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ABSTRACT
Consider a completely asynchronous network consisting of
n parties where every two parties are connected by a pri-
vate channel. An adversary At with unbounded computing
power actively controls at most t = (⌈n

3
⌉ − 1) out of n par-

ties in Byzantine fashion. In this setting, we say that π
is a t-resilient, (1 − ǫ)-terminating Asynchronous Byzantine
Agreement (ABA) protocol, if π satisfies all the properties of
Byzantine Agreement (BA) in asynchronous settings toler-
ating At and terminates (i.e every honest party terminates
π) with probability at least (1− ǫ). In this work, we present
a new t-resilient, (1 − ǫ)-terminating ABA protocol which
privately communicates O(Cn6κ) bits and A-casts1 O(Cn6κ)

bits, where ǫ = 2−Ω(κ) and C is the expected running time of
the protocol. Moreover, conditioned on the event that our
ABA protocol terminates, it does so in constant expected
time; i.e., C = O(1). Our ABA protocol is to be compared
with the only known t-resilient, (1 − ǫ)-terminating ABA
protocol of [5] in the same settings, which privately commu-
nicates O(Cn11κ4) bits and A-casts O(Cn11κ2 log(n)) bits,

where ǫ = 2−Ω(κ) and C = O(1). So our ABA achieves a
huge gain in communication complexity in comparison to
the ABA of [5], while keeping all other properties in place.
In another landmark work, in PODC 2008, Abraham et.
al [1] proposed a t-resilient, 1-terminating (called as almost-
surely terminating in [1]) ABA protocol which privately com-
municates O(Cn6 log n) bits and A-casts O(Cn6 log n) bits.
But ABA protocol of Abraham et. al. takes polynomial
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(C = O(n2)) expected time to terminate. Hence the mer-
its of our ABA protocol over the ABA of Abraham et. al.
are: (i) For any κ < n2 log n, our ABA is better in terms
of communication complexity (ii) conditioned on the event
that our ABA protocol terminates, it does so in constant
expected time (the constant is independent of n, t and κ),
whereas ABA of Abraham et. al. takes polynomial expected
time. Summing up, in a practical scenario where a faster and
communication efficient ABA protocol is required, our ABA
fits the bill better than ABA protocols of [5, 1].

For designing our ABA protocol, we present a novel and
simple asynchronous verifiable secret sharing (AVSS) pro-
tocol which significantly improves the communication com-
plexity of the only known AVSS protocol of [5] in the same
settings. We believe that our AVSS can be used in many
other applications for improving communication complexity
and hence is of independent interest.

Categories and Subject Descriptors: D. 4. 6 [Security
and Protection]: Cryptographic Controls

General Terms: Security, Reliability.

Keywords: Unbounded Computing Power, VSS, Byzan-
tine Agreement, Asynchronous Networks.

1. INTRODUCTION
Byzantine Agreement (BA) [14] is one of the most funda-

mental problems in distributed computing. Roughly speak-
ing, the BA problem is as follows: there are n parties, each
having an input binary value; the goal is for all honest par-
ties to agree on a consensus value that is the input value
of one of the honest parties. The challenge lies in reaching
agreement despite the presence of faulty parties, who may
deviate from the protocol arbitrarily. The BA problem has
been investigated extensively in various models, character-
ized by the synchrony of the network, privacy of the chan-
nels, computational power of the faulty parties and many
other parameters [9, 6, 4, 13]. An interesting and practi-
cally motivated variant of BA is Asynchronous BA (ABA)
tolerating a computationally unbounded malicious adversary.

In ABA, the communication channels between the par-
ties have arbitrary, yet finite delay (i.e the messages are
guaranteed to reach eventually) and an adversary At with
unbounded computing power can corrupt at most t out of
n parties in Byzantine fashion. It is well known that ABA
tolerating At is possible iff n ≥ 3t + 1 [13, 14]. Any ABA
protocol designed with n = 3t + 1 is therefore called as
optimally resilient. By the seminal result of [10], any op-
timally resilient ABA protocol must have non-terminating



runs, where some honest party(ies) may not output any
value. So we say an ABA protocol to be (1−ǫ)-terminating,
if in the protocol, each honest party eventually terminates
with probability (1−ǫ), where ǫ is the probability of not ter-
minating. As a special case, we call an ABA protocol to be
almost-surely terminating, a term coined by Abraham et. al
in [1], if the set of non-terminating executions in the proto-
col has probability zero. The BA problem has been studied
extensively over the past three decades and tight bounds
have been established on resilience, round complexity and
communication complexity for several variants of the prob-
lem in synchronous settings (see [13]). However, very little
attention has been paid in designing fast, communication ef-
ficient, optimally resilient ABA protocol. Our result in this
paper marks a significant progress in this direction.

Existing Results: In the following table, we sum up the
following properties of existing ABA protocols: (i) Resilience,
(ii) Communication Complexity (CC), (iii) Expected Run-
ning Time (ERT) and (iv) Probability of Termination (POT)
(whether (1 − ǫ)-terminating or 1-terminating i.e. almost-
surely terminating).

Ref. Resilience CC ERT POT
[3] 3t + 1 O(2n) C = O(2n) 1
[8] 4t + 1 poly(n) C = O(1) 1

[5, 4] 3t + 1 poly(n, κ) C = O(1) (1 − ǫ)

[1] 3t + 1 poly(n) C = O(n2) 1

Though the optimally resilient ABA protocols of Canetti
et.al [5, 4] and Abraham et. al. [1] provide polynomial
communication complexity (the exact figure is provided in
the sequel), they are fairly high. So, designing optimally
resilient, communication efficient ABA protocol which runs
in constant expected time is the next natural important and
interesting problem. In this paper we focus on designing
optimally resilient ABA protocol which is communication
efficient, as well as runs in constant expected time.

Our Contribution: We present an optimally resilient, (1−
ǫ)-terminating ABA protocol which privately communicates

O(Cn6κ) bits and A-casts O(Cn6κ) bits, where ǫ = 2−Ω(κ)

and C is the expected running time of the protocol. Moreover,
conditioned on the event that our ABA protocol terminates,
it does so in constant expected time; i.e., C = O(1). In the
following table, we compare and contrast our ABA protocol
with the most recent optimally resilient ABA protocols.

Ref. CC (in bits) ERT POT

[5] Private– O(Cn11κ4) C = O(1) (1 − ǫ)
A-cast– O(Cn11κ2 log(n))

[1] Private– O(Cn6 log(n)) C = O(n2) 1
A-cast– O(Cn6 log n)

This Article Private– O(Cn6κ) C = O(1) (1 − ǫ)
A-cast– O(Cn6κ)

So our ABA achieves a huge gain in communication com-
plexity in comparison to the ABA of [5], while keeping all
other properties in place. Our ABA enjoys the following
merits over the ABA of Abraham et. al. [1]: (i) For any
κ < n2 log n, our ABA is better in terms of communication
complexity (ii) our ABA runs in constant expected time.
However, we stress that our ABA is (1 − ǫ)-terminating
whereas ABA of [1] is almost-surely terminating.

Our construction of ABA protocol, employs a novel asyn-
chronous verifiable secret sharing (AVSS) scheme with n =
3t+1. Roughly speaking, an AVSS scheme consists of a shar-
ing phase and reconstruction phase. Informally, the goal of
the AVSS scheme is to share a secret among n parties during

the sharing phase in a way that would later allow unique re-
construction of the secret in the reconstruction phase. Our
AVSS protocol is far better in terms of communication com-
plexity than the AVSS protocol of [5] in the same setting,
while having the same properties.

A Brief Discussion on the Approaches Used in the
ABA Protocols of [5] and [1] and Current Article:
Almost all the ABA protocols in the past have used Rabin’s
[15] idea of reducing the problem of ABA to that of imple-
menting a common coin. While Rabin [15] assumed that
all the parties have access to a common coin (namely, a
common source of randomness), Bracha [3] provided a naive
implementation of common coin for the first time in the
literature. Feldman and Micali [8] reduced the problem of
efficiently implementing a common coin to that of efficiently
implementing AVSS. For a comprehensive account on the
reduction from AVSS to ABA, reader may refer [4].

1. The ABA protocol of Canetti et.al [5, 4] uses the re-
duction from AVSS to ABA. Hence they have first designed
an AVSS with n = 3t + 1. There are well known inherent
difficulties in designing AVSS with n = 3t + 1 (see [5, 4]).
To overcome these difficulties, the authors in [5] used the
following approach to design their AVSS scheme. They first
designed a tool called Information Checking Protocol (ICP).
Then a protocol called Asynchronous Recoverable Sharing
(A-RS) was designed using ICP as a black box. Subse-
quently, using A-RS as a primitive, the authors have de-
signed another well known primitive called Asynchronous
Weak Secret Sharing (AWSS). Then the authors presented
a variation of AWSS scheme called Two & Sum AWSS. Fi-
nally using their Two & Sum AWSS, an AVSS scheme was
presented. Thus pictorially, the route taken by [5] to design
their AVSS scheme is as follows:ICP → A-RS → AWSS →
Two & Sum AWSS → AVSS. Since the final AVSS scheme
is designed on the top of so many sub-protocols, it becomes
highly communication intensive as well as very much in-
volved. The protocol privately communicates O(n9κ4) bits,
A-Cast O(n9κ2 log(n)) bits during sharing phase and pri-
vately communicates O(n6κ3) bits, A-Cast O(n6κ log(n))
bits during reconstruction phase 2 for sharing a single se-
cret s, where all the honest parties terminate the protocol
with probability at least 1 − 2−Ω(κ).

2. The ABA protocol of [1] used the same reduction from
AVSS to ABA as in [5], except that the use of AVSS is re-
placed by a variant of AVSS that the authors called shunning
(asynchronous) VSS (SVSS), where each party is guaranteed
to terminate almost-surely. SVSS is a slightly weaker notion
of AVSS in the sense that if all the parties behave correctly,
then SVSS satisfies all the properties of AVSS without any
error. Otherwise it does not satisfy the properties of AVSS
but enables some honest party to identify at least one cor-
rupted party, whom the honest party shuns from then on-
wards. The use of SVSS instead of AVSS in generating com-
mon coin causes the ABA of [1] to run for O(n2) expected
time. The SVSS protocol requires private communication of
O(n4 log(n)) bits and A-Cast of O(n4 log(n)) bits.

3. Our ABA protocol also follows the same reduction from

2The exact communication complexity analysis of the AVSS
scheme of [5] was not done earlier and we have carried out
the same. The complete analysis will appear in the full
version of the paper.



AVSS to ABA as in [5]. In the course of designing our ABA
protocol, our first step is to design a communication efficient
AVSS protocol. Instead of following a fairly complex route
taken by [5] to design an AVSS scheme, we follow a shorter
route for designing our AVSS: ICP → AWSS → AVSS. Be-
side this, we significantly improve each of these building
blocks by employing new design approaches. Together, this
lead to our efficient AVSS and ABA protocols which we be-
lieve are much simpler than the AVSS and ABA of [5].

2. NETWORK MODEL AND DEFINITIONS
Model: We follow the asynchronous network model of [5],
where there are n parties, denoted by the set P = {P1, . . . ,
Pn}, who are connected by pairwise reliable and secure chan-
nel. An adversary At with unbounded computing power can
corrupt at most t parties during the protocol in Byzantine
fashion. Once a party is corrupted, he remains so through-
out the protocol. A message sent through a channel may
have arbitrary (but finite) delay. To model this, we assume
that At controls the delay in transmission of the messages
flowing through different channels and hence he can arbi-
trarily (but finitely) delay their transmission. Though At

can delay the messages sent by the honest parties, it has no
access to these messages. The error probability of our proto-
col is 2−Ω(κ), where κ(> 0) is called the error parameter. To

bound the error probability of our protocols by 2−Ω(κ), all
our protocols work over a finite field F where F = GF (2κ).
Thus each field element can be represented by κ bits. With-
out loss of generality, we assume κ = poly(n).

Asynchronous Weak Secret Sharing (AWSS) [5]: Let (Sh, Rec)
be a pair of protocols in which a dealer D ∈ P shares a secret
s ∈ F. We say that (Sh, Rec) is a t-resilient AWSS scheme
for n parties if the following hold for every possible At:

• Termination: With probability at least 1 − 2−Ω(κ), the
following requirements hold:

1. If D is honest then each party will eventually terminate
protocol Sh.

2. If some honest party has terminated protocol Sh, then
irrespective of the behavior of D, each honest party
will eventually terminate Sh.

3. If at least one honest party has terminated Sh and if
all the honest parties invoke protocol Rec, then each
honest party will eventually terminate Rec.

• Correctness: With probability at least 1 − 2−Ω(κ), the
following requirements hold:

1. If D is honest then each honest party upon terminating
protocol Rec, outputs the shared secret s.

2. If D is faulty and some honest party has terminated Sh,
then there exists a unique s′ ∈ (F∪NULL), such that
each honest party upon completing Rec, will output
either s′ or NULL.

• Secrecy: If D is honest and no honest party has begun
executing protocol Rec, then the corrupted parties have no
information about the shared secret.

Asynchronous Verifiable Secret Sharing (AVSS) [5]: The Ter-
mination and Secrecy conditions for AVSS are same as in
AWSS. The only difference is in Correctness 2 property:

Correctness 2: If D is faulty and some honest party has

terminated Sh, then there exists a unique s′ ∈ (F∪NULL),

such that with probability at least 1 − 2−Ω(κ), each honest
party upon terminating Rec, will output s′.

Asynchronous Byzantine Agreement (ABA)[5]: Let Π be an
asynchronous protocol in which each party has a binary in-
put and let κ > 0 be the error parameter. We say that Π
is a (1− 2−Ω(κ))-terminating, t-resilient ABA protocol if the
following hold, for every possible At:

• Termination: With probability at least 1 − 2−Ω(κ) all
honest parties terminate the protocol.

• Correctness: All the honest parties who have terminated
hold identical outputs. Furthermore, if all the honest par-
ties had the same input, say ρ, then all the honest parties
output ρ.

A-Cast[5]: It is an asynchronous broadcast primitive, which
was introduced and elegantly implemented by Bracha [3]
with n = 3t + 1. Let Π be an asynchronous protocol initi-
ated by a special party (called the sender), having input m
(the message to be broadcast). We say that Π is a t-resilient
A-cast protocol if the following hold, for every possible At:

• Termination:

1. If the sender is honest and all the honest parties par-
ticipate in the protocol, then each honest party will
eventually terminate the protocol.

2. Irrespective of the behavior of the sender, if any honest
party terminates the protocol then each honest party
will eventually terminate the protocol.

• Correctness: If the honest parties terminate the protocol
then they do so with a common output m∗. Furthermore, if
the sender is honest then m∗ = m.

A-Cast of b bits incurs a private communication of O(n2b)
bits [3]. Notice that the termination property of A-Cast is
much weaker than that of ABA because for A-Cast, it is
not required that the honest parties terminate the protocol
when the sender is faulty. In the rest of the paper, we use
the following convention: we say that Pj receives m from the
A-Cast of Pi, if Pj completes the execution of Pi’s A-Cast,
with m as the output.

3. INFORMATION CHECKING PROTOCOL
The Information Checking Protocol (ICP) is a tool for

authenticating messages in the presence of computationally
unbounded corrupted parties. The notion of ICP was first
introduced by Rabin et.al [16] who have designed an ICP in
synchronous settings. The ICP of Rabin et. al. was also
used as a tool by Canetti et. al. [5] for designing ABA with
optimal resilience (i.e n = 3t + 1).

As described in [16, 5, 7], an ICP is executed among three
parties: a dealer D, an intermediary INT and a verifier
R. The dealer D hands over a secret value s to INT . At
a later stage, INT is required to hand over s to R and
convince R that s is indeed the value which INT received
from D. The basic definition of ICP involves only a single
verifier R [16, 7, 5]. We extend this notion to multiple veri-
fiers, where all the n parties in P act as verifiers. Thus our
ICP is executed among three entities: a dealer D ∈ P , an
intermediary INT ∈ P and the entire set P acting as veri-
fiers. This will be later helpful in using ICP as a tool in our
AWSS/AVSS protocol. Note that, as opposed to the case of



a single verifier, when multiple verifiers simultaneously par-
ticipate in ICP, we need to distinguish between synchronity
and asynchronity of the network. Our ICP is executed in
asynchronous settings and thus we refer it as AICP. As in
[16, 5], our AICP is also structured into three phases:

1. Generation Phase: is initiated by D. Here D hands
over the secret s to intermediary INT . In addition, D sends
some authentication information to INT and verification in-
formation to individual parties (verifiers) in P .

2. Verification Phase: is carried out by INT and the set
of verifiers P . Here INT decides whether to continue or
abort the protocol depending upon the prediction whether
in Revelation Phase, secret s held by INT will be (even-
tually) accepted/will be considered as valid by all the (hon-
est) verifiers in P . INT achieves this by setting a boolean
variable Ver = 0/1, where Ver = 0 implies abortion of the
protocol, while Ver = 1 implies the continuation of the pro-
tocol. If Ver = 1, then the authentication information, along
with s, which is held by INT at the end of Verification
Phase is called D’s IC signature on s.

3. Revelation Phase: is carried out by INT and the ver-
ifiers in P . Here INT reveals his secret s along with the
authentication information. The verifiers publish their re-
sponses with respect to the revealed information of INT .
Depending upon the responses by the verifiers, a verifier
Pi ∈ P either accepts INT ’s secret s or rejects it. Upon ac-
ceptance (resp., rejection), verifier Pi sets Reveali = s (resp.,
Reveali = NULL).

Any AICP should satisfy the following properties (which are
almost same as the properties of ICP defined in [5]):

1. If D and INT are honest, then s will be accepted in
Revelation Phase by each honest verifier.

2. If INT is honest and Ver =1, then s held by INT will
be accepted in Revelation Phase by each honest verifier,
except with probability 2−Ω(κ).

3. If D is honest, then during Revelation Phase, with
probability at least 1 − 2−Ω(κ), every s′ 6= s produced by a
corrupted INT will not be accepted by an honest verifier.

4. If D and INT are honest and INT has not started Rev-
elation Phase, then At will have no information about s.

Notice that unlike other asynchronous primitives (e.g. AWSS,
AVSS, ABA), we do not concentrate on defining the ter-
mination property of AICP. The reason is that AICP will
never be executed as a stand alone application in our ABA.
Rather, AICP will act as a tool to design AWSS and AVSS,
which have their own termination properties. This is in line
with [5], where ICP is defined without termination property
and is used as a tool in AWSS/AVSS protocol. We now
present a novel AICP called A-ICP (given in Table. 1) with
n = 3t + 1.

The high level idea of the protocol is as follows: D sets
the secret s as the constant term of a random polynomial
F (x) of degree t and gives it to INT . D also hands over
some secret evaluation points and the value of F (x) at those
points to individual verifiers. This ensures that at a later
stage, a corrupted INT cannot produce an incorrect F (x)
during Revelation Phase, without being caught by honest
verifiers. This ensures property 3 of AICP. Now to satisfy

property 2 of AICP, an honest INT has to ensure that his
polynomial F (x) will be accepted by honest verifiers during
Revelation Phase. For this, INT interacts with the ver-
ifiers and finds whether his polynomial is ’consistent’ with
the secret evaluation points and the values possessed by the
verifiers. In order to do so, INT and verifiers follow a zero-
knowledge strategy. Then in Revelation Phase, INT ’s
secret is accepted on the basis of the consistency between
the responses of verifiers during Verification Phase and
the responses of verifiers in Revelation Phase. In the se-
quel, whenever we say that D gives his IC signature on s
to INT , we mean that D starts the Generation Phase of
A-ICP.

Lemma 1. If D and INT are honest, then s will be ac-
cepted in Reveal by every honest verifier.

Proof: If D and INT are honest, then at least t + 1
honest verifiers from ReceivedSet will A-cast Accept and
Re-accept during Verification and Revelation Phase re-
spectively and hence will be considered as consistent. So
each honest verifier Pi will eventually output Reveali = s. 2

Lemma 2. If INT is honest and Ver = 1 at the end of
Verification Phase, then s held by INT will be accepted
by every honest verifier, except with probability 2−Ω(κ).

Proof: Since INT is honest and Ver = 1 at the end of Ver-
ification Phase, INT must have received Accept from the
A-cast of at least t + 1 verifiers of ReceivedSet. Moreover,
there are 2t + 1 verifiers in ReceivedSet, of which at least
t + 1 are honest. We now show that the honest verifiers in
ReceivedSet will be eventually considered as consistent dur-
ing Reveal with very high probability, implying that every
honest verifier will accept INT ’s secret s.

Let Pi be an honest verifier in ReceivedSet who A-casts
Accept during Verification Phase. This implies that B(αi)
= dvi+ri holds, which further implies that either (a) F (αi) =
vi and R(αi) = ri Or (b) F (αi) 6= vi and R(αi) 6= ri (for
other combinations, B(αi) = dvi + ri will not hold). If (a)
holds, then Pi will A-cast Re-accept and will be considered
as consistent during Reveal. But on the other hand if (b)
holds, then Pi will A-cast Re-reject and will be consid-
ered as inconsistent during Reveal. We now show that Pi

will be considered as inconsistent during Reveal with neg-
ligible probability. The reason is that for every F (x),R(x)
held by an honest INT and vi, ri held by an honest verifier
Pi in ReceivedSet, there is only one non-zero d for which
B(αi) = dvi + ri, even if (b) is true. For otherwise, as-
sume there exists another non-zero element e 6= d, for which
B(αi) = evi + ri holds, even if (b) holds. This implies that
(d − e)F (αi) = (d − e)vi or F (αi) = vi, which is a con-
tradiction to (b). Now since d is randomly chosen by INT
only after D hands over F (x),R(x) to INT and vi, ri to
Pi, a corrupted D has to guess d in advance during Gen, in
order to make Pi inconsistent during Reveal. However, D
can guess d with probability at most 1

|F|−1
≈ 2−Ω(κ). Thus

if Pi has A-cast Accept during Verification Phase, then
it will be considered as consistent during Reveal with very
high probability.

On the other hand, let Pi be an honest verifier in Received
Set who A-casts Reject during Verification Phase. This
implies that B(αi) 6= dvi + ri which further implies either
F (αi) 6= vi or R(αi) 6= ri or both. What ever may be the
case, Pi will A-cast Re-reject during Reveal and will be
always considered as consistent. Hence the lemma. 2



Protocol A-ICP(D, INT,P , s)

Generation Phase: Gen(D, INT,P , s)

1. The dealer D, having secret s, selects a random t degree polynomial F (x) over F, such that F (0) = s.

2. D selects another random t degree polynomial R(x) over F, independent of F (x).

3. D selects n distinct, random, secret evaluation points α1, α2, . . . , αn from F \ {0, 1, . . . , n − 1}.

4. D sends F (x) and R(x) to INT . To verifier Pi ∈ P , D sends αi, vi and ri, where vi = F (αi) and ri = R(αi). We
call αi, vi and ri as verification information for Pi.

Verification Phase: Ver(D, INT,P , s)

1. Verifier Pi sends a Received-From-D signal to INT after receiving verification information from D.

2. INT waits for 2t + 1 Received-From-D signal. Upon receiving them, INT puts the identity of the verifiers (from
whom it has obtained Received-From-D signal) in a list, say ReceivedSet (clearly |ReceivedSet| = 2t + 1). INT
then chooses a random d ∈ F \ {0}, computes B(x) = dF (x) + R(x) and A-casts (d,B(x), ReceivedSet).

3. A verifier Pi, on receiving (d, B(x),ReceivedSet) from the A-cast of INT , checks whether the following holds: (i)

Pi ∈ ReceivedSet; and (ii) B(αi)
?
= dvi + ri. If yes (no) then Pi A-casts Accept (Reject).

4. INT sets V er = 1, if he receives Accept from the A-cast of at least t + 1 verifiers who belong to ReceivedSet. In
this case, we say that INT has ’successfully’ completed the Verification Phase. Moreover, (F (x) and R(x)) held
by INT is called D’s IC signature on secret s. On the other hand, INT sets V er = 0, if he receives Reject from the
A-cast of at least t + 1 verifiers who belong to ReceivedSet.

Revelation Phase: Reveal(D, INT,P , s)

1. INT A-casts F (x) and R(x).

2. A verifier Pi ∈ ReceivedSet, on receiving F (x) and R(x) from the A-cast of INT , checks whether F (αi)
?
= vi and

R(αi)
?
= ri. Now to ensure that INT has indeed set Ver = 1 during Verification Phase, Pi waits to receive Accept

from the A-cast of at least t+1 verifiers who belong to ReceivedSet. Once he receives the same, Pi A-casts Re-accept

if both the above tests (namely, F (αi)
?
= vi and R(αi)

?
= ri) pass. If either one of the test fails, Pi A-casts Re-reject.

3. (a) A verifier Pi ∈ ReceivedSet is called as consistent if

i. he A-casted Accept in Verification Phase and Re-accept in Revelation Phase, Or

ii. he A-casted Reject in Verification Phase and Re-reject in Revelation Phase.

(b) Similarly, a verifier Pi ∈ ReceivedSet is called as inconsistent if

i. he A-casted Accept in Verification Phase and Re-reject in Revelation Phase, Or

ii. he A-casted Reject in Verification Phase and Re-accept in Revelation Phase.

4. If a verifier Pi ∈ P finds at least (t+1) consistent verifiers from ReceivedSet, then Pi sets Reveali = s and terminates,
where s is the constant term of of F (x) which is A-casted by INT in the first step of current phase. We say that
INT is ’successful’ in producing IC signature to Pi.

5. If a verifier Pi ∈ P finds at least (t + 1) inconsistent verifiers from ReceivedSet, then Pi sets Reveali = NULL and
terminates. We say that INT fails to correctly produce IC signature to Pi.

Table 1: Information Checking Protocol, n = 3t + 1

Lemma 3. If D is honest, then during Reveal, with proba-
bility at least 1−2−Ω(κ), every s′ 6= s produced by a corrupted
INT will not be accepted by an honest verifier.

Proof: A corrupted INT may produce incorrect B′(x) 6=
B(x) during Verification Phase. But since D is hon-
est, a corrupted INT will have no knowledge about αi’s
corresponding to honest verifiers in ReceivedSet. So all
the honest verifiers in ReceivedSet (at least t + 1) will A-
cast Reject with very high probability during Verification
Phase. In order that an honest verifier Pi in ReceivedSet
A-casts Accept for B′(x), a corrupted INT has to ensure
that B′(αi) = B(αi). For this, he has to correctly guess

αi, which he can do with probability t
|F−n−1|

≈ 2−Ω(κ). So,

none of the honest verifiers in ReceivedSet will ever respond
during Reveal, as they will be waiting indefinitely for the A-
cast of t+1 Accept signals from the verifiers in ReceivedSet.

So assume that a corrupted INT has produced correct
B(x) during Verification Phase. All honest verifiers from

ReceivedSet will then A-cast Accept eventually. But if INT
A-casts F ′(x) 6= F (x) to produce a different s′ 6= s during
Reveal, then all honest verifiers in ReceivedSet will even-
tually A-cast Re-reject with very high probability. To
make an honest verifier Pi A-cast Re-accept during Re-
veal, INT must ensure F ′(αi) = F (αi). For this, he has
to correctly guess αi which he can do with probability at
most t

|F−n−1|
≈ 2−Ω(κ). Thus with very high probability,

all honest verifiers from ReceivedSet will eventually A-cast
Re-reject and hence they will become inconsistent. So each
honest verifier Pi will eventually set Reveali = NULL. 2

Lemma 4. If D and INT are honest and INT has not
started Reveal, then At will have no information about s.

Proof: At the end of Verification Phase, At will know
d, B(x) = dF (x)+R(x) and t distinct points on F (x),R(x).
Since F (x) and R(x) are random polynomials of degree t,
the secret s = F (0) will remain unknown to At. 2



Lemma 5. In A-ICP, Gen privately communicates O(nκ)
bits. Ver requires A-cast of O(nκ) bits and private commu-
nication of O(nκ) bits. Reveal requires A-cast of O(nκ) bits.

4. AWSS
We now present a novel AWSS protocol called AWSS with

n = 3t+1. Protocol AWSS consists of a pair of sub-protocols,
(AWSS-Share, AWSS-Rec). While AWSS-Share allows D to
share a secret s, AWSS-Rec enables public reconstruction of
either D’s shared secret or NULL. If D is corrupted, then
s can be either from F or NULL (in a sense explained in
the sequel). We follow the general idea of [2, 7, 12, 11] in
synchronous settings for sharing the secret s with a degree-t
symmetric bivariate polynomial F (x, y), where each party
Pi gets the univariate polynomial fi(x) = F (x, i). In partic-
ular, protocol AWSS is somewhat inspired by the WSS pro-
tocol of [7] in synchronous settings, with several new ideas
incorporated in it.

AWSS-Share(D,P , s)

Distribution:Code for D

1. Select a random degree-t symmetric bivariate poly-
nomial F (x, y) over F, such that F (0, 0) = s.

2. For 1 ≤ i ≤ n, deliver fi(x) = F (x, i) to Pi, along
with IC signature on each fi(j) by considering Pi

as INT and executing Gen(D, Pi,P , fi(j)) for every
j ∈ {1, . . . , n}.

Verification: Code for Pi

1. Wait until Gen(D, Pi,P , fi(j)) is completed for every
j ∈ {1, . . . , n}.

2. Check whether the points (fi(1), . . . , fi(n)) lie on
a unique t-degree polynomial. If yes, then acting
as INT , execute Ver(D, Pi,P , fi(j)) for every j ∈
{1, . . . , n}.

3. If Ver(D, Pi,P , fi(j)) is completed with Ver = 1 for
all j ∈ {1, . . . , n}, then hand over fi(j) to Pj , along
with IC signature by acting as dealer and execut-
ing Gen(Pi, Pj ,P , fi(j)) for all j ∈ {1, . . . , n}. In
addition, participate in Gen(Pj , Pi,P , fj(i)) for all
j ∈ {1, . . . , n} by acting as INT .

4. Wait until Gen(Pj , Pi,P , fj(i)) is completed. If
fi(j) = fj(i) then execute Ver(Pj , Pi,P , fj(i)) as
an INT . If Ver(Pj , Pi,P , fj(i)) is completed with
Ver = 1, then A-cast OK(Pi, Pj).

Core Construction: Code for D

1. For each Pj , build a set OKSetPj =
{Pi|D receives OK(Pi, Pj) from the A-Cast of Pi}.
When |OKSetPj | = 2t + 1, conclude that Pj ’s
IC-Commitment on fj(x) is over and add Pj in
WCORE (which is initially empty).

2. Wait until |WCORE| = 2t + 1. Then A-cast
WCORE and OKSetPj for all Pj ∈ WCORE.

Core Verification & Agreement on Core: Code

for Pi

1. Wait to receive WCORE and OKSetPj for all Pj ∈
WCORE from D’s A-cast, such that |WCORE| =
2t + 1 and |OKSetPj | = 2t + 1 for each Pj ∈
WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKSetPj and
Pj ∈ WCORE. After receiving, accept WCORE
and OKSetPj ’s and terminate AWSS-Share.

Briefly, the high-level idea of AWSS is as follows: In AWSS-
Share, D first hands over n points on fi(x) to Pi, with his
IC signature on these values. Then D, in conjunction with

all other parties, perform a sequences of communications
and computations. As a result of this, at the end of the
sharing phase, every party agrees on a set of 2t + 1 parties,
called WCORE, such that every party Pj ∈ WCORE is
confirmed by a set of 2t + 1 parties, called as OKSetPj . A
party Pk ∈ OKSetPj provides the confirmation to Pj , only
when it possesses proper IC signature of D on fk(j) (jth

point on polynomial fk(x), which Pk is entitled to receive
from D) as well as IC signature of Pj on the point fj(k)
(kth point on polynomial fj(x), which Pj is entitled to re-
ceive from D), such that fj(k) = fk(j) holds (which should
ideally hold due to the selection and distribution of symmet-
ric bivariate polynomial). In some sense, we may view these
checkings as every Pj ∈ WCORE is attempting to commit
his received (from D) polynomial fj(x) among the parties in
OKSetPj (by giving his IC Signature on one point of fj(x)
to each party) and the parties in OKSetPj allowing him to
do so after verifying that they have got D’s IC signature on
the same value of fj(x). We will refer this commitment as
Pj ’s IC-Commitment on fj(x).

Achieving the agreement (among the parties) on WCORE
and corresponding OKSets is a bit tricky in asynchronous
network. Even though the confirmations are A-casted by
parties, parties may end up with different versions of WCORE
and OKSet’s while attempting to generate them locally, due
to the asynchronous nature of the network. We solve this
problem by asking D to construct WCORE and OKSets
after receiving confirmations and ask D to A-cast the same.
After receiving WCORE and OKSets from the A-cast of D,
individual parties ensure the validity of (verifies) these sets
by receiving the same confirmations from the parties in the
received OKSets. A similar approach was used in [1].

In AWSS-Rec, the parties in WCORE and corresponding
OKSet’s are used for reconstructing the secret. Precisely,
in the reconstruction phase, Pj ’s IC-Commitment on fj(x)
is revealed by reconstructing it with the help of the parties
in OKSetPj , for every Pj ∈ WCORE. Then the polyno-
mials fj(x)’s are used to construct the symmetric bivariate
polynomial (if possible) F (x, y) that is committed by D dur-
ing sharing phase. Since fj(x) is a degree-t polynomial, any
t + 1 points on it are enough to interpolate fj(x). The
points on fj(x) are obtained by requesting each party Pk in
OKSetPj to reveal IC signature of D on fk(j) and IC sig-
nature of Pj on fj(k) such that fj(k) = fk(j) holds. Asking
Pk ∈ OKSetPj to reveal D’s signature ensures that when D
is honest, then even for a corrupted Pj ∈ WCORE, the re-
constructed polynomial fj(x) will be same as the one handed
over by D to Pj in sharing phase. This helps our AWSS
protocol to satisfy Correctness 1 property of AWSS. Now
asking Pk in OKSetPj to reveal Pj ’s signature ensures that
even if D is corrupted, for an honest Pj ∈ WCORE, the
reconstructed polynomial fj(x) will be same as the one re-
ceived by Pj from D in the sharing phase. This ensure cor-

rectness 2 property. Summing up, when at least one of D
and Pj is honest, Pj ’s IC-Commitment on fj(x) is revealed
properly. But when both D and Pj are corrupted, Pj ’s IC-

Commitment on fj(x) can be revealed as any fj(x) 6= fj(x).
It is the later property that makes our protocol to qualify
as a AWSS protocol rather than a AVSS protocol.

Lemma 6. Protocol AWSS satisfies termination property.

Proof: Termination 1: If D is honest then he will even-
tually include all the 2t + 1 honest parties in WCORE as



well as in corresponding OKSet’s and will A-Cast the same.
By the property of A-Cast, every honest party will receive
WCORE and OKSet’s, confirm their validity and termi-
nate AWSS-Share eventually.

Termination 2: If an honest Pi has terminated AWSS-
Share, then he must have received WCORE and OKSetPj ’s
from the A-cast of D and verified their validity. By proper-
ties of A-cast, each honest party will also receive the same
and will eventually terminate AWSS-Share.

Termination 3: By Lemma 2, if an honest Pi sets Ver = 1,
then IC signature produced by Pi will be accepted in Reveal,
except with probability 2−Ω(κ). For every Pj ∈ WCORE,
|OKSetPj | = 2t + 1. So there are at least t + 1 honest
parties in OKSetPj who will be included in V alidSetPj

with high probability. So for every Pj ∈ WCORE, Pj ’s
IC-Commitment will be reconstructed. Thus with very high
probability, each honest party will terminate AWSS-Rec. 2

AWSS-Rec(D,P , s)

Signature Revelation: Code for Pi

1. If Pi belongs to OKSetPj for some Pj ∈
WCORE, then participate (as an INT ) in
Reveal(D, Pi,P , fi(j)) and Reveal(Pj , Pi,P , fj(i)).

2. Participate (as a verifier) in Reveal(D, Pk,P , fk(j))
and Reveal(Pj , Pk,P , fj(k)), for all Pk ∈ OKSetPj

and Pj ∈ WCORE.

Local Computation: Code for Pi

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-
Commitment on fj(x) by executing the following
steps:

(a) Construct a set V alidSetPj = ∅.

(b) Add party Pk ∈ OKSetPj to V alidSetPj if the
following condition is true:

Reveal(D, Pk,P , fk(j)), Reveal(Pj , Pk,P , fj(k))
are successfully completed, with outputs, Re-

veali = fk(j) and Reveali = fj(k) respectively

and fk(j) = fj(k).

(c) Wait until |V alidSetPj | = t + 1. Construct

a polynomial fj(x) passing through the points

(k, fj(k)) where Pk ∈ V alidSetPj . Associate

fj(x) with Pj ∈ CORE.

2. Wait until IC-Commitment is reconstructed with a
polynomial fj(x) for each Pj in WCORE.

3. For each (Pγ , Pδ) ∈ WCORE, check fγ(δ)
?
= fδ(γ).

If the test passes for each pair of parties in WCORE,

then construct the bivariate polynomial F (x, y) us-

ing the polynomials fj(x) associated with Pj ∈

WCORE, compute s = F (0, 0) and terminate. Else
set s = NULL and terminate.

Lemma 7. Protocol AWSS satisfies secrecy property.

proof: Follows from the secrecy of A-ICP and properties of
symmetric bivariate polynomial. 2

Lemma 8. Protocol AWSS satisfies correctness property.

Proof: Correctness 1: Here we have to consider the case
when D is honest. We first prove that if D is honest, then
with very high probability, for every Pj ∈ WCORE, Pj ’s
IC-Commitment will be reconstructed correctly. In other
words, fj(x) associated with every Pj ∈ WCORE dur-
ing reconstruction phase, is same as fj(x) selected by D.

From the property of A-ICP, for an honest Pj ∈ WCORE,
a corrupted Pk ∈ OKSetPj can produce Pj ’s valid sig-

nature on fj(k) 6= fj(k) with negligible probability (from
Lemma 3). Similarly, for a corrupted Pj ∈ WCORE, a cor-
rupted Pk ∈ OKSetPj can produce Pj ’s valid signature on

fj(k) 6= fj(k) but Pk will fail to produce honest D’s signa-

ture on fk(j) = fj(k) with very high probability. Thus with
very high probability, corresponding to each Pj ∈ WCORE,
the parties in V alidSetPj have produced correct points on
fj(x). So F (x, y) and s = F (0, 0) will be reconstructed cor-
rectly by every party with very high probability.

Correctness 2: Here we consider the case, when D is cor-
rupted. Since in AWSS-Share, every honest party agrees on
WCORE and OKSetPj for Pj ∈ WCORE, a unique secret
s′ ∈ F ∪ NULL is defined by (at least t + 1) honest par-
ties in WCORE at the end of AWSS-Share. We say that
s′ is D’s committed secret. If the univariate polynomials of
the honest parties in WCORE define a degree-t symmetric
bivariate polynomial, say F ′(x, y), then s′ is the constant
term of F ′(x, y). Otherwise s′ = NULL.

We first consider the case when s′ = F ′(0, 0). This implies
that univariate polynomials corresponding to honest Pj ’s in
WCORE define a symmetric t-degree bivariate polynomial
F ′(x, y). We claim that with very high probability, for an
honest Pj ∈ WCORE, Pj ’s IC-Commitment will be recon-

structed correctly. In other words, fj(x) associated with
an honest Pj ∈ WCORE during reconstruction phase, is
same as the one, which was received by Pj . This claim fol-
lows from the argument given in Correctness 1. But for
a corrupted Pj in WCORE, Pj ’s IC-Commitment can be

revealed as any degree-t polynomial fj(x). This is because
a corrupted Pk ∈ OKSetPj can produce a valid signature

of Pj on any fj(k) as well as a valid signature of D (who

is corrupted as well) on fk(j) = fj(k). Also the adversary
can delay the messages such that the values of corrupted
Pk ∈ OKSetPj are revealed (to parties) before the val-
ues of honest parties in OKSetPj . Now if reconstructed

fj(x)’s corresponding to corrupted Pj ’s in WCORE, along

with reconstructed fj(x)’s corresponding to honest Pj ’s in
WCORE define F ′(x, y), then s′ will be reconstructed. Oth-
erwise, NULL will be reconstructed. However, since for all
the honest parties of WCORE, IC-Commitment will be re-
constructed correctly (who in turn define F ′(x, y)), no other
secret (other than s′) can be reconstructed.

On the other hand, let D’s committed secret s′ = NULL.
In this case irrespective of the behavior of corrupted parties,
NULL will be reconstructed by each honest party. 2

Lemma 9. Both AWSS-Share and AWSS-Rec privately com-
municates O(n3κ) bits and A-cast O(n3κ) bits.

Theorem 1. The pair (AWSS-Share, AWSS-Rec) consti-
tutes a valid AWSS scheme with n = 3t + 1, which shares a
single secret and satisfies all the properties of AWSS.

Important Note: In AWSS-Share, the degree-t univariate
polynomial F (x, 0) = f0(x) is used to share the secret s.
In the following when ever we say that D shares a degree-
t polynomial f(x) by executing AWSS-Share(D,P , f(x)), we
mean that D executes AWSS-Share with a degree-t symmet-
ric bivariate polynomial F (x, y), such that F (x, 0) = f(x).
It should be noted that f(x) is not completely random but



only preserves the secrecy of the constant term which is
the secret s = f(0). Yet, this distribution of polynomials
is sufficient to provide the secrecy requirements needed by
our AVSS where AWSS is used as a building block. If D
indeed selects the bivariate polynomial in the above way
and follows the protocol steps correctly, then as a result of
the above execution, Pi in WCORE will hold the ith share
f(i) = F (i, 0) = F (0, i), the polynomial fi(x) = F (x, i) and
the share-share fj(i) = F (i, j) = fi(j) corresponding to ev-
ery other Pj . Similarly, AWSS-Rec(D,P , f(x)) can be used
for the reconstruction of f(x) and secret s = f(0).

5. AVSS
In this section, we present our novel AVSS scheme called

AVSS. Protocol AVSS consists of sub-protocols (AVSS-Share,
AVSS-Rec). While AVSS-Share allows D to share a secret
s, AWSS-Rec enables public reconstruction of D’s shared
secret. If D is corrupted, then s can be either from F or
NULL (in a sense explained in the previous section).

We now explain the high level idea used in AVSS. In AVSS-
Share, D selects a degree-t symmetric bivariate polynomial
F (x, y), such that F (0, 0) = s and sends fi(x) = F (x, i) to
party Pi. Now the parties communicate with each other to
perform what we say commitment upon verification. Here
each party Pi is asked to commit his received polynomial
fi(x). However, Pi is allowed to commit fi(x), only af-
ter the parties have verified that they have received same
points on fi(x) from D as well as Pi. More formally, to
achieve commitment upon verification, party Pi, acting as
a dealer, shares his polynomial fi(x) by initiating an in-
stance of AWSS-Share with a degree-t symmetric bivariate
polynomial QPi(x, y), such that QPi(x, 0) = fi(x). Since

party Pj receives qPi

j (x) = QPi(x, j) from Pi as part of

AWSS-Share, he can check whether qPi
j (0)

?
= fj(i), as ide-

ally qPi
j (0) = fi(j) = fj(i) should hold in case of honest D,

Pi and Pj . A party Pj participates in the remaining steps
of the instance of AWSS-Share where Pi is dealer, only if
qPi

j (0) = fj(i) holds. Once commitment upon verification is
over, the parties want to agree on a set of at least 2t + 1
parties, denoted as V CORE, such that for every party Pj ∈
V CORE, the instance of AWSS-Share where Pj is dealer,
terminates with a WCORE set, denoted as WCOREPj

and |V CORE ∩ WCOREPj | ≥ 2t + 1. Informally, this
means that each party Pj ∈ V CORE has ’successfully’ com-
mitted his polynomial fj(x) to at least 2t + 1 parties in
V CORE, who have verified that they have received cor-
rect points on fj(x). We will refer this commitment as
Pj ’s AWSS-Commitment on fj(x). It should be noted that
AWSS-Commitment is strictly stronger commitment than
IC-Commitment that was enforced in AWSS-Share. These
two commitments can be distinguished only when both D
and Pj are corrupted in which case (a) AWSS-Commitment
ensures that reconstruction of AWSS-Commitment can not
be changed to some other polynomial other than NULL,
but (b) IC-Commitment can not ensure the same. The
agreement on V CORE and corresponding WCOREPj ’s is
achieved using similar mechanism, as used in AWSS-Share
for achieving agreement on WCORE and corresponding
OKSets.

AVSS-Share(D,P , s)

Distribution: Code for D

1. Select a degree-t random symmetric bivariate poly-
nomial F (x, y) such that F (0, 0) = s and send
fi(x) = F (x, i) to Pi.

Commitment upon Verification: Code for Pi

1. Wait to obtain fi(x) from D.

2. If fi(x) is a degree-t polynomial then as a dealer, exe-
cute AWSS-Share(Pi,P , fi(x)) by selecting a degree-t
symmetric bivariate polynomial QPi(x, y) such that

QPi(x, 0) = qPi
0 (x) = fi(x). We call this instance of

AWSS-Share initiated by Pi as AWSS-SharePi .

3. As a part of the execution of AWSS-SharePj , wait

to receive q
Pj

i (x) = QPj (x, i) from Pj . Then check

fi(j)
?
= q

Pj

i (0). If the test passes then participate in

AWSS-SharePj and act according to the remaining
steps of AWSS-SharePj .

Core Construction: Code for D

1. Wait to terminate AWSS-SharePj with WCOREPj

and OKSetP
Pj

k for every Pk ∈ WCOREPj . Then
add Pj in a set TempCORE (initially empty). Here
j ∈ {1, . . . , n}.

2. Even after terminating AWSS-SharePj , update (in-

clude new parties in) WCOREPj and OKSetP
Pj

k ’s
upon receiving new A-casts of the form OK(., .) as
a part of AWSS-SharePj . Also update TempCORE
upon terminating AWSS-Share for new parties.

3. After every update, perform the following computa-
tions:

(a) Assign V CORE = TempCORE and check
whether |V CORE ∩ WCOREPj | ≥ 2t + 1 for
every Pj ∈ V CORE. If not then remove Pj

from V CORE and keep on repeating this until
no more party can be removed from V CORE.

(b) Check whether |V CORE| ≥ 2t + 1. If not,
then delete V CORE and wait for more up-
dates. Otherwise, A-cast V CORE, WCOREPj

for Pj ∈ V CORE and OKSetP
Pj

k for every

Pk ∈ WCOREPj . Conclude that each Pj ∈
V CORE is AWSS-committed to fj(x).

Core Verification & Agreement on Core : Code

for Pi

1. Wait to receive V CORE, WCOREPj for

Pj ∈ V CORE and OKSetP
Pj

k for every

Pk ∈ WCOREPj from D’s A-cast, such that
|V CORE| ≥ 2t + 1 and for each Pj ∈ V CORE,
|V CORE ∩ WCOREPj | ≥ 2t + 1 and

|OKSetP
Pj

k | ≥ 2t + 1 for every Pk ∈ WCOREPj .

2. Wait to terminate AWSS-SharePj corresponding to
every Pj in V CORE.

3. For every Pj ∈ V CORE, wait to receive OK(Pm, Pk)

for every Pm ∈ OKSetP
Pj

k and Pk ∈ WCOREPj .
After receiving all OKs, accept the V CORE,

WCOREPj for Pj ∈ V CORE and OKSetP
Pj

k for

every Pk ∈ WCOREPj and terminate AVSS-Share.

In AVSS-Rec, D’s committed secret is recovered with the
help of the parties in V CORE and WCOREPj ’s. Pre-
cisely, in the reconstruction phase, for every Pj ∈ V CORE,



AWSS-Commitment on fj(x) is revealed by reconstructing
it with the help of the parties in WCOREPj . This is done
by executing an instance of AWSS-Rec with the parties in
WCOREPj . This results in the reconstruction of either
fj(x) or NULL depending on whether Pj is honest or cor-
rupted. Since |V CORE| ≥ 2t +1, for (at least t+1) honest
parties, fj(x)’s will be recovered correctly. Now with the
fj(x)’s, F (x, y) will be reconstructed.

AVSS-Rec(D,P , s)

Secret Reconstruction: Code for Pi

1. For every Pj ∈ V CORE, reconstruct Pj ’s AWSS-
Commitment on fj(x) as follows:

(a) Participate in AWSS-Rec(Pj ,P , fj(x)) with

WCOREPj and OKSetP
Pj

k for every Pk ∈
WCOREPj . We call this instance of AWSS-
Rec as AWSS-RecPj .

(b) Wait for the termination of AWSS-RecPj with

output either QPj (x, y) or NULL.

2. Wait for the reconstruction of Pj ’s AWSS-
Commitment for every Pj ∈ V CORE.

3. Add Pj ∈ V CORE to FINAL if AWSS-RecPj gives
a non-NULL output. Now for Pj ∈ FINAL, assign

fj(x) = QPj (x, 0).

4. For every pair (Pγ , Pδ) ∈ FINAL check fγ(δ)
?
=

fδ(γ). If the test passes for every pair of parties

then recover F (x, y) using fj(x)’s corresponding to

each Pj ∈ FINAL and reconstruct s = F (0, 0). Else
reconstruct s = NULL. Finally output s and ter-
minate AVSS-Rec.

NULL Commitment in AVSS: In AVSS, we say that D’s
committed secret is the constant term of the symmetric
degree-t bivariate polynomial F ′(x, y) which is defined by
the univariate polynomials of the honest parties in V CORE.
For an honest D, the polynomials of the honest parties in
V CORE will always define a symmetric bivariate polyno-
mial and thus the committed secret is always a valid field
element and hence considered as meaningful. But for a cor-
rupted D, this may not hold. In this case, we say that D
is committed to NULL. The reconstruction phase of our
AVSS protocol ensures the reconstruction of the committed
secret.

Lemma 10. Protocol AVSS satisfies termination property.

Proof: Termination 1: If D is honest, then corresponding
to every honest Pj , AWSS-SharePj will eventually terminate
with 2t+1 honest parties in WCOREPj . Thus eventually all
the 2t+1 honest parties will be included in TempCORE and
D will eventually get V CORE = TempCORE, such that
|V CORE| ≥ 2t + 1 and |V CORE ∩ WCOREPj | ≥ 2t + 1
for each Pj ∈ V CORE. From similar argument given in
Termination 1 of Lemma 6, all honest parties will eventu-
ally agree on V CORE, WCOREPj for Pj ∈ V CORE and

OKSetP
Pj

k and will terminate AVSS-Share.

Termination 2: The proof follows from the similar argu-
ment given in Termination 2 of Lemma 6.

Termination 3: Follows from the fact that correspond-
ing to each Pj ∈ V CORE, every honest Pi will terminate
AWSS-RecPj (from Termination 3 of Lemma 6). 2

Lemma 11. Protocol AVSS satisfies correctness property.

Proof: Correctness 1: We have to consider the case
when D is honest. If D is honest then we prove that with
very high probability, for every Pi ∈ FINAL, Pi’s AWSS-
Commitment will be reconstructed correctly. In other words,
AWSS-RecPi will disclose fi(x) which is same as fi(x) se-
lected by honest D. For every honest Pi ∈ FINAL this
is trivially true. We have to prove the above statement
for a corrupted Pi ∈ FINAL. If a corrupted Pi belongs
to FINAL, it implies AWSS-RecPi is successful (i.e., the
output is a symmetric degree-t bivariate polynomial) and
AWSS-SharePi had terminated during AVSS-Share. Now ter-
mination of AVSS-Share ensures |V CORE ∩ WCOREPi |
≥ 2t + 1. The above statements have the following impli-
cations together: (a) With very high probability, Pi must
have given consistent polynomials to the honest parties in
WCOREPi (during AWSS-SharePi) such that they induce
valid degree-t symmetric bivariate polynomial (see Correct-
ness 2 of Lemma 8). (b) Pi must have agreed with the hon-
est parties of WCOREPi with respect to the common values
given by D. This means that as a part of AWSS-SharePi , Pi

handed over qPi
j (x) to an honest Pj (in WCOREPi) sat-

isfying fj(i) = qPi
j (0). The statements in (a) and (b) to-

gether imply that Pi must have committed (to the honest
parties in WCOREPi which are at least t + 1) some bivari-
ate polynomial QPi(x, y) satisfying QPi(x, 0) = fi(x). Thus

if AWSS-RecPi is successful, then QPi(x, y) = QPi(x, y) and

hence fi(x) = fi(x). Since D is honest, fi(x)’s correspond-

ing to Pi ∈ FINAL will define F (x, y) = F (x, y). Thus

s = F (0, 0) = F (0, 0) will be recovered.

Correctness 2: Since in AVSS-Share, every honest party
agrees on a common V CORE, a unique secret s′ ∈ (F ∪
NULL) is defined by (at least t+1) honest parties in V CORE.
If the univariate polynomials of the honest parties in V CORE
define a degree-t symmetric bivariate polynomial, say F ′(x, y),
then s′ is the constant term of F ′(x, y). Otherwise s′ =
NULL. When s′ = NULL, we say that committed s′ is not
meaningful.

Let s′ = NULL. Now for every honest Pi ∈ V CORE,
AWSS-RecPi will disclose fi(x) which is same as the one re-
ceived by Pi in sharing phase. Hence, all honest parties
from V CORE will be added to FINAL with very high
probability. Now irrespective of the remaining (corrupted)
parties included in FINAL, the consistency checking (i.e.,

fγ(δ)
?
= fδ(γ)) will fail for some pair (Pγ , Pδ) of honest par-

ties and NULL will be reconstructed.
On the other hand, let s′ be meaningful and s′ = F ′(0, 0).

This means that F ′(x, y) is defined by the fi(x)’s of the
honest parties in V CORE. This case completely resembles
with the case when D is honest and hence the proof follows
from the proof of Correctness 1. 2

Lemma 12. Protocol AVSS satisfies secrecy property.

proof: Follows from Lemma 7, Lemma 4 and properties of
symmetric bivariate polynomial. 2

Lemma 13. Both Protocol AVSS-Share and Protocol AVSS-

Rec communicate O(n4κ) bits and A-cast O(n4κ) bits.

Important Note: Protocol AVSS does not force corrupted
D to commit some meaningful secret (i.e., an element from
F). Hence, the secret s, committed by a corrupted D can



be either from F or NULL. We may assume that if D’s
committed secret is NULL, then D has committed some
predefined value s∗ ∈ F, which is known publicly. Hence in
AVSS-Rec, whenever NULL is reconstructed, every honest
party replaces NULL by the predefined secret s∗. Inter-
preting this way, we say that our AVSS scheme allows D to
commit secret from F.

6. EFFICIENT ABA
Using our AVSS protocol, we design an ABA protocol

with optimal resilience. The first step is to get a common
coin [4]. In the common coin protocol of [4], every party
shares n random secrets using n different instances of AVSS
protocol of [5, 4]. We replace the AVSS scheme of [5, 4] with
protocol AVSS to obtain an efficient common coin protocol,
which we call as Efficient-Common-Coin.

Lemma 14. Protocol Efficient-Common-Coin privately com-
municates O(n6κ) bits and A-cast O(n6κ) bits.

Proof: Easy, as Efficient-Common-Coin executes n2 instances
of AVSS-Share and AVSS-Rec. 2

Efficient-Common-Coin will satisfy all the properties of the
common coin protocol of [4] (see Lemmas 5.27-5.31 of [4]).
In [4, 5], the authors have used their common coin proto-

col (that terminates with probability (1 − 2−Ω(κ))) to get a

(1−2−Ω(κ))-terminating, t-resilient ABA protocol (see Figure
5.11 of [4]). We replace the common coin protocol of [4] by

Efficient-Common-Coin to obtain our efficient (1 − 2−Ω(κ))-
terminating, t-resilient ABA with 3t + 1, which we call as
Efficient-ABA. Similar to the ABA protocol of [5], condi-
tioned on the event that Efficient-ABA terminates, it does
so in constant expected time. The proof for this follows
from same arguments given in [4].

Theorem 2. Protocol Efficient-ABA privately communi-
cates O(Cn6κ) bits and A-casts O(Cn6κ) bits, where C =
Θ(1) is the expected running time of the protocol.

Proof: Since Efficient-ABA terminates in C = Θ(1) ex-
pected time, Efficient-Common-Coin will be called constant
expected number of times. This follows from the similar ar-
gument as given in [5, 4]). Hence the theorem. 2

7. CONCLUSION AND OPEN PROBLEMS
We have presented a novel, constant expected time, (1 −

2−Ω(κ))-terminating, optimally resilient ABA protocol whose
communication complexity is significantly better than ex-
isting ABA protocols of [5, 1] (though the ABA protocol
of [1] has a strong property of being almost surely termi-
nating). The key factors that have contributed to this gain
in the communication complexity are: (a) a shorter route:
ICP → AWSS → AVSS → ABA, (b) Improving each of the
building blocks by introducing new techniques.

Though all our primitives, namely, A-ICP, AWSS, AVSS,
are designed to deal with a single secret, they can be ex-
tended for dealing with multiple secrets concurrently. We
can modify Efficient-Common-Coin appropriately to incorpo-
rate AVSS dealing with multiple secrets concurrently. Thus
by exploiting and harnessing the advantages of dealing with
multiple secrets concurrently in each of the above primitives,
we can further reduce the communication complexity of our

ABA to O(n4κ) bits (private communication and A-cast).
The details will be available in the full version of the paper.

An interesting open problem is to further improve the
communication complexity of ABA protocols. Also one can
try to design an almost surely terminating, optimally re-
silient, constant expected time ABA protocol whose com-
munication complexity is less than the ABA protocol of [1].
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