
Efficient Asynchronous Verifiable Secret Sharing and

Byzantine Agreement with Optimal Resilience

Arpita Patra Ashish Choudhary C. Pandu Rangan
Department of Computer Science and Engineering

Indian Institute of Technology Madras
Chennai India 600036

Email:{ arpita,ashishc }@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract

Consider a completely asynchronous network consisting of n players where every two players are
connected by a private channel. An adversary At with unbounded computing power actively controls
at most t = (dn

3 e−1) out of n players in Byzantine fashion. In this setting, we present a new asyn-
chronous verifiable secret sharing (AVSS) protocol which privately communicates O((`n3 + n6κ)κ)
bits, A-Cast O(n4 log(n)) bits during sharing phase and privately communicates O((`n4 + n6κ)κ)
bits during reconstruction phase, to share a secret S containing ` secret elements from a finite
field F of size 2κ, where all the honest players terminate the protocol with probability at least
1 − 2−O(κ). Conditioned on the event that all non-faulty players have completed the execution of
the AVSS protocol, the non-faulty players terminates in constant expected time. Our protocol is
to be compared with the AVSS protocol of [7] in the same settings and having the same proper-
ties. The AVSS protocol of [7] privately communicates O(`n9κ4) bits, A-Cast O(`n9κ2 log(n)) bits
during sharing phase and privately communicates O(`n6κ3) bits, A-Cast O(`n6κ log(n)) bits during
reconstruction phase. Thus our new AVSS protocol significantly improves over the communication
complexity of the AVSS protocol of [7]. As an application of our new AVSS protocol, we present
a new asynchronous Byzantine Agreement (ABA) protocol, with n = 3t + 1, which significantly
improves over the communication complexity of the ABA protocol of [7] and [1]. To design our
AVSS protocol, we use several interesting and new techniques, which are of independent interest.

Keywords: Unbounded Computing Power, VSS, Byzantine Agreement, Asynchronous Networks.

1 Introduction

In secret sharing [20], a dealer D wants to share a secret s among a set of n players, such that no set
of t players can reconstruct s while any set of t + 1 or more players can reconstruct s by pooling their
shares. Verifiable secret sharing (VSS) [8] extends secret sharing to work against active corruption. It
is a stronger notion than secret sharing and provides robustness against t malicious players (possibly
including D), having unbounded computing power. VSS is one of the fundamental tools in secure
distributed computing and is used as a black box in several other distributed computing tasks such as
multiparty computation (MPC), Byzantine Agreement (BA), etc. The important parameters of any
VSS scheme are round complexity, fault tolerance and communication complexity. In the past two
decades, a lot of research has been carried out to design efficient and optimal VSS protocols, which try
to optimize these parameters (see [14, 15, 13] and their references). However, all these results assume
that the underlying network is synchronous. Though theoretically impressive, these results do not fit
too well in the real life scenario like internet due to synchrony assumed in the network.

Asynchronous Networks: In asynchronous networks, messages are delayed arbitrarily. As a worst
case assumption, the adversary is given the power to schedule the delivery of messages. Such networks
models real life networks like the Internet much better than their synchronous counterpart. However,
protocols for asynchronous networks are much more involved than their synchronous counterparts.
This is so because if a player does not receive an expected message then he cannot decide whether the
sender is corrupt (and did not send the message at all) or the message is just delayed in the network.

1

Thus in a fully asynchronous settings, it is impossible to consider the inputs of all uncorrupted players.
So input of up to t (potentially honest) players have to be ignored because waiting for them could turn
out to be endless. Also, the existing protocols and techniques used in synchronous settings cannot be
trivially extended in asynchronous settings.

Asynchronous Verifiable Secret Sharing (AVSS): Though VSS in synchronous settings [14, 15,
13, 9, 19, 3] has been studied extensively, asynchronous verifiable secret sharing (AVSS) has drawn
very little attention. It is known that perfectly secure (i.e., information theoretic security with zero
error probability) AVSS is possible iff n ≥ 4t + 1 [6]. Similarly AVSS achieving information theoretic
security with negligible error probability is possible iff n ≥ 3t + 1 [6]. Moreover, there exists efficient
perfect AVSS protocol with n = 4t + 1 [6]. However, with n = 3t + 1, the only known AVSS protocol
is due to [7], which privately communication O(n9κ4) bits, A-Cast O(n9κ2 log(n)) bits during shar-
ing phase and privately communicates O(n6κ3) bits, A-Cast O(n6κ log(n)) bits during reconstruction
phase for sharing a single secret s, where all the honest players terminate the protocol with probability
at least 1 − 2−O(κ) and κ is the error parameter. Here A-Cast is a primitive in asynchronous world,
allowing a player to send the same value to all the other players. Hence A-Cast in asynchronous would
is the parallel notion of broadcast in synchronous world. The AVSS protocol of [7] has the following
property: conditioned on the event that all non-faulty players have completed the execution of the
AVSS protocol, the non-faulty players terminate in constant expected time. Now in order to share `
secrets, the AVSS protocol of [7] need to be executed ` times, resulting in a private communication
of O(`n9κ4) bits, A-Cast of O(`n9κ2 log(n)) bits during sharing phase and private communication of
O(`n6κ3) bits, A-Cast of O(`n6κ log(n)) bits during reconstruction phase.

Asynchronous Byzantine Agreement (ABA) and Application of AVSS in ABA: Roughly
speaking the problem of ABA is as follows: a set of n players are connected with each other by direct
and secure asynchronous channels. An adversary At with unbounded computing power can control at
most t of n nodes in Byzantine fashion. By Byzantine means that the adversary takes full control of
the player and forces it to behave arbitrarily during the protocol execution. Each player has a binary
input value. The goal is for all honest players to agree on a consensus value that is an input value
of one of the honest players. The challenge is to design a protocol, which achieves this goal even in
the presence of At. This problem was first formulated by Pease, Shostak and Lamport [18]. It is
known that ABA tolerating At is possible iff n = 3t + 1 [16]. The first ABA protocol with n = 3t + 1
was designed in [7], who used their AVSS protocol (with n = 3t + 1) to implement a global coin, a
standard technique introduced by [11]. Using the AVSS scheme of [7], the global coin protocol of [7]
will privately communicate O(n11κ4) bits and A-Cast O(n11κ2 log(n)) bits. Now in the ABA protocol
of [7], the global coin protocol may be called expected constant number, say c times. Thus the ABA
protocol of [7] privately communicates O(cn11κ4) bits and A-Cast O(cn11κ2 log(n)) bits. The ABA
protocol of [7] has the following property: each honest player will terminate the protocol with proba-
bility at least 1− 2−O(κ), where κ is the error parameter. Moreover, conditioned on the event that all
non-faulty players have completed the execution of the ABA protocol, the honest players terminates
in constant expected time. For a comprehensive description of the reduction from AVSS to ABA, see
[6].

From the above description, we find that in the ABA protocol of [7], the honest players may not
terminate the protocol with negligible error probability. However, this is unavoidable as implied by
the results of Fischer, Lynch and Paterson [12], which states that in asynchronous settings, any BA
protocol must have some non-terminating runs. Thus, for asynchronous BA protocol with n = 3t + 1,
the best we can hope for is that the set of nonterminating executions has probability 0. We say such
protocols as almost-surely terminating following [1]. Thus though the ABA protocol of [7] has optimal
fault tolerance and expected constant running time, it is not almost-surely terminating. Recently in
[1], the authors have designed an ABA protocol with n = 3t + 1 which is almost surely terminating,
but terminates in polynomial expected time. The authors of [1] first introduced a new primitive called
shunning VSS (SVSS), which is a slightly weaker notion of AVSS in the sense that if all the players
(including corrupted players) behave correctly then SVSS satisfies the properties of AVSS. Otherwise
it does not satisfy the properties of AVSS but will enable some honest player to identify at least one

2

corrupted player whom the honest player shuns from then onwards. Then in [1], the authors have
used their SVSS protocol to implement shunning global coin protocol. Finally in the ABA protocol,
the shunning global coin protocol is called (c + n2) times, where c > 0 is some constant, resulting in
a private communication of O((c + n2)n6 log(n)) bits and A-Cast of O((c + n2)n6 log(n)) bits.

Motivation for Our Work: From the above description, it is clear that AVSS is a fundamental
and important distributed computing primitive. In addition to ABA, it also finds application in
asynchronous multiparty computation (AMPC) [4]. Though the AVSS and ABA scheme of [7] with
n = 3t + 1 has polynomial communication complexity and first of their kind, they involve very high
communication complexity. Reducing the communication complexity of AVSS and ABA protocol with
optimal fault tolerance; i.e., with n = 3t + 1, is a challenging and interesting problem which is yet to
be attempted for their hardness. Thus motivated by the practical utility of communication efficient
AVSS and ABA schemes, we design communication efficient AVSS and ABA schemes in this work.

Principle Used in the AVSS Scheme of [7]: In [7], the authors have clearly explained the in-
herent difficulties encountered in designing an AVSS scheme with n = 3t + 1. To overcome these
difficulties, the authors in [7] used the following approach to design their AVSS scheme. They first
designed a protocol called Asynchronous Recoverable Sharing (A-RS). To design A-RS protocol, they
used a tool called Information Checking (IC) protocol, which was introduced in [19]. Using A-RS as a
primitive, the authors have designed a primitive called Asynchronous Weak Secret Sharing (AWSS).
Then the authors presented a variation of AWSS scheme called Two & Sum AWSS. Finally using their
Two & Sum AWSS, the authors in [7] designed their AVSS scheme. Thus pictorially, the route taken
by [7] to design their AVSS scheme is as follows:IC → A-RS → AWSS → Two & Sum AWSS → AVSS.
Since the final AVSS scheme is designed on the top of so many sub-protocols, it results in significant
communication overhead. In addition, the final AVSS protocol becomes very involved.

Our Contribution and Its Impact Factor: We present a new AVSS protocol with n = 3t + 1,
which privately communicates O((`n3 + n5κ)κ) bits, A-Cast O(n4 log(n)) bits during sharing phase
and privately communicates O((`n4 + n5κ)κ) bits during reconstruction phase, to share a secret S
containing ` field elements, where all the honest players terminate the protocol with probability at
least 1 − 2−O(κ). Conditioned on the event that all non-faulty players have completed the execution
of the AVSS protocol, the non-faulty players terminate in constant expected time. This significantly
improves the communication complexity of the AVSS scheme of [7], with same properties. We follow
the following route to design our AVSS: IC → AWSS → AVSS, thus avoiding many sub-protocols used
in [7].

As an application of our new AVSS protocol, we design a new ABA protocol with n = 3t+1, which
privately communicates O(cn6κ) bits and A-Cast O(cn5 log(n)) bits (c > 0 is some constant), thus
significantly improving the ABA protocol of [7], while maintaining the same properties.Also comparing
our ABA protocol with the ABA protocol of [1], we find that our ABA protocol though not almost-
surely terminating, terminates in constant expected time with less communication overhead. The
following table gives the comparison of our results with the results of [7, 1] in terms of bits.

AVSS ABA

Sharing Reconstruction
Phase Phase

[7] Private — O(`n9κ4) Private — O(`n6κ3) Private — O(cn11κ4)
A-Cast — O(`n9κ2 log(n)) A-Cast — O(`n6κ log(n)) A-Cast — O(cn11κ2 log(n))

[1] Private — O((c + n2)n6 log(n))
A-Cast — O((c + n2)n6 log(n))

This paper Private — O((`n3 + n6κ)κ) Private — O((`n4 + n6κ)κ) Private — O(cn6κ)
A-Cast — O(n4 log(n)) A-Cast — O(cn5 log(n))

2 Network Model, Definitions and Notations

Model: We follow the asynchronous network model of [7], where there are n players, denoted by the set
P, who are connected by pairwise reliable and secure channel. Messages sent on a channel may have
arbitrary (but finite) delays. An adversary At with unbounded computing power can corrupt at most t

3

players during the protocol in Byzantine fashion. Once a player is corrupted, he remains so throughout
the protocol. As a worst case assumption, we assume that At controls the delay in transmission of
the messages flowing through different channels and hence he can arbitrarily (but finitely) delay their
transmission. However, At can only delay the message sent by the honest players and will have no
information about these messages. The error probability of our protocols is expressed in terms of an
error parameter κ > 0, where the error probability of the protocols is 2−O(κ). To bound the error
probability by 2−O(κ), all our protocols work over a finite field F where F = GF (2κ). Thus each field
element can be represented by κ bits. Moreover, we assume that n is polynomial in κ.

Asynchronous Weak Secret Sharing (AWSS) [7]: Let (Sh, Rec) be a pair of protocols in which a dealer
D ∈ P shares a secret S containing ` ≥ 1 field elements. We say that (Sh, Rec) is a t-resilient AWSS
scheme for n players if the following hold for every possible At.

• Termination: With probability at least 1− 2−O(κ), the following requirements hold:

1. If D is honest then each player will eventually terminate protocol Sh.

2. If some honest player has completed protocol Sh, then irrespective of the behavior of D, each honest player will
eventually terminate Sh.

3. If an honest player has completed Sh and all the honest players invoke protocol Rec, then each honest player will
terminate Rec.

• Correctness:

1. If D is honest then with probability at least 1−2−O(κ), each honest player upon completing protocol Rec, outputs
the shared secret.

2. Once the first honest player completes protocol Sh, then there exists an r ∈ F`∪NULL, such that with probability
at least 1− 2−O(κ), each honest player upon completing Rec, will output either r or NULL.

• Secrecy: If D is honest and no honest player has begun executing protocol Rec, then the corrupted
players have no information about the shared secret.

As mentioned in [7], we stress that in the case of a corrupted D, even if r 6= NULL, then some of
the uncorrupted players may output r and some may output NULL. The adversary can decide which
players will output NULL during the execution of reconstruction protocol.

Asynchronous Verifiable Secret Sharing (AVSS) [7]: The Termination and Secrecy conditions for
AVSS is same as in AWSS. The only difference is in the Correctness 2 property:
Correctness 2: Once the first honest player has completed Sh, there exists an unique r ∈ F`, such
that with probability at least 1− 2−O(κ), each honest player upon completing Rec, will output r.
Thus the difference between the Correctness property of AWSS and AVSS is that in AWSS, if D is
corrupted then he may change the committed secret from r to NULL during reconstruction protocol,
while in AVSS, a corrupted D cannot change his commitment from r to any other value during
reconstruction protocol.

Asynchronous Byzantine Agreement (ABA)[7]: Let Π be an asynchronous protocol in which each player
has a binary input and let κ > 0 be the error parameter. We say that Π is a (1− 2−O(κ))-terminating,
t-resilient Byzantine Agreement protocol if the following hold, for every possible At and input:
• Termination: With probability at least 1 − 2−O(κ) all the honest players complete the protocol
(i.e., terminate locally).
• Correctness: All the honest players who have terminated have identical outputs. Furthermore, if
all the honest players have the same input, say ρ, then all the honest players output ρ.

A-Cast[7]: It is an asynchronous broadcast primitive, which was introduced and elegantly implemented
by Bracha [5] with n = 3t+1. Let Π be an asynchronous protocol initiated by a special player (called
the sender), having input m (the message to be broadcast). We say that Π is a t-resilient A-cast
protocol if the following hold, for every possible At and input:
• Termination:

4

1. If the sender is honest and all the honest players participate in the protocol, then each honest player will eventually
complete the protocol.

2. Irrespective of the behavior of the sender, if any honest player completes the protocol then each honest player will
eventually complete the protocol.

• Correctness: If the honest players complete the protocol then they terminate with a common
output m∗. Furthermore, if the sender is honest then m∗ = m.

Notice that the termination property of A-Cast is much weaker than the termination property of BA
because for A-Cast, we do not require that the honest players complete the protocol when the sender
is faulty. In the sequel, we use the following convention: we say that player Pj listens the A-Cast of
player Pi with value m, meaning that Pj completes the execution of Pi’s A-Cast and has locally set
the value of the A-Cast to m.

Random Value Generation: We now design a simple protocol called RandomGenerator, which allows the
players to jointly generate a random number r ∈ F. The idea behind RandomGenerator is very simple:
Each Pi ∈ P with input xi ∈R F participates in an instance of asynchronous multiparty computation
(AMPC) protocol described in [4], where the function to be computed is (y1, . . . , yn) = f(x1, . . . , xn)
and each yi = (x1 +x2 + . . .+xn). Now r is nothing but (x1 +x2 + . . .+xn). Thus at the termination
of the AMPC instance, every player in P will have a value r which is completely random.

Theorem 1 RandomGenerator correctly generates random r by communicating O(poly(nκ)) bits.

3 Communication Complexity Analysis of the AVSS Protocol of [7]

The communication complexity analysis of the AVSS protocol of [7] was never done and we have
carried out the same. We now try to briefly give the communication complexity analysis of the AVSS
protocol of [7]. To do so, we have considered the detailed description of the AVSS protocol of [7] given
in [6]. To begin with, in the IC protocol of [7], D gives O(nκ) field elements to INT and O(κ) field
elements to each of the n receivers/verifiers (for formal definition of INT and receivers/verifiers, see
Section 4). So the IC protocol of [7] involves a communication complexity of O(nκ2) bits.

Now by incorporating their IC protocol in Shamir secret sharing [20], the authors in [7] designed
an asynchronous primitive called A-RS, which consists of two sub-protocols, namely A-RS-Share
and A-RS-Rec. In the A-RS-Share protocol, D generates n shares (Shamir shares) of a secret s
and for each of the n shares, D executes an instance of IC protocol. So the A-RS-Share protocol
of [7] involves a communication complexity of O(n2κ2) bits. In addition to this, the A-RS-Share
protocol involves an A-Cast of O(log(n)) bits. In the A-RS-Rec protocol, the IC signatures given
by D in A-RS-Share are revealed, which involves a communication complexity of O(n2κ2) bits. In
addition, the A-RS-Rec protocol involves A-Cast of O(n2 log(n)) bits.

Proceeding further, by incorporating their A-RS protocol, the authors in [7] designed an AWSS
protocol. The AWSS protocol consists of two sub-protocols, namely AWSS-Share and AWSS-Rec.
In the AWSS-Share protocol, D generates n shares (Shamir shares [20]) of the secret and instantiate
n instances of the IC protocol for each of the n shares. Now each individual player A-RS-Share all
the values that it has received in the n instances of the IC protocol. This involves a communication
complexity of O(n4κ3) bits and A-Cast of O(n2κ log(n)) bits. In the AWSS-Rec protocol, each player
Pi tries to reconstruct the values which are A-RS-Shared by each player Pj in a set Ei. Here Ei is
a set which is defined is the AWSS-Share protocol. In the worst case, the size of each Ei is O(n).
So in the worst case, the AWSS-Rec protocol communicates O(n5κ3) bits and A-Cast O(n5κ log(n))
bits.

The authors in [7] then further extended their AWSS-Share protocol to Two&Sum AWSS-
Share protocol, where each player Pi has to A-RS-Share O(nκ2) field elements. So the communica-
tion complexity of Two&Sum AWSS-Share protocol is O(n4κ4) bits and A-Cast of O(n2κ2 log(n))
bits.

5

Finally using their Two&Sum AWSS-Share and AWSS-Rec protocol, the authors in [7] have
deigned their AVSS protocol, which consists of two sub-protocols, namely AVSS-Share and AVSS-
Rec. In the AVSS-Share protocol, the most communication expensive step is the one where each
player has to AWSS-Rec O(n3κ) values. So in total, the AVSS-Share protocol of [7] involves a
communication complexity of O(n9κ4) bits and A-Cast O(n9κ2 log(n)) bits. The AVSS-Rec protocol
involves n instances of AWSS-Rec, resulting in a communication complexity of O(n6κ3) bits and
A-cast of O(n6κ log(n)) bits.

4 Information Checking Protocol and IC Signature

The Information Checking (IC) scheme is a tool for authenticating messages in the presence of com-
putationally unbounded corrupted players. In synchronous settings, the notion of IC scheme was first
introduced by Rabin et.al [19] who have designed an IC scheme with n ≥ 2t + 1. The IC scheme of
Rabin et. al. was extended and adapted in asynchronous settings by Canetti et. al. [7]. We now
recall the definition of IC scheme, its properties and its outcome.

Information Checking (IC) Scheme and IC Signatures [19, 7]: Typically, in an IC scheme,
the entities involved are the dealer D ∈ P, (D should not be confused with the D of AWSS and AVSS;
but following the standard definition of IC scheme, we overload this notation), an intermediary player
INT ∈ P and the verifiers in P (note that D and INT also belongs to the set of verifiers). IC scheme
provides an information theoretically secure method for authenticating data and is used to generate
IC signatures on D’s secret S, consisting of ` field elements. Once a player INT ∈ P receives an IC
signature on S from D ∈ P, then INT can later produce the signature and have the players in P
verify that it is a valid signature (handed over by D to INT). An IC scheme consists of a sequence
of three protocols1:

1. Distr(D, INT,P, S) is initiated by the dealer D, who hands over the secret S to intermediary INT .
In addition, D hands some authentication information to INT and verification information to
individual players in P, also called as verifiers.

2. AuthVal(D, INT,P, S) is carried out by INT and the set of verifiers P. Here INT decides
whether to continue or abort the protocol depending upon the prediction whether in protocol Reveal-
Val, secret S held by INT will be (eventually) accepted/will be considered as valid by all the (honest)
verifiers in P. We denote continuation (resp. abortion) by Auth = 1 (resp., 0). If Auth = 1, then the
authentication information, along with S, which is held by INT at the end of AuthVal is called
D’s IC signature on S, obtained by INT . We denote the IC signature by ICSigD,INT(S).

3. RevealVal(D, INT,P, S) is carried out by INT and the verifiers in P. RevealVal can be presented
in two flavors: (i) Private verification of IC signature by player Pα and (ii) Public verification of IC
signature by every player in P. In the private verification by player Pα, INT sends the IC signature
to Pα and the individual verifiers in P send verification information to Pα. With the received
information, Pα either accepts S or rejects it. We denote the acceptance, (resp., rejection) by Reveal
= S (resp., NULL). Public verification towards every player in P is achieved by executing private
verification for each Pα ∈ P.

Any IC scheme must satisfy following properties:

1. If D and INT are honest, then S will be accepted in RevealVal by each honest player.

2. If INT is honest and Auth =1, then S held by INT will be accepted in RevealVal by each honest
players, except with probability 2−O(κ).

3. If D is honest, then during RevealVal, with probability at least 1− 2−O(κ), every S′ 6= S produced
by a corrupted INT will be rejected by an honest player.

1The definition given here is slightly different from the one given in [7], where an IC protocol is executed among D,
INT and a single verifier R. However, in the their AWSS and AVSS protocols, the IC protocol is parallely executed
with every player in P acting as verifier.

6

4. If D and INT are honest, then at the end of AuthVal, S is information theoretically secure.

We now present an IC protocol called IC, which allows D to sign on a secret S containing ` field
elements, with n ≥ 3t + 1. Our IC protocol is motivated by the Information Checking Protocol (with
dispute control) presented in [2] in synchronous settings. Though [7] have presented an IC protocol
with n = 3t + 1 in asynchronous settings, it is designed to get signature on only a single secret. In
our AVSS protocol, we require to generate IC signature on multiple secrets at once. In that case,
using the IC protocol of [7] will result in high communication overhead. On the other hand, using
our IC protocol, signature on multiple secrets can be generated at once, with reduced communication
complexity. Also, though there exists several IC protocol in synchronous settings [19, 9, 17], the IC
protocol of [2] is designed to handle multiple secrets at once and also can be adapted in asynchronous
settings efficiently. So we adapt the IC protocol of [2] in asynchronous settings, as shown in Table 1.

Distr(D, INT,P, S): Let S = (s1, . . . , s`). For every verifier Pj ∈ P, D computes and communicates the following: D

selects uniformly at random κ authentication tags (values) yj
1, . . . , y

j
κ ∈R Fκ, κ elements uj

1, . . . , u
j
κ ∈R (F\{0, . . . , `})κ,

and computes vj
1, . . . , v

j
κ such that for each i ∈ {1, . . . , κ}, the ` + 2 points (0, yj

i), (1, s1), . . . , (`, s`), (u
j
i , v

j
i) lie

on a polynomial of degree `. D sends the authentication tags yj
1, . . . , y

j
κ to INT and the verification tags zj

1 =
(uj

1, v
j
1), . . . , z

j
κ = (uj

κ, vj
κ) to Pj . Finally, D sends the secret S = (s1, . . . , s`) to INT .

AuthVal(D, INT,P, S):

1. Every verifier Pj randomly partitions the index set {1, . . . , κ} into two sets Ij and Ij of (almost) equal size, and
sends Ij , Ij and zj

i for all i ∈ Ij to INT .

2. For every verifier Pj , INT checks whether for every i ∈ Ij , the points (0, yj
i), (1, s1), . . . , (`, s`), z

j
i lie on a

polynomial of degree `. If for at least 2t + 1 verifiers, the above condition is satisfied, then INT sets Auth = 1. and
includes these verifiers in a set called HappySetINT (HappySetPβ when Pβ acts as INT resp.). Otherwise INT sets
Auth = 0. If Auth = 1, then the information held by INT is denoted as ICSigD,INT (S).

RevealVal(D, INT,P, S)

RevealVal-Private(D, INT,P, S, Pα): Private verification of IC signature, by Pα.

1. INT sends the following to player Pα: the secret S = (s1, . . . , s`) and the remaining authentication tags yj
i

corresponding to the index set Ij (i.e i ∈ Ij) along with index set Ij , for each verifier Pj .

2. To player Pα, every verifier Pj sends the index set Ij and all zj
i such that i ∈ Ij .

3. Corresponding to each Pj , player Pα checks whether for any i ∈ Ij , the points (0, yj
i), (1, s1), . . . , (`, s`), z

j
i

lie on a polynomial of degree `. If for at least t + 1 players the above condition is satisfied, then Pα sets
Reveal = S. Otherwise he sets Reveal = NULL.

RevealVal-Public(D, INT,P, S): Public Verification of the IC signature by every player in P
1. INT sends the following to every verifier Pj ∈ HappySetINT : the secret S = (s1, . . . , s`) and the remaining

authentication tags yj
i corresponding to the index set Ij (i.e i ∈ Ij) along with index set Ij .

2. Verifier Pj ∈ HappySetINT checks whether for any i ∈ Ij , the points (0, yj
i), (1, s1), . . . , (`, s`), z

j
i lie on a

polynomial of degree `. If yes Pj outputs Revealj = S. Otherwise he sets Revealj = NULL. Now Pj sends
Revealj to every player Pα ∈ P.

3. Now player Pα ∈ P (including players in HappySetINT)waits for at least t+1 Revealj ’s which are non-NULL
and same. Upon receiving the same, Pα sets Revealα as one of the Revealj ’s received by him. Otherwise he
sets Revealα = NULL.

Table 1: Protocol IC(D, INT,P, S)

Lemma 1 If D and INT are honest, then S will be accepted in RevealVal-Private by every honest Pα.

Proof(sketch): For an honest D and honest INT , Auth = 1 at the end of AuthVal and every
(honest) player Pα will eventually output Reveal = S at the end of RevealVal. 2

Lemma 2 If INT is honest and Auth = 1 at the end of AuthVal, then S held by INT will be accepted
in RevealVal-Private by every honest Pα, except with probability 2−O(κ).

Proof: Since INT is honest and Auth = 1 at the end of AuthVal, the condition specified in step 2 of
AuthVal is satisfied corresponding to at least 2t + 1 verifiers. Among the 2t + 1 verifiers at least t + 1
verifiers are honest. Now to prove the above lemma, we prove that corresponding to each of these

7

honest verifiers, the condition stated in step 3 of RevealVal-Private will be satisfied with very high
probability. We first note that corresponding to an honest verifier Pj , the condition stated in step 3
of RevealVal-Private will fail if for all i ∈ Ij , the points (0, yj

i), (1, s1), . . . , (`, s`), z
j
i does not lie on a

polynomial of degree `. This implies D (which is corrupted in this case) must have distributed yj
i (to

INT) and zj
i (to Pj) inconsistently for all i ∈ Ij and it so happens that Pj has partitioned {1, . . . , κ}

into two sets Ij and Ij such that Ij contains only inconsistent tuples (zj
i ’s). Thus corresponding to

an honest verifier Pj , the probability that the condition stated in step 3 of RevealVal-Private fails is
same as the probability of selecting all consistent tuples in Ij (or selecting all inconsistent tuples in
Ij) which is at most 2−O(κ). 2

Lemma 3 If D is honest, then during RevealVal-Private, with probability at least 1 − 2−O(κ), every
S′ 6= S produced by a corrupted INT will be rejected by honest Pα.

Proof: For corrupted INT producing S′ 6= S in RevealVal-Private, t corrupted verifiers may produce
verification information such that the condition stated in step 3 of RevealVal-Private gets satisfied
for all of them. So INT ’s signature on S′ will be validated if the condition stated in step 3 of
RevealVal-Private gets satisfied corresponding to at least one honest verifier (in addition to t corrupted
verifiers). So we have to analyze: what is the probability that corresponding to an honest verifier
Pj , the condition stated in step 3 of RevealVal-Private gets satisfied. The probability of above event
is same as the probability of a corrupted INT to guess a verification tag zj

i for i ∈ Ij (and produce
corresponding correct authentication tag) which is at most κ

2κ−`−1 = 2−O(κ). 2

Lemma 4 If D and INT are honest, then at the end of AuthVal, S is information theoretically secure
from At controlling t verifiers in P.

Proof: Trivial, as every verification tuple is statistically independent from the secret. 2

Lemma 5 Protocol Distr, AuthVal and RevealVal-Private communicate O((`+nκ)κ) bits each. Protocol
RevealVal-public communicate O((`n2 + n2κ)κ) bits.

Linearity Property of IC protocol: A very important property of our IC protocol IC is that it
generates an IC signature satisfying linearity property. By linearity property, we mean that if INT has
got signatures (from D) on S1 = (s1

1, . . . , s
1
`) and S2 = (s2

1, . . . , s
2
`) separately in two different instances

of IC, then it is possible for INT to generate (and produce) a signature on linear combination of the
secrets r1S

1 + r2S
2 = (r1s

1
1 + r2s

2
1, . . . , r1s

1
` + r2s

2
`) without further communications. Similarly the set

of verifiers can also adjust their verification tags accordingly. This is clearly possible subject to the
following two conditions: (a) If for both the instances of IC, the κ random elements uj

1, . . . , u
j
κ chosen

(by D) for verifier Pj remains same, and (b) INT must complete AuthVal for both the set of secrets
with at least 2t+1 verifiers in common in HappySetINT . Subject to the above two conditions, INT
has to do the appropriate linear combination of the secrets and authentication tags to obtain the new
signature and the verifiers can do the same linear combination on the v components of verification
tuples z to obtain new verification tuples. The intuition for condition (b) is very clear. If INT
completes AuthVal for first set of secrets with HappySetINT 1 and for the second set of secrets with
HappySetINT 2 such that |HappySetINT 1 ∩ HappySetINT 2| ≤ 2t, then it may be possible that
out of these 2t players, t are corrupted, who can purposely send incorrect verification tag(s) during
RevealVal-Private. And the honest players which are not in HappySetINT 1 ∩ HappySetINT 2 can
not compute the new verification tag corresponding to the linear combination of the secrets. Thus
even if condition (a) is satisfied, the new signature computed by an honest INT may be rejected
in RevealVal-Private (or RevealVal-Public). Also notice that if D is honest then condition (b) will
be eventually satisfied. The linearity property of the IC protocol can be extended for any linear
combination of any number of secrets, provided the above two conditions are satisfied. Our AVSS
protocol presented in this paper uses the linearity property of IC protocol.

8

5 Asynchronous Weak Secret Sharing

In this section, we present a novel AWSS protocol called AWSS with n = 3t + 1 to share a secret S
containing ` field elements from F. The reconstruction of AWSS is presented in two flavors: private
reconstruction and public reconstruction. While in private reconstruction, only a specific player is
allowed to do reconstruction with the help of all the players, public reconstruction allows every player
to perform reconstruction. For ease of understanding, we first present an AWSS protocol, called
AWSS-Single-Secret which shares a single secret s and then prove that AWSS-Single-Secret satisfies all
the properties of an AWSS protocol. Later we show how to extend protocol AWSS-Single-Secret to
obtain our AWSS protocol AWSS for sharing ` secrets at once.

AWSS-Single-Secret(D,P, s)

AWSS-Single-Secret-Share(D,P, s):

1. Distribution - Code for D: D selects a degree-t symmetric bivariate polynomial F (x, y) such that F (0, 0) = s
and delivers fi(x) = F (x, i) to Pi with his authentication tags by initiating Distr(D, Pi,P, fi(j)) for every
j ∈ {1, . . . , n}.
2. Code for Pi:

1. Player Pi waits until Distr(D, Pi,P, fi(j)) is completed for every j ∈ {1, . . . , n}. Then Pi and players in P
executes AuthVal(D, Pi,P, fi(j)) for every j ∈ {1, . . . , n}.

2. If Pi completes AuthVal(D, Pi,P, fi(j)) with Auth = 1 for every j ∈ {1, . . . , n}, he hands over fi(j) to Pj

with his signature by initiating Distr(Pi, Pj ,P, fi(j)) for all j ∈ {1, . . . , n}. In addition, Pi participates in
Distr(Pj , Pi,P, fj(i)) for all j ∈ {1, . . . , n}.

3. Pi waits until Distr(Pj , Pi,P, fj(i)) is completed. Then Pi checks whether fi(j)
?
= fj(i). If yes then Pi and

players in P executes AuthVal(Pj , Pi,P, fj(i)).

4. If Pi completes AuthVal(Pj , Pi,P, fj(i)) with Auth = 1, then Pi A-casts OK(Pi, Pj).

3. CORE Construction:

1. D maintains a set OKSetPj = {Pi|D listens OK(Pi, Pj)}. If |OKSetPj | ≥ n − t, then D adds Pj in CORE
(which is initially empty).

2. D waits until |CORE| ≥ n− t. Then D A-casts the set CORE and current OKSetPj for all Pj ∈ CORE.

3. Once a player Pi listens CORE′ and OKSetP ′j for all Pj ∈ CORE′ from D, he himself waits to listen
OK(Pk, Pj) for all Pk ∈ OKSetP ′j and Pj ∈ CORE′. Once Pi listens all the required OK’s, he A-casts CORE′

and OKSetP ′j for all Pj ∈ CORE′.

4. Now Pi waits to listen same CORE′′ and OKSetP ′′j for all Pj ∈ CORE′′ from at least n− t players’ A-cast.
Upon listening, he sets CORE = CORE′′ and OKSetPj = OKSetP ′′j for all Pj ∈ CORE and terminates.

AWSS-Single-Secret-Rec-Private(D,P, s, Pα): Private Reconstruction towards Pα:

1. For every Pj ∈ CORE and every Pk ∈ OKSetPj , every player participates in RevealVal-Private(D, Pk,P, fk(j), Pα)
and RevealVal-Private(Pj , Pk,P, fj(k), Pα). /*Thus each Pk ∈ OKSetPj reveals D’s and Pj ’s IC signature on fk(j)
and fj(k) respectively.*/

2. For every Pj ∈ CORE, Pα constructs a set V alidSetPj . Pα adds a player Pk ∈ OKSetPj to V alidSetPj if Pα

completes RevealVal-Private(D, Pk,P, fk(j), Pα) and RevealVal-Private(Pj , Pk,P, fj(k), Pα) with Reveal = fk(j) and
Reveal = fj(k) respectively and fk(j) = fj(k) is satisfied. Pα waits until |V alidSetPj | = n− 2t = t + 1. Once this is
satisfied, Pα constructs a polynomial fj(x) passing through the points (k, fj(k)) where Pk ∈ V alidSetPj . If fj(x) is
of degree t, then Pα associates fj(x) with player Pj ∈ CORE. Otherwise Pα associates NULL with Pj .

3. If for at least one Pj ∈ CORE, the associated polynomial is NULL, then Pα reconstructs s = NULL and
terminates. Other wise Pα waits for all Pj ∈ CORE to be associated with some polynomial fj(x). Then for every

pair (Pγ , Pδ) ∈ CORE, Pα checks whether fγ(δ)
?
= fδ(γ). If the condition is satisfied for every pair in CORE,

Pα reconstructs the bivariate polynomial F (x, y) using the polynomials fj(x) associated with Pj ∈ CORE and gets
s = F (0, 0) and terminates. Otherwise again Pα reconstructs s = NULL and terminates.

AWSS-Single-Secret-Rec-Public(D,P, s,P): Public Reconstruction towards P:

1. Same as in AWSS-Single-Secret-Rec-Private, except that every RevealVal-Private in AWSS-Single-Secret-Rec-Private
is replaced by RevealVal-Public. Now every player Pα ∈ P proceeds in the same way as in AWSS-Single-Secret-Rec-
Private and reconstructs s.

Protocol AWSS-Single-Secret uses the bivariate polynomial approach of Feldman [11]. The high level
description of AWSS-Single-Secret is as follows: D selects a degree-t symmetric bivariate polynomial

9

F (x, y) such that F (0, 0) = s and delivers fi(x) = F (x, i) to Pi with his authentication tags by initi-
ating Distr(D, Pi,P, fi(j)) for every j ∈ {1, . . . , n}. Once player Pi completes AuthVal(D, Pi,P, fi(j))
with Auth = 1 for every j =∈ {1, . . . , n}, he hands over fi(j) to Pj (by the property of symmetric
bivariate polynomial fi(j) = fj(i)) with his signature by executing Distr(Pi, Pj ,P, fi(j)) for every

j ∈ {1, . . . , n}. Once player Pi verifies fi(j)
?= fj(i) and completes AuthVal(Pj , Pi,P, fj(i)) with

Auth = 1, he A-casts OK(Pi, Pj). This indicates that Pi has verified that fi(j) = fj(i). Moreover, Pi

has D’s valid signature on fi(j), as well as Pj ’s valid signature on fj(i) = fi(j).
Once D listens at least n− t A-casts of the form OK(Pi, Pj) for Pj , D includes Pj in a set CORE

(initially CORE = ∅). D also maintains a set OKSetPj = {Pi|D listens OK(Pi, Pj)}. So for
Pj ∈ CORE, |OKSetPj | ≥ n − t. Once CORE ≥ n − t, D A-casts the set CORE and current
OKSetPj for all Pj ∈ CORE. Notice that an honest D will always end up with such a CORE set.
Now each honest player Pi waits to listen a CORE set from D of size n − t, with OKSetPj of size
n − t for each Pj in CORE. Once a player Pi listens CORE′ and OKSetP ′

j for all Pj ∈ CORE′

from D, he tries to check the validity of the received information. For this, Pi himself waits to listen
OK(Pk, Pj) for all Pk ∈ OKSetP ′

j and Pj ∈ CORE′. Once Pi listens all the required OK’s, he A-casts
CORE′ and OKSetP ′

j for all Pj ∈ CORE′.
However, in our protocol, we require that the honest players should agree on the same CORE

and corresponding OKSet, as sent by D. For this, every (honest) Pi waits to listen same CORE′′

and OKSetP ′′
j for all Pj ∈ CORE′′ from the A-casts of at least n − t players. Upon listening, he

sets CORE = CORE′′ and OKSetPj = OKSetP ′′
j for all Pj ∈ CORE and terminates the sharing

phase of AWSS-Single-Secret. Since there are n = 3t + 1 players, the above steps ensure that two
different honest players can not have different CORE and corresponding OKSets. Thus if sharing
phase terminates then all honest players must have agreed on CORE as well as OKSetPj for all
Pj ∈ CORE. Then in the reconstruction phase irrespective of whether D is honest or not, for every
honest Pi ∈ CORE, the fi(x) polynomial will be reconstructed correctly. For honest D, correct fi(x)
polynomial will be reconstructed for a corrupted Pi ∈ CORE as well. But if D is dishonest, then for
a corrupted Pi ∈ CORE a wrong fi(x) may get reconstructed. Thus for an honest D, correct secret s
will be recovered (since bivariate F (x, y) can be reconstructed) with very high probability. But for a
corrupted D either the committed secret or NULL will be recovered. Note that in our AWSS protocol
if D is corrupted then it is possible that some honest player reconstructs the committed secret while
some other honest player reconstructs NULL.

Lemma 6 Protocol AWSS-Single-Secret satisfies termination property.

Proof: Termination 1: When D is honest, every honest Pi will complete AuthVal(D, Pi,P, fi(j))
with Auth = 1. Also for every pair of honest players Pi, Pj , AuthVal(Pi, Pj ,P, fi(j)) and AuthVal(Pj , Pi,
P, fj(i)) will be successful. Hence D will eventually listen n− t = 2t + 1 OK(Pi, Pj) for every honest
Pj . Since there are at least 2t+1 honest players in P, D gets CORE of size at least n− t and A-casts
CORE and OKSetPj for every Pj ∈ CORE. Since D is honest every honest Pi eventually listens
CORE and OKSetPj for every Pj ∈ CORE from D. Again by the property of A-cast, since (honest)
D has listened OK(Pk, Pj) for all Pj ∈ CORE and Pk ∈ OKSetPj , all other honest players will also
eventually listen them. Finally since all the honest players A-casts same CORE and OKSetPj ’s, an
honest player will eventually listen at least n − t = 2t + 1 A-casts of same CORE and OKSetPj ’s.
Thus every honest player will terminate AWSS-Single-Secret-Share.

Termination 2: If an honest player Pi has completed AWSS-Single-Secret-Share, then he must have
listened at least n − t = 2t + 1 A-casts of same CORE and OKSetPj ’s. By the definition of A-cast,
each honest player will also listen the same. Since there are total n = 3t + 1 players, there can not be
two different version of CORE and OKSetPj ’s. Hence, every honest player will eventually terminate
AWSS-Single-Secret-Share.

Termination 3: By Lemma 2, if Pi (acting as INT) is honest and Auth = 1 at the end of AuthVal,
then Pi’s secret (with signature given by any dealer) will be accepted in RevealVal-Private, except
with probability 2−O(κ). Since for every Pj ∈ CORE, |OKSetPj | ≥ n − t, there are at least t + 1
honest players in OKSetPj who will be present in V alidSetPj of Pα with very high probability. Hence

10

|V alidSetPj | ≥ n− 2t ≥ t + 1. Thus every honest Pα will eventually terminate AWSS-Single-Secret-
Rec-Private(D,P, s, Pα) after executing the remaining steps specified in the same. Similarly, we can
prove that every Pα ∈ P will terminate AWSS-Single-Secret-Rec-Public eventually. 2

Lemma 7 Protocol AWSS-Single-Secret satisfies secrecy property.

proof: Follows from the secrecy of IC and properties of symmetric bivariate polynomial. 2

Lemma 8 Protocol AWSS-Single-Secret satisfies correctness property.

Proof: Correctness 1: We first prove that if D is honest, then the polynomial fj(x) associated
with Pj ∈ CORE (by an honest Pα) is same as the polynomial fj(x) distributed by D. From the
property of IC protocol, for an honest Pj ∈ CORE, a corrupted Pk ∈ OKSetPj can produce a
valid signature on fj(k) 6= fj(k) with negligible probability (see Lemma 3). Hence with very high
probability fj(k) is same as fj(k) for all k ∈ V alidSetPj . Thus the polynomial associated with Pj is
fj(x) distributed by honest D. For a corrupted Pj ∈ CORE, a corrupted Pk ∈ OKSetPj can produce
a valid signature on fj(k) 6= fj(k) but Pk will fail to produce D’s signature on fk(j) = fj(k) for an
honest D. Hence Pk will not be included in V alidSetPj . Hence again the polynomial associated with
Pj is fj(x) distributed by honest D. So Pα will reconstruct F (x, y) and hence the secret s = F (0, 0)
with very high probability.

Correctness 2: Since in AWSS-Single-Secret-Share, every honest player agrees on a common CORE
and OKSetPj for Pj ∈ CORE, an unique secret s′ ∈ F∪NULL is defined by the (n−t)−t = n−2t ≥
(t + 1) honest players in CORE. If for every two honest players Pγ and Pδ in CORE, fγ(δ) = fδ(γ)
holds then s′ is the secret defined by the bivariate polynomial F ′(x, y), induced by the polynomials
of honest players. Otherwise D’s committed secret s′ = NULL. Let D has committed s′ ∈ F. Now
we show that an honest player Pα either reconstructs s′ or NULL. To prove this, we first claim that
the polynomial fj(x) associated with an honest Pj ∈ CORE (by Pα) is same as the polynomial fj(x)
distributed by D. This claim follows from the argument given in Correctness 1. But now for a
corrupted Pj , a corrupted Pk ∈ OKSetPj can produce a valid signature of Pj on fj(k) 6= fj(k) as well
as a valid signature of D (who is corrupted in this case) on fk(j) = fj(k). Also adversary can delay the
messages such that the values of all corrupted Pk ∈ OKSetPj ’s reach Pα before the values of honest
players in OKSetPj . Thus the polynomial associated with a corrupted Pj can be fj(x) 6= fj(x). Thus
the polynomials corresponding to all the players in CORE will not define a valid bivariate polynomial
F ′(x, y). Thus NULL will be reconstructed by Pα. Notice that since all honest players of CORE are
associated with original fj(x), no other secret (other than s′) can be reconstructed.

Now let D’s committed secret s′ = NULL. In this case irrespective of the behavior of corrupted
players, NULL will be reconstructed. 2

We now extend protocol AWSS-Single-Secret (which shares a single secret) to protocol AWSS (given
in Table 5) which shares ` secrets at once. The properties of AWSS follows from the properties of
AWSS-Single-Secret.

Lemma 9 Protocol AWSS-Share communicates O((`n2 + n3κ)κ) bits and A-casts O(n3 log(n)) bits.
Protocol AWSS-Rec-Private and AWSS-Rec-Public communicates O((`n2 +n3κ)κ) and O((`n4 +n4κ)κ)
bits, respectively.

Proof: Protocol AWSS-Share executes at most n+n2 = Θ(n2) instances of Distr and AuthVal. Hence
by Lemma 5, AWSS-Share communicates O((`n2 + n3κ)κ) bits. Also every player A-casts CORE and
OKSetPj ’s which contain O(n2) numbers from {1, . . . , n}, each of which can be represented by log(n)
bits. Protocol AWSS-Rec-Private executes Θ(n2) instances of RevealVal-Private and hence by Lemma
5, AWSS-Rec-Private communicates O((`n2 + n3κ)κ) bits. Protocol AWSS-Rec-Public executes Θ(n2)
instances of RevealVal-Public and hence by Lemma 5, AWSS-Rec-Public communicates O((`n4+n4κ)κ)
bits. 2

Before ending this section, we present another interesting protocol called AWSS-Share-MultiSet,
which shares M sets of ` secrets at once such that later any linear combination of the M sets can be

11

AWSS(D,P, S): Protocol to Share S = [s1 s2 . . . s`]

AWSS-Share(D,P, S):

1. Distribution - Code for D: D selects ` degree-t symmetric bivariate polynomials F 1(x, y), . . . , F `(x, y) such
that for l = 1, . . . , `, F l(0, 0) = sl. He then delivers f l

i (x) = F l(x, i) for l = 1, . . . , ` to Pi with his authentication
tags by initiating Distr(D, Pi,P, (f1

i (j), . . . , f `
i (j))) for every j ∈ {1, . . . , n}.

2. Code for Pi:

1. Player Pi waits until Distr(D, Pi,P, (f1
i (j), . . . , f `

i (j))) for every j ∈ {1, . . . , n} are completed. Then Pi and
players in P executes AuthVal(D, Pi,P, (f1

i (j), . . . , f `
i (j))) for every j ∈ {1, . . . , n}.

2. If Pi completes AuthVal(D, Pi,P, (f1
i (j), . . . , f `

i (j))) with Auth = 1 for every j ∈ {1, . . . , n}, he hands over
(f1

i (j), . . . , f `
i (j)) to Pj with authentication tags by initiating Distr(Pi, Pj ,P, (f1

i (j), . . . , f `
i (j))) for all j ∈

{1, . . . , n}. In addition, Pi participates in Distr(Pj , Pi,P, (f1
j (i), . . . , f `

j (i))) for every j ∈ {1, . . . , n}.
3. Pi waits until Distr(Pj , Pi,P, (f1

j (i), . . . , f `
j (i))) is completed. Then Pi checks whether f l

i (j)
?
= f l

j(i) for l =
1, . . . , `. If yes then Pi and players in P executes AuthVal(Pj , Pi,P, (f1

j (i), . . . , f `
j (i))).

4. If Pi completes AuthVal(Pj , Pi,P, (f1
j (i), . . . , f `

j (i))) with Auth = 1, then he A-casts OK(Pi, Pj).

3. CORE Construction: This is identically same as in Protocol AWSS-Single-Secret-Share.

AWSS-Rec-Private(D,P, S, Pα): Private Reconstruction towards Pα:

1. For every Pj ∈ CORE and every Pk ∈ OKSetPj , every player initiates RevealVal-
Private(D, Pk,P, (f1

k (j), . . . , f `
k(j)), Pα) and RevealVal-Private(Pj , Pk,P, (f1

j (k), . . . , f `
j (k)), Pα).

2. For every Pj ∈ CORE, Pα constructs a set V alidSetPj . Pα adds a player Pk ∈ OKSetPj to V alidSetPj if Pα com-
pletes RevealVal-Private(D, Pk,P, (f1

k (j), . . . , f `
k(j)), Pα) and RevealVal-Private(Pj , Pk,P, (f1

j (k), . . . , f `
j (k)), Pα) with

Reveal = (f1
k (j), . . . , f `

k(j)) and Reveal = (f1
j (k), . . . , f `

j (k)) respectively and for each l = 1, . . . , `, f l
k(j) = f l

j(k) is

satisfied. Pα waits until |V alidSetPj | = n−2t = t+1. Once this is satisfied, Pα constructs polynomials f l
j(x) passing

through the points (k, f l
j(k)) such that Pk ∈ V alidSetPj . If for all l = 1, . . . , `, f l

j(x) is of degree t, then Pj associates

all f l
j(x)’s with player Pj ∈ CORE. Otherwise associate NULL with Pj .

3. If for at least one Pj ∈ CORE, the associated polynomial is NULL, then Pα reconstructs S = NULL and termi-

nates. Other wise Pα waits for each Pi ∈ CORE to be associated with a set of ` polynomials f l
i (x). Then for every

pair (Pγ , Pδ) ∈ CORE, Pα checks whether f l
γ(δ)

?
= f l

δ(γ) for l = 1, . . . , `. If the condition is satisfied for every pair

of players in CORE, Pα reconstructs bivariate polynomials F 1(x, y), . . . , F `(x, y) from the univariate polynomials
associated with the players in CORE and gets sl = F l(0, 0). Otherwise again Pα reconstructs S = NULL.

AWSS-Rec-Public(D,P, S,P): Private Reconstruction towards P:

1. Same as in AWSS-Rec-Private, except that every RevealVal-Private in AWSS-Rec-Private is replaced by RevealVal-
Public. Now every player Pα ∈ P proceeds in the same way as in AWSS-Rec-Private and reconstructs S.

Table 2: AWSS(D,P, S): Protocol to Share S = [s1 s2 . . . s`]

reconstructed. The purpose of presenting this protocol will be clear in the next section. More specifi-
cally, AWSS-Share-MultiSet can share Sm = (s(m,1), . . . , s(m,`)) for m = 1, . . . ,M at once such that later
S =

∑M
m=1 rmSm = (

∑M
m=1 rms(m,1), . . . ,

∑M
m=1 rms(m,`)) (or NULL, if D is corrupted) can be recon-

structed using Protocol AWSS-Rec-Private or AWSS-Rec-Public for some (r1, . . . , rM) ∈ FM. Protocol
AWSS-Share-MultiSet goes in the same line of AWSS-Share, with the following restrictions to be ensured.
In Code for Pi of AWSS-Share, Pi must ensure that he completes AuthVal(D, Pi,P, (f1

i (j), . . . , f `
i (j)))

for all the M set of secrets and have 2t+1 common verifiers in each corresponding HappySetPi. Sim-
ilarly, the same must be ensured for AuthVal(Pj , Pi,P, (f1

j (i), . . . , f `
j (i))) for all the M set of secrets.

The intuition of these steps are very clear from the idea given in Linearity Property of IC.
It is easy to see that AWSS-Share-MultiSet satisfies termination and secrecy properties. The cor-

rectness follows from the correctness of AWSS and the linearity of IC and bivariate polynomials.

12

AWSS-Share-MultiSet(D,P, S1, . . . , SM)

1. Distribution - Code for D: D executes CODE for D of AWSS-Share for every set Sm. Specifically, for every
set Sm, D does the following: D selects ` degree-t symmetric bivariate polynomials F (m,1)(x, y), . . . , F (m,`)(x, y)

such that for l = 1, . . . , `, F (m,l)(0, 0) = s(m,l). He then delivers f
(m,l)
i (x) = F (m,l)(x, i) for l = 1, . . . , ` to Pi with

his authentication tags by initiating Distr(D, Pi,P, (f
(m,1)
i (j), . . . , f

(m,`)
i (j))) for every j ∈ {1, . . . , n}.

2. Code for Pi:

1. For every set Sm, player Pi waits until Distr(D, Pi,P, (f
(m,1)
i (j), . . . , f

(m,`)
i (j))) for every j ∈ {1, . . . , n} are

completed. Then Pi and players in P executes AuthVal(D, Pi,P, (f
(m,1)
i (j), . . . , f

(m,`)
i (j))) for every j ∈

{1, . . . , n}.
2. Pi waits to complete AuthVal(D, Pi,P, (f

(m,1)
i (j), . . . , f

(m,`)
i (j))) for all m ∈ {1, . . . ,M} with Auth =

1 such that HappySetPi for all the M instances have common n − t verifiers. If Pi completes
the above for every j ∈ {1, . . . , n}, then he hands over (f

(m,1)
i (j), . . . , f

(m,`)
i (j)) to Pj with au-

thentication tags by initiating Distr(Pi, Pj ,P, (f
(m,1)
i (j), . . . , f

(m,`)
i (j))). In addition, he participates in

Distr(Pj , Pi,P, (f
(m,1)
j (i), . . . , f

(m,`)
j (i))) for all m ∈ {1, . . . ,M} and j ∈ {1, . . . , n}.

3. Pi waits until Distr(Pj , Pi,P, (f
(m,1)
j (i), . . . , f

(m,`)
j (i))) is completed. Then Pi checks whether f

(m,l)
i (j)

?
=

f
(m,l)
j (i) for l = 1, . . . , ` and m = 1, . . . ,M. If yes then Pi and players in P executes

AuthVal(Pj , Pi,P, (f
(m,1)
j (i), . . . , f

(m,`)
j (i))).

4. If Pi completes AuthVal(Pj , Pi,P, (f
(m,1)
j (i), . . . , f

(m,`)
j (i))) for all m ∈ {1, . . . ,M} with Auth = 1 such that

HappySetPi for all the M instances have common n− t verifiers, then he A-casts OK(Pi, Pj).

3. CORE Construction: This is identically same as in Protocol AWSS-Share(D,P, s).

Lemma 10 AWSS-Share-Multiset communicates O((`n2+n3κ)Mκ) bits and A-casts O(n3 log(n)) bits.

6 Asynchronous Verifiable Secret Sharing

In this section, we present our novel AVSS scheme called AVSS to share a secret containing ` field
elements from F; i.e., S ∈ F`. As in the case of AWSS, the reconstruction of AVSS is also presented
in two flavors: private reconstruction and public reconstruction. Prior to the presentation of our
AVSS protocol, we first present a protocol called AVSS-Weak which allows a D to commit some secret
S ∈ F` ∪ NULL (in a sense explained in the sequel). Then we incorporate a verification step in
AVSS-Weak to obtain AVSS protocol, where the honest players terminate their sharing phase, only
after ensuring that D has committed secret S ∈ F` (not NULL).

We explain the idea used in AVSS-Weak with a single secret s shared by D. The modifications
required to share multiple secrets at once will follow. The idea of AVSS-Weak is as follows: D
hides the secret as the constant term of a symmetric degree-t bivariate polynomial F (x, y) and then
distribute the univariate polynomial fi(x) = F (x, i) to player Pi. Now each player Pi acting as a
dealer initiates an instance of AWSS protocol by selecting a degree-t symmetric bivariate polynomial
FPi(x, y), such that fPi

0 (x) = FPi(x, 0) = fi(x). By doing so, Pi facilitates player Pj to check the
equality of the shares fi(j) and fj(i) (ideally for an honest D, fi(j) = fj(i) should hold) as follows:
Pj on receiving fPi

j (x) = FPi(x, j) from Pi (as part of the AWSS instance initiated by Pi) checks

whether fPi
j (0) ?= fj(i). This is because ideally fPi

j (0) = FPi(0, j) should be same as FPi(j, 0) since
FPi(x, y) is symmetric. And the way Pi has selected FPi(x, y), FPi(j, 0) = fi(j) should hold. So if
fPi

j (0) ?= fj(i) fails then Pj can guess that either D is corrupted or Pi is corrupted. Now player Pj

proceed further to participate in the AWSS instance initiated by Pi only if the above consistency check
passes. Now D waits for the termination of AWSS instance of at least n−t = 2t+1 players and include
them in a set TCORE. D keeps on including new players whose instance of AWSS is terminated in
TCORE until he gets a subset of player CORE ⊆ TCORE with |CORE| ≥ n− t, such that for each
Pi ∈ CORE, the set |CORE ∩ COREPi | ≥ n − t, where COREPi is the CORE set corresponding
to the instance of AWSS initiated by Pi. Note that for an honest D this will eventually happen. D
then A-casts his version of CORE and for each Pi ∈ CORE, the set COREPi and the corresponding
sets OKSetPPi

j for each Pj ∈ COREPi . Now using the same procedure as in AWSS protocol, all the
honest players agree on common CORE, the set COREPi for each Pi ∈ CORE and the corresponding
sets OKSetPPi

j for each Pj ∈ COREPi . Note that for an honest D, this will happen eventually.

13

We say that D’s committed secret is the constant term of the symmetric degree-t bivariate poly-
nomial F (x, y) which is induced by the univariate polynomials fi(x) = FPi(x, 0) of the honest players
in CORE. If D is honest, then F (x, y) = F (x, y). But if D is corrupted, then F (x, y) may or may
not be symmetric degree-t bivariate polynomial. We say that D’s committed secret is meaningful
(resp. NULL) if F (x, y) is (resp. not) a symmetric degree-t bivariate polynomial. Our reconstruction
protocol ensures the reconstruction of the committed secret (irrespective of whether it is meaningful
or NULL). The protocol AVSS-Weak is presented in Table 3.

So AVSS-Weak satisfies all the properties of AVSS except that it does not force D to commit some
meaningful secret. Hence a corrupted D may commit S ∈ F` ∪NULL.

Lemma 11 Protocol AVSS-Weak satisfies termination property.

Proof: Termination 1: When D is honest, every honest Pj ’s instance of AWSS-Share i.e. AWSS-SharePj

will eventually terminate with the n− t honest players in COREPj . Thus eventually all the n− t hon-
est players will be included in TCORE. Also since TCORE and COREPj for every Pj ∈ TCORE
has all the n − t honest players, |TCORE ∩ COREPj | will satisfy. Thus D will eventually get
CORE = TCORE such that |CORE| ≥ n − t and |CORE ∩ COREPj | ≥ (n − t) for Pj ∈ CORE.
D finally A-casts CORE, COREPj for Pj ∈ CORE and OKSetP

Pj

k for every Pk ∈ COREPj . Now
the proof follows from the similar argument given in Termination 1 of Lemma 6. Thus eventually
all honest players will agree on CORE, COREPj for Pj ∈ CORE and OKSetP

Pj

k .

Termination 2: If an honest player Pi has completed AWSS-Single-Secret-Share, then he must have
listened at least n− t = 2t + 1 A-casts of same CORE, COREPj for Pj ∈ CORE and OKSetP

Pj

k for
every Pk ∈ COREPj . By the definition of A-cast, each honest player will also eventually listen the
same. Since there are total n = 3t + 1 players, there can not be two different version of those sets,
as each honest player A-casts only one CORE, COREPj for Pj ∈ CORE and OKSetP

Pj

k for every
Pk ∈ COREPj .

Termination 3: By Termination 3 of Lemma 6, for every player Pj ∈ CORE whose AWSS-SharePj

has terminated, AWSS-Rec-PrivatePj will eventually terminate. Hence Pα will always terminate after
doing the steps mentioned in AVSS-Weak-Rec-Private. Similarly, we can prove that every Pα ∈ P will
terminate AVSS-Weak-Rec-Public eventually. 2

Lemma 12 Protocol AVSS-Weak satisfies correctness property.

Proof: Correctness 1: When D is honest we prove that for every Pi ∈ FINAL (recall that
FINAL contains all players in CORE whose AWSS-Rec-Private is successful), AWSS-Rec-PrivatePi

must have disclosed f l
i (x) which is the same polynomial distributed by honest D. For every honest

player Pi ∈ FINAL this is true. We have to prove the above statement for a corrupted Pi ∈ FINAL.
A corrupted Pi ∈ FINAL implies AWSS-Rec-PrivatePi is successful (i.e., the output is a symmetric
degree-t bivariate polynomial and not NULL) and AWSS-SharePi had terminated in AVSS-Weak-
Share. Moreover termination of AVSS-Weak-Share ensures |CORE ∩ COREPi | ≥ n − t. The above
statements have the following implications together: (a) Pi must have given consistent polynomials to
the honest players in COREPi (during AWSS-SharePi) such that they induce valid degree-t symmetric
bivariate polynomials (see Correctness 2 of Lemma 8). (b) Pi must have agreed with the honest
players of COREPi with respect to the common shares given by D. This means that as a part of
AWSS-SharePi , Pi handed over f

(Pi,l)
j (x) to an honest Pj (in COREPi) satisfying f l

j(i) = f
(Pi,l)
j (0) for

all l ∈ {1, . . . , `}. The statements in (a) and (b) together implies Pi must have committed (to the
honest players in COREPi which are at least t + 1) some bivariate polynomials F (Pi,l)(x, y) satisfying
F (Pi,l)(x, 0) = f l

i (x). Thus if AWSS-Rec-PrivatePi is successful, then F (Pi,l)(x, y) = F (Pi,l)(x, y) and
hence f l

i (x) = f l
i (x). Since D is honest, f l

i (x) for Pi ∈ FINAL will define F l(x, y) = F l(x, y). Thus
sl = F l(0, 0) will be recovered.

Correctness 2: Since in AVSS-Weak-Share, every honest player agrees on a common CORE, an
unique secret S′ ∈ F`∪NULL is defined by the n−2t honest players in CORE. If for every two honest

14

AVSS-Weak(D,P, S)

AVSS-Weak-Share(D,P, S):

1. Distribution - Code for D: D selects ` degree-t symmetric bivariate polynomials F 1(x, y), . . . , F `(x, y) such
that for l = 1, . . . , `, F l(0, 0) = sl. He then delivers f l

i (x) = F l(x, i) for l = 1, . . . , ` to Pi.

2. Code for Pi:

1. Player Pi waits to obtain all f l
i (x) from D. Then Pi as a dealer initiates AWSS-Share(Pi,P, (f1

i (0), . . . , f `
i (0))).

We call this instance of AWSS-Share initiated by Pi as AWSS-SharePi . As a part of AWSS-SharePi , Pi se-
lects ` degree-t symmetric bivariate polynomials F (Pi,1)(x, y), . . . , F (Pi,`)(x, y) such that for l = 1, . . . , `,

F (Pi,l)(x, 0) = f
(Pi,l)
0 (x) = f l

i (x). This ensures F (Pi,l)(0, 0) = f l
i (0). Also when Pi distributes F (Pi,l)(x, j) =

f
(Pi,l)
j (x) to Pj (as a part of AWSS-SharePi), Pj can check f l

j(i)
?
= f

(Pi,l)
j (0) = f

(Pi,l)
0 (j) = f l

i (j) (Pj obtains

f l
j(i) from D and f

(Pi,l)
j (0) = f

(Pi,l)
0 (j) = f l

i (j) from Pi). Thus in AWSS-SharePi , the selection of bivariate

polynomials (by Pi) enables the consistency checking of the common shares given by D (Pi’s share f l
i (j) given

by D should be same as Pj ’s share f l
j(i) given by D) between every pair (Pi, Pj) for j = 1, . . . , n.

2. As a part of the execution of AWSS-SharePj , if Pi receives f
(Pj ,l)

i (x), he checks f l
i (j)

?
= f

(Pj ,l)

i (0) for all
l ∈ {1, . . . , `}. If the test passes then Pi participates in AWSS-SharePj and act according to the remaining
steps of AWSS-SharePj .

3. CORE Construction:

1. D adds a player Pj in a set TCORE (initially empty) when D terminates AWSS-SharePj with a set COREPj

and OKSetP
Pj

k for every Pk ∈ COREPj .

2. Even though D terminates AWSS-SharePj , he updates (and includes new players in) COREPj and OKSetP
Pj

k ’s
upon receiving new A-casts of the form OK(., .) as a part of the execution of AWSS-SharePj . He also updates
TCORE upon terminating AWSS-Share for new players.

3. For every update D becomes active and does the following computations: He assigns CORE = TCORE and
checks whether |CORE ∩ COREPj | ≥ n − t for every Pj ∈ CORE. If not then he removes Pj from CORE
(but not from TCORE) and keeps on repeating this until no more player can be removed from CORE. He
then check whether |CORE| ≥ n − t. If not, then he deletes CORE and waits for more update. Otherwise,

he A-casts CORE, COREPj for Pj ∈ CORE and OKSetP
Pj

k for every Pk ∈ COREPj .

4. Once a player Pi listens CORE, COREPj for Pj ∈ CORE and OKSetP
Pj

k for every Pk ∈ COREPj from D, he

waits to terminate every instance of AWSS-SharePj . He also waits to listen OK(Pk, Pj) for all Pk ∈ OKSetP
Pj

k

and Pj ∈ CORE. Once Pi listens all the required OK’s, he A-casts CORE, COREPj for Pj ∈ CORE and

OKSetP
Pj

k for every Pk ∈ COREPj .

5. Now Pi waits to listen same copy of the above sets from at least n− t players’ A-cast. Upon listening, he sets

them as his final CORE, COREPj for Pj ∈ CORE and OKSetP
Pj

k for every Pk ∈ COREPj and terminates.

AVSS-Weak-Rec-Private(D,P, S, Pα): Private Reconstruction towards Pα:

1. For every Pj ∈ CORE, AWSS-Rec-Private(Pj ,P, (f1
j (0), . . . , f `

j (0)), Pα) is executed with COREPj and OKSetP
Pj

k

for every Pk ∈ COREPj . We call this instance of AWSS-Rec-Private as AWSS-Rec-PrivatePj . According to the

property of AWSS, Pα either reconstructs F (Pj ,l)(x, y) for l = 1, . . . , ` (which is committed by Pj to the honest
players in COREPj in AVSS-Weak-Share) or reconstructs NULL.

2. Pα waits for the termination of all AWSS-Rec-Private(Pj ,P, (f1
j (0), . . . , f `

j (0)), Pα) for Pj ∈ CORE. He then adds
Pj ∈ CORE to FINAL if AWSS-Rec-PrivatePj is successful (i.e., the output is not NULL). Now for every player

Pj ∈ FINAL, Pα assigns f l
j(x) = F (Pj ,l)(x, 0).

3. For every pair Pγ , Pδ ∈ FINAL and for every l ∈ {1, . . . , `}, Pα checks f l
γ(δ)

?
= f l

δ(γ). If the condition fails, then

Pα outputs S = NULL. Otherwise, Pα recovers F l(x, y) and gets sl = F l(0, 0). Finally S = (s1, . . . , s`).

AVSS-Weak-Rec-Public(D,P, S,P): Public Reconstruction towards P:

1. Same as in AVSS-Weak-Rec-Private, except that every AWSS-Rec-Private in AVSS-Weak-Rec-Private is replaced by
AWSS-Rec-Public. Now every player Pα ∈ P proceeds in the same way as in AVSS-Weak-Rec-Private and reconstructs
S.

Table 3: AVSS-Weak(D,P, S)

players Pγ and Pδ in CORE and for every l = 1, . . . , `, f l
γ(δ) = f l

δ(γ) holds then S′ is the secrets defined
by the constant term of the bivariate polynomials F l(x, y)’s, induced by the univariate polynomials of
honest players. Otherwise D’s committed secret S′ = NULL. We now show irrespective of whether
S′ is meaningful or NULL, the committed S′ will be recovered in AVSS-Weak-Rec-Private.

15

If committed secret S′ = NULL, then recovered secrets S will be NULL. This is because, all
honest player in CORE will be added to FINAL and irrespective of the remaining players included
in FINAL, the consistency checking (i.e., f l

γ(δ) ?= f l
δ(γ)) will fail and NULL will be reconstructed.

Now let D has committed S′ ∈ F`. Let F ′1(x, y), . . . , F ′`(x, y) are the corresponding committed
bivariate polynomials defined by the honest players in CORE. Every honest Pi ∈ CORE will enter
in FINAL. We now show that if a corrupted Pi is present in FINAL, then his reconstructed
univariate polynomials are consistent with polynomials of the honest players in FINAL (i.e. they
satisfy the pair-wise checking done in step 3 of AVSS-Weak-Rec-Private). Following the argument
given in Correctness 1 of this lemma for a corrupted Pi ∈ FINAL, we conclude that Pi must
have committed some bivariate polynomials F (Pi,l)(x, y) satisfying F (Pi,l)(x, 0) = F ′l(x, i). Hence
AWSS-Rec-PrivatePi will recover F (Pi,l)(x, y) and F ′l(x, i). Hence the lemma. 2

Lemma 13 Protocol AVSS-Weak satisfies secrecy property.

proof: Follows from Lemma 7, Lemma 4 and properties of symmetric bivariate polynomial. 2

Lemma 14 Protocol AVSS-Weak-Share communicates O((`n3 + n4κ)κ) bits and A-casts n4 log(n)
bits. Protocol AVSS-Weak-Rec-Private and AVSS-Weak-Rec-Public communicates O((`n3 + n4κ)κ) and
O(`n5 + n5κ)κ bits, respectively.

Proof: Protocol AVSS-Weak-Share and Protocol AVSS-Weak-Rec-Private execute n instances of Pro-
tocol AWSS-Share and Protocol AWSS-Rec-Private, respectively. Hence communication complexity of
AVSS-Weak-Share and AVSS-Weak-Rec-Private follows from Lemma 9. Since AVSS-Weak-Rec-Public
executes AVSS-Weak-Rec-Private n times, it communicates O((`n5 + n5κ)κ) bits. 2

As stated earlier, our AVSS-Weak-Share can not ensure that D’s committed secrets are meaningful.
In the sequel, we incorporate a verification step in AVSS-Weak to obtain AVSS protocol, where the
honest players terminate their sharing phase, only after ensuring that D has committed something
’meaningful’. Prior to the presentation of AVSS-Share, we present another protocol called AVSS-Weak-
Share-MultiSet whose goal is similar to the goal of AWSS-Share-MultiSet. Precisely, AVSS-Weak-Share-
MultiSet shares M sets of ` secrets at once such that later any linear combination of the M sets can
be reconstructed. More clearly, AVSS-Weak-Share-MultiSet can share Sm = (s(m,1), . . . , s(m,`)) for m =
1, . . . ,M at once such that later S =

∑M
m=1 rmSm = (

∑M
m=1 rms(m,1), . . . ,

∑M
m=1 rms(m,`)) can be re-

constructed using Protocol AVSS-Weak-Rec-Private or AWSS-Weak-Rec-Public for some (r1, . . . , rM) ∈
FM. It is easy to see that AVSS-Share-MultiSet satisfies termination and secrecy properties. The

AVSS-Weak-Share-MultiSet(D,P, S1, . . . , SM)

1. Distribution - Code for D: D executes CODE for D of AVSS-Weak-Share for every set Sm. Specifically, for
every set Sm, D does the following: D selects ` degree-t symmetric bivariate polynomials F (m,1)(x, y), . . . , F (m,`)(x, y)

such that for l = 1, . . . , `, F (m,l)(0, 0) = s(m,l). He then delivers f
(m,l)
i (x) = F (m,l)(x, i) for l = 1, . . . , ` to Pi.

2. Code for Pi:

1. This is same as Code for Pi of AVSS-Weak-Share. The only difference is that Pi as a dealer initiates AWSS-
Share-MultiSet(Pi,P, S1, . . . , SM) where Sm = (f

(m,1)
i (0), . . . , f

(m,`)
i (0)). As described in Code for Pi of

AVSS-Weak-Share, Pi maintains the properties of bivariate polynomials selected in AWSS-Share-MultiSet.

3. CORE Construction: This is identically same as in Protocol AVSS-Weak-Share(D,P, s).

correctness follows from the correctness of AVSS-Weak-Share and AWSS-Weak-Share-Multiset.

Lemma 15 Protocol AVSS-Weak-Share-MultiSet communicates O((`n3 + n4κ)Mκ) bits and A-casts
O(n4 log(n)) bits.

Now here is a very important observation, which is the basis of our verification step, ensuring that D
has not committed NULL: Let r be a random number jointly generated by all (honest) players after the
execution of AVSS-Weak-Share-MultiSet. If we reconstruct the linear combination S∗ =

∑M
m=1 rmSm

then with very high probability it will be NULL if a least one of the set Sm shared by D was NULL
(the reason goes in the same line of the argument as given in Section 4.4 of [10]). Thus with very

16

high probability, we can detect a corrupted D who did not share all the sets meaningfully. Also by
the reconstructing S∗, the information theoretic security on set S1 is lost. But the remaining sets
S2, . . . , SM remains secure. To avoid this, we can make AVSS-Weak-Share-MultiSet to share M + 1
sets where the first set S0 can be used for padding the remaining sets of secrets, namely S1, . . . , SM.
This provides a good clue of how AVSS-Weak-Share-MultiSet can be used to ensure that D’s committed
secrets are all meaningful. We implement the above idea in our protocol AVSS-Share which is given
in the sequel. We now present our AVSS protocol AVSS which shares ` secrets. For that D first
divides ` secrets equally into n2 sets, namely S1, . . . , Sn2

. So every set Sm contains d `
n2 e secrets. If

n2 does not divide `, then D adds random numbers in the last set so that it contains d `
n2 e secrets.

D also selects d `
n2 e random numbers from F to put in a set S0. Now step 1,2 and 3 in code for Pi

AVSS(D,P, S)

AVSS-Share(D,P, S):

Distribution - Code for D:

1. D first divides ` secrets equally into n2 sets, namely S1, . . . , Sn2
. So every set Sm contains d `

n2 e secrets. If

n2 does not divide `, then add random numbers in the last set so that it contains d `
n2 e secrets. D also selects

d `
n2 e random numbers from F to put in a set S0.

2. D executes AVSS-Weak-Share-MultiSet(D,P, S0, S1, . . . , Sn2
).

Code for Pi: Verification Step

1. Upon completion of AVSS-Weak-Share-MultiSet(D,P, S0, S1, . . . , Sn2
), player Pi participates in protocol Ran-

domGenerator given in Section 2 to generate a random number r.

2. Once r is generated, Pi locally computes the sharings of S∗ =
∑n2

m=0 rmSm.

3. Pi invokes AVSS-Weak-Rec-Public(D,P, S∗,P) to reconstruct S∗ towards every player in P. Pi terminates
AVSS-Share if he does not reconstruct NULL.If an honest Pi terminates, then D has meaningfully shared the

secrets in S1, . . . , Sn2
with very high probability.

AVSS-Rec-Private(D,P, S, Pα): Private Reconstruction towards Pα:

1. Every Sm is reconstructed by Pα by executing AVSS-Weak-Rec-Private(D,P, Sm, Pα). But here Pα will be able to
reconstruct some Sm which is not NULL. This is ensured by the verification step used in AVSS-Share.

2. After recovering each Sm, Pα concatenates them to get S.

AVSS-Rec-Public(D,P, S,P): Public Reconstruction towards P:

1. Same as in AVSS-Rec-Private, except that every AVSS-Weak-Rec-Private in AVSS-Rec-Private is replaced by AVSS-
Weak-Rec-Public. Now every player Pα ∈ P proceeds in the same way as in AVSS-Rec-Private and reconstructs
S.

incorporate the verification step to ensure that D has shared meaningful secrets. Notice that random
r is generated only after the completion of the sharing of n + 1 sets S0, S1, . . . , Sn2

. This is crucial as
it ensures the following: if at least one of the sets S0, S1, . . . , Sn2

is not shared meaningfully (i.e. some
Sm = NULL), then the sharing of the linear combination S∗ =

∑n2

m=0 rmSm will not be meaningful.
When we try to reconstruct S∗ using AVSS-Weak-Rec-Public, S∗ = NULL will be reconstructed with
very high probability. In the sequel, we prove the above statement.

Theorem 2 If at least one of the sets S0, S1, . . . , Sn2
is not shared meaningfully (i.e. some Sm =

NULL), then the sharing of the linear combination S∗ =
∑n2

m=0 rmSm will not be meaningful with
very high probability.

Proof: Let one of the set Sk is not shared meaningfully. Recall that every secret in Sk is supposed
to be shared by a degree-t symmetric bivariate polynomial. More specifically, the honest players
in CORE must define a degree-t symmetric bivariate polynomial for each secret in Sk. If at least
one of the bivariate polynomials corresponding to some secret in Sk is not symmetric, then we say
that the corresponding committed secret is NULL and this makes the entire bunch of secrets in Sk

to be NULL. Thus a set Sk = NULL implies at least one secret in Sk is not shared by a sym-
metric degree-t bivariate polynomial. Let that secret be lth secret in Sk. Recall that every set Sm

has d `
n2 e secrets. Now consider lth secret from every set Sm for m = 0, . . . , n2. Let these secrets

17

be shared by polynomials F (0,l)(x, y), . . . , F (n2,l)(x, y) respectively. According to our assumption,
F (k,l)(x, y) is not a symmetric degree-t bivariate polynomial. Thus there exists at least two honest
players, say Pi and Pj in CORE such that F (k,l)(i, j) 6= F (k,l)(j, i). Now we show that the polyno-
mial F (∗,l)(x, y) =

∑n2

m=0 F (m,l)(x, y)rm will be asymmetric with respect to same Pi, Pj ∈ CORE
with very high probability. Notice that F (∗,l)(x, y) will be symmetric with respect to Pi, Pj iff∑n2

m=0 F (m,l)(i, j)rm =
∑n2

m=0 F (m,l)(j, i)rm. Now
∑n2

m=0 F (m,l)(i, j)rm can be viewed as g1(r) where
g1(x) is a n2 degree polynomial defined as g1(x) =

∑n2

m=0 F (m,l)(i, j)xm. Similarly
∑n2

m=0 F (m,l)(j, i)rm

can be viewed as g2(r) where g2(x) is a n2 degree polynomial defined as g2(x) =
∑n2

m=0 F (m,l)(j, i)xm.
It is clear that g1(x) 6= g2(x), as F (l,k)(i, j) 6= F (l,k)(j, i). But F (∗,l)(x, y) will be symmetric with
respect to Pi, Pj iff g1(r) = g2(r). Since r is computed only after D has shared all the n2 sets, the
probability that a corrupted D can correctly guess r before its generation such that g1(r) = g2(r) is at
most n2

|F| = 2−O(κ). This implies that with very high probability, F (l,∗)(x, y) will be asymmetric with
respect to Pi, Pj . Hence the sharing of S∗ will not be meaningful with very high probability. 2

Theorem 3 Protocol AVSS-Share communicates O((`n3 + n6κ)κ) bits and A-casts n4 log(n) bits.

Proof: Protocol AVSS-Share calls AVSS-Weak-Share-MultiSet with n2 + 1 sets S0, . . . , Sn2
each con-

taining `
n2 secrets. Hence by Lemma 15, it incurs a communication cost O(`n3+n6κ)κ bits and A-casts

of n4 log(n) bits. Generation of random number requires communication complexity independent of
secret size `. Finally AVSS-Share calls AVSS-Weak-Rec-Public with S∗, which requires O(`n3 + n5κ)κ
bits of communication. 2

7 Asynchronous BA with n = 3t + 1

We now briefly sketch how we use our new AVSS scheme AVSS to design efficient (1 − 2−O(κ))-
terminating, t-resilient ABA with 3t+1 players. We follow the same line of Canetti et. al. [7] to design
our ABA protocol. We proceed in two steps. The first step is to get a global coin. In [7], the authors
have shown how to implement global coin which terminates with probability 1−2−O(κ) provided there
exists an AVSS scheme which terminates with probability 1−2−O(κ). In their implementation of global
coin, each player begins by sharing n random secrets using the AVSS scheme of [7]. Since the AVSS
scheme given in [7] shares only one secret at a time, in order to share n secrets simultaneously, each
player has to parallely execute n separate instances of AVSS scheme, resulting in high communication
overhead. However, using our new AVSS scheme, each player can simultaneously share n secrets
with comparatively very less communication complexity. Now the rest of the steps of our global coin
primitive will be same as in [7].

The second step is to use the common coin protocol to get ABA protocol. The author of [7]
use their common coin protocol that terminates with probability (1− 2−O(κ)) to get a (1 − 2−O(κ))-
terminating, t-resilient ABA protocol. We replace their common coin by our common coin to obtain
our efficient (1− 2−O(κ))-terminating, t-resilient ABA with 3t + 1 players. We avoid giving the details
as it will be a repetition of the steps given [7]. Thus we have the following theorem:

Theorem 4 Let n ≥ 3t + 1. Then for every κ > 0, there exists an (1 − 2−O(κ))-terminating, t-
resilient ABA protocol for n players, which terminates in constant expected time. Moreover, the protocol
privately communicates O(cn6κ) bits and A-casts O(cn5 log(n)) bits, where c > 0 is a constant.

Proof: The communication complexity is easy. Derivation of the constant expected time follows the
same argument as given in [7, 6]. 2

8 Conclusion
In this paper, we have presented a novel AVSS protocol with optimal resilience whose communication
cost is significantly better than the previous AVSS protocol of [7]. Moreover using our AVSS protocol,
we have designed a new expected constant time (1−2−O(κ))-terminating, t-resilient ABA protocol whose
communication complexity is significantly better than existing ABA protocols in the same settings [7, 1]

18

(though the ABA protocol of [1] has a strong property of being almost surely terminating). Finally,
our AVSS protocol can be further extended to make it suitable for designing efficient asynchronous
multiparty computation (MPC) with n = 3t + 1. However, we avoid giving the exact details as it is
out of scope of this paper.

References

[1] I. Abraham, D. Dolev, and J. Y. Halpern. An almostsurely terminating polynomial protocol for
asynchronous Byzantine agreement with optimal resilience. In PODC, pages 405–414, 2008.

[2] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control. In
TCC, pages 305–328, 2006.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10,
1988.

[4] M. BenOr, B. Kelmer, and T. Rabin. Asynchronous secure computations with optimal resilience.
In PODC, pages 183–192, 1994.

[5] G. Bracha. An asynchronous b(n− 1)/3c-resilient consensus protocol. In 3rd ACM PODC, pages
154 – 162, 1984.

[6] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann
Institute, Israel, 1995.

[7] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with optimal resilience. In
Proc. of STOC 1993, pages 42–51. ACM, 1993.

[8] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving
simultaneity in the presence of faults (extended abstract). In Proc. of STOC 1985, pages 383–
395, 1985.

[9] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty compu-
tations secure against an adaptive adversary. In Proc. of EUROCRYPT 1999, volume 1592 of
LNCS, pages 311–326. Springer Verlag, 1999.

[10] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In
Proc. of CRYPTO, volume 4622 of LNCS, pages 572–590. Springer Verlag, 2007.

[11] P. Feldman and S. Micali. An optimal algorithm for synchronous Byzantine agreemet. In Proc.
of STOC 1988, pages 639–648. ACM, 1988.

[12] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus with one
faulty process. JACM, 32(2):374–382, 1985.

[13] M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-optimal and
efficient verifiable secret sharing. In Proc. of TCC 2006, volume 3876 of LNCS, pages 329–342.
Springer Verlag, 2006.

[14] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of verifiable
secret sharing and secure multicast. In STOC, pages 580–589, 2001.

[15] J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of vss in point-to-point
networks. In ICALP(2), pages 499–510, 2008.

[16] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

19

[17] Arpita Patra, Ashish Choudhary, AshwinKumar B.V, and C. Pandu Rangan. On Round Com-
plexity of Unconditional VSS. Cryptology ePrint Archive, Report 2008/172, 2008.

[18] M. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults. JACM,
27(2):228–234, 1980.

[19] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In STOC, pages 73–85, 1989.

[20] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

20

