(C))
from (a, b, ab) with uniformly random a, b ∈ ZN with non-negligible advantage. Cor-
rectness follows from the correctness of the initial triple and the proofs of correct
randomization. The indistinguishability follows from the fact that A and B result
from t+1 randomizations, so A and B were randomized by at least one honest party
Pi. Therefore a and b sum over the ui respectively the vi contributed by Pi. Fur-
thermore, every randomizing party Pj proves knowledge of its randomizers uj and
vj (using a concurrent, non-malleable proof of knowledge, see Section 2.4). Hence
we can, by rewinding, extract the uj and vj from the view of the adversary. So,
for the adversary, distinguishing a and b from uniformly random is equivalent to
distinguishing ui and vi from uniformly random for at least one honest Pi, which is
impossible by the semantic security of the cryptosystem and the proofs given by Pi

being concurrent zero-knowledge.
– When an honest slave Pi accepts a triple (A,B,C) for a gate gid, then the plaintexts

of A and B are indistinguishable from uniformly random values which are statistically
independent from the plaintexts of any triple accepted for any other gate gid′ 6= gid.
This does not follow from the above property which addresses the distribution of
individual triples, but follows trivially from the fact that honest parties use different
randomizers when contributing to different multiplication gates gid.

– When for the same multiplication gate gid, two honest parties accept the triples
(A,B,C) and (A′, B′, C ′), respectively, then either the plaintexts of (A,B,C) and
(A′, B′, C ′) are indistinguishable from uniformly random, statistically independent
values to the adversary, or the adversary knows the plaintexts of A−A′ and B−B′.
This follows from the fact that either there is at least one honest party Pi that has
randomized one triple in some position, but not the other one in the same position
with the same (ui, vi) (then the plaintexts of the two triples are indistinguishable
from uniformly random statistically independent values), or both triples have been
randomized by exactly the same set of honest parties Pi in exactly the same positions
with exactly the same (ui, vi). In this case only the adversarially chosen randomizers
are different, and they are known to the adversary in the sense that they can be
extracted from the adversary in expected polynomial time.

We now argue termination. Note that as long as at most t parties have randomized
the triple, there are still (n − t) − t ≥ 1 honest parties Pi which did not yet do so and
thus, when requested, will eventually produce a randomization for gid and send it to
Pk. Therefore, eventually a chain of t + 1 randomizations will be achieved.

Analysis of Multiply:

If Pk is honest, then all slaves will constantly agree on all ciphertexts X for each wire,
and therefore the computation will terminate and will yield correct encryptions for all
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wires. When Pk is corrupted we do not per se care about the correctness of Pk, so what
remains is to argue privacy.

The first important observation is that if an honest slave Pi associates X to some
wire, then X is an encryption of the correct value for that wire. This holds for input
wires by assumption and is maintained by addition. As for multiplication gate z = xy,
we can assume that X and Y decrypt to correct values. If (A,B,C) was accepted by
Pi as a correct triple, it is indeed a correct multiplication triple, except with negligible
probability. From this it follows that if Pi computes some Z, then Pi computes a correct
Z, except with negligible probability. Different parties might, however, hold different Z
if Pk is corrupted – only the plaintexts are guaranteed to be the same.

We address the privacy. Assume that party Pi holds encryptions X(i) and Y (i) of the
factors, and gets the multiplication triple (A(i), B(i), C(i)) from Pk. At the same time,
Pj holds encryptions X(j) and Y (j) of the factors, and gets the multiplication triple
(A(j), B(j), C(j)) from Pk. Then, Pk might learn the decryptions f (i) = x(i) +a(i) mod N
and g(i) = y(i)+b(i) mod N as well as the decryptions f (j) = x(j)+a(j) mod N and g(j) =
y(j)+b(j) mod N . However, by the invariant that the values X(i) and Y (i) held by Pi (and
the values X(j) and Y (j) held by Pj) encrypt correct wire values x and y, we have x(i) =
x(j) = x and y(i) = y(j) = y. Furthermore, from (A(i), B(i), C(i)) and (A(j), B(j), C(j))
being correct multiplication triples for the same gate gid, it follows that either 1) they
encrypt values (a(i), b(i)) and (a(j), b(j)) which are uniformly random and independent, or
2) they encrypt values (a(i), b(i)) and (a(j), b(j)) which are individually uniformly random
and (a(j), b(j)) = (a(i), b(j))+(δa, δb) for (δa, δb) known9 to the adversary. In the first case,
(f (i), g(i)) and (f (j), g(j)) are uniformly random and independent and thus together leak
no information to the adversary. In the second case, (f (i), g(i)) is uniformly random, and
therefore leaks no information to the adversary, and (f (j), g(j)) = (f (i), g(i))+(δa, δb) and
therefore leaks no more information than (f (i), g(i)) to the adversary, as the adversary
can compute it from (f (i), g(i)) in expected poly-time.

In Appendix B we sketch how the above properties are used in the analysis of a UC
simulation.

4.3 Termination Phase

As for now no party can terminate until it knows that all honest parties for which it
acts as slave terminated. However, this condition cannot be checked. Instead, we add
the following simple procedure inspired by [CKS00] to terminate the protocol: When a
king Pk learns the result z, it sends a signature share on (“result”, z) to all parties
and continues to act as slave. When it received signature shares from t + 1 parties on
(“result”, z), it constructs a signature σ on (“result”, z), sends ((“result”, z), σ) to
all parties and terminates with output z. Any party ever receiving a value of the form
(“result”, z, σ) where σ is a valid signature on (“result”, z) sends it to all parties,
and terminates with output z. Eventually all n − t ≥ t + 1 honest Pk learn z and thus
some honest party eventually receives t+1 correct signature shares. After this all honest
parties will eventually terminate.

5 Almost-Asynchronous Input-Distribution with t < n/2

In this section, we describe how the inputs can be distributed. Note that in a fully
asynchronous network, input-guarantee is not possible (up to t possibly honest inputs

9 In the sense that we can extract them from the adversary in expected poly-time.
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are ignored). Furthermore, when t ≥ n/3, input-distribution (even of a subset of parties)
is impossible, as consistent distribution of a single input implies BA. In the following, we
show how all inputs can be distributed with t < n/2 with a single synchronous broadcast
round. See Section 6 for a discussion of implementing this one round of broadcast.

In the input phase, every party Pi computes X = E(x; r) for each of its inputs x and
broadcasts X along with a ZK proof of plaintext knowledge (PoPK ).10 This ensures
input correctness, in the sense that if Pi is honest, then Ddk(X) = x, and input privacy,
in the sense that as long as at most t parties are corrupted, the input x of an honest Pi

remains unknown to the adversary. This follows from the threshold IND-CPA security
of the encryption scheme and the PoPK being ZK. Finally, the ZK proof of knowledge
of x ensures input knowledge, meaning that Pi knows Ddk(X) for his X.

The proof of plaintext knowledge could be based on standard assumptions by resort-
ing to generic NIZK. In the following, we give a much more efficient proof, which exploits
the fact that the proofs do not need to be fully non-interactive, but asynchronous in-
teraction (with t < n/2) is allowed for verifying the proof. We call such proofs almost
non-interactive proofs.

The intuition of our almost non-interactive proof is the following: The prover sends
along with the encrypted input a transcript of many instances of an interactive zero-
knowledge proof of plaintext knowledge with binary challenges. For each instance, the
prover provides the answers for both challenges, but encrypts them with the threshold
encryption scheme. To verify the proof, for each instance exactly one response (depending
on an agreed-upon challenge) is decrypted. The challenge is generated simultaneously,
by letting every party Pi broadcast an encryption Ri of a random value ri, where the
encryption scheme has the property that both the parties jointly as well as Pi alone can
decrypt.11 Then the parties decrypt all contributions and compute the challenge r as
the sum.

In the next section, we describe how to generate the random challenge (using almost
non-interactive VSS). Subsequently, we describe in more detail how to construct the
almost non-interactive zero-knowledge proof of plaintext knowledge.

5.1 Almost Non-Interactive VSS

The following protocol allows a sender PS to verifiably secret share a secret x with
threshold t < n/2, using a single round of synchronous broadcast. The reconstruction of
the shared value is fully asynchronous. We call this almost non-interactive VSS (ANI-
VSS ).

The ANI-VSS requires a setup – for every PS there is an independent random key
pair (pkS , skS) for a threshold cryptosystem such that the public key pkS is known to all
parties and the secret key skS is shared among the other parties with threshold t (such
that correct decryption shares from t + 1 parties are enough to decrypt under skS). We
also require that PS knows skS . If not already the case, this can be ensured by all parties
once-and-for-all sending their shares of skS to PS .12 The protocol proceeds as follows:

Synchronous sharing: PS computes X ← EpkS
(x) and broadcasts X (using syn-

chronous broadcast).

Asynchronous reconstruction:

10 The details of the PoPK are given below.
11 This way no PoPK for Ri is necessary.
12 In fact, the fact that they could do this is sufficient for the analysis.
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1. Each Pi computes a decryption share of X using his share of skS and sends the
share to all parties along with a proof of correctness.

2. Each Pj waits for t + 1 correct decryption shares and reconstructs x = DskS
(X).

Analysis:

We assume that the encryption schemes have perfect decryption. This means that the
broadcasted message X uniquely defines a secret x = DskS

(X). Reconstruction will
always terminate as at least the n − t ≥ t + 1 honest parties send correct decryption
shares.

In terms of simulation security, an ANI-VSS is extracted by decrypting X. This is
possible as the honest parties hold enough decryption key shares to compute skS. When
PS is honest, an ANI-VSS is opened to any x′ simply by simulating the decryption of
X to hit x′.

5.2 Almost Non-Interactive ZKPoK

We now describe a system which allows a prover P to give a ZK proof of knowledge
(ZKPoK ) towards all parties such that all parties agree on the outcome of the proof.
The protocol uses only one round of synchronous broadcast, followed by an asynchronous
computation. We call it an ANI-ZKPoK.

We consider some NP relation R and assume that P holds an (instance, witness)-
pair (x,w). We assume that there is a standard three-move Σ-protocol for R, where P
computes the first message a, gets a challenge e ∈ {0, 1} and replies with some response
z. The verifier accepts or rejects based on (x, a, e, z). We use that from two accepting
conversations (x, a, 0, z0) and (x, a, 1, z1) one can compute (in PPT) a witness w such
that (x,w) ∈ R. The protocol proceeds as follows:

Synchronous proof: The synchronous round proceeds as follows:

– Prover P : For k = 1, . . . , κ, compute a first message a(k) and a reply z
(k)
0 to the

challenge e = 0 and a reply z
(k)
1 to the challenge e = 1. Then broadcast x and

each a(k) and ANI-VSS each z
(k)
0 and z

(k)
1 .

– Each other party Pi: ANI-VSS a uniformly random value ri ∈ {0, 1}
κ.

Asynchronous verification: The verification of the proof is asynchronous, and pro-
ceeds as follows:
1. Reconstruct each ri and compute (e1, . . . , eκ) = ⊕n

i=1ri.

2. For k = 1, . . . , κ in parallel: Reconstruct z
(k)
ek

and accept the proof iff (a(k), ek, z
(k)
el

)
is an accepting conversation for k = 1, . . . , κ.

Analysis:

After the first (synchronous) part, all parties will hold consistent proof transcripts

(a(1), Z
(1)
0 , Z

(1)
1 ), . . . , (a(κ), Z

(κ)
0 , Z

(κ)
1 ) (as broadcasted by the prover) as well as consistent

encryptions of challenge-contributions Ri ∈ {0, 1}
κ of every party Pi (as broadcasted

by Pi). It follows that in the asynchronous part all parties will reconstruct the same
r1, . . . rn leading to the same (e1, . . . , eκ) and thus leading to the same outcome of the
verification test. It is clear that if the prover is honest, this outcome will be accepting.
Since each reconstruction eventually terminates, the proof eventually terminates.

Assume that P broadcasted (a(1), Z
(1)
0 , Z

(1)
1 ), . . . , (a(κ), Z

(κ)
0 , Z

(κ)
1 ) without knowing

a witness for x. Then for each k there exists e′k such that (a(k), e′k, z
(k)
e′
k

) is not accepting.

Thus there is at most one challenge e = (e1, . . . , eκ) for which the verification of the
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proof is not rejecting, namely (1 − e′1, . . . , 1 − e′κ). As the prover had to choose and

broadcast (a(1), Z
(1)
0 , Z

(1)
1 ), . . . , (a(κ), Z

(κ)
0 , Z

(κ)
1 ) without knowing the ri’s of the honest

parties (and thus without knowing the resulting challenge e), his success probability is
negligible.

To simulate a proof, the ri contributed by corrupted parties are extracted from the
ANI-VSS’s. Then any challenge e can be hit simply by opening the ANI-VSS for an
honest Pj to rj = e⊕

⊕

i6=j ri.
13

6 Almost-Asynchronous Broadcast

In Section 5, we have employed synchronous broadcast for distributing the inputs. This
single round of synchronous broadcast can be simulated using synchronous rounds of
point-to-point communication. We now explore what is the number of synchronous
rounds of point-to-point communication needed to simulate one round of broadcast
using known techniques.

6.1 The t < n/3 Case

When t < n/3, then just one synchronous point-to-point round is needed. In
this synchronous round, the sender PS sends x (the value he wants to broad-
cast) to all parties. Then the parties run an asynchronous consensus protocol
(cf. [Bra84,Ben83,CR93,ADH08]) on x, where each Pi inputs the value it received from
PS . The output of this consensus is taken as the broadcasted value. The parties wait
until all the broadcasts of inputs, and other values, completed before they start running
the rest of the asynchronous phase, to ensure that all corrupted parties has to decide on
their broadcasted value before any of the other computations are performed.

6.2 The t < n/2 Case

When t < n/2, Byzantine agreement is not possible using a fully asynchronous
protocol, and therefore another approach must be taken. An easy solution is to
use a fully synchronous broadcast protocol for t < n/2. Classical broadcast proto-
cols [PSL80,LSP82,DS82,FL82,MT86,GM93] require t + 1 rounds of synchronous point-
to-point communication, and this is known to be optimal if the parties are required to
terminate in the same round. When stopping in different rounds is allowed, the number
of communication rounds can be reduced to min(t + 1, f + 2), where f is the actual
number of corrupted parties in the execution and t is the maximal number of corrup-
tions tolerated, and this is optimal [DRS90,BGP92]. Note that the fact that parties can
(and will) terminate in different rounds usually requires relatively expensive resynchro-
nization efforts [LLR02] and [Nie03, Chapter 7], but that this is not an issue in our
setting: we go asynchronous after the broadcast anyway, making the resynchronization
unnecessary.

Even more interestingly, it was recently shown in [FN08] that one round of syn-
chronous broadcast can be simulated by some initial number τ of synchronous rounds of
point-to-point communication followed by asynchronous point-to-point communication.
The number τ beats the t + 1 bound on the worst-case number of rounds needed when
insisting on using a broadcast protocol where all rounds are synchronous. It is essentially
τ = t/2 when t = n/2 and goes linear to τ = 1 when t = n/3.

13 For the ANI-VSS described above, the extraction would simply amount to decryption under the secret
key used by Pi. The honest parties have enough shares to facilitate this.
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Another approach is to use a probabilistic broadcast protocol, which allows expected
constant round complexity for t < n/2 [Rab83,Tou84,FM88]. The practical implications
are however questionable, as the expected round complexities of all known randomized
protocols are fairly large constants.

7 Conclusions

We presented the first multi-party protocol for a non-synchronous network which toler-
ates t < n/2 faulty parties. The protocol achieves all properties of synchronous MPC
in an almost-asynchronous network. With one single round of synchronous broadcast,
both input-guarantee and security for t < n/2 can be achieved. This contrasts fully-
asynchronous MPC protocols which ignore the inputs of up to t honest parties and
cannot guarantee security better than t < n/3.

Theorem 1. When t < n/2, then any PPT function can be computed without input
deprivation using one synchronous broadcast round.

By simulating the synchronous broadcast round by point-to-point communication,
we obtain the following result:

Corollary 1. When t < n/2, then any PPT function can be computed without input
deprivation using min(t+1, τ, rn) synchronous point-to-point rounds, where τ ≤ t/4+2
denotes the number of synchronous rounds for almost-asynchronous broadcast (cf. Sec-
tion 6), and rn denotes the expected round complexity of a synchronous constant-round
broadcast protocol among n parties.

By simulating the synchronous broadcast round by asynchronous consensus (which
requires t < n/3), we obtain the following result:

Corollary 2. When t < n/3, then any PPT function can be computed without input
deprivation using one synchronous point-to-point round.

7.1 Some Open Problems

On the theoretical side it would be interesting to find out what are the minimal setup
assumptions needed for our result. The UC model does not necessarily require setup
assumption when t < n/2. Can one reproduce our result without setup assumptions?
Maybe in the model from [Can00]? Can our result be reproduced under more general
computational assumptions?

As described in Appendix A, the communication complexity of our protocol can
be made as low as O(n3κ) bits per gate using a few simple optimizations. This is,
however, far from the complexity of the currently best synchronous protocols. It would
be interesting to get an efficiency of “almost-asynchronous MPC”, which can compete
with the currently best fully synchronous protocols.

Our protocols in this paper recently inspired an efficient implementation of secure
MPC in an “almost-asynchronous” model, see [DGKN08]. The security guarantees are
lower than what we get in this paper, but we hope that [DGKN08] is an indication that
the approach we introduce here can lead to highly secure and highly efficient MPC for
realistic networks.

It is also an interesting open problem whether our result can be obtained using a
protocol which defaults to the normal asynchronous security guarantees if the initial
synchrony assumption fails — i.e., the protocol still guarantees security against t′ < n/3
corrupted parties but might deprive t′ parties of giving inputs.
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A Efficiency Considerations

In this section we analyze the communication complexity of the protocol. In the analysis
we measure the total number of bits sent by the honest parties. We let cI (cM , cO) be
the number of input (multiplication, output) gates in the circuit.

During the analysis we give a few optimizations. We excluded these from the main
text to keep the focus on that which is essentially new, namely that one can obtain
corruption threshold t < n/2 and guarantee inputs from all parties using a single syn-
chronous round.

We assume that the size of signature shares, proofs and signatures are O(κ) bits,
where κ is the security parameter. The tools we use from [Pai99,Sho00,HNP05] meet
these requirements.

A.1 Circuit Evaluation

The linear gates require no communication. When ignoring the generation of the triples,
each multiplication gate requires two decryptions and each output gate requires one
decryption. Each decryption communicates O(n2κ) bits, as all parties send decryption
shares to all parties and give proofs to all parties. So, each gate handled by Pk com-
munications O(n2κ) bits. Each gate is handled by each of the n kings, for a total of
O(n3κ) bits per gate. Ignoring the generation of triples, the evaluation of the circuit
thus communications O((cM + cO)n3κ) bits.

A.2 Triple Generation

The communication of triple generation (per king Pk and per triple gid) can be seen to
be O(n3κ) bits – each randomization communicates O(nκ) bits, and a total of O(n2)
randomizations are needed to create a triple. Exploiting that a king can generate many
triples in parallel, the communication per generated triple can, however, be brought down
to an amortized O(n2κ): The king contacts all n parties with different, incomplete gid,
and waits for n−t parties to return valid randomizations. Thereby n randomizations give
rise to n−t ≥ t+1 triples gid coming one randomization closer to completion. Since each
gid needs t + 1 randomizations to be complete, on average one gid is completed in each
round of n randomizations. Since each of the n kings need one triple per multiplications
gate, the total communication complexity of generating triples is O(cMn3κ) bits.

A.3 Input

In the input stage each input encryption is broadcast along with a ANI-ZKPoK of
the plaintext. The broadcast of a κ-bit value can be implemented with communication
complexity O(n3κ) [DS82], so the communication complexity of the broadcasts can be
O(cIn

3κ) bits.

ANI-ZKPoK:

In our setting, we only prove knowledge of relations for which we have Σ-protocols
where all messages have length O(κ). The communication complexity of the ANI-ZKPoK
protocol is therefore that of ANI-VSS’ing O(κ + n) values of length O(κ), which is the
same as broadcasting O(κ + n) values of length O(κ).

When ℓ proofs are performed in parallel, one value r = ⊕n
i=1ri can be expanded

into ℓ challenges (e(1), . . . , e(ℓ)) using a pseudo-random generator. In that case ℓ proofs
use O(ℓκ + n) ANI-VSS’s. We will always have ℓ > n, meaning that the amortized
number of ANI-VSS’s used per proof is O(κ). Each ANI-VSS broadcasts κ bits and
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communicates an additional O(n2κ) bits. Each proof therefore broadcasts O(κ2) bits
and communicates an additional O(n2κ2) bits.

We can reduce the factor κ2 to κ as follows. We only use the ANI-ZKPoK to prove
plaintext knowledge for the homomorphic encryption function, which comes to our help.
Assume that we prove κ instances in parallel, and note that by running the basic one-
bit challenged proof for each instance not κ times but only some constant c times,
the amortized communication per proof instance can be brought down to broadcasting
O(κc) = O(κ) bits and sending an additional O(n2κc) = O(n2κ) bits. Since O(κ) bits
can be broadcast with communication O(n3κ), the amortized communication per input
can be O(n3κ).

The price to pay is that each proof has knowledge error 2−c. By setting the constant
c appropriately and using a Chernoff bound, it can, however, be guaranteed that the
probability that κ/2 false instances pass the proof is negligible. For some party P to
prove knowledge of k = κ/2 − 1 plaintexts (x1, . . . , xk) encrypted by (X1, . . . ,Xk), the
linear homomorphic properties are used to expand (X1, . . . ,Xk) into (Y1, . . . , Yκ) such
that all parties can verify that (Y1, . . . , Yκ) decrypts to (y1, . . . , yκ) which are an encoding
of (x1, . . . , xk) allowing efficient reconstruction given at most k/2 loses – one can e.g. use
a Reed-Solomon code. Then P proves plaintext knowledge of the yi and will fail if it does
not know at least k/2 of them. This, however, implies that it can compute (x1, . . . , xk)
efficiently.

A.4 Overall Communication Analysis

Summing the above complexities gives a communication complexity of O((cI + cM +
cO)n3κ) bits.

B Sketch of UC Simulation

It this section we sketch how the security properties argued in the main text imply a
UC simulation using known techniques from [CDN01,DN03]. The UC simulator runs
the protocol honestly, with the following changes:

– Since it does not know the input of the honest parties, it uses x′ = 0 as plaintext
in the encryption X to all input wires for which an honest party is to provide the
input.

– After the corrupted parties broadcasted their encryptions X for their input wires
along with correct PoPKs, the simulator decrypts X to get the plaintext x = Ddk(X)
and gives x to the ideal functionality as the input of the corrupted party. This is
possible as it is the simulator which simulates the setup phase, which allows it to
learn dk.

– After providing the inputs on behalf of the corrupted parties, the simulator gets the
result y from the ideal functionality, where y is a function of the inputs of the honest
parties and the inputs x chosen by the simulator for the corrupted parties. Since the
simulator used x′ = 0 for the honest parties in the simulation, the output ciphertext
Y corresponding to y in the simulation is most likely not going to be an encryption
of y.14 Since we only want static security, this can be dealt with as in [CDN01]: The
simulator simply cheats with the decryption shares of the honest parties to make Y
wrongly decrypt to y. It then simulates the ZK proofs that these decryption shares
are correct. Below we call this a simulated decryption of Y to y.

14 For convenience of language, let us just assume that the computation has one public output y ∈ ZN

and therefore just one output wire in the circuit and just one output ciphertext Y in the protocol.
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What remains is simply to argue that this UC simulation is indistinguishable from the
real protocol (to the environment). This can be done along the lines of [CDN01]: First we
show that replacing the wrong inputs x′ = 0 by the correct inputs15 x in the encryptions
X used by the honest parties produces a distribution which is indistinguishable. This
follows from the IND-CPA security of the cryptosystem.

One subtlety with the above step is that when we appeal to the IND-CPA security
of the cryptosystem, clearly the simulator cannot use dk to decrypt the plaintexts X
provided by the corrupted parties. This is handled as in [DN03]: Use the rewinding proofs
of plaintext knowledge to extract x instead of getting it by decryption. Since we are no
longer describing a UC simulator, but simply analyzing it, we can use rewinding on the
proofs of knowledge: We just rewind the entire UC execution including environment and
adversary — see [DN03] for details. Problems are not over, however, as dk is also used
in Multiply when the parties decrypt F and G. This is handled by picking uniformly
random f, g ∈ ZN and then doing a simulated decryption of F to f and a simulated
decryption of G to g. I.e., except if we are looking at the case where (f, g) = (f ′, g′) =
(δa, δb) for a pair (F ′, G′) for which we already simulated a decryption to (f ′, g′) and
for which the adversary knows δa and δb. In this case we extract δa and δb from the
adversary, set f = f ′ + δa and g = g′ + δb and simulate decryption of F and G to f
respectively g.

We then make the change that we do simulated decryptions of F and G to Ddk(F )
respectively Ddk(G), instead of doing simulated decryptions of F and G to the random
elements f and g defined above. To distinguish the two distributions produced by this
change, the adversary has to be able to distinguish Ddk(F ) and Ddk(G) from the random
elements f and g defined above. In Section 4.2 we argued that it can do this with at
most negligible advantage.

We then make the change that we do real decryptions of F and G instead of simulated
decryptions to Ddk(F ) respectively Ddk(G). This defines indistinguishable distribution
by the security of the decryption simulator.

We then make the change that we do a real decryption of Y instead of a simulated
decryption of Y to the y obtained from the ideal functionality. That this produces
an indistinguishable distribution is seen as follows: We are by now using the correct
inputs x on behalf of the honest parties, and we are inputting the plaintext x of the X
provided by corrupted parties to the ideal functionality. Therefore the ideal functionality
and the protocol are computing on the same input values x. Therefore Y contains the
y returned by the ideal functionality, except with negligible probability, and thus the
simulated decryption to y and the honest decryption of Y are indistinguishable.

After this last change, we have actually arrived at the real-life protocol and thus at
the end of the sketch of the UC simulator and its security.

15 those contained in the ideal functionality
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