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Abstract. The existence of an efficient and provably secure algebraically homomorphic scheme (AHS),
i.e., one that supports both addition and multiplication operations, is a long stated open problem. All
proposals so far are either insecure or not provable secure, inefficient, or allow only for one multiplication
(and arbitrary additions). As only very limited progress has been made on the existing approaches in
the recent years, the question arises whether new methods can lead to more satisfactory solutions.
In this paper we show how to construct a provably secure AHS based on a coding theory problem. It
allows for arbitrary many additions and for a fixed, but arbitrary number of multiplications and works
over arbitrary finite fields. Besides, it possesses some useful properties: i) the plaintext space can be
extended adaptively without the need for re-encryption, ii) it operates over arbitrary infinite fields as
well, e.g., rational numbers, but the hardness of the underlying decoding problem in such cases is less
studied, and iii) depending on the parameter choice, the scheme has inherent error-correcting up to a
certain number of transmission errors in the ciphertext.
However, since our scheme is symmetric and its ciphertext size grows exponentially with the expected
total number of encryptions, its deployment is limited to specific client/server applications with few
number of multiplications. Nevertheless, we believe room for improvement due to the huge number of
alternative coding schemes that can serve as the underlying hardness problem. For these reasons and
because of the interesting properties of our scheme, we believe that using coding theory to design AHS
is a promising approach and hope to encourage further investigations.
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1 Introduction

Homomorphic encryption schemes preserve the underlying algebraic structure which allows for
performing operations in encrypted domain without the need for re-encryption. More precisely, a
(group) homomorphic encryption scheme over a group (G, ∗) has the following properties: given the
encryptions EK(m) and EK(m′) where m,m′ ∈ G and K is the encryption key, one can efficiently
and securely compute EK(m ∗m′) without revealing m and m′. Homomorphic encryption schemes
have many applications, such as electronic voting [9, 2, 12, 13], private information retrieval [25,
26], or multiparty computation [11]. Up to now, several secure and efficient group homomorphic
encryption schemes are known, e.g., RSA [34], ElGamal [20], Paillier [30], and Damgaard and Jurik
[14].

Algebraically homomorphic encryption schemes (AHS) that support both operations, i.e., ad-
dition and multiplication, will benefit all these problems. The problem of constructing efficient and
secure AHS is a long standing open question already mentioned by Rivest et al. [33]. Indeed, Boneh
and Lipton [6] gave a partially negative answer to the problem by proving that any deterministic
AHS can be broken in sub-exponential time. So far only a few algebraic encryption schemes have
been proposed. Fellows and Koblitz [18] proposed an asymmetric scheme named ’Polly Cracker’
which is based on the difficulty of solving systems of non-linear equations. According to the current
state of knowledge, all its instantiations (and variations like PollyTwo [27]) are either insecure,



inefficient, or loose their homomorphic property (e.g., see [19, 15]). Domingo-Ferrer proposed two
symmetric schemes based on polynomial interpolation [16, 17] but these have been broken afterwards
[36, 1, 8]. Rappe [31] showed that AHS can be constructed from (single-)homomorphic schemes over
certain semigroups but for the latter no efficient solutions are known. Sander, Young and Yung [35]
described a scheme that is algebraically homomorphic over a semigroup. However, the homomor-
phism comes with the cost of a constant factor expansion per semigroup operation. Recently, Mel-
chor, Gaborit, and Herranz [28] introduced the concept of t-chained pseudo-homomorphic schemes
to (theoretically) construct AHS which support arbitrary many additions and up to t multiplica-
tions. However, no formal proof of security is given and the considered constructions have a large
ciphertext size but operate over a small plaintext space only. To the best of our knowledge, the only
provably secure AHS so far was given by Boneh, Goh, and Nissim [5]. It allows for arbitrary many
additions but only one multiplication. A further problem is that the plaintext space needs to be
small; the authors consider the binary field GF(2). In summary, it is fair to say that the problem
of finding an efficient and provable secure AHS is not solved yet. As only very limited progress has
been made on the existing approaches, the question arises if new methods may lead to satisfactory
solutions.

Our contribution. In this paper, we show a novel way for constructing AHS. The proposed
scheme is a modification of a non-homomorphic scheme by Kiayias and Yung [22]. It works over
arbitrary finite fields and allows for an unlimited number of additions and a fixed, but arbitrary
number of multiplications. It is provable secure under a known decoding problem, namely to decode
a special class of interleaved Reed-Solomon codes [32]. Furthermore, the problem seems to remain
difficult in the quantum computational model (see Goldreich, Rubinfeld, Sudan [21] and Bennett,
Bernstein, Brassard [3]).

The basic idea can be sketched as follows: A plaintext is encoded into a codeword of an error-
correcting code where some artificial errors are induced at fixed (but secret) locations (called
bad locations). Decoding is efficient when the bad locations are known. Otherwise, breaking the
ciphertext is equivalent to decoding highly noisy codewords. The homomorphic property follow
from the fact that the sum and the componentwise product of two codewords yield a codeword
again.

Besides being algebraically homomorphic, our scheme has some additional remarkable proper-
ties:

– Adaptive plaintext space extension: The plaintext space can be extended subsequently after
having already computed and stored a number of encryptions. This could be for example the
case if it turns out that the encoding of the data needs a lager range than initially expected.
Usually, this requires decryption and re-encryption for all data. In our scheme, the plaintext
space can be easily extended to any extension fields without the need to decrypt and re-encrypt.

– Support for infinite fields: The proposed scheme works correctly over infinite fields as well, e.g.,
over rational numbers. However, the decoding problem over infinite fields is less explored and
hence the hardness assumption requires further investigation.

– Inherent error-correction: The scheme tolerates a certain number of transmission errors, de-
pending on the parameter choices.

Discussion. The scheme has some limitations. Firstly, it is a symmetric key scheme as opposed to
most known homomorphic encryption schemes. However, for many client-server-applications this



may not be relevant since the encrypted result of the computation is returned to the client who
knows the decryption key. Secondly, to guarantee security, the ciphertext length has to be chosen in
dependence of the expected total number of encryptions (where combinations of existing ciphertexts
do not count as new encryptions) and the blow-up factor is exponential. Therefore, the applicability
of the scheme is limited to specific client-server-applications with few multiplications. However, this
blow-up is an immediate result from the existence of dedicated decoding algorithms for interleaved
Reed-Solomon codes. It might well be (and we are not aware of any counterarguments) that more
efficient schemes are realizable by switching to other coding schemes.

We do not mean to minimize the above concerns, only to suggest how they might be overcome.
For these reasons and because of the interesting properties of our scheme, we believe that using
coding theory to design AHS is a promising approach and hope to encourage further investigations.
Outline. The paper is organized as follows. In Section 2, we provide the necessary preliminaries.
In Section 3, we describe the encryption scheme and prove some of its properties. In Section 4, we
prove that the scheme is semantically secure under a given hardness assumption taken from coding
theory. In Section 5, we discuss the parameter choices of our scheme and in Section 6 some possible
extensions. Section 7 concludes the paper.

2 Preliminaries

2.1 Notation

For an integer n ≥ 1, we denote by [n] the set of integers 1, . . . , n. In the following, s denotes a
security parameter. F will denote an arbitrary field that can be finite or non-finite, e.g. the field
of rationals (in the latter case, we interpret the expression 1/|F| as zero). Let F[x] denote the
ring of univariate polynomials in the indeterminate x with coefficients from F. HW(−→v ) denotes
the Hamming weight of of vector −→v , that is the number of non-zero entries. For two vectors −→v
and −→w , the expression −→v • −→w stands for the component wise product (not to be mixed up with
the vector product). For example, for −→v = (v1, . . . , vn) and −→w = (w1, . . . , wn), it is −→v • −→w =
(v1 · w1, . . . , vn · wn). For a polynomial p(x) ∈ F[x] and a vector −→x = (x1, . . . , xn) ∈ Fn, we define
p(−→x ) := (p(x1), . . . , p(xn)) ∈ Fn. A function f : N→ R is called negligible if for any n′ ∈ N exists
a polynomial p(x) over the real numbers such that |f(n)| < |1/p(n)| for all n ≥ n′. We sometimes
write f = negl(n).

2.2 The Synchronized Polynomial Reconstruction Problem

In this section, we describe the Synchronized Polynomial Reconstruction Problem (SRP) on which
our scheme is based on. The SRP is a special case of the Polynomial Reconstruction Problem which
has been used several times to design cryptographic algorithms, e.g. Naor and Pinkas [29] and
Kiayias and Yung [24]. For an overview, we recommend [23].

The PRP is derived from Reed-Solomon codes [32]. The key idea behind a Reed-Solomon code
RS[n, k] with integers n > k is that the data is represented by a polynomial of degree < k. The
code relies on a theorem from linear algebra stating that any k distinct points uniquely determine a
polynomial of degree < k. The polynomial is then ”encoded” by its evaluation at n various points,
and these values are what is actually sent. During transmission, some of these values may become
corrupted. Therefore, more than k points are actually sent. As long as sufficient values are received
correctly, the receiver can deduce what the original polynomial was, and hence decode the original



data. The decoding problem of Reed-Solomon codes where at most n− t errors have occurred can
be equivalently described as the following polynomial reconstruction problem (see [24]):

Definition 1. [Polynomial Reconstruction Problem (PRP)] Let F be an arbitrary field.
Given parameters n, k, t ∈ N≥0, and two vectors −→x = (x1, . . . , xn),−→y = (y1, . . . , yn) ∈ Fn with
xi 6= xj for i 6= j, output a tuple (p−→y (x); I(−→y )) such that

– p−→y (x) ∈ F[x] is a polynomial over F with deg(p−→y (x)) < k (the solution polynomial),
– I(−→y ) ⊆ [n] is a subset of distinct indices i with |I(−→y )| ≥ t (the indices of the error-free entries),

and
– p−→y (xi) = yi for all i ∈ I(−→y ).

(p−→y (x); I(−→y )) is called a solution of −→y . A PRP instance is a vector −→y = (y1, . . . , yn) ∈ Fn and
PR−→x ,k,t ⊂ Fn denotes the set of PRP instances.

In [24] it was shown that if log(|F| − 1) ≥ log((nt))+s
t−k , then a PRP instance has a unique solution

with probability ≥ 1 − 2−s. For the remainder of the paper, we assume that this is the case and
talk about the solution of a PRP instance. By decoding a PRP instance −→y , we mean to find its
solution (p−→y ; I(−→y )) which corresponds to the notion of decoding Reed-Solomon codes as explained
above. Furthermore, we call the positions i ∈ I as good locations and the others bad locations. One
important property of PRP instances is that they can be efficiently sampled (see [24]):

Definition 2. [Sampling PRP-instances] Consider the following sampler S that samples in-
stances −→y of PR−→x ,k,t : S on input (−→x , k, t) samples a random subset I ⊂ [n] of size t, a polynomial
p−→y ∈ F[x] with deg(p−→y ) < k; it then sets yi := p(xi) for all i ∈ I, whereas for all i 6∈ I it samples
yi at random from the set F \ {p(xi)}. S terminates by returning the vector −→y = (y1, . . . , yn). We
denote the induced distribution on Fn by D−→x ,k,t.

The hardness assumption from [24] is defined as follows:

Definition 3. [Decisional-PRP DPRP[−→x , k, t]] Given parameters −→x , k, t, the sampler Sbad first
selects an instance −→y following the sampler S of definition 2, then it selects i at random from the
set [n] \ I(−→y ) and then outputs (i,−→y ) . Sgood is defined similarly but i is selected at random from
the set I(−→y ) instead. For any probabilistic polynomial-time algorithm A we define:

AdvDPRP,A−→x ,k,t (s) =
∣∣∣Pr[A(Sgood(−→x , k, t) = 1]− Pr[A(Sbad(−→x , k, t) = 1]

∣∣∣ (1)

where the probability is taken over the random coins from A and the samplers. The DPRP[−→x , k, t]
assumption holds if Advdpr−→x ,k,t(s) := maxAAdv

dpr,A
−→x ,k,t (s) = negl(s), that is any algorithm A has a

negligible advantage.

Informally speaking, the assumption says that it is hard to decide for a given PRP instance −→y if an
index i belongs to the good or to the bad locations. Observe that decoding an instance is equivalent
to finding out I(−→y ). The hardness assumption is motivated by the fact that for certain ranges of
parameters, no efficient decoding algorithms are known. Based on this hardness assumption, Kiayias
and Yung [24] constructed several cryptographic primitives, amongst them a stateful symmetric
encryption scheme which encrypts messages into a PRP instances. The secret key is the position
of the good locations. Given this knowledge, reconstructing the message means to interpolate a



polynomial over the good locations, but without the knowledge, this task is equivalent to decode a
codeword.

In this paper, we adopt the Kiayias-Yung-scheme [24] to design an algebraically homomorphic
encryption scheme. Like in [24], we consider an encryption scheme where the ciphertexts are PRP
instances −→y and where the secret key is the location of the error-free codeword entries. But in
contrast to [24], where the error locations alter from encryption to encryption, the positions of
the error free entries remain the same for all encryptions (and in fact depicts the secret key). The
reason for this design choice is motivated by the following observation:

Proposition 1. Let −→y ,−→y ′ ∈ PR−→x ,k,t be two PRP instances with I := I(−→y ) = I(−→y ′). Let −→y + :=
−→y +−→y ′ where ”+” here denotes the usual vector addition. Then, it holds that −→y + ∈ PR−→x ,k,t with
I(−→y +) = I and p−→y + = p−→y + p−→y ′.

Similarly, let −→y • := −→y • −→y ′ denote the componentwise product of −→y and −→y ′. If deg(p−→y ) +
deg(p−→y ′) < k, then −→y • is an instance of PR−→x ,k,t as well with I(−→y •) = I and p−→y • = p−→y · p−→y ′.

Proof. Let yi denote the entries of −→y and y′i the entries of −→y ′. We set p+(x) := p−→y (x) + p−→y ′(x).
Observe that deg(p+) < k as deg(p−→y ) < k and deg(p−→y ′) < k. By assumption it holds that yi =
p−→y (xi) and y′i = p−→y ′(xi) and for all i ∈ I and yi, y

′
i being some random values from F for i 6∈ I.

This implies that y+
i = p−→y (xi)+p−→y ′(xi) = p+(xi) for all i ∈ I and y+

i = yi+y′i being some random
value in F for all i 6∈ I. Hence −→y + ∈ PR−→x ,k,t with solution (I; p+(x)).

The proof for the second claim is similar. We define the polynomial p•(x) := p−→y (x) · p−→y ′(x).
It holds for all i ∈ I that the entries y•i of −→y • fulfill the following equation: y•i = yi · y′i =
p−→y (xi) · p−→y ′(xi) = p•(xi). The other entries are the product of random values, hence being random
as well. The fact that deg(p•(x)) = deg(p−→y ) + deg(p−→y ′) < k holds by assumption concludes the
proof. ut

The property that −→y + ∈ PR−→x ,k,t with I(−→y +) = I guarantees that the addition of two ciphertexts
is again a valid ciphertext. The fact that p−→y + = p−→y + p−→y ′ ensures the additive homomorphic
property of the scheme. Likewise does the second claim implies the multiplicative homomorphic
property of our scheme.

As in the Kiayias-Yung-scheme, recovering the plaintext from one ciphertext without knowing
the secret key is equivalent to decoding a Reed-Solomon code. The difference is that recovering
the plaintexts from several ciphertexts without knowing the secret key is equivalent to decoding
several Reed-Solomon codes where the errors are always at the same locations. This is a special
case of Reed-Solomon codes which belongs to the class of interleaved Reed-Solomon codes. As one
might expect, decoding this type of codewords is easier than for the normal case. In fact, there exist
several algorithms [4, 10, 7] which are explicitly dedicated to this class. Their efficiency increases
with the number of given codewords. Hence, we integrate the number of instances into the problem
description and into the hardness assumption. Adopting the terminology from [10], we term our
problem Synchronized Polynomial Reconstruction Problem:

Definition 4. [Synchronized Polynomial Reconstruction Problem (SPRP)] Let F be an
arbitrary field and −→x = (x1, . . . , xn) ∈ Fn be a vector of length n with pairwise distinct entries.
Given three positive integer values k, t, and r and a sequence of vectors

−→
Y = (−→y1 , . . . ,

−→yr) with
−→y` = (y`,1, . . . , y`,n) ∈ Fn for each ` ∈ [r], output a sequence (p−→y1 , . . . , p−→yr ; I) such that

– for all ` ∈ [m] it holds that p−→y` ∈ F[x] is a polynomial over F with deg(p−→y` ) < k (the solution
polynomials),



– I ⊆ [n] is the subset of distinct indices i with |I| = t (the solution index, being the indices of
the error-free entries), and

– p−→y` (xi) = y`,i for all i ∈ I.

The PRP sampler from Definition 2 can be easily adapted to sample SPRP instances:

Definition 5. [Sampling SPRP-instances] Let −→x , k, t, r be parameters as specified in Defi-
nition 4. We define SPR−→x ,k,t,r ⊂ (PR−→x ,k,t)r to be the set of r-tuples of PRP instances

−→
Y =

(−→y1 , . . . ,
−→yr) such that for each ` ∈ [r], −→y` ∈ PR−→x ,k,t and I(−→y` ) = I for some I ⊂ [n] of size t.

The following sampler S̃ is an adaption from the sampler S from Definition 2 and samples
instances

−→
Y of SPR−→x ,k,t,r : S̃ on input (−→x , k, t, r) samples I ⊂ [n] and r polynomials p−→y1 , . . . , p−→yr ∈

F[x] with deg(p−→y` ) < k for all `. It then sets y`,i := p−→y` (xi) for all i ∈ I, whereas for all i 6∈ I it

samples y`,i at random from the set F\{p−→y` (xi)}. S̃ terminates by returning
−→
Y = (−→y1 , . . . ,

−→y` ) where
−→y` = (y`,1, . . . , y`,n). We denote the induced distribution on (Fn)r by D̃−→x ,k,t,r.

Analogously, we define the DSPRP assumption from the DPRP assumption:

Definition 6. [Decisional-SPRP DSPRP[−→x , k, t, r]] Let the samplers S̃good and S̃bad be defined
analogously from S̃ like Sgood and Sbad from S in Definition 3. For any probabilistic polynomial-
time algorithm A, we define:

AdvDSPRP,A−→x ,k,t,r (s) =
∣∣∣Pr[A(S̃good(−→x , k, t, r)) = 1]− Pr[A(S̃bad(−→x , k, t, r)) = 1]

∣∣∣ . (2)

The DSPRP assumption is that AdvDSPRP−→x ,k,t,r (s) = maxAAdv
DSPRP,A
−→x ,k,t,r (s) = negl(s).

Observe that although dedicated algorithms exist (e.g., [10]) which solve the SPRP problem, there
are (similar to the PRP problem) parameter ranges for which no efficient algorithms are known.
Hence, the current state of knowledge is that the DSPRP assumptions holds for certain parameter
choices.1 More on parameter selection will be given in Section 5.

3 The Encryption Scheme

In this section, we formally describe the encryption scheme. In a nutshell, it encodes plaintexts,
which are vectors over F, into SPRP-instances where the index set I is the secret key. The scheme
is composed of three algorithms: Setup, Encrypt, and Decrypt.

Setup: The input are three positive integer values s, r, and µ where the first denotes the security
parameter, the second the expected total number of encryptions2, and the third the number of
supported multiplications.
The Setup algorithm chooses integer values n, k, t such that µ · k < t < n and such that
the conditions in Section 5 are met. Next, it selects two vectors −→x = (x1, . . . , xn) ∈ Fn and

1 Observe that this is similar to, for example, the factorization problem where the parameters are chosen according
to best currently known algorithms.

2 This means an upper bound on the value on how many messages are going to be encrypted. It does not include
the number of possible combinations of existing ciphertexts.



−→z = (z1, . . . , zbk/2c) ∈ Fbk/2c where all entries are pairwise distinct3 and an index set I ⊂ [n] of
size t.4 Setup outputs −→x , k, t as public parameters and I as secret key.

Encrypt : Encrypt transforms a plaintext −→m ∈ Fbk/2c into a PR instance −→c ∈ PR−→x ,µ·k,t with
I(−→c ) = I. Given −→m ∈ Fbk/2c and the secret key I, the algorithm first selects a random polyno-
mial p(x) ∈ F[x] of degree ≤ k such that p(−→z ) = −→m. The random choice of p(x) will yields a
randomized encryption. Next, it generates a vector −→c = (c1, . . . , cn) ∈ Fn as follows. For each
i ∈ I, it sets ci := p(xi), and for each j 6∈ I, it selects cj uniformly random from F \ {p(xj)}.
Obviously, this yields a PR instance −→c ∈ PR−→x ,µ·k,t with solution (p(x); I) (see also the defini-
tion of the analog PR sampler in Definition 2). The ciphertext is the pair (−→c , 1) where the first
entry is, in principle, an erroneous codeword that encodes the plaintext −→m while the second
entry, the integer, is a counter to keep track of the number of multiplications.

Decrypt : Decrypt gets as input the secret key I and a pair (−→c , ctr) with −→c = (c1, . . . , cn) ∈ Fn
and m ≤ µ. In a nutshell, it simply decodes the codeword −→c using the knowledge of the error-
free locations, being the set I. More precisely, it interpolates p−→c based on the knowledge that
p−→c (xi) = ci, i ∈ I, and outputs p−→c (−→z ).

As the scheme is algebraically homomorphic, there exist two additional algorithms Add and Mult
to compute the addition and multiplication of encryptions, respectively:

Add : This procedure takes two ciphertexts (−→c , ctr) and (−→c ′, ctr′) and produces an encryption of
the sum of the plaintexts from the two input ciphertexts via

(−→c +, ctr+) := (−→c +−→c ′,max(ctr, ctr′)) (3)

where ”+” denotes the usual vector addition.
Mult : This procedure get as input two ciphertexts (−→c , ctr) and (−→c ′, ctr′) with ctr+ ctr′ ≤ µ and

generates an encryption of the product of the plaintexts from the two input ciphertexts by

(−→c •, ctr•) := (−→c • −→c ′, ctr + ctr′). (4)

Here, ”•” is the componentwise vector product as explained in Section 2.

Theorem 1. The described scheme is correct and is algebraically homomorphic.

Proof. To show the correctness, we have to prove that the decryption of an encrypted plaintext
yields the same plaintext again. Let a ciphertext (−→c , ctr) be given where −→c ∈ PR−→x ,µ·k,t with
solution (p−→c ; I) and let −→m be the underlying plaintext. By definition, it holds that p−→c (−→z ) = −→m
and that ci = p−→c (xi) for all i ∈ I. We make now use of the following claim which will be proven at
the end.

Claim. It holds for any ciphertext (−→c , ctr) that deg(p−→c ) ≤ ctr · k ≤ µ · k.

The claim implies that |I| = t > µ · k ≥ ctr · k ≥ deg(p−→c ). Hence, p−→c is uniquely determined by
the pairs {(xi, ci)}i∈I . Therefore, the decryption algorithm recovers p−→c and in particular outputs
p−→c (−→z ) = −→m.
3 In a nutshell, the value bk/2c is chosen to ensure one degree of freedom per plaintext entry for randomization.

Hence, the plaintext length should be at most the half of the degree k.
4 The current state of knowledge is that the hardness of the DSPRP does not depend on the choices of −→x ,−→z , I if I

is unknown and uniformly chosen. In the case of new insights, this part of Setup has to be changed accordingly.



The homomorphic properties are an immediate consequence of Proposition 1. We show only the
homomorphism regarding the multiplication; the additive homomorphic property can be proved
analogously. Consider two encryptions (−→c , ctr) and (−→c ′, ctr′) of plaintexts −→m and −→m′, respectively.
By definition of the encryption scheme, the solution of the instance −→c is (p−→c , I) with p−→c (−→z ) = −→m
and the solution of the PR instance −→c ′ is (p−→c ′ , I) with p−→c ′(

−→z ) = −→m′. Let (−→c •, ctr•) be the
output of Mult((−→c , ctr), (−→c ′, ctr′)). Observe that −→c • is computed exactly as −→y • in Proposition 1.
It holds by assumption and the claim that µ · k ≥ (m+m′) · k ≥ deg(p−→c ) + deg(p−→c ′). Hence, the
prerequisites of Proposition 1 are fulfilled and it follows that −→c • is an instance in PR−→x ,µ·k,t with
solution (p−→c • = p−→c · p−→c ′ ; I). In particular, recovering p−→c • from −→c • and I and evaluating it at −→z
yields p−→c •(

−→z ) = (p−→c · p−→c ′)(−→z ) = p−→c (−→z ) • p−→c ′(−→z ) = −→m • −→m′.
Observe that, unlike to case of direct encryption, it might happen by coincidence that c•i =

p−→c •(xi) for some i 6∈ I, or, in terms of the coding theory, that the noise cancels out at some
locations. Obviously, this has no impact on the correctness of the encryption as the good locations
are not affected. However, it might make the decryption of this particular ciphertext easier. But as
we propose in the parameter selection (see Section 5) to choose the field F such that 1/|F| = negl(s)
whereas n− t is polynomial in s, we expect this case to occur only with negligible probability.

It remains to prove the claim. We prove it by induction. For direct encryptions, that is outputs of
the algorithm Encrypt, the claim holds trivially by definition. Now let (−→c , ctr) and (−→c ′, ctr′) be two
ciphertexts for which the claim holds, that is deg(p−→c ) ≤ ctr ·k ≤ µ ·k and deg(p−→c ′) ≤ ctr′ ·k ≤ µ ·k.
For the addition procedure Add, one sees easily that

µ · k ≥ max(ctr, ctr′) · k ≥ deg(p−→c ) + deg(p−→c ′)) = deg(p−→c +). (5)

Similarly, under the condition of ctr + ctr′ ≤ µ, it holds that

µ · k ≥ (ctr + ctr′)︸ ︷︷ ︸
=ctr•

·k ≥ deg(p−→c ) · deg(p−→c ′)) = deg(p−→c •). (6)

ut

Observe that encryption is in principle evaluating a polynomial and replacing some outputs while
decryption is simple polynomial interpolation. Both operations can be done by computing a matrix-
vector product (with the matrix being the Vandermonde matrix or its inverse). Furthermore, all
statements and computations remain valid if one replaces F by an extension field of F. The only
thing one has to do is to embed the entries into the extension field which can be done without
knowing the key.

4 Security

In this section, we prove that the encryption system is semantically secure for some parameters
−→x , k, I, r, µ under the DSPRP assumption. This is done by the usual reduction approach. We prove
that any probabilistic polynomial-time (PPT) algorithm A which breaks the semantic security of
our scheme for some parameters −→x , k, I, r with non-negligible advantage can be transformed into
a PPT algorithm A′ that decides the DSPRP[−→x , bk/2c, I, r] with non-negligible advantage. Hence,
if the DSPRP assumption is true, the existence of such an attacker would lead to a contradiction.
In consequence, no such attacker can exist which shows the semantic security.



4.1 Semantic Security

Semantic security requires that it should be infeasible for an attacker to gain for a given ciphertext
any partial information about the underlying plaintext, even if the set of possible plaintexts is
reduced to two different messages which have been chosen by the attacker before. The formal
definition of semantic security is covered by the following game-based approach. In this game, two
players are involved: an attacker A and an encryption oracle Oencr.. The game is divided into two
query phases, a challenge phase inbetween, and a decision phase at the end (see also [24]):

First query phase: The attacker A queries a number of times (where the number is polynomial in
the security parameter s) the encryption oracle Oencr. with adaptively chosen plaintexts which
are encrypted by Oencr. and returned to A.

Challenge phase: A chooses two different plaintexts −→m0 6= −→m1 and gives them to the oracle.
Oencr. selects uniformly random b ∈ {0, 1}, creates an encryption −→c of −→mb, and returns the
result to A.

Second query phase: The second query phase is like the first query phase. That is, the attacker
A adaptively asks from Oencr. a number of encryptions.

Decision phase: A outputs a guess b′ ∈ {0, 1} for b, that is she assumes that −→c is the encryption
of −→mb′ . A wins if b = b′, that is if she guessed correctly.

A trivial strategy of A would be to randomly choose b′ ∈ {0, 1}, independent of the previously
exchanged messages. Obviously, such an attacker would succeed with probability 1/2. Therefore,
an attacker A is called successful if the difference between the success probability, that is the
probability of b = b′, and 1/2 is non-negligible. We call this value the advantage AdvA of A.
More formally, let Oencr.

b be the encryption oracle that always returns the encryption of −→mb in the
challenge phase. A scheme is semantically secure if it holds for any breaking adversary is a PPT A
that

|Probb∈{0,1}[AO
encr.
b (1s) = b]− 1

2
| = negl(s), (7)

where the probability is taken over all internal coin-tosses of Oencr.
b and A. Informally speaking, no

PPT adversary A is has a significant better success probability than the trivial attacker described
above.

4.2 Proof of security

In this section, we prove that our encryption scheme is semantically secure for parameters −→x , k, t, r
under the DSPRP[−→x , bk/2c, t, r] assumption. For the proof of security, we make use of the following
theorem on the pseudorandomness of sampled instances:

Theorem 2. For any distinguisher A between the distributions D̃ := D̃−→x ,bk/2c,t,r (induced by the
sampler S̃ from Definition 5) and the uniform distribution U on (Fn)r, it holds that

|Pr[A(
−→
Y ) = 1|

−→
Y ← D̃]− Pr[A(

−→
Y ) = 1|

−→
Y ← U ]| ≤ t · r · (n− t+ 3)

|F|
+ 9t ·AdvDSPRP−→x ′,bk/2c,t,r (8)

where −→x ′ ∈ Fn−1 is derived from −→x by removing one coordinate.

The Theorem is an adaption of Theorem 3.4 given in [24] and the proof is very similar. However,
there are some subtle differences due to the fact that we are dealing with a set of synchronized PRP
instances here. For this reason and for the sake of completeness, we give the proof in Appendix A.



Theorem 3. The encryption scheme from Section 3 is semantically secure for parameters −→x , k, t, r
if the DSPRP[−→x ′, bk/2c, t, r] assumption holds.

Proof. Let A be a PPT algorithm that breaks the semantic security for parameters −→x , k, t, r with
at most r queries (including the challenge). Let

−→
Y = (−→y1 , . . . ,

−→yr) ∈ (Fn)r be given which is either
distributed according to D̃−→x ,bk/2c,t,r or according to U . We show how to transform A directly into a
distinguisher A′ which distinguishes between these two distributions. If the DSPRP[−→x ′, bk/2c, t, r]
assumption holds, then it follows from equation 8 from Theorem 2 that the advantage of A′ is
negligible. Consequently, this must be true for A as well which proves the semantic security.
A′ uses A to solve the distinguishing problem. For this purpose, it has to simulate the encryption

oracle Oencr. for A. This is done as follows. For each encryption query from A, A′ picks one of the
vectors −→y` = (y`,1, . . . , y`,n) which has not used before. To keep the description simple, we assume
that the PR instances −→y1 , . . . ,

−→yr are used in the same order as their indices. That is, the response
−→c1 to the first query will be computed from −→y1 , and so on.

On input −→m`, A′ chooses a polynomial p` ∈ F[x] of degree < k such that p`(−→z ) = −→m` and
computes

c`,i := p`(xi) + y`,i ·
bk/2c∏
j=1

(xi − zj). (9)

It returns −→c` = (c`,1, . . . , c`,n) to A. For the challenge request, A′ picks uniform at random one of
the two challenge plaintexts and encrypts it in the same manner as described above. We denote by
τ the transformation (−→y` , p`) 7→ −→c ` defined by equation 9.

Assume now that
−→
Y is distributed according to U . This means that all values y`,i are chosen

uniformly random from F which implies that the values c`,i from equation 9 are uniformly random
as well. In particular, the responses from A′ to A are independent of A′’s choice of b and thus A
gains no information on the value of b which shows that its advantage is negligible in this case.

Now assume that
−→
Y is distributed according to D̃−→x ,bk/2c,t,r. That is the vectors −→y` are PR

instances with a common solution index set I. Let ` ∈ [r] be arbitrary, p−→y` be the solution polynomial
of −→y` , and −→c` = (c`,1, . . . , c`,n) denote the created response to the `-th query. By assumption, it
holds that

y`,i =
{
∈R F \ {p−→y` (xi)} , i 6∈ I

p−→y` (xi) , i ∈ I (10)

We define p−→c` (x) := p`(x) + p−→y` (x) ·
∏bk/2c
j=1 (x− zj). Putting equations 9 and 10 together yields

c`,i =
{
∈R F \ {p−→c` (xi)} , i 6∈ I

p−→c` (xi) , i ∈ I (11)

Observe that the second part of p−→c` (x) vanishes on −→z . Hence p−→c` (
−→z ) = p`(−→z ) = −→m and −→c` is a

valid encryption of −→m`.
Claim: For any given plaintext −→m and any index set I, the transformation τ is a surjection and
each image has the same number of preimages.
Hence, this procedure can yield any possible encryption of a given plaintext. Therefore, A’s view
is that it received valid encryptions and any encryption for a chosen plaintext is possible. Hence,
it observes no difference to communicating with an encryption oracle Oencr.. In particular, A has
by assumption a non-negligible advantage to guess b correctly.



The remainder of the proof follows the usual arguments. A′ runs A sufficiently often to estimate
A’s advantage with sufficient precision. If the advantage is negligible, A′ assumes that

−→
Y was

uniformly sampled from (Fn)r. Otherwise, it assumes that
−→
Y was sampled by S̃. ut

Proof. (Proof of the claim in the proof of Theorem 3) We have to show for any −→m and any index
set I that the mapping τ is surjective and that the sets of preimages have all the same size. The
correctness of the mapping, e.g., that the images are indeed encryptions of −→m, has been shown
already. Let −→c = (c1, . . . , cn) be an arbitrary encryption of −→m. That is, −→c ∈ PR−→x ,µ·k,t with
solution (p−→c ; I) such that p−→c (−→z ) = −→m. By assumption, it holds that

ci =
{
∈R F \ {p−→c (xi)} , i 6∈ I

p−→c (xi) , i ∈ I . (12)

Now, let p(x) be any polynomial from F[x] of degree < k such that p(−→z ) = −→m. Then, q(x) :=
p−→c (x)− p(x) is a polynomial of degree < k which maps each value in −→z to zero. Hence, q(x) can
be rewritten as q(x) = q′(x) ·

∏bk/2c
j=1 (x− zj) where q′(x) is of degree < bk/2c.

Next, we define for each i ∈ [n] the value yi := (ci − p(xi))/
∏bk/2c
j=1 (xi − zj). Observe that

the values xi and zj are all pairwise distinct by assumption, so there is no risk to divide by zero.
Together with equation 12, this implies for each i ∈ [n]:

yi =
{
∈R F \ {q′(xi)} , i 6∈ I

q′(xi) , i ∈ I . (13)

This shows that −→y := (y1, . . . , yn) ∈ PR−→x ,k,t with solution (q′(x); I). Furthermore, τ(p(x),−→y ) =
−→c . As −→c is an arbitrary encryption of −→m, this shows the surjectivity of τ .

Regarding the number of preimages, observe that p(x) was arbitrary and that −→y was uniquely
determined by −→c and p(x). Hence, there exists for any ciphertext −→c and for every polynomial p(x)
with the above explained properties exactly one PR instance −→y such that τ(p(x),−→y ) = −→c . This
shows that the number of preimages is the same for each ciphertext −→c . ut

5 Parameter selection

Following the approach of [24], we propose to select parameters which prevent the application of
straight-forward attacks or dedicated decoding algorithms. We will consider the values n′ := |−→x ′| =
n′−1, bk/2c, and t := |I| as functions in the security parameter s for given values r, the number of
encryptions, and µ, the number of multiplications. As we are interested in the size of the ciphertext
only, we abstract from the choice of −→x and I and consider only the integer values n′, k, t. Observe
that t ≥ µ · k is necessary to enable unique decrypting and that the decoding problem gets easier,
the higher t (for fixed n′). Hence, we set t := µ · k.

The straightforward brute-force algorithm for solving DSPRP[n′, bk/2c, t] is either by trying
all possibilities subset of bk/2c to interpolate a polynomial or by guessing the n′ − t erroneous
locations. These approaches have a complexity proportional to min{

(
n′

bk/2c
)
,
(
n′

t

)
}. Moreover, the

SPRP instances should withstand the dedicated decoding algorithms for interleaved Reed-Solomon
codes. To the best of our knowledge, the most efficient decoding algorithms for this problem are
the ones by Coppersmith and Sudan [10] and by Brown, Minder, and Shokrollahi [7]. For both
algorithms, parameter ranges are specified within the algorithms work for sure. This poses two



necessary conditions on the parameter choices. These conditions can be transformed into lower
bounds for the ration n′/k which marks lower bounds for the ciphertext size n′. The lower bound
from [10] is n′/k ≥ (2µ−1)r+1

2 and from [7] is n′/k ≥ (r+ 1) · µ− r
2 . Observe that the first condition

implies an exponential blow-up in the number r of encryptions.

6 Possible extensions

Observe that all arguments given in the scheme description in Section 3 and in the security proof
in Section 4.2 hold for any fields. Hence, the scheme securely operates over any field, including
non-finite fields like the field of rational numbers, if the DSPRP assumption holds. However, it is
an open issue whether the DSPRP assumption is plausible over non-finite fields.

Regarding the huge ciphertext size, notice that it results as a precaution against dedicated
decoding algorithms for Reed-Solomon codes. We see no reasons why this should equally hold for
other coding schemes as well. In other words, building the scheme upon other coding schemes, e.g.,
algebraic codes, might lead to more efficient results. Besides, varying the underlying problem is
another approach. For example, one could keep the support vectors −→x and −→z hidden and treat
them as part of the secret key. Without doubt, this makes an attack more difficult which might
help to reduce the ciphertext size. Of course, this requires more research.

Our scheme shares with the Kiayias-Yung-scheme [24] the property of intrinsic error tolerance.
Assume that the ciphertexts are transmitted over a noisy channel such that some entries change
to random error values. Any error that happens at bad locations has actually no effect as only
the good locations are taken into account for decryption. In the case that error occur at the good
locations, one might use the fact that the sequence of values yi for i ∈ I is actually a Reed-Solomon
codeword itself of size t. Hence, depending on the ration between k and t, a certain amount of
errors can be corrected at the good locations. In that sense allows the proposed scheme to directly
combine decryption and error-correcting without the need of additional error-correction codes.

7 Conclusions and Future Work

The existence of efficient and secure algebraically homomorphic encryption schemes is a long stand-
ing open question since [33]. Although some proposals exist, none of them are fully satisfactory.
As only very little progress in answering this question has been made in the recent years, there
is a need for completely novel, yet unexplored approaches. In this paper, we introduce the idea of
using coding theory into this subject. Although we do not solve the problem completely, we show
that provable secure algebraically homomorphic schemes can be constructed which are suitable for
specific classes of applications.

It remains for further research to explore this approach more deeply. Although we picked Reed-
Solomon codes for our concrete instantiations, the general approach should be transferable to other
coding schemes as well, e.g., algebraic codes. From our point of view, the interesting properties of
our scheme (in particular the support for non-finite fields) makes this approach promising for other
applications as well. Thus, we see our result as a first step for possibly establishing a new research
direction.
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A Proof

In this section, we prove Theorem 2 from Section 4.2. First, we state a result from [24]:

Lemma 1. Let vbi , v
g
i be independent samplable binary random variables for i ∈ [n] with means µbi

and µgi respectively for which it holds:

– There exists an i ∈ [n] such that |Pr[vgi = 1] − Pr[vbi = 1]| ≥ α where α is a non-negligible
function in n.

Then, for all ε > 0, there exists a PPT B that returns an i that satisfies |Pr[vgi = 1] − Pr[vbi =
1]| ≥ α/4 with probability 1 − ε. B requires O(α−2(log(ε−1) + log n)) samples of each of the given
random variables.

We are now ready to prove Theorem 2. As already stated, the proof is an adaption of a proof
given in [24]. However, it differs in several points and some steps are explained into more detail.

Proof. (Proof of Theorem 2) Let A be the distinguisher between the distributions D̃−→x ,bk/2c,t,r and
U with distinguishing probability α, that is

α := |Pr[A(
−→
Y ) = 1|

−→
Y ← D̃−→x ,bk/2c,t,r]− Pr[A(

−→
Y ) = 1|

−→
Y ← U ]|. (14)

We assume now that α is not negligible, that is α−1 is polynomial in s, and show that this leads to
a contradiction.

We define the sampler S̃i to first sample
−→
Y = (−→y1 , . . .

−→yr) according to S̃ from Definition 5 and
then eventually to give out

(
i;
−→
Y
)

. Consider the following procedure A1 that operates on inputs

of the form
(
i,
−→
Y
)

as follows: it first selects a random permutation π and then overwrites for each

PRP instance −→y` the values y`,π(1), ..., y`,π(i) (for i ∈ [n] and ` ∈ [r]) by substituting them with



i random values over F. In this way A1 produces a ”partially randomized” SPRP instance
−→
Y ′.

Then A1 simulates A on
−→
Y ′ . We will denote the operation of A1 as A(Rπ

(
i;
−→
Y
)

) where Rπ is

the probabilistic operator that given
(
i;
−→
Y
)

randomizes the first (according to π) i locations of the

contained PRP instances −→y1 . . . ,
−→yr . It is immediate that

Pr[A1(S̃0(−→x , bk/2c, t, r)) = 1] = Pr[A(D̃−→x ,bk/2c,t,r)) = 1]

as well as that
Pr[A1(S̃n(−→x , bk/2c, t, r)) = 1] = Pr[A(U) = 1].

As a result |Pr[A1(S̃0(−→x , bk/2c, t, r)) = 1]− Pr[A1(S̃n(−→x , bk/2c, t, r)) = 1]| ≥ α since

|Pr[A(D̃−→x ,bk/2c,t,r)) = 1]− Pr[A(U) = 1]| ≥ α

from the statement of the theorem. By employing the triangular inequality we obtain that there
exists i ∈ [n] such that

|Pr[A1(S̃i(−→x , bk/2c, t, r)) = 1]− Pr[A1(S̃i−1(−→x , bk/2c, t, r)) = 1]| ≥ α/n.

Below we will denote by Ei,π−→x ,bk/2c,t,r the event A(Rπ(S̃i(−→x , bk/2c, t, r))) = 1. Using this notation
and the above results we obtain that:

∀π∃i ∈ [n]s.t.|Pr[Ei,π−→x ,bk/2c,t,r]− Pr[E
i−1,π
n,bk/2c,t,r]| ≥ α

′ (15)

where α′ = α/n. Next, consider the event Badπi to correspond to the coin tosses of the sampler
S̃(−→x , bk/2c, t, r) that the location π(i) is among the bad locations, that is π(i) 6∈ I where I is the
index set chosen by S̃. One sees easily that Pr[Badπi ] = n−t

n = 1 − t
n . Analogously, We denote by

Goodπi the negation of this event, that is the event that π(i) is one of the good locations. In the
remainder of the proof we will use three claims which will be proven later.

Claim 1. |Pr[Ei,π−→x ,bk/2c,t,r|Bad
π
i ]− Pr[Ei−1,π

n,bk/2c,t|Bad
π
i ]| ≤ r/|F|.

Claim 2. Pr[Ei,π−→x ,bk/2c,t,r|Good
π
i ] = |Pr[Ei,π−→x ,bk/2c,t−1,r

|Badπi ].

Claim 3. |Pr[Ei,π−→x ,bk/2c,t−1,r
|Badπi ]− |Pr[Ei−1,π

−→x ,bk/2c,t,r|Bad
π
i ]| ≤ AdvDSPRP−→x ′,bk/2c,t,r + 3r/|F|.

Next we use the fact: if |Pr[E1] − Pr[E2]| ≥ p1 and |Pr[E1|B] − Pr[E2|B]| ≤ p2 then it holds
that |Pr[E1|¬B]−Pr[E2|¬B]| ≥ (p1 − p2 ·Pr[B])(Pr[¬B])−1. In our case, it is that p1 = α/n and
p2 = r/|F| by Claim 1. Putting this together we obtain the following:

|Pr[Ei,π−→x ,bk/2c,t,r|Good
π
i ]− Pr[Ei−1,π

n,bk/2c,t|Good
π
i ]| ≥ α′′ (16)

where α′′ = n
t (α′ − (1− t

n)| · r
|F|) = α

t −
r·(n−t)
|F| with t := |I|.



For the following computations, we abbreviate Ei,π−→x ,bk/2c,t,r to Eit , E
i,π
−→x ,bk/2c,t−1,r

to Eit−1, Badπi
to B, and Goodπi to G. By applying the results of claims 2 and 3 to the inequality 16 we obtain the
following:

|Pr[Ei−1
t |B]− Pr[Ei−1

t |G]| = |Pr[Ei−1
t |B]− Pr[Ei−1

t |G] + PR[Eit |G]− PR[Eit |G]︸ ︷︷ ︸
=0

|

Claim 2= |Pr[Ei−1
t |B]− Pr[Ei−1

t |G] + PR[Eit |G]− PR[Eit−1|B]|
= |Pr[Eit |G]− Pr[Ei−1

t |G]− (Pr[Eit−1|B]− Pr[Ei−1
t |B])|

≥ |Pr[Eit |G]− Pr[Ei−1
t |G]|︸ ︷︷ ︸

≥α
t
− r·(n−t)|F|

− |(Pr[Eit−1|B]− Pr[Ei−1
t |B])|︸ ︷︷ ︸

≤AdvDSPRP−→x ′,bk/2c,t−1,r
+3r/|F|

≥ α

t
− r · (n− t+ 3)

|F|
−AdvDSPRP−→x ′,bk/2c,t−1,r =: α′′′.

Using the definition of Ei−1,π
−→x ,bk/2c,t,r we rewrite the inequality above as follows:

|Pr[A(Rπi−1(S̃(−→x , bk/2c, t, r))) = 1|Badπi ]−Pr[A(Rπi−1(S̃(−→x , bk/2c, t, r))) = 1|Goodπi ]| ≥ α′′′ (17)

where i is some index in [n] that while it is unknown, its existence is guaranteed from equation 15.
Next we observe that we can simulate the behavior of the sampler S̃ in the conditional probability
spaces Badπi and Goodπi . In particular this can be done easily by the samplers S̃Badπi and S̃Goodπi
that operate exactly as S̃ with the exception the selection of the set of indices I that is done as
follows: for the case of S̃Goodπi a random subset I ⊆ [n] \ {π(i)} is selected that has cardinality t− 1
and then the element π(i) is added to it; on the other hand, for the case of SBad

π
i , a random subset

I ⊆ [n] \ {π(i)} is selected with cardinality t. Based on this it follows that we can rewrite equation
17 in this way:

|Pr[A(Rπi−1(S̃Badπi (−→x , bk/2c, t, r))) = 1]− Pr[A(Rπi−1(S̃Goodπi (−→x , bk/2c, t, r))) = 1]| ≥ α′′′ (18)

From here on, one can proceed exactly as in the proof of Theorem 3.4 in [24] to show that

α ≤ t · r · (n− t+ 3)/|F|+ t ·AdvDSPRP−→x ′,bk/2c,t,r + 8t ·AdvDSPRP−→x ,bk/2c,t,r. (19)

Observe now that any instance of DSPRP[−→x ′, bk/2c, t, r] can easily be augmented to an instance
of DSPRP[−→x , bk/2c, t, r] by inserting a new supporting coordinate in −→x and random values at the
particular position in the PR instances −→y i. Hence, it holds AdvDSPRP−→x ,bk/2c,t,r ≤ AdvDSPRP−→x ′,bk/2c,t,r which
finishes the proof. ut

It remains to show the claims made during the proof. This is done next.

Proof. (Proof of Claim 1) The claim is that

|Pr[Ei,π−→x ,bk/2c,t,r|Bad
π
i ]− Pr[Ei−1,π

−→x ,bk/2c,t,r|Bad
π
i ]| ≤ r/|F|.

Indeed, observe that in the conditional space Badπi for the sampler S̃ the π(i)-th location of the
vector −→y` for each ` ∈ [r] is distributed uniformly over the set F\p−→y` (xπ(i)) where p−→y` is the solution
polynomial that is selected by the sampler for the PRP instance −→y` .

The probabilistic operator Rπi will substitute the π(i)-th location with a random element over
F. It follows by a standard argument that the statistical distance between the two distributions is
at most r/|F| from which Claim 1 follows. ut



Proof. (Proof of Claim 2) We have to show that

Pr[Ei,π−→x ,bk/2c,t,r|Good
π
i ] = |Pr[Ei,π−→x ,bk/2c,t−1,r

|Badπi ].

The validity of the second claim can be established by directly corresponding the random coins of
event Ei,π−→x ,bk/2c,t,r in the conditional space Goodπi to the random coins of event Ei,π−→x ,bk/2c,t−1,r

in the

conditional space Badπi . The event Ei,π−→x ,bk/2c,t,r in the conditional space Goodπi can be thought of

containing tuples of the form
(
IGood, (pGood` ,

−−−→
eGood` ,

−−−→
rGood` )`=1,...,r

)
so that

– IGood is a subset of [n] of size t that necessarily includes π(i),
– pGood1 , . . . , pGoodr ∈ F[x] are polynomials of degree < bk/2c,
–
−−−→
eGood1 , . . . ,

−−−→
eGoodr are vectors in Fn that are zero in (and only in) IGood, and finally

–
−−−→
rGood1 , . . . ,

−−−→
rGoodr are random vector of Fi that specify the coins of the probabilistic operator Rπi .

On the other hand, the event Ei,π−→x ,bk/2c,t−1,r
in the conditional space Badπi can be thought of

containing tuples of the form
(
IBad, (pBad` ,

−−→
eBad` ,

−−→
rBad` )`=1,...,r

)
where

– IBad is a subset of [n] with cardinality t− 1 that excludes π(i),
– pBad1 , . . . , pBadr ∈ F[x] are polynomials of degree < bk/2c,
–
−−→
eBad1 , . . . ,

−−→
eBadr are vectors in Fn that are zero in (and only in) IBad, and

–
−−→
rBad1 , . . . ,

−−→
rBadr are random vector of Fi that specify the coins of the probabilistic operator Rπi .

Consider the following correspondence: given a tuple
(
IGood, (pGood` ,

−−−→
eGood` ,

−−−→
rGood` )`=1,...,r

)
we define a

tuple
(
IBad, (pBad` ,

−−→
eBad` ,

−−→
rBad` )`=1,...,r

)
as follows: IBad := IGood\{π(i)}, pBad` := pGood` ,

−−→
rBad` :=

−−→
rGod`

and also we set (
−−→
eBad` )j := (

−−−→
eGood` )j for all j 6= π(i) (note that (

−−−→
eGood` )π(i) = 0 since π(i) is not an

error location, that is π(i) 6∈ IGood by assumption). Finally we select (
−−→
eBad` )π(i) at random from

F \ {pBad` (xπ(i))}. We remark that the choice of (
−−→
eBad` )π(i) does not affect the outcome of the

experiment since it substituted with the same random value in both cases. It follows that for every
tuple of Ei,π−→x ,bk/2c,t,r in the conditional space Goodπi we have a correspondence of the same number

of tuples of Ei−1,π
−→x ,bk/2c,t−1,r

in the conditional space Badπi . Based on this the statement of the claim
follows. ut

Proof. (Proof of Claim 3) The claim is that

|Pr[Ei,π−→x ,bk/2c,t−1,r
|Badπi ]− |Pr[Ei−1,π

−→x ,bk/2c,t,r|Bad
π
i ]| ≤ AdvDSPRP−→x ′,bk/2c,t,r + 3r/|F|. (20)

Recall that the event Ei,π−→x ,bk/2c,t,r is defined as A(Rπ(S̃i(−→x , bk/2c, t, r))) = 1. We will argue that

the two probability ensembles Rπ(S̃i(−→x , bk/2c, t − 1, r)) and Rπ(S̃i−1(−→x , bk/2c, t, r)) are compu-
tationally indistinguishable when considered over the conditional probability spaces based on the
event Badπi , that is the event that π(i) 6∈ I. Suppose that D is any PPT distinguisher between
the two ensembles. We define next a PPT distinguisher D′ for DSPRP[−→x ′, bk/2c, t, r] over the
support set −→x ′ = (−→x 1, . . . ,

−→x i−1,
−→x i+1, . . . ,

−→x n). That is it distinguishes between the ensembles



S̃good(−→x ′, bk/2c, t, r) and S̃bad(−→x ′, bk/2c, t, r). Let
(
j,
−→
Y
)

denote the challenge given to D′ with
−→
Y = (−→y1 , . . . ,

−→yr).
D′ first randomizes the values y1,j , . . . , yr,j . Then, in the next step, it parses each vector −→y`

as (y`,1, . . . , y`,π(i)−1, y`,π(i)+1, . . . y`,n), that is the value y`,π(i) is not defined yet. Next, it inserts a
random value of F at location π(i) and finally it selects y′`,π(1), ..., y

′
`,π(i−1) from F and overwrites

the corresponding i− 1 locations of −→y` . The resulting vector −→y` new is of length n. Let
−→
Y new denote

the collection of these new vectors. D′ terminates by simulating D on
−→
Y new and returning the

output that D returns. This implies that

|Pr[D(S̃good(−→x ′, bk/2c, t, r)) = 1]− Pr[D(−→x ′, bk/2c, t, r)) = 1]| ≤ AdvDSPRP−→x ′,bk/2c,t,r. (21)

Suppose that the DSPRP[−→x ′, bk/2c, t, r] challenge
(
j,
−→
Y
)

was drawn according to the sampler

S̃bad(−→x ′, bk/2c, t, r). As j 6∈ I by assumption, this means for each vector −→y` that the j-th entry
contains an element of F \ {p−→y` (xj)}. Hence the SPRP instance

−→
Y with the j-th location of each

vector being randomized is at a statistical distance r/|F| from S̃(−→x ′, bk/2c, t, r). Next, recall that
we consider the conditional probability space based on Badπi which means that π(i) 6∈ I. With
a similar argument as the one just discussed, after the injection of random values at the π(i)-th
locations yields a statistical distance 2r/|F| from Rπi−1(S̃(−→x , bk/2c, t, r)). This implies that

|Pr[A(Rπi−1(S̃(−→x , bk/2c, t, r))) = 1|Badπi ]− Pr[D(S̃bad(−→x ′, bk/2c, t, r)) = 1]| ≤ 2r/|F|. (22)

On the other hand, consider the case that the DSPRP[−→x ′, bk/2c, t, r] challenge
(
j,
−→
Y
)

was

drawn according to the S̃good(−→x ′, bk/2c, t, r) sampler, that is j ∈ I. We have the following: the
vector

−→
Y with the j-th location randomized of each vector is at a statistical distance r/|F| from

S̃(−→x ′, bk/2c, t − 1, r) where the index set t is reduced to t − 1. It follows that, after injecting the
random π(i)-th location elements and randomizing in each vector the i− 1 locations according to
π, the resulting vector

−→
Y new is at a distance r/|F| from the ensemble Rπi (S̃(−→x , bk/2c, t − 1, r)).

This implies that

|Pr[A(Rπi (S̃(−→x , bk/2c, t− 1, r))) = 1|Badπi ]− Pr[D(S̃good(−→x ′, bk/2c, t, r)) = 1]| ≤ r/|F|. (23)

Putting equations 21, 22, and 23 together yields the statement of Claim 3 as follows:

|Pr[Ei,π−→x ,bk/2c,t−1,r
|Badπi ]− |Pr[Ei−1,π

−→x ,bk/2c,t,r|Bad
π
i ]|

= |Pr[A(Rπi (S̃(−→x , bk/2c, t− 1, r))) = 1|Badπi ]− |Pr[A(Rπi−1(S̃(−→x , bk/2c, t− 1, r))) = 1|Badπi ]

+(Pr[D(S̃good(−→x ′, bk/2c, t, r)) = 1]− Pr[D(S̃bad(−→x ′, bk/2c, t, r)) = 1])
−(Pr[D(S̃good(−→x ′, bk/2c, t, r)) = 1]− Pr[D(S̃bad(−→x ′, bk/2c, t, r)) = 1])

≤ |Pr[A(Rπi (S̃(−→x ′, bk/2c, t− 1, r))) = 1|Badπi ]− Pr[D(S̃good(−→x ′, bk/2c, t, r)) = 1]|
+|Pr[A(Rπi−1(S̃(−→x , bk/2c, t, r))) = 1|Badπi ]− Pr[D(S̃bad(−→x ′, bk/2c, t, r)) = 1]|
+|Pr[D(S̃good(−→x , bk/2c, t, r)) = 1]− Pr[D(S̃bad(−→x ′, bk/2c, t, r)) = 1]|

≤ r/|F|+ 2r/|F|+AdvDSPRP−→x ′,bk/2c,t,r.


