
Simple and Efficient Asynchronous Byzantine

Agreement with Optimal Resilience

Arpita Patra Ashish Choudhary C. Pandu Rangan
Department of Computer Science and Engineering

Indian Institute of Technology Madras
Chennai India 600036

Email:{ arpita,ashishc }@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract

Consider a completely asynchronous network consisting of n parties where every two parties
are connected by a private channel. An adversary At with unbounded computing power actively
controls at most t = (dn

3 e − 1) out of n parties in Byzantine fashion. In these settings, we say
that π is a t-resilient, (1 − ε)-terminating Asynchronous Byzantine Agreement (ABA) protocol,
if π satisfies all the properties of Byzantine Agreement (BA) in asynchronous settings tolerating
At and terminates (i.e every honest party terminates π) with probability at least (1 − ε). In this
work, we present a new t-resilient, (1− ε)-terminating ABA protocol which privately communicates
O(Cn5κ) bits and A-casts1 O(Cn5κ) bits, where ε = 2−O(κ) and C is the expected running time of
the protocol. Moreover, conditioned on the event that our ABA protocol terminates, it does so
in constant expected time; i.e., C = O(1). Our ABA protocol is to be compared with the only
known t-resilient, (1 − ε)-terminating ABA protocol of [5] in the same settings, which privately
communicates O(Cn11κ4) bits and A-casts O(Cn11κ2 log(n)) bits, where ε = 2−O(κ) and C = O(1).
So our ABA achieves a huge gain in communication complexity in comparison to the ABA of [5],
while keeping all other properties in place. In another landmark work, in PODC 2008, Abraham
et. al [1] proposed a t-resilient, 1-terminating (called as almost-surely terminating in [1]) ABA
protocol which communicates O(Cn6 log n) bits and A-casts O(Cn6 log n) bits. But ABA protocol
of Abraham et. al. takes polynomial (C = O(n2)) expected time to terminate. Hence the merits
of our ABA protocol over the ABA of Abraham et. al. are: (i) For any κ < n3 log n, our ABA is
better in terms of communication complexity (ii) conditioned on the event that our ABA protocol
terminates, it does so in constant expected time (the constant is independent of n, t and κ), whereas
ABA of Abraham et. al. takes polynomial expected time. However, it should be noted that our
ABA is only (1 − ε)-terminating whereas ABA of Abraham et al. is almost-surely terminating.
Summing up, in a practical scenario where a faster and communication efficient ABA protocol is
required, our ABA fits the bill better than ABA protocols of [5, 1].

For designing our ABA protocol, we present a novel and simple asynchronous verifiable secret
sharing (AVSS) protocol which significantly improves the communication complexity of the only
known AVSS protocol of [5] in the same settings. We believe that our AVSS can be used in many
other applications for improving communication complexity and hence is of independent interest.

Keywords: Unbounded Computing Power, VSS, Byzantine Agreement, Asynchronous Networks.

1A-Cast is a primitive in asynchronous world, allowing a party to send the same value to all the other parties. Hence
A-Cast in asynchronous world is the parallel notion of broadcast in synchronous world.

0

1 Introduction

The problem of reaching agreement in the presence of faults is one of the most fundamental problems in
distributed computing. A particularly interesting variant of this problem, called Byzantine Agreement
(BA) was introduced by Pease et.al [16] in 1980. Roughly speaking, the BA problem is as follows:
there are n parties, each having an input binary value; the goal is for all honest parties to agree on
a consensus value that is the input value of one of the honest parties. The challenge lies in reaching
agreement despite the presence of faulty parties, who may deviate from the protocol arbitrarily.

Since 1980, the BA problem has been investigated extensively in various models, characterized by
the synchrony of the network, privacy of the channels, computational power of the faulty parties and
many other parameters. The interested reader may go through [10, 6, 4, 15] to survey the long chain
of works carried out in this area. An interesting and practically motivated variant of BA is Asyn-
chronous BA (ABA) tolerating unbounded powerful malicious adversary. In ABA, the communication
channels between the parties have arbitrary, yet finite delay (i.e the messages are guaranteed to reach
eventually) and an adversary At with unbounded computing power can control at most t of n parties
in Byzantine fashion. By Byzantine we mean that the adversary can take full control of the party
and force it to behave arbitrarily during the protocol execution. It is known that ABA tolerating
At is possible iff n ≥ 3t + 1 [15, 16] (this is true even in synchronous network). Any ABA protocol
designed with n = 3t + 1 is therefore called as optimally resilient. By the seminal result of [11], any
optimally resilient ABA protocol must have non-terminating runs, where some honest party(ies) may
not output any value. So we say an ABA protocol to be (1− ε)-terminating, if in the protocol, each
honest party eventually terminates with probability (1 − ε), where ε is the probability of not termi-
nating. As a special case, we call an ABA protocol to be almost-surely terminating, a term coined by
Abraham et. al in [1], if the set of non-terminating executions in the protocol has probability zero.
The BA problem has been studied extensively over the past three decades and tight bounds have been
established on resilience, round complexity and communication complexity for several variants of the
problem in synchronous settings (see [15]). However, very little attention has been paid in designing
fast, communication efficient, optimally resilient ABA protocol. Our results in this paper marks a
significant progress in this direction.

Existing Results: Bracha [3] provides an optimally resilient, almost-surely terminating ABA proto-
col, which runs in Θ(2n) expected time and requires exponential communication (message) complexity.
Feldman and Micali [8] present an almost-surely terminating ABA protocol which runs in polynomial
time and requires polynomial communication complexity (they actually extend their BA protocol in
synchronous settings [8] to asynchronous settings). However, the ABA protocol of Feldman and Mi-
cali [8] is not optimally resilient (requires 4t + 1 parties). So it remained an open question whether
there exists an optimally resilient ABA with polynomial running time and communication complexity.
Canetti and Rabin [5, 4] answered this question in affirmative and provided an ABA protocol which is
optimally resilient, runs in expected constant time and incurs polynomial communication complexity.
But Canetti and Rabin’s ABA protocol is (1 − ε)-terminating and is not almost-surely terminating.
For the first time in the literature, Abraham et. al. [1] provides an optimally resilient, almost-surely
terminating ABA protocol which runs in polynomial time and requires polynomial communication
complexity. Nevertheless, Canetti and Rabin’s ABA protocol achieves an important property which
is not achieved by any of the previously mentioned protocols, namely the constant expected running
time. Though the protocols of Canetti and Rabin [5, 4] and Abraham et. al. [1] provide polynomial
communication complexity, they involve fairly very high communication complexity. So, designing
optimally resilient, communication efficient ABA protocol which runs in constant expected time is a
natural next important and interesting problem. So, in this paper we focus on designing optimally
resilient ABA which is communication efficient as well as runs in expected constant time. Generally,
in a distributed network, fast and communication efficient protocols find lot of application. Our ABA
protocol, though (1 − ε)-terminating, is fast (in a sense that it runs in constant expected time) and
communication efficient (in a sense that it provides the best known communication complexity so far).

Our Contribution: In this work, we present an optimally resilient, (1 − ε)-terminating ABA pro-

1

tocol which privately communicates O(Cn5κ) bits and A-casts O(Cn5κ) bits, where ε = 2−O(κ) and
C is the expected running time of the protocol. Moreover, conditioned on the event that our ABA
protocol terminates, it does so in constant expected time; i.e., C = O(1). Our ABA protocol is to
be compared with the only known optimally resilient, (1 − ε)-terminating ABA protocol of [5] with
same properties, which privately communicates O(Cn11κ4) bits and A-casts O(Cn11κ2 log(n)) bits,
where ε = 2−O(κ) and C = O(1). So our ABA achieves a huge gain in communication complexity in
comparison to the ABA of [5], while keeping all other properties in place. The optimally resilient,
almost-surely terminating ABA protocol of Abraham et. al [1] privately communicates O(Cn6 log n)
bits and A-casts O(Cn6 log n) bits. But as mentioned earlier, ABA protocol of Abraham et. al. takes
polynomial (C = O(n2)) expected time to terminate. Hence our ABA enjoys the following merits over
the ABA of Abraham et. al.: (i) For any κ < n3 log n, our ABA is better in terms of communication
complexity (ii) our ABA runs in constant expected time. However, we stress that our ABA is only
(1 − ε)-terminating whereas ABA of Abraham et al. is almost-surely terminating. So in a practical
scenario where an usually fast and communication efficient ABA protocol is required, our ABA fits
the bill more appropriately than any other existing ABA protocols.

Our construction of ABA protocol, employs an asynchronous verifiable secret sharing (AVSS)
scheme with n = 3t + 1. Roughly speaking, an AVSS scheme consists of a sharing phase and recon-
struction phase. Informally, the goal of the AVSS scheme is to share a secret among n parties during
the sharing phase in a way that would later allow for an unique reconstruction of this secret in the
reconstruction phase. In many applications one treats AVSS as a form of commitment, where the
commitment information is held in a distributed fashion among the parties. In this paper we present
a novel and simple AVSS protocol which is far better in terms of communication complexity than
the previously reported AVSS protocol of [5] in the same setting and having the same properties. We
believe that our AVSS and the tools we use for designing AVSS can be used in many other applications
for improving communication complexity and hence are of independent interest.

A Brief Discussion on the Approaches used in the ABA Protocols of [5] and [1] and Cur
rent Article: Almost all the ABA protocols used Bracha’s [3] idea of reducing the problem of ABA
to that of implementing a shared coin. Feldman and Micali [8, 9] reduced the problem of efficiently
implementing a shared coin to that of efficiently implementing AVSS. Roughly speaking, the secrets
committed by AVSS are used to generate a shared coin. For a comprehensive account on the reduction
from AVSS to ABA, reader may refer Canetti’s Thesis [4].

1. The ABA protocol of Canetti and Rabin [5, 4] also uses the reduction from AVSS to ABA. Hence
they have first designed an AVSS scheme with n = 3t + 1 parties. There are well known inherent
difficulties in designing an AVSS scheme with n = 3t+1 (as clearly pointed out in [5, 4]). To overcome
these difficulties, the authors in [5] used the following approach to design their AVSS scheme. They
first designed a tool called Information Checking Protocol (ICP), which was introduced by Rabin et
al. in [18] (over a synchronous network). Then a protocol called Asynchronous Recoverable Sharing
(A-RS) was designed using ICP as a black box. Subsequently, using A-RS as a primitive, the authors
have designed another well known primitive called Asynchronous Weak Secret Sharing (AWSS). Then
the authors presented a variation of AWSS scheme called Two & Sum AWSS. Finally using their Two
& Sum AWSS, an AVSS scheme was presented. Thus pictorially, the route taken by [5] to design
their AVSS scheme is as follows:ICP → A-RS → AWSS → Two & Sum AWSS → AVSS. Since the
final AVSS scheme is designed on the top of so many sub-protocols, it becomes highly communication
intensive as well as very much involved. The AVSS protocol of [5] requires private communication of
O(n9κ4) bits, A-Cast O(n9κ2 log(n)) bits during sharing phase and private communication of O(n6κ3)
bits, A-Cast O(n6κ log(n)) bits during reconstruction phase for sharing a single secret s, where all
the honest players terminate the protocol with probability at least 1 − 2−O(κ). The communication
complexity analysis of the AVSS protocol of [5] is not done earlier and for the sake of completeness,
we carry out the same in Appendix A.

2. The ABA protocol of Abraham et al. [1] used the same reduction from AVSS to ABA as in
[5], except that the use of AVSS is replaced by a variant of AVSS that the authors called shunning
(asynchronous) VSS (SVSS), where each party is guaranteed to terminate almost-surely. SVSS is a

2

slightly weaker notion of AVSS in the sense that if all the parties (including corrupted parties) be-
have correctly then SVSS satisfies the properties of AVSS perfectly (i.e without any error probability).
Otherwise it does not satisfy the properties of AVSS but will enable some honest party to identify at
least one corrupted party, whom the honest party shuns from then onwards. In order to implement
the SVSS protocol, the authors in [1] use a weaker (than SVSS) protocol called moderated weak shun-
ning (asynchronous) VSS (MW-SVSS). The use of SVSS instead of AVSS in generating shared coin
causes the ABA protocol of [1] to run for O(n2) expected time. The SVSS protocol requires private
communication of O(n6 log(n)) bits and A-Cast of O(n6 log(n)) bits. The description of MW-SVSS
and SVSS is fairly simple and hence their communication complexity analysis can be done easily.

3. Our ABA protocol also follows the same reduction from AVSS to ABA as in [5]. In the course
of designing our ABA protocol, our first step is to design a communication efficient AVSS protocol.
Instead of following a fairly complex route taken by [5] to design an AVSS scheme, we follow a shorter
route for designing our AVSS: ICP → AWSS → AVSS. Beside this, we significantly improve each
of the building blocks (underlying primitives) of our ABA protocol, namely ICP, AWSS and AVSS.
The improvements are contributed by key factors like: (a) new design approach, (b) harnessing the
advantages offered by dealing with multiple secrets concurrently. To emphasize on the second factor,
we remark that our protocols dealing with ` secrets concurrently are far better than ` repeated ap-
plications of protocols dealing with single secret. Together, they lead to our efficient AVSS and ABA
protocols which we believe are much simpler than the AVSS and ABA of [5].

2 Network Model, Definitions and Notations

Model: We follow the asynchronous network model of [5], where there are n parties, denoted by
the set P = {P1, . . . , Pn}, who are connected by pairwise reliable and secure channel. An adversary
At with unbounded computing power can corrupt at most t parties during the protocol in Byzantine
fashion. Once a party is corrupted, he remains so throughout the protocol. Messages sent on a
channel may have arbitrary (but finite) delays. To model this, we assume that At controls the delay
in transmission of the messages flowing through different channels and hence he can arbitrarily (but
finitely) delay their transmission. However, At can only delay the message sent by the honest parties
and will have no information about these messages. The error probability of our protocols is expressed
in terms of an error parameter κ > 0, where the error probability of the protocols is 2−O(κ). To bound
the error probability by 2−O(κ), all our protocols work over a finite field F where F = GF (2κ). Thus
each field element can be represented by κ bits where without loss of generality, κ = poly(n).

Asynchronous Weak Secret Sharing (AWSS) [5]: Let (Sh, Rec) be a pair of protocols in which a dealer
D ∈ P shares a secret S = (s1 . . . s`) ∈ F` containing ` ≥ 1 field elements. We say that (Sh, Rec) is a
t-resilient AWSS scheme for n parties if the following hold for every possible At.

• Termination: With probability at least 1− 2−O(κ), the following requirements hold:

1. If D is honest then each party will eventually terminate protocol Sh.

2. If some honest party has completed protocol Sh, then irrespective of the behavior of D, each honest party will
eventually terminate Sh.

3. If at least one honest party has completed Sh and if all the honest parties invoke protocol Rec, then each honest
party will eventually terminate Rec.

• Correctness: With probability at least 1− 2−O(κ), the following requirements hold:

1. If D is honest then each honest party upon completing protocol Rec, outputs the shared secret S.

2. If D is faulty and some honest party has completed Sh, then there exists an unique S′ = (s′1 . . . s′`) ∈ (F∪NULL)`,
such that each honest party upon completing Rec, will output either S′ or (NULL)`. Here (NULL)` means an `
tuple where each entry is NULL.

• Secrecy: If D is honest and no honest party has begun executing protocol Rec, then the corrupted
parties have no information about the shared secret.

As mentioned in [5], we stress that in the case of a corrupted D, even if S′ 6= (NULL)`, it may happen

3

that some honest parties output S′ and some may output (NULL)`. The adversary can decide which
parties will output (NULL)` during the execution of Rec.

Asynchronous Verifiable Secret Sharing (AVSS) [5]: The Termination and Secrecy conditions for
AVSS is same as in AWSS. The only difference is in the Correctness 2 property:
Correctness 2: If D is faulty and some honest party has completed Sh, then there exists an unique
S′ = (s′1 . . . s′`) ∈ (F ∪ NULL)`, such that with probability at least 1 − 2−O(κ), each honest party
upon completing Rec, will output only S′.
The difference between the Correctness 2 property of AWSS and AVSS is that in AWSS, when
S′ 6= (NULL)`, then D may change the committed secret from S′ to (NULL)`, while in AVSS, D
cannot change his commitment from S′ to any other value during Rec protocol.

Asynchronous Byzantine Agreement (ABA)[5]: Let Π be an asynchronous protocol in which each party
has a binary input and let κ > 0 be the error parameter. We say that Π is a (1− 2−O(κ))-terminating,
t-resilient Byzantine Agreement protocol if the following hold, for every possible At:
• Termination: With probability at least 1− 2−O(κ) all honest parties terminate the protocol.
• Correctness: All the honest parties who have terminated hold identical outputs. Furthermore, if
all the honest parties had the same input, say ρ, then all the honest parties output ρ.

A-Cast[5]: It is an asynchronous broadcast primitive, which was introduced and elegantly implemented
by Bracha [3] with n = 3t + 1. Let Π be an asynchronous protocol initiated by a special party (called
the sender), having input m (the message to be broadcast). We say that Π is a t-resilient A-cast
protocol if the following hold, for every possible At:
• Termination:

1. If the sender is honest and all the honest parties participate in the protocol, then each honest party will eventually
complete the protocol.

2. Irrespective of the behavior of the sender, if any honest party completes the protocol then each honest party will
eventually complete the protocol.

• Correctness: If the honest parties complete the protocol then they do so with a common output
m∗. Furthermore, if the sender is honest then m∗ = m.

From [3], A-Cast of b bits incurs a private communication of O(n2b) bits. Notice that the termination
property of A-Cast is much weaker than the termination property of ABA because for A-Cast, it is not
required that the honest parties complete the protocol when the sender is faulty. In the sequel, we
use the following convention: we say that Pj listens the A-Cast of Pi with value m, indicating that Pj

completes the execution of Pi’s A-Cast and has locally set the value of the A-Cast to m.

3 Information Checking Protocol and IC Signature

The Information Checking Protocol (ICP) is a tool for authenticating messages in the presence of
computationally unbounded corrupted parties. The notion of ICP was first introduced by Rabin et.al
[18, 17] who have designed an ICP in synchronous settings. The ICP of Rabin et. al. was also used
as a tool by Canetti et. al. [5] for designing ABA with optimal resilience (i.e n = 3t + 1).

As described in [18, 17, 5, 7], an ICP is executed among three parties: a dealer D, an intermediary
INT and a verifier R. The dealer D hands over a secret value s to INT . At a later stage, INT is
required to hand over s to R and convince R that s is indeed the value which INT received from D.
The basic definition of ICP involves only a single verifier R and deals with only one secret s [17, 7, 5].
We extend this notion to multiple verifiers, where all the n parties in P act as verifiers. Thus our ICP
is executed among three entities: the dealer D ∈ P, an intermediary INT ∈ P and entire set P acting
as verifiers. This will be later helpful in using ICP as a tool in our AWSS/AVSS protocol. Moreover,
when appropriate, we run our ICP on multiple secrets, denoted by S, which contains ` ≥ 1 secret
values. Note that, as opposed to the case of a single verifier, when multiple verifiers simultaneously
participate in ICP, we need to distinguish between synchronity and asynchronity of the network. Our

4

ICP is executed in asynchronous settings and is denoted by A-ICP(D, INT, P, S). As in [18, 17, 5],
our A-ICP is also structured in three phases:

1. Generation Phase: is initiated by the dealer D. Here D hands over the secret S to intermediary
INT . In addition, D hands some authentication information to INT and verification information to
individual parties (verifiers) in P.

2. Verification Phase: is carried out by INT and the set of verifiers P. Here INT decides whether
to continue or abort the protocol depending upon the prediction whether in Revelation Phase,
secret S held by INT will be (eventually) accepted/will be considered as valid by all the (honest)
verifiers in P. INT achieves this by setting a boolean variable Ver = 0/1, where Ver = 0 implies
abortion of the protocol, while Ver = 1 implies the continuation of the protocol. If Ver = 1, then the
authentication information, along with S, which is held by INT at the end of Verification Phase is
called D’s IC signature on S.

3. Revelation Phase: is carried out by INT and the verifiers in P. Here INT reveals his secret S
along with the authentication information. The verifiers publish their responses with respect to the
revealed information of INT . Depending upon the responses by the verifiers, a verifier Pi ∈ P either
accepts INT ’s secret S or rejects it. We denote the acceptance by verifier Pi, (resp., rejection) by
Reveali = S (resp., Reveali = NULL).

Protocol A-ICP satisfies almost the same properties of the ICP defined in [5], which are as follows:

1. If D and INT are honest, then S will be accepted in Reveal by each honest verifier.

2. If INT is honest and Ver =1, then S held by INT will be accepted in Reveal by each honest verifier,
except with probability 2−O(κ).

3. If D is honest, then during Reveal, with probability at least 1− 2−O(κ), every S′ 6= S produced by
a corrupted INT will not be accepted by an honest verifier.

4. If D and INT are honest and INT has not started Reveal, then S is information theoretically
secure.

Notice that unlike other asynchronous primitives (e.g. AWSS, AVSS, ABA), A-ICP need not have to
satisfy any termination property. The reason is that A-ICP will never be executed as a stand alone
application in our ABA. Rather, A-ICP will act as a tool to design AWSS and AVSS, which have
their own termination properties. This is in line with [5], where ICP is defined without termination
property and is used as a tool in AWSS/AVSS protocol. We now present our novel ICP called A-ICP,
which allows D to deal with secret S containing ` ≥ 1 secret field elements, where n = 3t + 1.

The high level idea of the protocol is as follows: D sets the secret as the ` lower order coefficients
of a polynomial F (x) of degree `+ t−1 and gives it to INT . D also hands over some secret evaluation
points and the value of F (x) at those points to individual verifiers. This ensures that at a later stage,
a corrupted INT cannot produce an incorrect F (x) during Revelation Phase, without being caught
by honest verifiers. This ensures property 3 of ICP. 2 Now to satisfy property 2 of ICP, an honest
INT has to ensure that his polynomial F (x) will be accepted by honest verifiers during Revelation
Phase. For this, INT interacts with the verifiers and finds whether his polynomial is ’consistent’
with the secret evaluation points and the values possessed by the verifiers. In order to do so, INT
and verifiers follow a zero-knowledge strategy. Then in Revelation Phase, INT ’s secret is accepted
on the basis of the consistency between the responses of verifiers during Verification Phase and the
responses of verifiers in Revelation Phase. Accepting INT ’s secret based upon such consistency
checking of responses is done for the first time in the literature. We now present our ICP protocol
(given in Table. 1) which addresses the above described delicate issues. In the sequel, whenever we
say that D gives his IC signature on S to INT , we mean that D starts the Generation Phase of
A-ICP by executing Gen. For the proof of the properties of our A-ICP, see APPENDIX B.

Lemma 1 In A-ICP, Gen incurs private communication of O((` + n)κ) bits. Both Ver and Reveal

2Secret evaluation points were used by Tompa and Woll [20] to protect against faulty actions in synchronous settings.

5

incur A-cast of O((` + n)κ) bits and private communication of O(n) bits.

Remark: Note that, had we executed ` times the protocol A-ICP for single secret, the communication
complexity would turn out to be O(`nκ) bits (both private and A-cast). However, the communication
complexity of A-ICP treating all the ` secrets simultaneously is O((` + n)κ) bits (both private and
A-cast). This clearly shows that executing a single instance of A-ICP dealing with multiple secrets is
advantageous over executing multiple instances of A-ICP dealing with single secret. The same principle
holds for AWSS and AVSS which are described in the sequel.

Protocol A-ICP(D,INT ,P,S)

Generation Phase: Gen(D, INT,P, S)

1. The dealer D, having secret S = (s1, . . . , s`), selects a random ` + t− 1 degree polynomial F (x) over F, such
that for 0 ≤ i ≤ `− 1, the coefficient of xi in F (x) is si+1.

2. D selects another random ` + t− 1 degree polynomial R(x) over F.
3. D selects n distinct random secret evaluation points α1, α2, . . . , αn from F \ {0, 1, . . . , n− 1}.
4. D sends F (x) and R(x) to INT . To verifier Pi ∈ P, D sends αi, vi and ri, where vi = F (αi) and ri = R(αi).

We call αi, vi and ri as verification information for Pi.

Verification Phase: Ver(D, INT,P, S)

1. Verifier Pi sends a Received-From-D signal to INT after receiving verification information from D.

2. INT waits for 2t + 1 Received-From-D signal. Upon receiving them, INT puts the identity of the verifiers
(from whom it has obtained Received-From-D signal) in a list, say ReceivedSet with |ReceivedSet| = 2t + 1.
INT then chooses a random d ∈ F \ {0} and A-casts d and B(x) = dF (x) + R(x), along with ReceivedSet.

3. A verifier Pi ∈ ReceivedSet, on receiving the A-cast values sent by INT , checks whether B(αi)
?
= dvi + ri. If

yes (no) then Pi A-casts Accept (Reject).

4. INT sets V er = 1, if he receives t + 1 Accepts from A-casts of t + 1 verifiers who belong to ReceivedSet. In
this case, we say that INT has ’successfully’ completed the Verification Phase. Moreover, (F (x) and R(x))
held by INT is called D’s IC signature on secret S. On the other hand, INT sets V er = 0, if he receives t + 1
Rejects from A-casts of t + 1 verifiers who belong to ReceivedSet.

Revelation Phase: Reveal(D, INT,P, S)

1. INT A-casts F (x) and R(x).

2. A verifier Pi ∈ ReceivedSet, on receiving F (x) and R(x), A-casted by INT , checks whether F (αi)
?
= vi and

R(αi)
?
= ri. Now to ensure that INT has indeed set Ver = 1 during Verification Phase, Pi waits to listen

t + 1 A-casts of Accept from t + 1 verifiers who belong to ReceivedSet. Once he listens the same, Pi A-casts
Re-accept if both the above test passes. If either one of the test fails, Pi A-casts Re-reject.

3. A verifier Pi ∈ ReceivedSet is called as consistent if

(a) he A-casted Accept in Verification Phase and Re-accept in Revelation Phase, Or

(b) he A-casted Reject in Verification Phase and Re-reject in Revelation Phase.

4. Similarly, a verifier Pi ∈ ReceivedSet is called as inconsistent if

(a) he A-casted Accept in Verification Phase and Re-reject in Revelation Phase, Or

(b) he A-casted Reject in Verification Phase and Re-accept in Revelation Phase.

5. If a verifier Pi ∈ P finds (t+1) consistent verifiers from ReceivedSet, then Pi sets Reveali = S and terminates,
where S is the set of lower order ` coefficients of F (x) which is A-casted by INT in the first step of current
phase. We say that INT is ’successful’ in producing IC signature to Pi.

6. If a verifier Pi ∈ P finds (t + 1) inconsistent verifiers from ReceivedSet, then Pi sets Reveali = NULL and
terminates. We say that INT fails to correctly produce IC signature to Pi.

Table 1: Information Checking Protocol, n = 3t + 1

4 Asynchronous Weak Secret Sharing

We now present a novel AWSS protocol called AWSS-Multiple-Secret with n = 3t+1, which allows D to
share a secret S containing ` ≥ 1 field elements from F. For ease of understanding, we first present an

6

AWSS protocol, called AWSS-Single-Secret which shares a single secret s and then prove that AWSS-
Single-Secret satisfies all the properties of an AWSS protocol. Later we present AWSS-Multiple-Secret
which is a simple extension of AWSS-Single-Secret.

We follow the general idea of [2, 7, 13, 12, 14] in synchronous settings for sharing the secret s with
a degree-t symmetric bivariate polynomial F (x, y), where each party Pi gets the univariate polynomial
fi(x) = F (x, i). In particular, AWSS-Single-Secret is somewhat inspired by the WSS protocol of [7] in
synchronous settings, with several new ideas incorporated in it.

Briefly, the high-level idea of AWSS-Single-Secret is as follows: In the sharing phase of AWSS-Single-
Secret, first D hands over n points on fi(x) (implies passing of fi(x)) to Pi with his IC signature on
these values. Then D, in conjunction with all other parties, perform a sequences of communication
and computation. As a result of this, at the end of the sharing phase, every party agrees on a set of
2t + 1 parties, called WCORE, such that every party Pj ∈ WCORE is confirmed by a set of 2t + 1
parties, called as OKSetPj . A party Pk ∈ OKSetPj provides the confirmation to Pj , only when it
possesses proper IC signature of D on fk(j) (jth point on polynomial fk(x), which Pk is entitled to
receive from D) as well as IC signature of Pj on the point fj(k) (kth point on polynomial fj(x), which
Pj is entitled to receive from D), such that fj(k) = fk(j) holds (which should ideally hold due to
the selection and distribution of symmetric bivariate polynomial). In some sense, we may view these
checkings as Pj is attempting to commit his polynomial fj(x) among the parties in OKSetPj (by
giving his IC Signature on one point of fj(x) to each party), for each Pj in WCORE. We will refer
this commitment as Pj ’s IC-Commitment on fj(x).

Achieving the agreement (among the parties) on WCORE and corresponding OKSets is a bit
tricky in asynchronous network. Even though the confirmations are A-casted by parties, parties may
end up with different versions of WCORE and OKSet’s while attempting to generate them locally,
due to the asynchronous nature of the network. We solve this problem by asking D to construct
WCORE and OKSets after listening confirmations and ask D to A-cast the same. After listening
WCORE and OKSets from the A-cast of D, individual parties ensure the validity of (verifies) these
sets by listening the same confirmations from the parties in the received OKSets. Once the verification
is done, every honest party agree on these sets. A similar approach was used in the protocols of [1].

In the reconstruction phase, the parties in WCORE and corresponding OKSet’s are used for
reconstructing the secret. Precisely, in the reconstruction phase, Pj ’s IC-Commitment on fj(x) is
revealed by reconstructing it with the help of the parties in OKSetPj for every Pj ∈ WCORE. Then
the polynomials fj(x)’s are used to construct the symmetric bivariate polynomial (if possible) F (x, y)
that is committed by D during sharing phase. Since fj(x) is a degree-t polynomial, any t + 1 points
on it are enough to interpolate fj(x). The points on fj(x) are obtained by requesting each party Pk in
OKSetPj to reveal IC signature of D on fk(j) and IC signature of Pj on fj(k) such that fj(k) = fk(j)
holds. Asking Pk ∈ OKSetPj to reveal D’s signature ensures that when D is honest, then even for
a corrupted Pj ∈ WCORE, the reconstructed polynomial fj(x) will be same as the one handed over
by D to Pj in sharing phase. This helps our AWSS protocol to satisfy Correctness 1 property of
AWSS. Now asking Pk in OKSetPj to reveal Pj ’s signature ensures that even if D is corrupted, for
an honest Pj ∈ WCORE, the reconstructed polynomial fj(x) will be same as the one received by
Pj from D in the sharing phase. This ensure correctness 2 property. Summing up, when at least
one of D and Pj is honest, Pj ’s IC-Commitment on fj(x) is revealed properly. But when both D

and Pj are corrupted, Pj ’s IC-Commitment on fj(x) can be revealed as any fj(x) 6= fj(x). It is the
later property that makes our protocol to qualify as a AWSS protocol rather than a AVSS protocol.
Protocol AWSS-Single-Secret is now given in Table 2.

Lemma 2 Protocol AWSS-Single-Secret satisfies termination property.

Proof: Termination 1: If D is honest then he will eventually include all honest parties (2t + 1) in
WCORE as well as in their respective OKSet’s and will A-Cast the same. By property of A-Cast,
every honest party will listen the same, confirm their validity and will terminate the sharing phase.
Termination 2: If an honest Pi has completed AWSS-Single-Secret-Share, then he must have listened
WCORE and OKSetPj ’s from the A-cast of D and verified their validity. By properties of A-cast,
each honest party will also listen the same and will eventually terminate AWSS-Single-Secret-Share.

7

Termination 3: By Lemma 10, if Pi is honest and sets Ver = 1, then IC signature produced by Pi will
be accepted in Reveal, except with probability 2−O(κ). For every Pj ∈ WCORE, |OKSetPj | = 2t+1.
So there are at least t + 1 honest parties in OKSetPj who will be present in V alidSetPj with high
probability. So for every Pj ∈ WCORE, Pj ’s IC-Commitment will be reconstructed. Thus with very
high probability, each honest party will terminate AWSS-Single-Secret-Rec. 2

Protocol AWSS-Single-Secret(D,P, s)

AWSS-Single-Secret-Share(D,P, s)

Distribution: Code for D

1. Select a random degree-t symmetric bivariate polynomial F (x, y) such that F (0, 0) = s.

2. For 1 ≤ i ≤ n, deliver fi(x) = F (x, i) to Pi, along with IC signature on each of fi(j) by considering Pi

as INT and executing Gen(D, Pi,P, fi(j)) for every j ∈ {1, . . . , n}.
Verification: Code for Pi

1. Wait until Gen(D, Pi,P, fi(j)) is completed for every j ∈ {1, . . . , n}.
2. Check whether the points (fi(1), . . . , fi(n)) lie on an unique t-degree polynomial. If yes, then acting as

INT , execute Ver(D, Pi,P, fi(j)) for every j ∈ {1, . . . , n}.
3. For all j ∈ {1, . . . , n}, if Ver(D, Pi,P, fi(j)) is completed with Ver = 1, then hand over fi(j) to Pj ,

along with IC signature by acting as dealer and executing Gen(Pi, Pj ,P, fi(j)) for all j ∈ {1, . . . , n}. In
addition, participate in Gen(Pj , Pi,P, fj(i)) for all j ∈ {1, . . . , n} by acting as INT .

4. Wait until Gen(Pj , Pi,P, fj(i)) is completed. If fi(j) = fj(i) then execute Ver(Pj , Pi,P, fj(i)) as an
INT . If Ver(Pj , Pi,P, fj(i)) is completed with Ver = 1, then A-cast OK(Pi, Pj). Here j ∈ {1, . . . , n}.

Core Construction : Code for D

1. For each Pj , build a set OKSetPj = {Pi|D listens OK(Pi, Pj)}. When |OKSetPj | = 2t+1, then conclude
that Pj ’s IC-Commitment on fj(x) is over and add Pj in WCORE (which is initially empty).

2. Wait until |WCORE| = 2t + 1. Then A-cast WCORE and OKSetPj for all Pj ∈ WCORE.

Core Verification & Agreement on Core : Code for Pi

1. Wait to obtain WCORE and OKSetPj for all Pj ∈ WCORE from D’s A-cast, such that |WCORE| =
2t + 1 and |OKSetPj | = 2t + 1 for each Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKSetPj and Pj ∈ WCORE. After receiving, accept the
WCORE and OKSetPj ’s and terminate AWSS-Single-Secret-Share.

AWSS-Single-Secret-Rec(D,P, s): Public reconstruction of s towards each party:

Signature Revelation: Code for Pi

1. If Pi belongs to OKSetPj for some Pj ∈ WCORE, then participate in Reveal(D, Pi,P, fi(j)) and
Reveal(Pj , Pi,P, fj(i)) as an INT .

2. Participate in Reveal(D, Pk,P, fk(j)) and Reveal(Pj , Pk,P, fj(k)) for all Pk ∈ OKSetPj and Pj ∈
WCORE as a verifier.

Local Computation: Code for Pi

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-Commitment on fj(x) as follows:

(a) Construct a set V alidSetPj = ∅.
(b) Add party Pk ∈ OKSetPj to V alidSetPj if both the following conditions are true:

i. Reveal(D, Pk,P, fk(j)) and Reveal(Pj , Pk,P, fj(k)) are successfully completed, with outputs,
Reveali = fk(j) and Reveali = fj(k) respectively; and

ii. fk(j) = fj(k).

(c) Wait until |V alidSetPj | = t+1. Construct a polynomial fj(x) passing through the points (k, fj(k))
where Pk ∈ V alidSetPj . Associate fj(x) with Pj ∈ CORE.

2. Wait until for each Pj in WCORE, IC-Commitment is reconstructed with a polynomial fj(x).

3. For each (Pγ , Pδ) ∈ WCORE, check fγ(δ)
?
= fδ(γ). If the test passes for each pair of parties in

WCORE, then construct the bivariate polynomial F (x, y) using the polynomials fj(x) associated with
Pj ∈ WCORE, compute s = F (0, 0) and terminate. Else set s = NULL and terminate.

Table 2: AWSS for Sharing a Single Secret s with n = 3t + 1

8

Lemma 3 Protocol AWSS-Single-Secret satisfies secrecy property.

proof: Follows from the secrecy of ICP and properties of symmetric bivariate polynomial. 2

Lemma 4 Protocol AWSS-Single-Secret satisfies correctness property.

Proof: Correctness 1: Here we have to consider the case when D is honest. We first prove
that if D is honest, then with very high probability, for every Pj ∈ WCORE, Pj ’s IC-Commitment
will be reconstructed correctly. In other words, fj(x) associated with every Pj ∈ WCORE during
reconstruction phase, is same as fj(x) selected by D. From the property of ICP, for an honest
Pj ∈ WCORE, a corrupted Pk ∈ OKSetPj can produce Pj ’s valid signature on fj(k) 6= fj(k)
with negligible probability (from Lemma 11). Similarly, for a corrupted Pj ∈ WCORE, a corrupted
Pk ∈ OKSetPj can produce Pj ’s valid signature on fj(k) 6= fj(k) but Pk will fail to produce honest D’s
signature on fk(j) = fj(k) with very high probability. Thus with very high probability, corresponding
to each Pj ∈ WCORE, the parties in V alidSetPj will produce correct points on fj(x). So everybody
will reconstruct F (x, y) and hence the secret s = F (0, 0) with very high probability.

Correctness 2: Here we have to consider the case, when D is corrupted. Since in AWSS-Single-
Secret-Share, every honest party agrees on a WCORE and OKSetPj for Pj ∈ WCORE, an unique
secret s′ ∈ F ∪NULL is defined by (at least t + 1) honest parties in WCORE at the end of sharing
phase. We say that s′ is D’s committed secret. If for every two honest parties Pγ and Pδ in WCORE,
fγ(δ) = fδ(γ) holds then s′ is the constant term of the degree-t symmetric bivariate polynomial
F ′(x, y), that is defined by the univariate polynomials of honest parties in WCORE. Otherwise
s′ = NULL. We show that every honest party will reconstruct either s′ or NULL.

We first consider the case when s′ = F ′(0, 0). This implies that fj(x)’s corresponding to honest
Pj ’s in WCORE define a symmetric t-degree bivariate polynomial F ′(x, y). We claim that with very
high probability, for an honest Pj ∈ WCORE, Pj ’s IC-Commitment will be reconstructed correctly.
In other words, fj(x) associated with an honest Pj ∈ WCORE during reconstruction phase, is same
as fj(x) which was received by Pj . This claim follows from the argument given in Correctness 1.
But for a corrupted Pj in WCORE, Pj ’s IC-Commitment can be revealed as any t-degree polynomial
fj(x). This is because a corrupted Pk ∈ OKSetPj can produce a valid signature of Pj on any fj(k)
as well as a valid signature of D (who is corrupted as well) on fk(j) = fj(k). Also the adversary can
delay the messages such that the values of corrupted Pk ∈ OKSetPj are revealed (to parties) before
the values of honest parties in OKSetPj . Now if reconstructed fj(x)’s corresponding to corrupted
Pj ’s in WCORE, along with reconstructed fj(x)’s corresponding to honest Pj ’s in WCORE defines
F ′(x, y), then s′ will be reconstructed. Otherwise, NULL will be reconstructed. However, since for
all the honest parties of WCORE, IC-Commitment will be reconstructed correctly with fj(x) (who in
tern define F ′(x, y)), no other secret (other than s′) can be reconstructed with very high probability.

On the other hand, let D’s committed secret s′ = NULL. In this case irrespective of the behavior
of corrupted parties, NULL will be reconstructed by each honest party. 2

Theorem 1 The pair (AWSS-Single-Secret-Share, AWSS-Single-Secret-Rec) constitutes a valid AWSS
scheme for n = 3t + 1 parties, which shares a single secret and satisfies the properties of AWSS.

Important Note: Notice that in our Protocol AWSS-Single-Secret, the degree-t univariate polynomial
F (x, 0) = f0(x) is used to share the secret s. In the following we will say that D shares a degree-t poly-
nomial f(x) using AWSS-Single-Secret by executing AWSS-Single-Secret-Share(D,P, f(x)). For this D
selects a t-degree symmetric bivariate polynomial F (x, y), such that F (x, 0) = f(x) and execute the
protocol. It should be noted that f(x) is not completely random but only preserves the secrecy of
the constant term which is the secret s = f(0). Yet, this distribution of polynomials is sufficient to
provide the secrecy requirements needed by our AVSS where AWSS is used as a building block. As a
result of the above execution, party Pi in WCORE will hold the ith share f(i) = F (i, 0) = F (0, i), the
polynomial fi(x) = F (x, i) and the share-share fj(i) = F (i, j) = fi(j) corresponding to every other
party Pj . Similarly, AWSS-Single-Secret-Rec(D,P, f(x)) can be viewed as the reconstruction of f(x)
and hence the secret s = f(0).

9

We now extend AWSS-Single-Secret to AWSS-Multiple-Secret which shares secret S = (s1 . . . s`), con-
taining ` field elements concurrently. Since AWSS-Multiple-Secret is a simple extension of AWSS-Single-
Secret for multiple secrets, we present AWSS-Multiple-Secret and its properties in APPENDIX C.
For ease of reference, the communication complexity of AWSS-Multiple-Secret is given below.

Lemma 13: Both AWSS-Multiple-Secret-Share and AWSS-Multiple-Secret-Rec privately communicates
O((`n2 + n3)κ) bits and A-cast O((`n2 + n3)κ) bits.

5 Asynchronous Verifiable Secret Sharing

In this section, we present our novel AVSS scheme called AVSS-Multiple-Secret which shares secret S
containing ` ≥ 1 elements from F. However, if D is corrupted, then each element of S can be either
from F or NULL (in a sense explained in the sequel). As in AWSS, we first present an AVSS protocol,
called AVSS-Single-Secret which shares a single secret s. Later we present AVSS-Multiple-Secret which
is a simple extension of AVSS-Single-Secret.

We now explain the high level idea used in AVSS-Single-Secret. D uses the bi-variate polynomial
approach, as used in the synchronous VSS protocols of [2, 13, 12, 14], where D selects a degree-t
symmetric bivariate polynomial F (x, y), such that F (0, 0) = s and sends fi(x) = F (x, i) to party Pi.
Now the parties communicate with each other to perform what we say commitment upon verification.
Here each party Pi is asked to commit his received polynomial fi(x). However, Pi is allowed to commit
fi(x), only after the parties have verified that they have received same points on fi(x) from D as well
as Pi. More formally, to achieve commitment upon verification, party Pi, acting as a dealer, shares
his polynomial fi(x) by initiating an instance of our AWSS protocol AWSS-Single-Secret-Share with
a degree-t symmetric bivariate polynomial QPi(x, y), such that QPi(x, 0) = fi(x). Since party Pj

receives qPi
j (x) = QPi(x, j) from Pi as part of the AWSS, he can check whether qPi

j (0) ?= fj(i), as
ideally qPi

j (0) = fi(j) = fj(i) should hold in case of honest D, Pi and Pj . A party Pj participates in
the remaining steps of the AWSS instance of Pi, only if qPi

j (0) = fj(i) holds. Once commitment upon
verification is over, the parties want to agree on a set of at least 2t + 1 parties, denoted as V CORE
such that for every party Pj ∈ V CORE, the instance of AWSS initiated by Pj , terminates with a
WCORE set, denoted as WCOREPj and |V CORE ∩WCOREPj | ≥ 2t + 1. Informally, this means
that each party Pj ∈ V CORE has ’successfully’ committed his polynomial fj(x) to at least 2t + 1
parties in V CORE, who have verified that they have received correct points on fj(x). We will refer
this commitment as Pj ’s AWSS-Commitment on fj(x). It should be noted that AWSS-Commitment is
strictly stronger commitment than IC-Commitment that was enforced in our AWSS protocols. These
two commitments can be distinguished only when both D and Pj are corrupted. In this case, while
AWSS-Commitment ensures that reconstruction of AWSS-Commitment can not be changed to some
other polynomial other than NULL, IC-Commitment can not ensure the same.

As in our AWSS protocol, the agreement on V CORE and corresponding WCOREPj ’s is achieved
by letting D to first construct V CORE after obtaining WCOREPj ’s from the A-cast of Pj ’s and then
A-cast V CORE and corresponding WCOREPj ’s. Later, on receiving V CORE and WCOREPj ’s from
the A-cast of D, a party checks the validity of V CORE and WCOREPj by listening the required A-
casts and accepts them after verification.

In the reconstruction phase, D’s committed secret is recovered with the help of the parties in
V CORE and WCOREPj ’s. Precisely, in the reconstruction phase, for every Pj ∈ V CORE, AWSS-
Commitment on fj(x) is revealed by reconstructing it with the help of the parties in WCOREPj .
This is done by executing an instance of AWSS-Single-Secret-Rec with the parties in WCOREPj . This
results in the reconstruction of either fj(x) or NULL depending on whether Pj is honest or corrupted.
Since |V CORE| ≥ 2t + 1, for (at least t + 1) honest parties, fj(x)’s will be recovered correctly. Now
with the fj(x)’s, the bivariate polynomial F (x, y) will be reconstructed.

A Note on NULL Commitment in Our AVSS Scheme: In our AVSS scheme, we say that D’s
committed secret is the constant term of the symmetric degree-t bivariate polynomial F ′(x, y) which
is defined by the univariate polynomials of the honest parties in V CORE. For an honest D, the
polynomials of the honest parties in V CORE will always define a symmetric bivariate polynomial

10

and thus the committed secret is always a valid field element and hence considered as meaningful.
But for a corrupted D, this may not hold. In this case, we say that D has committed NULL. The
reconstruction phase of our AVSS protocol ensures the reconstruction of only committed secret.

Protocol AVSS-Single-Secret(D,P, s)
AVSS-Single-Secret-Share(D,P, s)

Distribution: Code for D

1. Select a degree-t random symmetric bivariate polynomial F (x, y) such that F (0, 0) = s.

2. Deliver fi(x) = F (x, i) to Pi.

Commitment upon Verification: Code for Pi

1. Wait to obtain fi(x) from D.

2. If fi(x) is a t-degree polynomial then as a dealer, execute AWSS-Single-Secret-Share(Pi,P, fi(x)) by selecting a
degree-t symmetric bivariate polynomial QPi(x, y) such that QPi(x, 0) = qPi

0 (x) = fi(x). We call this instance
of AWSS-Single-Secret-Share initiated by Pi as AWSS-Single-Secret-SharePi .

3. As a part of the execution of AWSS-Single-Secret-SharePj , wait to receive q
Pj

i (x) = QPj (x, i) from Pj . Then

check fi(j)
?
= q

Pj

i (0). If the test passes then participate in AWSS-Single-Secret-SharePj and act according to
the remaining steps of AWSS-Single-Secret-SharePj .

Core Construction : Code for D

1. Wait to terminate AWSS-Single-Secret-SharePj with WCOREPj and OKSetP
Pj

k for every Pk ∈ WCOREPj .
Then add Pj in a set TempCORE (initially empty). Here j ∈ {1, . . . , n}.

2. Even after terminating AWSS-Single-Secret-SharePj , update (include new parties in) WCOREPj and

OKSetP
Pj

k ’s upon receiving new A-casts of the form OK(., .) as a part of AWSS-Single-Secret-SharePj . Also
update TempCORE upon terminating AWSS-Single-Secret-Share for new parties.

3. After every update, perform the following computations:

(a) Assign V CORE = TempCORE and check whether |V CORE ∩ WCOREPj | ≥ 2t + 1 for every Pj ∈
V CORE. If not then remove Pj from V CORE and keep on repeating this until no more party can be
removed from V CORE.

(b) Check whether |V CORE| ≥ 2t + 1. If not, then delete V CORE and wait for more updates. Otherwise,

A-cast V CORE, WCOREPj for Pj ∈ V CORE and OKSetP
Pj

k for every Pk ∈ WCOREPj . In this
case, each Pj ∈ V CORE has AWSS-committed to fj(x).

Core Verification & Agreement on Core : Code for Pi

1. Wait to listen V CORE, WCOREPj for Pj ∈ V CORE and OKSetP
Pj

k for every Pk ∈ WCOREPj from D’s
A-cast, such that |V CORE| ≥ 2t + 1 and for each Pj ∈ V CORE, |V CORE ∩ WCOREPj | ≥ 2t + 1 and

|OKSetP
Pj

k | ≥ 2t + 1 for every Pk ∈ WCOREPj .

2. Wait to terminate AWSS-Single-Secret-SharePj corresponding to every Pj in V CORE.

3. For every Pj ∈ V CORE, wait to listen OK(Pm, Pk) for every Pm ∈ OKSetP
Pj

k and Pk ∈ WCOREPj .

After listening all OKs, accept the V CORE, WCOREPj for Pj ∈ V CORE and OKSetP
Pj

k for every Pk ∈
WCOREPj and terminate AVSS-Single-Secret-Share.

AVSS-Single-Secret-Rec(D,P, s): Public reconstruction of s towards each party:

Secret Reconstruction: Code for Pi

1. For every Pj ∈ V CORE, reconstruct Pj ’s AWSS-Commitment on fj(x) as follows:

(a) Participate in AWSS-Single-Secret-Rec(Pj ,P, fj(x)) with WCOREPj and OKSetP
Pj

k for every Pk ∈
WCOREPj . We call this instance of AWSS-Single-Secret-Rec as AWSS-Single-Secret-RecPj .

(b) Wait for the termination of AWSS-Single-Secret-RecPj with output either QPj (x, y) or NULL.

2. Wait for the reconstruction of Pj ’s AWSS-Commitment for every Pj ∈ V CORE.

3. Add Pj ∈ V CORE to FINAL if AWSS-Single-Secret-RecPj gives a non-NULL output. Now for Pj ∈ FINAL,

assign fj(x) = QPj (x, 0).

4. For every pair (Pγ , Pδ) ∈ FINAL check fγ(δ)
?
= fδ(γ). If the test passes for every pair of parties then recover

F (x, y) using fj(x)’s corresponding to each Pj ∈ FINAL and reconstruct s = F (0, 0). Else reconstruct
s = NULL. Finally output s and terminate.

Lemma 5 Protocol AVSS-Single-Secret satisfies termination property.

11

Proof: Termination 1: If D is honest, then corresponding to every honest Pj , AWSS-Single-Secret-SharePj

will eventually terminate with 2t + 1 honest parties in WCOREPj . Thus eventually all the 2t + 1
honest parties will be included in TempCORE and D will eventually get V CORE = TempCORE,
such that |V CORE| ≥ 2t + 1 and |V CORE ∩WCOREPj | ≥ 2t + 1 for Pj ∈ V CORE. From similar
argument given in Termination 1 of Lemma 2, all honest parties will eventually agree on V CORE,
WCOREPj for Pj ∈ V CORE and OKSetP

Pj

k and will terminate AVSS-Single-Secret-Share.
Termination 2: The proof follows from the similar argument given in Termination 2 of Lemma 2.

Termination 3: Follows from the fact that corresponding to each Pj ∈ V CORE, an honest Pi will
eventually terminate AWSS-Single-Secret-RecPj (from Termination 3 of Lemma 2). 2

Lemma 6 Protocol AVSS-Single-Secret satisfies correctness property.

Proof: Correctness 1: We have to consider the case when D is honest. If D is honest then we
prove that with very high probability, for every Pi ∈ FINAL, Pi’s AWSS-Commitment will be re-
constructed correctly. In other words, AWSS-Single-Secret-RecPi will disclose fi(x) which is same as
fi(x) selected by honest D. For every honest Pi ∈ FINAL this is trivially true. We have to prove
the above statement for a corrupted Pi ∈ FINAL. If a corrupted Pi belongs to FINAL, it implies
AWSS-Single-Secret-RecPi is successful (i.e., the output is a symmetric degree-t bivariate polynomial)
and AWSS-Single-Secret-SharePi had terminated during AVSS-Single-Secret-Share. Moreover termina-
tion of AVSS-Single-Secret-Share ensures |V CORE ∩ WCOREPi | ≥ 2t + 1. The above statements
have the following implications together: (a) With very high probability, Pi must have given consis-
tent polynomials to the honest parties in WCOREPi (during AWSS-Single-Secret-SharePi) such that
they induce valid degree-t symmetric bivariate polynomial (see Correctness 2 of Lemma 4). (b) Pi

must have agreed with the honest parties of WCOREPi with respect to the common values given
by D. This means that as a part of AWSS-Single-Secret-SharePi , Pi handed over qPi

j (x) to an honest
Pj (in WCOREPi) satisfying fj(i) = qPi

j (0). The statements in (a) and (b) together implies that Pi

must have committed (to the honest parties in WCOREPi which are at least t + 1) some bivariate
polynomials QPi(x, y) satisfying QPi(x, 0) = fi(x). Thus if AWSS-Single-Secret-RecPi is successful,
then QPi(x, y) = QPi(x, y) and hence fi(x) = fi(x). Since D is honest, fi(x)’s corresponding to
Pi ∈ FINAL will define F (x, y) = F (x, y). Thus s = F (0, 0) = F (0, 0) will be recovered.

Correctness 2: Since in AVSS-Single-Secret-Share, every honest party agrees on a common V CORE,
an unique secret s′ ∈ (F ∪ NULL) is defined by (at least t + 1) honest parties in V CORE. If for
every two honest parties Pγ and Pδ in V CORE, fγ(δ) = fδ(γ) holds then s′ is the constant term of
the bivariate polynomial F (x, y), which is defined by the univariate polynomials fγ(x)’s, held by the
honest parties in V CORE. Otherwise s′ = NULL. In this case, we say that committed s′ is not
meaningful. We show that irrespective of whether s′ is meaningful or NULL, s′ will be recovered in
AVSS-Single-Secret-Rec with very high probability.

Let s′ = NULL. Now for every honest Pi ∈ V CORE, AWSS-Single-Secret-RecPi will disclose fi(x)
which is same as fi(x) received by Pi in sharing phase. Hence, all honest parties from V CORE will be
added to FINAL with very high probability. Now irrespective of the remaining (corrupted) parties
included in FINAL, the consistency checking (i.e., fγ(δ) ?= fδ(γ)) will fail for some honest parties
(Pγ , Pδ) and NULL will be reconstructed.

On the other hand, let s′ be meaningful and defined by the bivariate polynomial F ′(x, y). Hence,
F ′(x, y) is defined by the fi(x)’s of the honest parties in V CORE. Now this case completely resembles
with the case when D is honest and hence the proof follows from the proof of Correctness 1. 2

Lemma 7 Protocol AVSS-Single-Secret satisfies secrecy property.

proof: Follows from Lemma 3, Lemma 12 and properties of symmetric bivariate polynomial. 2

Important Note: Protocol AVSS-Single-Secret does not force corrupted D to commit some meaning-
ful secret (i.e., an element from F). Hence, the secret s, committed by a corrupted D can be either
from F or NULL. We may assume that if D’s committed secret is NULL, then D has committed
some predefined value s∗ ∈ F, which is known publicly. Hence in AVSS-Single-Secret-Rec, whenever

12

NULL is reconstructed, every honest party replaces NULL by the predefined secret s∗. Interpreting
this way, we say that our AVSS scheme allows D to commit secret s ∈ F.
We now present AVSS-Multiple-Secret which is a simple extension of AVSS-Single-Secret. For its simi-
larity with AVSS-Single-Secret, we defer the description of AVSS-Multiple-Secret in APPENDIX D.
For ease of reference, the communication complexity of AVSS-Multiple-Secret is presented below:

Lemma 14: Both Protocol AVSS-Multiple-Secret-Share and Protocol AVSS-Multiple-Secret-Rec commu-
nicate O((`n3 + n4)κ) bits and A-cast O((`n3 + n4)κ) bits.

6 Asynchronous BA with n = 3t + 1

Once we have an AVSS protocol in our hand, we can get an ABA protocol with optimal resilience,
following the ideas outlined in [4]. The first step is to get a common coin [4]. In [4], it is shown
that given an AVSS protocol we can construct a Common-Coin protocol that generates a common
coin. We replace the AVSS scheme of [5, 4] with our AVSS protocol AVSS-Multiple-Secret to get
an efficient common coin protocol, which we call as Efficient-Common-Coin. Efficient-Common-Coin is
exactly the common coin protocol described in Figure 5-9 in [4], with the following difference, which
has no effect on the final outcome of common coin protocol. In the common coin protocol of [4],
every party shares n random secrets using n different instances of AVSS protocol of [5, 4]. But in our
Efficient-Common-Coin, a party shares n random secrets using a single instance of our AVSS protocol
AVSS-Multiple-Secret. The immediate result is enormous gain in terms of communication complexity.

Lemma 8 Protocol Efficient-Common-Coin communicates O(n5κ) bits and A-cast O(n5κ) bits.

Proof: Follows from the fact that Efficient-Common-Coin executes at most n instances of AVSS-
Multiple-Secret-Share and Protocol AVSS-Multiple-Secret-Rec with ` = n secrets. 2

The proof that Efficient-Common-Coin will satisfy the same properties as common coin protocol of [4]
follows from Lemmas 5.27-5.31 of [4]. The next step is to use the common coin protocol to get ABA
protocol. In [4], Canetti has used common coin protocol of [5, 4] that terminates with probability
(1 − 2−O(κ)) to get a (1 − 2−O(κ))-terminating, t-resilient ABA protocol (see Figure 5-11 of [4]). We
replace the common coin protocol of [4] by our Efficient-Common-Coin protocol to obtain our efficient
(1− 2−O(κ))-terminating, t-resilient ABA with 3t + 1 parties which we call as Efficient-ABA. Similar to
the ABA protocol of [5], conditioned on the event that Efficient-ABA terminates, it does so in constant
expected time. The proof for this follows from same arguments given in [4]. We avoid giving the
details of Efficient-ABA as it will be a repetition of the steps given in the ABA protocol of [5]. So:

Theorem 2 Protocol Efficient-ABA communicates O(Cn5κ) bits and A-casts O(Cn5κ) bits, where C =
Θ(1) is the expected running time of the protocol.

Proof: Since Efficient-ABA terminates in C = Θ(1) expected time, protocol Efficient-Common-Coin
will be called expected constant number of times in Efficient-ABA. This follows from the similar
argument as given in [5, 4]). Hence the theorem. 2

7 Conclusion and Open Problems

We have presented a novel expected constant time (1− 2−O(κ))-terminating, optimally resilient ABA
protocol whose communication complexity is significantly better than existing ABA protocols of [5, 1]
(though the ABA protocol of [1] has a strong property of being almost surely terminating). Here
we summarize the key factors that have contributed to the gain in the communication complexity
of our ABA protocol: (a) a shorter route: ICP → AWSS → AVSS → ABA, (b) Improving each of
the building blocks by introducing new techniques and by exploiting the advantages of dealing with
multiple secrets concurrently in each of these blocks. It is to be mentioned that our new AVSS scheme
significantly outperforms the existing AVSS schemes in the same settings in terms of communication
complexity. An interesting open problem is to further improve the communication complexity of ABA
protocols. Also one can try to provide an almost surely terminating, optimally resilient, expected
constant time ABA protocol whose communication complexity is less than the ABA protocol of [1].

13

Acknowledgements: The authors would like to thank the anonymous referees of TCC 2009 for
pointing out some subtle flaws in the earlier version of this paper.

References

[1] I. Abraham, D. Dolev, and J. Y. Halpern. An almostsurely terminating polynomial protocol
for asynchronous Byzantine agreement with optimal resilience. In PODC, pages 405–414. ACM
Press, 2008.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10,
1988.

[3] G. Bracha. An asynchronous b(n− 1)/3c-resilient consensus protocol. In 3rd ACM PODC, pages
154 – 162, 1984.

[4] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann
Institute, Israel, 1995.

[5] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with optimal resilience. In
Proc. of STOC 1993, pages 42–51. ACM, 1993.

[6] B. Chor and C. Dwork. Randomization in byzantine agreement. Advances in Computing Research,
5::443–497, 1989.

[7] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty compu-
tations secure against an adaptive adversary. In Proc. of EUROCRYPT 1999, volume 1592 of
LNCS, pages 311–326. Springer Verlag, 1999.

[8] P. Feldman and S. Micali. An optimal algorithm for synchronous Byzantine agreemet. In Proc.
of STOC 1988, pages 639–648. ACM, 1988.

[9] P Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzantine agreement.
SIAM Journal of Computing, 26(4):873–933, 1997.

[10] M. Fischer. The consensus problem in unreliable distributed system. Technical Report, Depart-
ment of ComputerScience, Yale University, 1983.

[11] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus with one
faulty process. JACM, 32(2):374–382, 1985.

[12] M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-optimal and
efficient verifiable secret sharing. In Proc. of TCC 2006, volume 3876 of LNCS, pages 329–342.
Springer Verlag, 2006.

[13] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of verifiable
secret sharing and secure multicast. In STOC, pages 580–589, 2001.

[14] J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of vss in point-to-point
networks. In ICALP(2), pages 499–510, 2008.

[15] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[16] M. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults. JACM,
27(2):228–234, 1980.

[17] T. Rabin. Robust sharing of secrets when the dealer is honest or cheating. J. ACM, 41(6):1089–
1109, 1994.

14

[18] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In STOC, pages 73–85, 1989.

[19] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[20] M. Tompa and H. Woll. How to share a secret with cheaters. In CRYPTO, pages 261–265, 1986.

APPENDIX A: Communication Complexity Analysis of AVSS of [5]

The communication complexity analysis of the AVSS protocol of [5] was not reported anywhere so far.
So we have carried out the same at this juncture. To do so, we have considered the detailed description
of the AVSS protocol of [5] given in Canetti’s Thesis [4]. To begin with, in the ICP protocol of [5],
D gives O(κ) field elements to INT and O(κ) field elements to verifier R. Though the ICP protocol
of [4] is presented with a single verifier, it is executed with n verifiers in protocol A-RS. In order to
execute ICP with n verifiers, D gives O(nκ) field elements to INT and O(κ) field elements to each
of the n verifiers. So the communication complexity of ICP of [4] when executed with n verifiers is
O(nκ) field elements and hence O(nκ2) bits.

Now by incorporating their ICP protocol with n verifiers in Shamir secret sharing [19], the authors
in [5] designed an asynchronous primitive called A-RS, which consists of two sub-protocols, namely
A-RS-Share and A-RS-Rec. In the A-RS-Share protocol, D generates n shares (Shamir shares)
of a secret s and for each of the n shares, D executes an instance of ICP protocol with n verifiers.
So the A-RS-Share protocol of [5] involves a private communication of O(n2κ2) bits. In addition to
this, the A-RS-Share protocol also involves an A-Cast of O(log(n)) bits. In the A-RS-Rec protocol,
the IC signatures given by D in A-RS-Share are revealed, which involves a private communication
of O(n2κ2) bits. In addition, the A-RS-Rec protocol involves A-Cast of O(n2 log(n)) bits.

Proceeding further, by incorporating their A-RS protocol, the authors in [5] designed an AWSS
protocol. The AWSS protocol consists of two sub-protocols, namely AWSS-Share and AWSS-Rec.
In the AWSS-Share protocol, D generates n shares (Shamir shares [19]) of the secret and instantiate
n instances of the ICP protocol for each of the n shares. Now each individual party A-RS-Share
all the values that it has received in the n instances of the ICP protocol. Since each individual party
receives a total of O(nκ) field elements in the n instances of ICP, the above step incurs a private
communication of O(n4κ3) bits and A-Cast of O(n2κ log(n)) bits. In the AWSS-Rec protocol, each
party Pi tries to reconstruct the values which are A-RS-Shared by each party Pj in a set Ei. Here
Ei is a set which is defined in the AWSS-Share protocol. In the worst case, the size of each Ei is
O(n). So in the worst case, the AWSS-Rec protocol privately communicates O(n5κ3) bits and A-Cast
O(n5κ log(n)) bits.

The authors in [5] then further extended their AWSS-Share protocol to Two&Sum AWSS-
Share protocol, where each party Pi has to A-RS-Share O(nκ2) field elements. So the communica-
tion complexity of Two&Sum AWSS-Share is O(n4κ4) bits and A-Cast of O(n2κ2 log(n)) bits.

Finally using their Two&Sum AWSS-Share and AWSS-Rec protocol, the authors in [5] have
deigned their AVSS protocol, which consists of two sub-protocols, namely AVSS-Share and AVSS-
Rec. In the AVSS-Share protocol, the most communication expensive step is the one where each
party has to AWSS-RecO(n3κ) field elements. So in total, the AVSS-Share protocol of [5] involves a
communication complexity of O(n9κ4) bits and A-Cast O(n9κ2 log(n)) bits. The AVSS-Rec protocol
involves n instances of AWSS-Rec, resulting in a communication complexity of O(n6κ3) bits and
A-cast of O(n6κ log(n)) bits.

APPENDIX B: Proof of the Properties of A-ICP

Lemma 9 If D and INT are honest, then S will be accepted in Reveal by every honest verifier.

Proof: If D and INT are honest, then INT will set Ver = 1 at the end of Verification Phase. This
is because at least t + 1 honest verifiers from ReceivedSet will A-cast Accept. In Reveal, at least t + 1

15

honest verifiers from ReceivedSet will A-cast Re-accept and hence will be considered as consistent.
Hence every (honest) verifier Pi will eventually output Reveali = S at the end of Reveal. 2

Lemma 10 If INT is honest and Ver = 1 at the end of Verification Phase, then S held by INT
will be accepted in Reveal by every honest verifier, except with probability 2−O(κ).

Proof: Since INT is honest and Ver = 1 at the end of Verification Phase, INT must have listened
t + 1 A-casts of Accept from t + 1 verifiers of ReceivedSet. Moreover, there are 2t + 1 verifiers in
ReceivedSet, of which at least t+1 are honest. If we can show that the honest verifiers in ReceivedSet
will be eventually considered as consistent during Reveal with very high probability, then the proof
will go through, as every honest verifier will then accept INT ’s secret S. We now prove the same.

Let Pi be an honest verifier in ReceivedSet who A-casts Accept during Verification Phase. This
implies that B(αi) = dvi+ri holds, which further implies that either (a) F (αi) = vi and R(αi) = ri Or
(b) F (αi) 6= vi and R(αi) 6= ri (for other combinations, B(αi) = dvi + ri will not hold). If (a) holds,
then Pi will A-cast Re-accept and will be considered as consistent during Reveal. But on the other
hand if (b) holds, then Pi will A-cast Re-reject and will be considered as inconsistent during Reveal.
We now show that Pi will be considered as inconsistent during Reveal with negligible probability. The
reason is that for every F (x), R(x) held by an honest INT and vi, ri held by an honest verifier Pi in
ReceivedSet, there is only one non-zero d for which B(αi) = dvi +ri, even if (b) is true. For otherwise,
assume there exists another non-zero element e 6= d, for which B(αi) = evi + ri holds, even if (b)
holds. This implies that (d− e)F (αi) = (d− e)vi or F (αi) = vi, which is a contradiction to (b). Now
since d is randomly chosen by INT only after D hands over F (x), R(x) to INT and vi, ri to Pi, a
corrupted D has to guess d in advance during Gen, in order to make Pi inconsistent during Reveal.
However, D can guess d with probability at most 1

|F|−1 ≈ 2−O(κ). Thus if Pi has A-cast Accept during
Verification Phase, then it will be considered as consistent during Reveal with very high probability.

On the other hand, let Pi be an honest verifier in ReceivedSet who has A-cast Reject during
Verification Phase. This implies that B(αi) 6= dvi + ri which further implies either F (αi) 6= vi or
R(αi) 6= ri or both. What ever may be the case, Pi will A-cast Re-reject during Reveal and will be
always considered as consistent. Hence the lemma. 2

Lemma 11 If D is honest, then during Reveal, with probability at least 1 − 2−O(κ), every S′ 6= S
produced by a corrupted INT will not be accepted by an honest verifier.

Proof: A corrupted INT may produce incorrect B′(x) 6= B(x) during Verification Phase. But
since D is honest, a corrupted INT will have no knowledge about αi’s corresponding to honest verifiers
in ReceivedSet. So all the honest verifiers in ReceivedSet (at least t + 1) will A-cast Reject with
very high probability during Verification Phase. In order that an honest verifier Pi in ReceivedSet
A-casts Accept for B′(x), a corrupted INT has to ensure that B′(αi) = B(αi). For this, he has to
correctly guess αi, which he can do with probability with at most `+t−1

|F−n−1| ≈ 2−O(κ). So, in this case,
none of the honest verifiers in ReceivedSet will ever respond during Reveal, irrespective of the values
produced by INT during Reveal, as they will be waiting indefinitely for the A-cast of t + 1 Accept
signals from the verifiers in ReceivedSet.

So assume that a corrupted INT has produced correct B(x) during Verification Phase. All
honest verifiers from ReceivedSet will then A-cast Accept eventually. But if INT A-casts F ′(x) 6= F (x)
to produce a different S′ 6= S during Reveal, then all honest verifiers in ReceivedSet will eventually
A-cast Re-reject with very high probability. To make an honest verifier Pi A-cast Re-accept during
Reveal, INT must ensure F ′(αi) = F (αi). For this, he has to correctly guess αi which he can do
with probability at most `+t−1

|F−n−1| ≈ 2−O(κ). Thus with very high probability, all honest verifiers from
ReceivedSet will eventually A-cast Re-reject and hence will eventually become inconsistent. Thus
every honest verifier Pi will eventually set Reveali = NULL. 2

Lemma 12 If D and INT are honest and INT has not started Reveal, then S is information theo-
retically secure from At controlling at most t verifiers in P.

Proof: At the end of Verification Phase, At will know t distinct points on F (x) and R(x) from
t corrupted verifiers. At will also learn d and B(x) = dF (x) + R(x). Since F (x) and R(x) are

16

polynomials of degree ` + t− 1, the secrets (which are the lower order ` coefficient of F (x)) will still
remain information theoretically secure. 2

APPENDIX C: Protocol AWSS-Multiple-Secret and Proof of Its Prop-
erties

Protocol AWSS-Multiple-Secret is given in Table. 3.

Protocol AWSS-Multiple-Secret(D,P, S)

AWSS-Multiple-Secret-Share(D,P, S)

Distribution: Code for D

1. Select ` degree-t random symmetric bivariate polynomials F 1(x, y), . . . , F `(x, y) such that for l = 1, . . . , `,
F l(0, 0) = sl.

2. For l = 1, . . . , `, deliver f l
i (x) = F l(x, i) to Pi, along with IC signature by considering Pi as INT and

executing Gen(D, Pi,P, Γij) for every j ∈ {1, . . . , n} where Γij = (f1
i (j), . . . , f `

i (j)).

Verification: Code for Pi

1. Wait until Gen(D, Pi,P, Γij) is completed for every j ∈ {1, . . . , n}
2. For each l = 1, . . . , `, check whether the points (f l

i (1), . . . , f l
i (n) lie on an unique t-degree polynomial. If

yes, then acting as INT , execute Ver(D, Pi,P, Γij) for every j ∈ {1, . . . , n}.
3. If for all j ∈ {1, . . . , n}, Ver(D, Pi,P, Γij) gets over with Ver = 1, then hand over Γij to Pj , along with

IC signature by acting as dealer and considering Pj as INT and executing Gen(Pi, Pj ,P, Γij) for all
j ∈ {1, . . . , n}. In addition, participate in Gen(Pj , Pi,P, Γji) for all j ∈ {1, . . . , n} by acting as INT and
considering Pj as dealer.

4. Wait until Gen(Pj , Pi,P, Γji) is completed. If Γij = Γji (i.e. for l = 1, . . . , `, f l
i (j) = f l

j(i)), then
execute Ver(Pj , Pi,P, Γji). If Ver(Pj , Pi,P, Γji) gets over with Ver = 1, then A-cast OK(Pi, Pj). Here
j ∈ {1, . . . , n}.

Core Construction : Code for D– Same as in Protocol AWSS-Single-Secret-Share

Core verification & Agreement on Core : Code for Pi– same as in Protocol AWSS-Single-Secret-Share

AWSS-Multiple-Secret-Rec(D,P, S): Public reconstruction of S towards each party:

Signature Revelation: Code for Pi

1. If Pi belongs to OKSetPj for some Pj ∈ WCORE, then participate in Reveal(D, Pi,P, Γij) and
Reveal(Pj , Pi,P, Γji) as an INT .

2. Participate in Reveal(D, Pk,P, Γkj) and Reveal(Pj , Pk,P, Γjk) for all Pk ∈ OKSetPj and Pj ∈ WCORE
as a verifier.

Local Computation: Code for Pi

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-Commitment on f1
j (x), . . . , f `

j (x) as follows:

(a) Construct a set V alidSetPj = ∅.
(b) Add party Pk ∈ OKSetPj to V alidSetPj if both the following conditions are true:

i. Reveal(D, Pk,P, Γkj) and Reveal(Pj , Pk,P, Γjk) are successfully completed, with outputs, Re-

veali = Γkj = (f1
k (j), . . . , f `

k(j)) and Reveali = Γjk = (f1
j (k), . . . , f `

j (k)) respectively;

ii. Γkj = Γjk i.e. for l = 1, . . . , `, f l
k(j) = f l

j(k).

(c) Wait until |V alidSetPj | = t+1. Construct a polynomial f l
j(x) passing through the points (k, f l

j(k))

where Pk ∈ V alidSetPj . For l = 1, . . . , `, associate f l
j(x) with Pj ∈ WCORE.

2. Wait until for each Pj in WCORE, IC-Commitment is reconstructed with ` polynomials f1
j (x), . . . , f `

j (x).

3. For every l ∈ {1, . . . , `} do the following: for every pair (Pγ , Pδ) ∈ WCORE check f l
γ(δ)

?
= f l

δ(γ). If the

test passes for every pair of parties then recover F l(x, y) using the polynomials f l
j(x) associated with

Pj ∈ CORE and reconstruct sl = F l(0, 0). Else reconstruct sl = NULL. Finally output S = (s1, . . . , s`)
and terminate.

Table 3: AWSS for Sharing Secret S = (s1, . . . , s`) with n = 3t + 1

17

The properties of AWSS-Multiple-Secret follow from the properties of AWSS-Single-Secret.

Lemma 13 Both AWSS-Multiple-Secret-Share and AWSS-Multiple-Secret-Rec privately communicates
O((`n2 + n3)κ) bits and A-cast O((`n2 + n3)κ) bits.

Proof: AWSS-Multiple-Secret-Share executes at most n + n2 = Θ(n2) instances of Gen and Ver.
Hence by Lemma 1, AWSS-Multiple-Secret-Share privately communicates O((`n2 + n3)κ) bits and
A-casts O((`n2 + n3)κ) bits. Protocol AWSS-Multiple-Secret-Rec executes Θ(n2) instances of Reveal
and hence by Lemma 1, AWSS-Multiple-Secret-Rec privately communicates O((`n2 + n3)κ) bits and
A-casts O((`n2 + n3)κ) bits. 2

Theorem 3 The pair (AWSS-Multiple-Secret-Share, AWSS-Multiple-Secret-Rec) constitutes a valid AWSS
scheme for n = 3t + 1 parties, which shares ` secrets simultaneously and satisfies the properties of
AWSS except with an error probability of 2−O(κ).

Important Note: As in AWSS-Single-Secret, in AWSS-Multiple-Secret, the degree-t univariate poly-
nomial F l(x, 0) = f l

0(x) is used to share the secret sl for l = 1, . . . , `. In the following, we will say that
D shares ` degree-t polynomials f1(x), . . . , f `(x) simultaneously using protocol AWSS-Multiple-Secret
by executing AWSS-Multiple-Secret-Share(D,P, f1(x), . . . , f `(x)). For this D selects a ` t-degree sym-
metric bivariate polynomials F 1(x, y), . . . , F `(x, y), such that for l = 1, . . . , `, F l(x, 0) = f l(x) and
executes the protocol. It should be noted that f l(x)’s are not random but only preserve the secrecy
of the constant terms, sl = f l(0). Yet, this distribution of polynomials is sufficient to provide the
secrecy requirements needed by our AVSS where AWSS is used as a building block. As a result of
the above execution, party Pi in WCORE holds the ith share f l(i) = F l(i, 0) = F l(0, i), the polyno-
mial f l

i (x) = F l(x, i) and the share-share f l
j(i) = F l(i, j) = f l

i (j) corresponding to every other party
Pj . Similarly, AWSS-Multiple-Secret-Rec(D,P, f1(x), . . . , f `(x)) can be viewed as the reconstruction
of f1(x), . . . , f `(x) and hence the secrets s1 = f1(0), . . . , s` = f `(0).

APPENDIX D: Protocol AVSS-Multiple-Secret and Proof of its Prop-
erties

Protocol AVSS-Multiple-Secret is given in Table 4. As in AVSS-Single-Secret, Protocol AVSS-Multiple-
Secret also does not force corrupted D to commit some meaningful secret (i.e., an element from F).
So, we may assume that if any element of D’s committed secret is NULL, then D has committed
some predefined value s∗ ∈ F, which is known publicly. Hence in AVSS-Multiple-Secret-Rec, whenever
NULL is reconstructed, every honest party replaces NULL by the predefined secret s∗. In this way,
we say that our AVSS scheme allows D to commit secret S ∈ F`.

The proofs of the properties of AVSS-Multiple-Secret follows from the proofs of AVSS-Single-Secret.
So we have the following theorem.

Theorem 4 The pair (AVSS-Multiple-Secret-Share, AVSS-Multiple-Secret-Rec) constitutes a valid AVSS
scheme for sharing ` ≥ 1 secrets with n = 3t + 1 and satisfies the properties of AVSS except with an
error probability of 2−O(κ).

The communication complexity of AVSS-Multiple-Secret is given by the following lemma.

Lemma 14 Both Protocol AVSS-Multiple-Secret-Share and Protocol AVSS-Multiple-Secret-Rec commu-
nicate O((`n3 + n4)κ) bits and A-cast O((`n3 + n4)κ) bits.

Proof: AVSS-Multiple-Secret-Share and AVSS-Multiple-Secret-Rec execute n instances of AWSS-Multiple-
Secret-Share and AWSS-Multiple-Secret-Rec, respectively. Hence communication complexity of AVSS-
Multiple-Secret-Share and AVSS-Multiple-Secret-Rec follows from Lemma 13. 2

18

Protocol AVSS-Multiple-Secret(D,P, S)
AVSS-Multiple-Secret-Share(D,P, S)

Distribution: Code for D

1. Select ` degree-t random symmetric bivariate polynomials F 1(x, y), . . . , F `(x, y) such that for l = 1, . . . , `,
F l(0, 0) = sl.

2. For l = 1, . . . , `, deliver f l
i (x) = F l(x, i) to Pi.

Commitment upon Verification: Code for Pi

1. Wait to obtain f l
i (x) for l = 1, . . . , ` from D.

2. If for each l = 1, . . . , `, f l
i (x) is a t-degree polynomial, then as a dealer, execute AWSS-

Multiple-Secret-Share(Pi,P, (f1
i (x), . . . , f `

i (x))) by selecting ` degree-t symmetric bivariate polynomials

Q(Pi,1)(x, y), . . . , Q(Pi,`)(x, y) such that for l = 1, . . . , `, Q(Pi,l)(x, 0) = q
(Pi,l)
0 (x) = f l

i (x). We call this
instance of AWSS-Multiple-Secret-Share initiated by Pi as AWSS-Multiple-Secret-SharePi .

3. As a part of the execution of AWSS-Multiple-Secret-SharePj , wait to receive q
(Pj ,l)

i (x) for l = 1, . . . , ` from Pj .

Then check f l
i (j)

?
= q

(Pj ,l)

i (0) for all l ∈ {1, . . . , `}. If the test passes for all l ∈ {1, . . . , `}, then participate
in AWSS-Multiple-Secret-SharePj and act according to the remaining steps of AWSS-Multiple-Secret-SharePj .
Here j ∈ {1, . . . , n}.

Core Construction : Code for D: Same as in Protocol AVSS-Single-Secret-Share except that
AWSS-Single-Secret-SharePj is replaced by AWSS-Multiple-Secret-SharePj .

Core Verification & Agreement on Core : Code for Pi: Same as in Protocol AVSS-Single-Secret-Share except
that AWSS-Single-Secret-SharePj is replaced by AWSS-Multiple-Secret-SharePj .

AVSS-Multiple-Secret-Rec(D,P, S): Public reconstruction of S towards each party:

Secret Reconstruction: Code for Pi

1. For every Pj ∈ V CORE, reconstruct Pj ’s AWSS-Commitment on f1
j (x), . . . , f `

j (x) as follows:

(a) Participate in AWSS-Multiple-Secret-Rec(Pj ,P, (f1
j (x), . . . , f `

j (x))) with WCOREPj and OKSetP
Pj

k

for every Pk ∈ WCOREPj . We call this instance of AWSS-Multiple-Secret-Rec as
AWSS-Multiple-Secret-RecPj .

(b) For each l ∈ {1, . . . , `}, wait for the termination of AWSS-Multiple-Secret-RecPj with output either

Q(Pj ,l)(x, y) or NULL.

2. Wait for the reconstruction of Pj ’s AWSS-Commitment for every Pj ∈ V CORE.

3. Add Pj ∈ V CORE to FINAL if AWSS-Multiple-Secret-RecPj gives a non-NULL output for each l ∈
{1, . . . , `}. Now for Pj ∈ FINAL, assign f l

j(x) = Q(Pj ,l)(x, 0).

4. For every l ∈ {1, . . . , `} do the following: for every pair (Pγ , Pδ) ∈ FINAL check f l
γ(δ)

?
= f l

δ(γ). If the

test passes for every pair of parties then recover F l(x, y) and reconstruct sl = F l(0, 0). Else reconstruct
sl = NULL. Finally output S = (s1, . . . , s`) and terminate.

Table 4: AVSS for Sharing Secret S = (s1, . . . , s`) with n = 3t + 1

19

