Efficient Asynchronous Byzantine Agreement with Optimal Resilience

Arpita Patra • Ashish Choudhury • C. Pandu Rangan

Received: date / Accepted: date

Abstract

We present a simple, efficient and optimally resilient Asynchronous Byzantine Agreement (ABA) protocol involving $n=3 t+1$ parties over a completely asynchronous network, tolerating a computationally unbounded Byzantine adversary, who can control t parties. The amortized communication complexity of our ABA protocol is $\mathcal{O}\left(n^{4} \log \frac{1}{\epsilon}\right)$ bits for attaining agreement on a single bit. Here ϵ (where $\epsilon>0$) denotes the probability of non-termination. We compare our protocol with most recent optimally resilient, ABA protocols proposed in [15] and [1] and show that our protocol gains by a factor of $\mathcal{O}\left(n^{7}\left(\log \frac{1}{\epsilon}\right)^{3}\right)$ over the ABA of [15] and by a factor of $\mathcal{O}\left(n^{4} \frac{\log n}{\log \frac{1}{\epsilon}}\right)$ over the ABA of [1].

To design our protocol, we first present a novel, simple and optimally resilient statistical asynchronous verifiable secret sharing (AVSS) protocol with $n=3 t+1$, which significantly improves the communication complexity of the only known optimally resilient statistical

[^0]AVSS protocol of [15]. Our AVSS shares multiple secrets concurrently and is far better than multiple parallel executions of AVSS sharing single secret. We believe that our AVSS can be used in many other applications for improving communication complexity and hence is of independent interest.

The common coin primitive is one of the most important building blocks for the construction of ABA protocol. The only known efficient common coin protocol $[28,14]$ uses multiple executions of AVSS sharing a single secret as a black-box. Unfortunately, this common coin protocol does not achieve its goal when multiple invocations of AVSS sharing single secret are replaced by single invocation of AVSS sharing multiple secrets. Hence in this paper, we extend the existing common coin protocol to make it compatible with our new AVSS. As a byproduct, our new common coin protocol is much more communication efficient than the existing common coin protocol.

1 Introduction

The problem of Byzantine Agreement (BA) was introduced in [48] and since then it has emerged as the most fundamental problem in distributed computing [44]. Roughly speaking, the BA problem is as follows: there are n parties, each having an input binary value; the goal is for all honest parties to agree on a consensus value. The challenge lies in reaching agreement despite the presence of faulty parties, who may deviate from the protocol arbitrarily. The BA problem has been investigated extensively in various models $[29,4,10,15,14,44$, $32,41,2,7-9,11-13,16,21,20,22-25,34,30,31,26,28,36-38$, $42,43,49,50,56,54,55]$. An interesting variant of BA is Asynchronous BA (ABA) tolerating a computationally
unbounded malicious adversary. This problem has got relatively less attention in comparison to the BA problem in synchronous network. In this paper, we make significant inroad towards this direction by designing simple and communication efficient ABA protocol.

1.1 The Model and Definition

We follow the network model of $[15,14]$. Specifically, there is a set of n parties, say $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$, where every two parties are directly connected by a secure and authentic channel and t out of the n parties can be under the influence of a computationally unbounded Byzantine (active) adversary, denoted as \mathcal{A}_{t}. The adversary \mathcal{A}_{t}, completely dictates the parties under its control and can force them to deviate from the protocol in any arbitrary manner. The parties not under the influence of \mathcal{A}_{t} are called honest or uncorrupted.

The underlying network is asynchronous, where the communication channels between the parties have arbitrary, yet finite delay (i.e the messages are guaranteed to reach eventually). To model the worst case scenario, \mathcal{A}_{t} is given the power to schedule the delivery of all messages in the network. However, \mathcal{A}_{t} can only schedule the messages communicated between honest parties, without having any access to them. In asynchronous network, the inherent difficulty in designing a protocol comes from the fact that when cannot distinguish between a slow sender and a corrupted sender. Due to this the protocols in asynchronous network are generally involved in nature and require new set of primitives. We now formally define ABA.

Definition 1 (ABA [15]) : Let Π be an asynchronous protocol executed among the set of parties \mathcal{P}, with each party having a private binary input. We say that Π is an ABA protocol tolerating \mathcal{A}_{t} if the following hold:

1. Termination: If all honest parties participate in the protocol then all honest parties eventually terminate the protocol.
2. Agreement: All honest parties who have terminated the protocol hold identical outputs.
3. Validity: If all honest parties had same input ρ, then all honest parties upon termination output ρ.

We now define (ϵ, δ)-ABA protocol for a given ϵ and δ, where $\epsilon, \delta>0$.
Definition $2((\epsilon, \delta)-\mathbf{A B A})$: An ABA protocol Π is called $(\epsilon, \delta)-\mathrm{ABA}$ if Π satisfies Termination property except with an error probability of ϵ and Agreement/ Validity property except with error probability of δ.

The important parameters of any ABA protocol are:

1. Resilience: maximum number of corrupted parties (t) that the protocol can tolerate;
2. Communication Complexity: total number of bits communicated by honest parties;
3. Computational Complexity: computational resources required by the honest parties. An ABA protocol is called computationally efficient if the computational resources required by each honest party are polynomial in $n, \log \frac{1}{\epsilon}$ and $\log \frac{1}{\delta}$; and
4. Running Time: We present an informal definition of the running time of an asynchronous protocol, taken from [15, 14] (for more details, see [44]): Consider a virtual 'global clock' measuring time in the network. Note that the parties cannot read this clock. Let the delay of a message be the time elapsed from its sending to its receipt. Let the period of a finite execution of a protocol be the longest delay of a message in the execution. The duration of a finite execution is the total time measured by the global clock divided by the period of the execution.
The expected running time of a protocol, conditioned on an event, is the maximum over all inputs and applicable adversaries, of the average over the random inputs of the parties, of the duration of executions of the protocol in which this event occurs.

1.2 Existing Results for ABA

From [48], BA (and hence ABA) tolerating \mathcal{A}_{t} is possible if and only if $n \geq 3 t+1$. Thus, any ABA protocol designed with $n=3 t+1$ is called as optimally resilient. By the seminal result of [31], any ABA protocol, irrespective of the value of n, must have some non-terminating runs, where some honest party(ies) may not output any value and thus may not terminate at all. So in any (ϵ, δ) ABA protocol with non-zero ϵ, the probability of the occurrence of a non-terminating execution is at most ϵ (these type of protocols are called $(1-\epsilon)$-terminating $[15,14])$. On the other hand in any $(0, \delta)$-ABA protocol, the probability of occurrence of a non-terminating execution is asymptotically zero (these type of protocols are called almost-surely terminating [1]). In Table 1, we summarize the best known ABA protocols.

1.3 Common Technique Used in ABA Protocols

Over a period of time, the techniques and the design approaches of ABA has evolved spectacularly. Rabin [50] designed an ABA protocol assuming that the parties have access to a 'common coin protocol', which allows the honest parties to output a common random

Table 1 Summary of Best Known Existing ABA Protocols. In the table, $\operatorname{pol} y(x)$ stands for polynomial in x

Ref.	Type	Resilience	Communication Complexity (CC)	Expected Running Time (ERT)
$[10]$	$(0,0)$	$t<n / 3$	$\mathcal{O}\left(2^{n}\right)$	$\mathcal{O}\left(2^{n}\right)$
$[27,28]$	$(0,0)$	$t<n / 4$	$\operatorname{poly}(n)$	$\mathcal{O}(1)$
$[15,14]$	$(\epsilon, 0)$	$t<n / 3$	$\operatorname{poly}\left(n, \frac{1}{\epsilon}\right)$	$\mathcal{O}(1)$
$[1]$	$(0,0)$	$t<n / 3$	$\operatorname{poly}(n)$	$\mathcal{O}\left(n^{2}\right)$

bit with some probability (called as the success probability). Bracha [10] proposed a simple implementation of common coin protocol, whose success probability is $\Theta\left(2^{-n}\right)$. Feldman and Micali [27,28], were the first to come up with a common coin protocol that has constant success probability. The essence of [27] is the reduction of the common coin to that of implementing an Asynchronous Verifiable Secret Sharing (AVSS) protocol. Here AVSS is a two phase protocol (Sharing and Reconstruction) carried out among the parties in \mathcal{P} in the presence of \mathcal{A}_{t}. Informally, the goal of the AVSS protocol is to allow a special party in \mathcal{P} called dealer to share a secret s among the parties in \mathcal{P} during the sharing phase in a way that would later allow for a unique reconstruction of this secret in the reconstruction phase, while preserving the secrecy of s until the reconstruction phase. Following [27,28], researchers almost followed the same approach of reducing the design of ABA to that of designing AVSS. The same approach is followed by the authors in $[15,1]$ to design their optimally resilient ABA protocols ${ }^{1}$

1.4 Our Motivation and Contribution

In literature, a lot of attention has peen paid to design communication efficient BA protocols in synchronous settings (see [9, 16, 22, 49, 35]). Unfortunately, not too much attention has been paid to design communication efficient ABA protocols with optimal resilience. Naturally, designing optimally resilient, communication efficient, fast ABA protocol which runs in constant expected time is an important and interesting problem. Our result in this paper marks a significant progress in this direction.

We present an optimally resilient, ($\epsilon, 0$)-ABA protocol. Our ABA protocol requires private communication of $\mathcal{O}\left(\mathcal{C} n^{5} \log \frac{1}{\epsilon}\right)$ bits, as well as A-cast ${ }^{2}$ of $\mathcal{O}\left(\mathcal{C} n^{5} \log \frac{1}{\epsilon}\right)$

[^1]Table 2 Comparison of Our Optimally Resilient ABA with Best Known Optimally Resilient ABA Protocols

Ref.	Type	Communication Complexity (CC)	ERT
$[15]$	$(\epsilon, 0)$	Private- $\mathcal{O}\left(\mathcal{C} n^{11}\left(\log \frac{1}{\epsilon}\right)^{4}\right)$ A-cast- $\mathcal{O}\left(\mathcal{C} n^{11}\left(\log \frac{1}{\epsilon}\right)^{2} \log n\right)$	$\mathcal{C}=\mathcal{O}(1)$
$[1]$	$(0,0)$	Private $-\mathcal{O}\left(\mathcal{C} n^{6} \log n\right)$ A-cast- $\mathcal{O}\left(\mathcal{C} n^{6} \log n\right)$	$\mathcal{C}=\mathcal{O}\left(n^{2}\right)$
This Article	$(\epsilon, 0)$	Private $-\mathcal{O}\left(\mathcal{C} n^{4}\left(\log \frac{1}{\epsilon}\right)\right)$ A-cast- $\mathcal{O}\left(\mathcal{C} n^{4}\left(\log \frac{1}{\epsilon}\right)\right)$	$\mathcal{C}=\mathcal{O}(1)$

bits for reaching agreement on $t+1=\Theta(n)$ bits concurrently. So amortized communication complexity for agreeing on a single bit is $\mathcal{O}\left(\mathcal{C} n^{4} \log \frac{1}{\epsilon}\right)$ bits of private, as well as A-cast communication. Moreover, conditioned on the event that our ABA protocol terminates, it does so in constant expected time; i.e., $\mathcal{C}=\mathcal{O}(1)$. In Table 2, we compare our ABA protocol with the optimally resilient ABA protocols of $[15,1]$. From the table, we find that our ABA protcol achieves a huge gain in communication complexity over the ABA of [15], while keeping all other properties in place. On the other hand, our ABA enjoys the following merits over the ABA of [1]:

1. Our ABA is better in terms of communication complexity when $\left(\log \frac{1}{\epsilon}\right)<n^{4} \log n$.
2. Our ABA runs in constant expected time. However, we stress that our ABA is of type $(\epsilon, 0)$ whereas ABA of [1] is of type $(0,0)$.
1.5 A Brief Discussion on the Approaches Used in the ABA Protocols of $[15,1]$ and Current Article

We now briefly discuss the approach used in the ABA protocols of [15], [1] and the current article.

1. The ABA protocol of Canetti et.al $[15,14]$ uses the reduction from AVSS to ABA. Hence they have first designed an AVSS with $n=3 t+1$. There are well known inherent difficulties in designing AVSS with $n=3 t+1$ (see $[15,14]$). To overcome these difficulties, the authors in [15] used the following route to design their AVSS scheme: $I C P \rightarrow A-R S \rightarrow A W S S \rightarrow$ Two \S Sum AWSS \rightarrow AVSS, where $X \rightarrow Y$ means that protocol Y is designed using protocol X as a black-box. Since the final AVSS scheme is designed on the top of so many sub-protocols, it is highly communication intensive as well as very much involved. The protocol privately communicates $\mathcal{O}\left(n^{9}\left(\log \frac{1}{\epsilon}\right)^{4}\right)$ bits, A-cast $\mathcal{O}\left(n^{9}\left(\log \frac{1}{\epsilon}\right)^{2} \log (n)\right)$ bits during sharing phase and privately communicates $\mathcal{O}\left(n^{6}\left(\log \frac{1}{\epsilon}\right)^{3}\right)$ bits, A-cast $\mathcal{O}\left(n^{6}\left(\log \frac{1}{\epsilon}\right) \log (n)\right)$ bits
during reconstruction phase ${ }^{3}$ for sharing a single secret s, where all the honest parties terminate the protocol with probability at least $1-\epsilon$.
2. The ABA protocol of [1] used the same reduction from AVSS to ABA as in [15], except that the use of AVSS is replaced by a variant of AVSS that the authors called shunning (asynchronous) VSS (SVSS), where each party is guaranteed to terminate almostsurely. SVSS is a slightly weaker notion of AVSS in the sense that if all the parties behave correctly, then SVSS satisfies all the properties of AVSS without any error. Otherwise it does not satisfy the properties of AVSS but enables some honest party to identify at least one corrupted party, whom the honest party shuns from then onwards. The use of SVSS instead of AVSS in generating common coin causes the ABA of [1] to run for $\mathcal{O}\left(n^{2}\right)$ expected time. The SVSS protocol requires private communication of $\mathcal{O}\left(n^{4} \log (n)\right)$ bits and A-cast of $\mathcal{O}\left(n^{4} \log (n)\right)$ bits.
3. Our ABA protocol also follows the same reduction from AVSS to ABA as in [15]. We first design a communication efficient AVSS protocol with $n=3 t+1$. Instead of following a fairly complex route taken by [15] to design an AVSS scheme, we follow a shorter route: $I C P \rightarrow A W S S \rightarrow A V S S$. Beside this, we significantly improve each of these building blocks by employing new design approaches. Also each of the building blocks deals with multiple secrets concurrently and thus lead to significant gain in communication complexity. Specifically, our AVSS scheme requires private communication as well as A-cast communication of $\mathcal{O}\left(\left(\ell n^{3}+n^{4}\right) \log \frac{1}{\epsilon}\right)$ bits to share ℓ secret(s) concurrently, where $\ell \geq 1$. Moreover, it requires A-cast communication of $\mathcal{O}\left(\left(\ell n^{3}+n^{4}\right) \log \frac{1}{\epsilon}\right)$ bits to reconstruct the ℓ secret(s).
As discussed earlier in subsection 1.2, the commoncoin protocol is a very important building block of ABA protocol. Previously, AVSS sharing single secret was used to design the only known commoncoin protocol with polynomial communication complexity [28,14]. Informally, in the common coin protocol of [28], each party P_{i} in \mathcal{P} is asked to act as a dealer and share n random secrets using AVSS. For this P_{i} invokes n parallel instances of AVSS as a dealer to parallely share n secrets. It is obvious that we can do better if P_{i} invokes single instance of AVSS, which shares n secrets concurrently. However, our detailed analysis of the existing common coin protocol shows that the above modification does not lead to a correct solution for common

[^2]coin protocol. Hence we bring several new modifications to the existing common-coin protocol so that it can use our new AVSS (that can share multiple secrets concurrently). As a result, our new common coin protocol is more communication efficient than the existing common coin protocol of $[14,15]$. Together, this lead to our efficient ABA protocol.

1.6 Primitives To be Used

We now present the definition of the primitives which are used in this paper. Our ABA protocol has error probability of ϵ in Termination, where $\epsilon>0$ and is called the error parameter. To bound the error probability by ϵ, all our protocols work over a finite field \mathbb{F} where $\mathbb{F}=G F\left(2^{\kappa}\right)$ and $\epsilon=2^{-\Omega(\kappa)}$, for some nonzero κ. Thus each field element can be represented by $\mathcal{O}(\kappa)=\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$ bits. Moreover, without loss of generality, we assume $n=\operatorname{poly}(\kappa)$. That is, n is polynomial in κ. Thus $n=\operatorname{poly}\left(\log \frac{1}{\epsilon}\right)$.
Definition 3 (Statistical Asynchronous Weak Secret Sharing (AWSS) [15]) Let (Sh, Rec) be a pair of protocols in which a dealer $D \in \mathcal{P}$ shares a secret s. We say that (Sh, Rec) is a t-resilient statistical AWSS scheme for n parties if all the following hold for every possible behavior of \mathcal{A}_{t} :

- Termination: With probability at least $1-\epsilon$, the following requirements hold:

1. If D is honest and all honest parties participate in the protocol, then each honest party will eventually terminate protocol Sh.
2. If some honest party has terminated protocol Sh, then irrespective of the behavior of D, each honest party will eventually terminate Sh .
3. If all honest parties have terminated Sh and invoked Rec, then each honest party will eventually terminate Rec.

- Correctness: With probability at least $1-\epsilon$, the following requirements hold:

1. If D is honest then each honest party upon terminating Rec, outputs the shared secret s.
2. If D is faulty and some honest party has terminated Sh , then there exists a unique $s^{\prime} \in \mathbb{F} \cup$ $\{N U L L\}$, such that each honest party upon terminating Rec will output either s^{\prime} or $N U L L$. This property is also called as weak-commitment.

- Secrecy: If D is honest and no honest party has begun executing protocol Rec, then \mathcal{A}_{t} has no information about s.
Definition 4 (Statistical Asynchronous Verifiable Secret Sharing (AVSS) [15]) The Termination and Secrecy conditions for AVSS are same as in AWSS. The
only difference is in the second Correctness property, which is strengthened as follows:
- Correctness 2: If D is faulty and some honest party has terminated Sh , then there exists a unique $s^{\prime} \in$ $\mathbb{F} \cup\{N U L L\}$, such that with probability at least $1-\epsilon$, each honest party upon terminating Rec will output only s^{\prime}. This property is also called as strongcommitment.

Remark 1 In the literature, there are stronger definitions of VSS which requires that D 's committed secret $s^{\prime} \in \mathbb{F}$, instead of $\mathbb{F} \cup\{N U L L\}[40]$. Such stronger definition is required if VSS is used for multi-party computation MPC [5]. However, such strong definition is not required if we want to use VSS to design BA protocol. In fact, such a weak definition of VSS is used in [45] to study the round complexity of VSS.

The above definition of AWSS and AVSS can be extended for secret S containing ℓ element(s) from \mathbb{F}.

Definition 5 (A-cast [15]) Let Π be an asynchronous protocol initiated by a special party (called the sender), having input m (the message to be broadcast). We say that Π is a t-resilient A-cast protocol if the following hold:

- Termination:

1. If the sender is honest and all the honest parties participate in the protocol, then each honest party will eventually terminate the protocol.
2. Irrespective of the behavior of the sender, if any honest party terminates the protocol then each honest party will eventually do the same.

- Correctness: If the honest parties terminate the protocol then they do so with a common output m^{*}. Furthermore, if the sender is honest then $m^{*}=m$.

Bracha [10] gave an elegant implementation of A-cast with $n=3 t+1$. For details, see [14]. The following theorem states the communication complexity of Bracha's A-cast protocol.

Theorem 1 Bracha's A-cast protocol privately communicates $\mathcal{O}\left(\ell n^{2}\right)$ bits to A-cast an ℓ bit message.

Notation 1 In the rest of the paper, we use the following convention: we say that P_{j} receives m from the A-cast of P_{i}, if P_{j} (as a receiver) terminates the execution of P_{i} 's A-cast (as a sender), with m as the output.

2 Organization of the Paper

For the ease of presentation, we divide the paper into two parts. In the first part, our focus is to describe
the main ideas used in our AWSS and AVSS protocols. Hence for ease of understanding, we present our AWSS and AVSS scheme sharing single secret. By incorporating this AVSS into the existing common coin protocol $[28,14]$, we devise an ABA scheme which allows the parties to agree on a single bit and requires private communication as well as A-cast of $\mathcal{O}\left(n^{6}\left(\log \frac{1}{\epsilon}\right)\right)$ bits. In fact, this ABA scheme was reported in [47].

In the second part of the paper, we extend our AWSS and AVSS scheme to share multiple secrets concurrently. We then show how to modify the common coin protocol of $[28,14]$ and present a new common coin protocol that use our AVSS sharing multiple secrets concurrently. Finally, using this common coin protocol, we present our new ABA scheme whose amortized communication cost of reaching agreement on a single bit is $\mathcal{O}\left(n^{4}\left(\log \frac{1}{\epsilon}\right)\right)$ bits of private as well as A-cast communication. We then conclude our article with conclusion and open problems.

3 AVSS Scheme for Sharing a Single Secret

In this section, we first present a new Information Checking Protocol (ICP). Then using ICP, we design an AWSS scheme. Finally, a new AVSS scheme is constructed using our AWSS scheme. So the next three subsections are dedicated to ICP, AWSS and AVSS respectively.

3.1 Information Checking Protocol (ICP)

The Information Checking Protocol (ICP) is a tool for authenticating messages in the presence of computationally unbounded corrupted parties. The notion of ICP was first introduced by Rabin et.al [51]. As described in $[51,15,18]$, an ICP is executed among three parties: a dealer $D \in \mathcal{P}$, an intermediary $I N T \in \mathcal{P}$ and a verifier $R \in \mathcal{P}$. The dealer D gives a secret value $s \in \mathcal{F}$ to $I N T$. At a later stage, $I N T$ is required to reveal s to R and convince R, that s is indeed the value which $I N T$ received from D. In order to facilitate $I N T$ and R to achieve their goal, D sends some authentication information to $I N T$ (along with secret s) and at the same time, D sends some verification information to R. This can be viewed as if D is giving his signature on s to $I N T$, which $I N T$ can later reveal to R. In [51], the authors called this signature as IC Signature.

The basic definition of ICP involves only a single verifier $R[51,18,15]$. We extend this notion to multiple verifiers, where all the n parties in \mathcal{P} act as verifiers simultaneously. This will be later helpful in using ICP as a tool in our AWSS protocol. Moreover, our ICP can deal with multiple secrets concurrently and thus
achieves better communication complexity than multiple execution of ICP dealing with single secret. Our ICP is executed in asynchronous settings and thus we refer it as AICP. We now formally define AICP.

Definition 6 (Asynchronous Information Checking Protocol (AICP)) Let $D \in \mathcal{P}$ and D has a secret $S=\left(s^{1}, \ldots, s^{\ell}\right)$, containing ℓ element(s) from \mathbb{F}. D wants to give S to $I N T \in \mathcal{P}$, such that later when $I N T$ reveals S, the entire set \mathcal{P} can act as verifiers and verify that S was indeed received by $I N T$ from D. Then any AICP protocol to achieve this task has the following three phases:

1. Generation Phase: initiated by D, where D privately sends S, along with some authentication information to $I N T$ and some verification information to individual verifiers.
2. Verification Phase: initiated by $I N T$ where $I N T$ interacts with D and the verifiers in \mathcal{P} to ensure that $I N T$ possesses an S obtained from D, which will be later accepted by each (honest) verifier in \mathcal{P}. The secret S, along with the authentication information, which is finally possessed by $I N T$ at the end of Verification Phase is called as D's IC signature on S, denoted by $\operatorname{ICSig}(D, I N T, \mathcal{P}, S)$.
3. Revelation Phase: carried out by $I N T$ and the verifiers in \mathcal{P}. Here $I N T$ reveals $\operatorname{ICSig}(D, I N T, \mathcal{P}$, S), that is $I N T$ reveals the secret S along with the authentication information. The verifiers then publish their responses after verifying S with respect to their verification information. Depending upon the responses by the verifiers, every individual verifier $P_{i} \in \mathcal{P}$ either accepts S (indicating that P_{i} is convinced that S was indeed obtained by $I N T$ from D) or rejects it (indicating that P_{i} is not convinced that S was indeed obtained by $I N T$ from $D)$. Upon acceptance (resp., rejection), verifier P_{i} sets Reveal ${ }_{i}=S$ (resp., Reveal $\left.{ }_{i}=N U L L\right)$.

Any AICP should satisfy the following properties:

1. AICP-Correctness1: If D and $I N T$ are honest, then S will be accepted in Revelation Phase by each honest verifier.
2. AICP-Correctness2: At the end of Verification Phase, an honest INT will possess an S which will be accepted in Revelation Phase by each honest verifier, except with probability ϵ.
3. AICP-Correctness3: If D is honest, then during Revelation Phase, with probability at least ($1-\epsilon$), every $S^{\prime} \neq S$ revealed by a corrupted $I N T$ will not be accepted by an honest verifier.
4. AICP-Secrecy: If D and $I N T$ are honest and $I N T$ has not started Revelation Phase, then \mathcal{A}_{t} will have no information about S.

We now present an informal idea of our novel AICP called Multi-Verifier-AICP. The protocol operates over field $\mathbb{F}=G F\left(2^{\kappa}\right)$, where $\epsilon=2^{-\Omega(k)}$.

The Intuition: In Multi-Verifier-AICP, D selects a random polynomial $F(x)$ of degree $\ell+t$, whose first ℓ coefficients are the elements of S and delivers $F(x)$ to $I N T$. In addition, to each verifier P_{i}, D gives the value of $F(x)$ at a random evaluation point α_{i}. During the revelation phase, INT will A-cast $F(x)$ and each verifier P_{i} will check if $F(x)$ satisfies α_{i}. Notice that this distribution helps to achieve AICP-Correctness3. Specifically, if D is honest, then a corrupted INT will not know α_{i} of an honest P_{i} and so with very high probability, $F^{\prime}(x) \neq F(x)$ produced by $I N T$ will be caught by honest P_{i}. The above distribution also maintains AICP-Secrecy, as degree of $F(x)$ is $\ell+t$, but only t points on $F(x)$ will be disclosed to \mathcal{A}_{t}. So \mathcal{A}_{t} will lack ℓ points to uniquely interpolate $F(x)$.

But the above distribution alone is not enough to achieve AICP-Correctness2. A corrupted D might distribute $F(x)$ to $I N T$ and value of $F^{\prime}(x) \neq F(x)$ to each honest verifier. To avoid this situation, INT and the verifiers interact to check the consistency of $F(x)$ held by INT and the values held by verifiers. However, we have to also ensure that secrecy of S is maintained during this consistency checking if $I N T$ is honest. At the same time, we have to also ensure that a corrupted INT should not be able to find α_{i} 's of honest verifiers during the consistency checking. In order to facilitate this checking, D also gives to $I N T$ another random polynomial $R(x)$ of degree $\ell+t$ (in addition to $F(x)$). Parallely, to each individual verifier P_{i}, D gives the value of $R(x)$ at α_{i}. The specific details of the consistency checking, along with other formal steps of protocol Multi-Verifier-AICP are given in Fig. 1.

Remark 2 We stress that in protocol Multi-Verifier-AICP, $D, I N T \in \mathcal{P}$. Hence they also act as verifiers and receive verification information during Gen. Moreover, they perform all other steps (in addition to what they are supposed to perform as D and $I N T$) of the protocol as verifiers, which are performed by other verifiers.

We now prove the properties of the protocol.
Claim If D and $I N T$ are honest then D will A-cast OK and not $F(x)$ during Ver.

Proof: Follows from the fact that if D is honest then $F\left(\alpha_{i}\right)=v_{i}$ and $R\left(\alpha_{i}\right)=r_{i}$ for all $P_{i} \in$ ReceivedSet.

Lemma 1 (AICP-Correctness1) If D and INT are honest, then S revealed by INT during Revelation Phase will be accepted by each honest verifier.

Proof: From previous claim, if D and $I N T$ are honest, then D will A-cast OK during Ver. Moreover, $v_{i}=F\left(\alpha_{i}\right)$ and $r_{i}=R\left(\alpha_{i}\right)$ for each honest $P_{i} \in$ ReceivedSet and there are at least $t+1$ such honest P_{i} 's in ReceivedSet. So during Reveal-Public, each honest $P_{i} \in$ ReceivedSet will A-cast Accept, as condition $\mathbf{C 1}$ i.e $v_{i}=F\left(\alpha_{i}\right)$ will hold for each of them. So each honest P_{i} will set Reveal $_{i}=S$.

Fig. 1 AICP with $n=3 t+1$
Protocol Multi-Verifier-AICP $\left(D, I N T, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), \epsilon\right)$
Generation Phase: $\operatorname{Gen}(D, I N T, \mathcal{P}, S, \epsilon)$

1. D picks and sends the following to $I N T$:
(a) A random degree- $(\ell+t)$ polynomial $F(x)=s^{1}+s^{2} x+$ $\ldots+s^{\ell} x^{\ell-1}+r_{1} x^{\ell}+r_{2} x^{\ell+1}+\ldots+r_{t+1} x^{\ell+t}$, where r_{i} 's are random elements of \mathbb{F}, for $i=1, \ldots t+1$.
(b) A random degree- $(\ell+t)$ polynomial $R(x)$ over \mathbb{F}.
2. D privately sends the following to every verifier P_{i} :
(a) $\left(\alpha_{i}, v_{i}, r_{i}\right)$, where $\alpha_{i} \in \mathbb{F}-\{0\}$ is random and all α_{i} 's are distinct.
(b) $v_{i}=F\left(\alpha_{i}\right)$ and $r_{i}=R\left(\alpha_{i}\right)$.
$F(x)$ here forms authentication information, while (α_{i}, v_{i}, r_{i})'s form verification information.
Verification Phase: $\operatorname{Ver}(D, I N T, \mathcal{P}, S, \epsilon)$
3. For $i=1, \ldots, n$, verifier P_{i} sends a Received-From-D signal to $I N T$ after receiving $\left(\alpha_{i}, v_{i}, r_{i}\right)$ from D.
4. Upon receiving Received-From-D from $2 t+1$ verifiers, INT creates a set ReceivedSet = $\left\{P_{i} \quad \mid \quad I N T\right.$ received Received-From-D signal from $\left.P_{i}\right\}$. $I N T$ then chooses a random $d \in \mathbb{F} \backslash\{0\}$ and A-casts $(d, B(x)$, ReceivedSet), where $B(x)=d F(x)+R(x)$.
5. D checks $d v_{i}+r_{i} \stackrel{?}{=} B\left(\alpha_{i}\right)$ for every $P_{i} \in$ ReceivedSet. If not then he A-casts $F(x)$. Otherwise D A-casts OK .
6. The verifiers and $I N T$ do the following:
(a) If $O K$ is received from the A-cast of D then do nothing.
(b) If $F(x)$ is received from the A-cast of D, then INT replaces the $F(x)$ privately received from D during Gen with the $F(x)$ now obtained from D 's A-cast. Parallely, each verifier P_{i} re-sets $v_{i}=F\left(\alpha_{i}\right)$ so that v_{i} now satisfies the $F(x)$ A-casted by D.
$F(x)$ which is now finally possessed by $I N T$ is called D 's $I C$ signature on S and we denote this by $\operatorname{ICSig}(D, I N T, \mathcal{P}, S)$.

Revelation Phase: Reveal-Public $(D, I N T, \mathcal{P}, S, \epsilon)$

1. INT A-casts $F(x)$.
2. On receiving $F(x)$ from the A-cast of $I N T$, verifier $P_{i} \in$ ReceivedSet A-cast Accept in the following conditions.
(a) $v_{i}=F\left(\alpha_{i}\right)$ - we call this as condition C1; OR
(b) $B\left(\alpha_{i}\right) \neq d v_{i}+r_{i}$ and D A-casted OK during Ver - we call this as condition C2.
Otherwise, P_{i} A-cast Reject.
Local Computation (By Every Verifier in \mathcal{P}): If $(t+1)$ verifiers from ReceivedSet have A-casted Accept then accept $F(x)$ and set Reveal ${ }_{i}=S$, where S consists of lower order ℓ coefficients of $F(x)$. Else reject $F(x)$ and set Reveal ${ }_{i}=N U L L$.

Claim Let $I N T$ be honest and D be corrupted. Moreover, during protocol Gen, let D has distributed ($F(x)$, $R(x))$ to $I N T$ and $\left(\alpha_{i}, v_{i}, r_{i}\right)$ to an honest verifier $P_{i} \in$ ReceivedSet such that $F\left(\alpha_{i}\right) \neq v_{i}$ and $R\left(\alpha_{i}\right) \neq r_{i}$. Then except with probability $\epsilon, B\left(\alpha_{i}\right) \neq d v_{i}+r_{i}$.

Proof: We first argue that there is only one non-zero d for which $B\left(\alpha_{i}\right)=d v_{i}+r_{i}$ will hold, even though $F\left(\alpha_{i}\right) \neq v_{i}$ and $R\left(\alpha_{i}\right) \neq r_{i}$. For otherwise, assume there exists another non-zero $e \neq d$, for which $B\left(\alpha_{i}\right)=e v_{i}+r_{i}$ is true, even if $F\left(\alpha_{i}\right) \neq v_{i}$ and $R\left(\alpha_{i}\right) \neq r_{i}$. This implies that $(d-e) F\left(\alpha_{i}\right)=(d-e) v_{i}$ or $F\left(\alpha_{i}\right)=v_{i}$, which is a contradiction. Now since d is randomly chosen by honest INT only after D handed over $(F(x), R(x))$ to $I N T$ and $\left(\alpha_{i}, v_{i}, r_{i}\right)$ to every honest $P_{i} \in$ ReceivedSet, a corrupted D has to guess d in advance during Gen to make sure that $B\left(\alpha_{i}\right)=d v_{i}+r_{i}$ holds. However, D can guess d with probability at most $\frac{1}{|\mathbb{F}|-1} \approx \epsilon$.

Lemma 2 (AICP-Correctness2) At the end of protocol Ver, $F(x)$ (and hence S) possessed by an honest INT will be accepted in Revelation Phase by each honest verifier, except with probability ϵ.

Proof: If D is honest, then lemma follows from Lemma 1. So we consider a corrupted D. We claim that in this case, each honest $P_{i} \in$ ReceivedSet will A-cast Accept during Reveal-Public, except with probability ϵ. Since there are at least $t+1$ honest verifiers in ReceivedSet, it implies that each honest party will accept $F(x)$ and hence S. We have to consider following two cases:

1. D A-cast $F(x)$ during Ver: In this case, the above claim holds without any error, as honest $I N T$ will replace the $F(x)$ which it obtained from D during Gen, with the $F(x)$ now A-casted by D. Moreover, each honest $P_{i} \in$ ReceivedSet will re-set their v_{i}, such that $v_{i}=F\left(\alpha_{i}\right)$. So during Revelation Phase, condition C1, namely $F\left(\alpha_{i}\right)=v_{i}$ will hold.
2. D A-cast $O K$ during Ver: Here, we have the following cases depending on the relation that holds between $(F(x), R(x))$ and $\left.\left(\alpha_{i}, v_{i}, r_{i}\right)\right)$:
(a) $F\left(\alpha_{i}\right)=v_{i}$: Here P_{i} will A-cast Accept without any error as $\mathbf{C 1}$ (i.e $\left.F\left(\alpha_{i}\right)=v_{i}\right)$ will hold.
(b) $F\left(\alpha_{i}\right) \neq v_{i}$ and $R\left(\alpha_{i}\right)=r_{i}$: Here P_{i} will A-cast Accept without any error probability, as $\mathbf{C} 2$ (i.e $\left.B\left(\alpha_{i}\right) \neq d v_{i}+r_{i}\right)$ will hold.
(c) $F\left(\alpha_{i}\right) \neq v_{i}$ and $R\left(\alpha_{i}\right) \neq r_{i}$: Here P_{i} will A-cast Accept except with probability ϵ, as $\mathbf{C} 2$ will hold from the previous claim.

Lemma 3 (AICP-Correctness3) If D is honest, then during Revelation Phase, with probability at least (1ϵ), every $S^{\prime} \neq S$ revealed by a corrupted INT will not be accepted by an honest verifier.

Proof: To reveal $S^{\prime} \neq S$ during Reveal-Public, $I N T$ must A-cast $F^{\prime}(x) \neq F(x)$, such that lower order ℓ coefficients of $F^{\prime}(x)$ are S^{\prime}. We now claim that if $I N T$ does so, then except with probability ϵ, every honest verifier P_{i} in ReceivedSet will A-cast Reject during RevealPublic. This further implies that S^{\prime} will be rejected as there are at least $t+1$ honest parties in ReceivedSet. We consider the following two cases:

1. D-cast $F(x)$ during Ver: In this case, the condition C2 will be never satisfied during RevealPublic. So the only condition in which an honest $P_{i} \in$ ReceivedSet will A-cast Accept for $F^{\prime}(x)$ is that $F^{\prime}\left(\alpha_{i}\right)=v_{i}=F\left(\alpha_{i}\right)$ holds. But the corrupted $I N T$ will have no information about α_{i}, as D and P_{i} are honest. Hence the probability that $I N T$ can ensure $F^{\prime}\left(\alpha_{i}\right)=v_{i}=F\left(\alpha_{i}\right)$ is same as INT correctly guesses α_{i}, which is at most $\frac{\ell+t}{|\mathbb{F}-1|} \approx 2^{-\Omega(\kappa)} \approx \epsilon$ (since $F(x)$ and $F^{\prime}(x)$ can have same value at most at $\ell+t$ values of x).
2. D A-cast OK during Ver: In this case, we show that the conditions for which an honest verifier P_{i} in ReceivedSet would A-cast Accept for $F^{\prime}(x)$ are either impossible or may happen with probability ϵ :
(a) $F^{\prime}\left(\alpha_{i}\right)=v_{i}=F\left(\alpha_{i}\right)$: As discussed above, this can happen with probability at most ϵ.
(b) $B\left(\alpha_{i}\right) \neq d v_{i}+r_{i}$ and D-casted $O K$ during Ver: This case is never possible because if $B\left(\alpha_{i}\right) \neq$ $d v_{i}+r_{i}$, then honest D would have A-casted $F(x)$ during Ver.

Lemma 4 (AICP-Secrecy) If D and INT are honest and INT has not started Revelation Phase, then \mathcal{A}_{t} will have no information about S.

Proof: Follows from the fact that if D and $I N T$ are honest then D will A -cast OK during Ver and \mathcal{A}_{t} will get at most t points on degree- $(\ell+t)$ polynomial $F(x)$ during Gen and Ver.

Theorem 2 Protocol Multi-Verifier-AICP is an efficient AICP. Protocol Gen privately communicates $\mathcal{O}\left((\ell+n) \log \frac{1}{\epsilon}\right)$ bits. Protocol Ver requires A-cast of $\mathcal{O}\left((\ell+n) \log \frac{1}{\epsilon}\right)$ and private communication of $\mathcal{O}(n \log n)$ bits. Reveal-Public A-casts $\mathcal{O}\left((\ell+n) \log \frac{1}{\epsilon}\right)$ bits.
Proof: The first part of the theorem follows from Lemma 1, Lemma 2, Lemma 3 and Lemma 4. In protocol Gen, D privately gives $\ell+t$ field elements to $I N T$ and three field elements to each verifier. Since each field element can be represented by $\mathcal{O}(\kappa)=\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$ bits, Gen incurs a private communication of $\mathcal{O}\left((\ell+n) \log \frac{1}{\epsilon}\right)$ bits. In protocol Ver, every verifier privately sends Received-From-D signal to $I N T$, thus incurring a private communication of $\mathcal{O}(n)$ bits. In addition, INT A-casts $B(x)$ containing $\ell+t$ field elements, thus incurring A-cast of
$\mathcal{O}\left((\ell+n) \log \frac{1}{\epsilon}\right)$ bits. In protocol Reveal-Public, INT A-casts $F(x)$, consisting of $\ell+t$ field elements, while each verifier A-casts Accept/Reject signal. So RevealPublic involves A-cast of $\mathcal{O}\left((\ell+n) \log \frac{1}{\epsilon}\right)$ bits.
Remark 3 (Note on Finding Communication Complexity) In Reveal-Public there are $\Theta(n)$ instances of Acast: one by INT, while one by each verifier in ReceivedSet. However, for communication complexity analysis, we did not focussed on the number of instances of A-cast but rather on the total number of field elements which are A-casted. We will follow this strategy to do the communication complexity analysis of all our protocols and also for the ABA protocol of $[15,1]$. This will not affect the overall communication complexity analysis.

Notation 2 We will use following notations while using our protocol Multi-Verifier-AICP in our AWSS scheme. Recall that D and INT can be any party from \mathcal{P}. We say that:

1. " P_{i} gives $\operatorname{ICSig}\left(P_{i}, P_{j}, \mathcal{P}, S\right)$ to P_{j} " to mean that P_{i} as a dealer executes $\operatorname{Gen}\left(P_{i}, P_{j}, \mathcal{P}, S, \epsilon\right)$, considering P_{j} as INT to give his IC signature on S to P_{j}.
2. " P_{i} receives $\operatorname{ICSig}\left(P_{j}, P_{i}, \mathcal{P}, S\right)$ from P_{j} " to mean that P_{i} as INT has completed $\operatorname{Ver}\left(P_{j}, P_{i}, \mathcal{P}, S, \epsilon\right)$ with the help of the verifiers in \mathcal{P} and finally possess $\operatorname{ICSig}\left(P_{j}, P_{i}, \mathcal{P}, S\right)$, where P_{j} is the dealer.
3. " P_{i} reveals ICSig $\left(P_{j}, P_{i}, \mathcal{P}, S\right)$ " to means P_{i} as INT executes Reveal-Public $\left(P_{j}, P_{i}, \mathcal{P}, S, \epsilon\right)$ along with the participation of the verifiers in \mathcal{P} to reveal S.
4. " P_{k} completes revelation of $\operatorname{ICSig}\left(P_{j}, P_{i}, \mathcal{P}, S\right)$ with Reveal $_{k}=\bar{S}\left(\right.$ resp. Reveal $\left.{ }_{k}=N U L L\right) "$ to mean that P_{k} as a verifier has completed Reveal-Public $\left(P_{j}, P_{i}, \mathcal{P}\right.$, $S, \epsilon)$ with Reveal ${ }_{k}=\bar{S}\left(\right.$ resp. Reveal $\left.{ }_{k}=N U L L\right)$.

3.2 AWSS Scheme for Sharing a Single Secret

We now present a novel AWSS scheme with $n=3 t+1$, consisting of sub-protocols AWSS-Share and AWSS-Rec. While AWSS-Share allows D to share a secret s, AWSSRec enables public reconstruction of either D's shared secret or $N U L L$. Moreover, if D is corrupted, then s can be either from \mathbb{F} or it can be $N U L L$ (in a sense explained in the sequel).

Before beginning the protocol, lets discuss a simple WSS protocol in synchronous settings with $n=2 t+1$. The reason behind discussing the protocol is that our overall AWSS scheme is based on this idea with several other ammendments to deal with the asynchrony of the network. The protocol is as follows:

1. Sharing Phase: D takes a random degree- t polynomial $f(x)$, such that $f(0)=s$ and computes the shares $s_{i}=f(i)$, for $i=1, \ldots, n$. Then to every
party P_{i}, D gives $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P}, s_{i}\right)$. The sharing phase terminates, once every P_{i} as $I N T$, has received $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P}, s_{i}\right)$ from D.
2. Reconstruction Phase: Each P_{i} is asked to reveal $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P}, s_{i}\right)$. Let $W C O R E$ be the set of all such P_{i} 's, who are successfully able to reveal the signatures. Now we take the shares of all the parties in $W C O R E$ and see whether they lie on a degreet polynomial. If yes, then the constant term of the polynomial is taken as the secret, otherwise $N U L L$ is reconstructed.

It is easy to see that the above protocol satisfies secrecy and correctness property. For weak-commit ment, we say that D 's committed secret is defined by the shares of the honest parties during sharing phase. Specifically, if the shares of the honest parties lie on a degree- t polynomial, say $f^{\star}(x)$, then we say that D has committed $s^{\star}=f^{\star}(0)$. Otherwise, we say that D has committed $s^{\star}=N U L L$. However, notice that in this protocol, we cannot ensure that a corrupted D has committed $s^{\star} \neq$ NULL because we are not checking whether D is giving shares on a degree-t polynomial to honest parties during sharing phase.

Now if we try to adapt the above protocol in asynchronous settings with $n=3 t+1$, then we have to terminate the sharing phase, as soon as $2 t+1 P_{i}$'s, denoted by $W C O R E$, have received $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P}, s_{i}\right)$ from D, instead of waiting for all $3 t+1$ parties to receive IC signatures. We can now say that D 's committed secret is defined by the shares of the honest parties in WCORE and there are at least $t+1$ honest parties in $W C O R E$. But now we have to terminate the reconstruction phase, as soon as $t+1 P_{i}$'s in WCORE correctly reveals $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P}, s_{i}\right)$, instead of waiting for all parties in $W C O R E$ to reveal the IC signatures. And since we are terminating with $t+1$ revealed shares, we are bound to get a degree- t polynomial and hence a secret. Now if D is honest, then still all the properties will be satisfied because with very high probability, the revealed shares are indeed the correct shares. However, if D is corrupted, then in the worst case, there can be t corrupted P_{i} 's in $W C O R E$, who can reveal any $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P}, \overline{s_{i}}\right)$. Moreover, adversary can schedule the messages in such a way that t corrupted parties in $W C O R E$ are the first to reveal their shares. Now depending upon which honest party's share from WCORE is correctly revealed next, any degree- t polynomial and hence secret can be reconstructed. This strictly violates the weak commitment property.

The problem with the above adaptation is that we cannot ensure that the shares of all honest parties in $W C O R E$ will be available in the reconstruction phase. To deal with this problem, we share s using two level of
sharing, where each s_{i} is further committed by P_{i} using $I C$-commitment, which is defined in the sequel. We now give the high level description of AWSS-Share.

High Level Description of AWSS-Share: First D selects a random, symmetric bivariate polynomial $F(x, y)$ of degree- t in x and y such that $F(0,0)=s$. D then gives $\operatorname{ICSig}\left(D, I N T, \mathcal{P}, f_{i}(j)\right)$ for every $j=1, \ldots, n$ to P_{i}. This step implicitly implies that P_{i} will receive $f_{i}(x)=F(x, i)$ from D. After receiving these IC signatures from D, every pair of parties $\left(P_{i}, P_{j}\right)$ exchange their own IC signature on their common value, namely $f_{i}(j)=f_{j}(i)=F(i, j)$. Then D, in conjunction with all other parties, perform a sequences of communications and computations. As a result of this, at the end of AWSS-Share, every party agrees on a set of $2 t+1$ parties, called WCORE, such that every party $P_{j} \in W C O R E$ has $I C$-committed $f_{j}(0)$ using $f_{j}(x)$ to a set of $2 t+1$ parties, called as $O K P_{j}$, where $I C$-commitment is defined as follows:

Definition 7 (IC-commitment) In protocol AWSSShare, we say that P_{j} has $I C$-committed $f_{j}(0)$ to the parties in $O K P_{j}$, using the degree- t polynomial $f_{j}(x)$ received from D, if all the following holds for every $P_{k} \in$ $O K P_{j}$:

1. P_{k} has received $\operatorname{ICSig}\left(D, P_{k}, \mathcal{P}, f_{k}(j)\right)$ from D;
2. P_{k} has received $\operatorname{ICSig}\left(P_{j}, P_{k}, \mathcal{P}, f_{j}(k)\right)$ from P_{j};
3. $f_{k}(j)=f_{j}(k)$.

In some sense, we may view as if every $P_{j} \in W C O R E$ has commited his received (from D) polynomial $f_{j}(x)$ to the parties in $O K P_{j}$ (by giving his IC Signature on one point of $f_{j}(x)$ to each party) and the parties in $O K P_{j}$ allowed him to do so after verifying that they have got D 's IC signature on the same value of $f_{j}(x)$. We will show that later in reconstruction phase, $I C$ commitment $f_{j}(0)$ of every honest $P_{j} \in W C O R E$ will be reconstructed correctly irrespective of whether D is honest or corrupted. Moreover, a corrupted P_{j} 's $I C$ commitment will be reconstructed correctly when D is honest. But on the other hand, any value can be reconstructed as P_{j} 's $I C$-commitment, if both D and P_{j} are corrupted. These properties are at the heart of our AWSS protocol.

Achieving the agreement (among the parties) on $W C O R E$ and corresponding $O K P_{j} \mathrm{~s}$ is a bit tricky in asynchronous network. Even though these sets are constructed on the basis of information that are A-casted, parties may end up with different versions of WCORE and $O K P_{j}$'s while attempting to generate them locally, due to the asynchronous nature of the network. We solve this problem by asking D first to construct WCORE and $O K P_{j}$ s based on A-casted information and then ask
D to A-cast $W C O R E$. After receiving $W C O R E$ and $O K P_{j} \mathrm{~s}$ from the A-cast of D, individual parties ensure the validity of these sets by waiting to receive the same A-cast using which D would have formed these sets. A similar approach was used in the protocols of [1].

Notice that if D is honest, then each honest party will always satisfy all the properties for being in $W C O R E$. Hence, if D is honest, then all honest parties will always eventually agree on a $W C O R E$ of size $2 t+1$ and will terminate AWSS-Share. However, if D is corrupted, then there may exist no $W C O R E$ of size $2 t+1$, in which case no honest party will terminate AWSS-Share. Protocol AWSS-Share is formally presented in Fig. 2.

Fig. 2 Sharing Phase of AWSS Scheme

Protocol AWSS-Share $(D, \mathcal{P}, s, \epsilon)$

Distribution: Code for D - Only D executes this code.

1. Select a random, symmetric bivariate polynomial $F(x, y)$ of degree- t in x and y, such that $F(0,0)=s$. For $i=1, \ldots, n$, let $f_{i}(x)=F(x, i)$.
2. For $i=1, \ldots, n$, give $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P}, f_{i}(j)\right)$ to P_{i} for each $j=1, \ldots, n$. For this, D initiates n^{2} instances of Gen, each with an error parameter of $\epsilon^{\prime}=\frac{\epsilon}{n^{2}}$.
Verification: Code for P_{i} - Every party including D executes this code.
3. Wait to receive $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P}, f_{i}(j)\right)$ for each $j=$ $1, \ldots, n$ from D.
4. Check if $\left(f_{i}(1), \ldots, f_{i}(n)\right)$ defines degree- t polynomial. If yes then give $\operatorname{ICSig}\left(P_{i}, P_{j}, \mathcal{P}, f_{i}(j)\right)$ to P_{j} for $j=$ $1, \ldots, n$.
5. If $\operatorname{ICSig}\left(P_{j}, P_{i}, \mathcal{P}, f_{j}(i)\right)$ is received from P_{j} and if $f_{i}(j)=f_{j}(i)$, then A-cast $\mathrm{OK}\left(P_{i}, P_{j}\right)$.
WCORE Construction : Code for D - Only D executes this code.
6. For each P_{j}, build a set $O K P_{j}=$ $\left\{P_{k} \mid D\right.$ receives $\mathrm{OK}\left(P_{k}, P_{j}\right)$ from the A-cast of $\left.P_{k}\right\}$. When $\left|O K P_{j}\right|=2 t+1$, then conclude that P_{j} 's $I C$ commitment on $f_{j}(0)$ is over and add P_{j} in WCORE (which was initially empty).
7. Wait until $|W C O R E|=2 t+1$. Then A-cast $W C O R E$ and $O K P_{j}$ for all $P_{j} \in W C O R E$.
WCORE Verification \& Agreement on WCORE : Code FOR P_{i} - Every party executes this code
8. Wait to receive $W C O R E$ and $O K P_{j}$ for all $P_{j} \in$ $W C O R E$ from D 's A-cast, such that $|W C O R E|=$ $2 t+1$ and $\left|O K P_{j}\right|=2 t+1$ for each $P_{j} \in W C O R E$.
9. Wait to receive $\mathrm{OK}\left(P_{k}, P_{j}\right)$ for all $P_{k} \in O K P_{j}$ and $P_{j} \in$ $W C O R E$. Only after receiving all these 0 Ks , consider the $W C O R E$ and $O K P_{j}$'s received from D as valid, accept them and terminate AWSS-Share.

Before proceeding further, we now define what we call as D's AWSS-commitment during AWSS-Share.

Definition 8 (D 's AWSS-commitment) We say that D has AWSS-committed a secret $s \in \mathbb{F}$ during AWSSShare if there is a unique degree- t univariate polyno-
mial, say $f(x)$, such that $f(0)=s$ and every honest P_{i} in $W C O R E$ receives $f(i)$ from D. Otherwise, we say that D has $A W S S$-committed $N U L L$.

An honest D always $A W S S$-commit $s \in \mathbb{F}$, as in this case $f(x)=f_{0}(x)=F(x, 0)$. Moreover, every honest party P_{i} in $W C O R E$ receives $f(i)=f_{0}(i)=f_{i}(0)$ (this can be obtained from $\left.f_{i}(x)\right)$. But AWSS-Share can not ensure that corrupted D has also $A W S S$-commited $s \in \mathbb{F}$. This means that a corrupted D may distribute information to the parties such that, polynomial $f_{0}(x)$ defined by the $f_{0}(i)=f_{i}(0)$ values possessed by honest P_{i} 's in $W C O R E$ may not be a degree- t polynomial. In this case we say D has $A W S S$-committed NULL.

High Level Idea of AWSS-Rec: In AWSS-Rec, we try to reconstruct D's AWSS-committed secret. For this, we reconstruct $I C$-commitment $f_{j}(0)=f_{0}(j)$ of every $P_{j} \in W C O R E$ and check whether the reconstructed $f_{j}(0)$'s of all $P_{j} \in W C O R E$ lies on a unique degree- t polynomial. If yes, then the constant term of the polynomial is considered as the reconstructed secret, else $N U L L$ is taken as the reconstructed secret.

To reconstruct the $I C$-commitment $f_{j}(0)$ for $P_{j} \in$ $W C O R E$, it is enough to have $t+1$ points on the degree- t polynomial $f_{j}(x)$, used by P_{j} during AWSSShare to do the IC-commitment. We ask the parties in $O K P_{j}$ to reveal these points. Specifically, every party $P_{k} \in O K P_{j}$ is asked to reveal $\operatorname{ICSig}\left(D, P_{k}, \mathcal{P}, f_{k}(j)\right)$ and $\operatorname{ICSig}\left(P_{j}, P_{k}, \mathcal{P}, f_{j}(k)\right)$ such that $f_{k}(j)=f_{j}(k)$ holds. Every such $f_{j}(k)=f_{k}(j)$ which is revealed successfully by $P_{k} \in O K P_{j}$ is considered as a valid point on $f_{j}(x)$. Since there are at least $t+1$ honest parties in $O K P_{j}$, eventually at least $t+1 f_{j}(k)$'s and $f_{k}(j)$'s, satisfying $f_{j}(k)=f_{k}(j)$ will be revealed correctly with which $f_{j}(x)$ and thus $f_{j}(0)$ will be reconstructed. Notice that due to asynchrony of the network, we cannot wait for every $P_{k} \in O K P_{k}$ to reveal $\operatorname{ICSig}\left(D, P_{k}, \mathcal{P}, f_{k}(j)\right)$ and $\operatorname{ICSig}\left(P_{j}, P_{k}, \mathcal{P}, f_{j}(k)\right)$ and so as soon as $t+1 P_{k}$'s from $O K P_{j}$ reveal valid points on $f_{j}(x)$, we have to reconstruct $f_{j}(x)$ and hence $f_{j}(0)$.

Asking every $P_{k} \in O K P_{j}$ to reveal IC signature of D as well as of P_{j} on the same value is required to ensure Correctness 1 and Correctness 2 property of AWSS. Specifically, we will see that when at least one of D and P_{j} is honest, then P_{j} 's $I C$-commitment (i.e $\left.f_{j}(0)\right)$ will be reconstructed correctly. But when both D and P_{j} are corrupted, P_{j} 's $I C$-Commitment can be reconstructed as any $\overline{f_{j}(0)}$ which may or not be equal to $f_{j}(0)$. It is this later property that makes our protocol to qualify as a AWSS protocol rather than a AVSS protocol. Now if we recall the adaptation of the synchronous WSS protocol to asynchronous setting, we can see that how using IC-commitment, we can now
get back the shares (namely $f_{j}(0)$) of all honest P_{j} 's in $W C O R E$, which helps us to achieve weak commitment. Protocol AWSS-Rec is given in Fig. 3.

Fig. 3 Reconstruction Phase of AWSS Scheme

We now prove the properties of our AWSS scheme.
Lemma 5 (AWSS-Termination) AWSS-Share, AWSSRec satisfy termination property of Definition 3.

Proof:

- Termination 1: If D is honest and all honest parties participate during AWSS-Share, then eventually all honest parties will A-cast OK for each other. So D will eventually include $2 t+1$ parties in $W C O R E$ and A-cast the same, along with $O K P_{j}$'s for every $P_{j} \in W C O R E$. Since honest D has included P_{j} in $W C O R E$ after receiving the OK signals from the Acast of the parties in $O K P_{j}$'s, each honest party will also eventually receive the same OK , will consider the $W C O R E$ and $O K P_{j}$'s as valid and will accept them and will eventually terminate AWSS-Share.
- Termination 2: If an honest P_{i} has terminated AWSS-Share, then he must have received WCORE and $O K P_{j}$'s from the A-cast of D and verified their validity by receiving the OK signals from the A-cast of the parties in $O K P_{j}$'s for every $P_{j} \in W C O R E$.

By property of A-cast, each honest party will also eventually receive the same, will consider WCORE and $O K P_{j}$'s as valid and will terminate AWSS-Share.

- Termination 3: For every $P_{j} \in W C O R E$, there are at least $t+1$ honest P_{k} 's in $O K P_{j}$, who will be able to successfully reveal $\operatorname{ICSig}\left(D, P_{k}, f_{k}(j), \mathcal{P}\right)$ and $\operatorname{ICSig}\left(P_{j}, P_{k}, f_{j}(k), \mathcal{P}\right)$ with $f_{j}(k)=f_{k}(j)$ during Reveal-Public, except with error probability ϵ^{\prime} (as each instance of AICP is executed with an error parameter ϵ^{\prime}). So each honest $P_{k} \in O K P_{j}$ will be present in $\operatorname{ValidP}_{j}$ except with probability ϵ^{\prime}. Thus except with probability $n^{2} \epsilon^{\prime}=\epsilon, P_{j}$'s $I C$ commitment will be reconstructed for all $P_{j} \in W C O R E$ and hence except with probability ϵ, all honest parties will terminate AWSS-Rec.

Lemma 6 (AWSS-Secrecy) AWSS-Share satisfies secrecy property of Definition 3.

PROOF: The proof follows from the secrecy of our AICP protocol and properties of symmetric bivariate polynomial of degree- t in x and y [17]. Specifically, let P_{1}, \ldots, P_{t} be under the control of \mathcal{A}_{t}. So during AWSS-Share, \mathcal{A}_{t} will know $f_{1}(x), \ldots, f_{t}(x)$ and t points on $f_{t+1}(x), \ldots$, $f_{n}(x)$. However, \mathcal{A}_{t} still lacks one more point to uniquely interpolate $F(x, y)$ and get $s=F(0,0)$.

Lemma 7 (AWSS-Correctness) AWSS-Share, AWSSRec satisfy correctness property of Definition 3.

Proof:

- Correctness 1: Here we have to consider the case when D is honest. We show that D 's $A W S S$-commit ment will be reconstructed correctly except with probability ϵ. For this, we show that P_{j} 's IC-commit ment $f_{j}(0)$ will be correctly reconstructed with probability at least $\left(1-\frac{\epsilon}{n}\right)$ for every $P_{j} \in W C O R E$. Consequently, as $|W C O R E|=2 t+1$, all the honest parties will reconstruct $f_{0}(x)=F(x, 0)$ and hence $s=f_{0}(0)$ with probability at least $\left(1-(2 t+1) \frac{\epsilon}{n}\right) \approx$ $(1-\epsilon)$. So we consider the following two cases:

1. $P_{j} \in W C O R E$ is honest: From Lemma 3 (i.e., AICP-Correctness3), a corrupted $P_{k} \in O K P_{j}$ can reveal $\operatorname{ICSig}\left(P_{j}, P_{k}, \mathcal{P}, \overline{f_{j}(k)}\right)$ where $\overline{f_{j}(k)}$ $\neq f_{j}(k)$, with probability at most ϵ^{\prime}. As there can be at most t corrupted parties in $\operatorname{ValidP}_{j}$, except with probability $t \epsilon^{\prime}=\frac{\epsilon}{n}$, the value $\overline{f_{j}(k)}=$ $f_{j}(k)$ for all $P_{k} \in \operatorname{Valid} P_{j}$. Hence honest P_{j} 's $I C$-commitment $f_{j}(0)$ will be correctly reconstruct ed with probability at least $\left(1-\frac{\epsilon}{n}\right)$.
2. $P_{j} \in W C O R E$ is corrupted: From Lemma 3 (i.e., AICP-Correctness3), a corrupted $P_{k} \in$ $\underline{O K P_{j}}$ can reveal $\operatorname{ICSig}\left(D, P_{k}, \mathcal{P}, \overline{f_{k}(j)}\right)$ where $\overline{f_{k}(j)} \neq f_{k}(j)$, with probability at most ϵ^{\prime}. Thus
except with probability $t \epsilon^{\prime}=\frac{\epsilon}{n}$, the value $\overline{f_{k}(j)}=$ $f_{k}(j)=f_{j}(k)$ for all $P_{k} \in \operatorname{Valid} P_{j}$. So corrupted P_{j} 's $I C$-commitment $f_{j}(0)$ will be correctly reconstructed with probability at least $\left(1-\frac{\epsilon}{n}\right)$.

- Correctness 2: Here we have to consider a corrupted D. Now there are following two cases:

1. D's AWSS-commitment $s \in \mathbb{F}$: This implies that the $f_{j}(0)$ values received by the honest parties in WCORE during AWSS-Share lies on a degree- t polynomial $f_{0}(x)$. Now using similar arguments as in Correctness 1, it follows that $f_{j}(0)$ will be reconstructed correctly with probability at least $\left(1-(t+1) \epsilon^{\prime}\right) \approx\left(1-\frac{\epsilon}{n}\right)$ for every honest $P_{j} \in W C O R E$. As there are at least $t+1$ honest parties in WCORE, IC-commitment of all honest parties in WCORE will be reconstructed correctly with probability at least $(1-\epsilon)$.
But for a corrupted P_{j} in WCORE, P_{j} 's $I C$ commitment can be reconstructed as any value $\overline{f_{j}}(0)$. This is because a corrupted $P_{k} \in O K P_{j}$ can reveal $\operatorname{ICSig}\left(D, P_{k}, \mathcal{P}, \overline{f_{k}(j)}\right)$, as well as $\operatorname{ICSig}\left(P_{j}, P_{k}, \mathcal{P}, \overline{f_{j}(k)}\right)$, for any $\overline{f_{k}(j)}=\overline{f_{j}(k)}$ of adversary's choice. Also the adversary can schedule the signature revelation in such a way that signature revelation by corrupted P_{k} 's in $O K P_{j}$ are completed before the signature revelation by honest P_{k} 's in $O K P_{j}$. Now if reconstructed $f_{j}(0)=$ $f_{j}(0)$ for all corrupted $P_{j} \in W C O R E$, then s will be reconstructed. Otherwise, $N U L L$ will be reconstructed. However, since for all the honest P_{j} 's in WCORE, IC-commitment $f_{j}(0)$ (which in turn define $f_{0}(x)$) will be reconstructed correctly with probability at least $(1-\epsilon)$, no other secret (other than s) can be reconstructed.
2. D 's AWSS-commitment is $N U L L$: This implies that $f_{j}(0)$'s corresponding to honest P_{j} 's in $W C O R E$ do not define a degree- t polynomial. In this case $N U L L$ will be reconstructed. This is because $f_{j}(0)$ corresponding to each honest $P_{j} \in$ $W C O R E$ will be reconstructed correctly except with probability ϵ (following the argument given in previous case).

Lemma 8 (AWSS-Communication Complexity) Protocol AWSS-Share incurs a private communication of $\mathcal{O}\left(n^{3} \log \frac{1}{\epsilon}\right)$ bits and A-cast of $\mathcal{O}\left(n^{3} \log \frac{1}{\epsilon}\right)$ bits. Protocol AWSS-Rec involves A-cast of $\mathcal{O}\left(n^{3} \log \frac{1}{\epsilon}\right)$ bits.
Proof: In AWSS-Share, there are $\mathcal{O}\left(n^{2}\right)$ instances of Gen and Ver (of Multi-Verifier-AICP), each dealing with $\ell=1$ value and executed with an error parameter of $\epsilon^{\prime}=\frac{\epsilon}{n^{2}}$. From Theorem 2, this requires a private communication, as well as A-cast of $\mathcal{O}\left(n^{3} \log \frac{n^{2}}{\epsilon}\right)=$
$\mathcal{O}\left(n^{3} \log \frac{1}{\epsilon}\right)$ bits, as $n=\operatorname{poly}\left(\frac{1}{\epsilon}\right)$. Moreover, there are A-cast of $\mathcal{O}\left(n^{2}\right)$ OK signals. In addition, there is A-cast of $W C O R E$ containing the identity of $2 t+1$ parties and $O K P_{j}$'s corresponding to each $P_{j} \in W C O R E$, where each $O K P_{j}$ contains the identity of $2 t+1$ parties. Now the identity of a party can be represented by $\mathcal{O}(\log n)$ bits. So in total, AWSS-Share incurs a private communication of $\mathcal{O}\left(n^{3} \log \frac{1}{\epsilon}\right)$ bits and A-cast of $\mathcal{O}\left(n^{2} \log n+n^{3} \log \frac{1}{\epsilon}\right)=\mathcal{O}\left(n^{3} \log \frac{1}{\epsilon}\right)$ bits. In AWSS-Rec, there are $\mathcal{O}\left(n^{2}\right)$ instances of Reveal-Public of our Multi-Verifier-AICP, each dealing with $\ell=1$ value. This requires A-cast of $\mathcal{O}\left(n^{3} \log \frac{1}{\epsilon}\right)$ bits.
Theorem 3 Protocols (AWSS-Share, AWSS-Rec) constitutes a valid statistical AWSS scheme with $n=3 t+1$.

Proof: Follows from Lemma 5, 6 and 7.
Notation 3 (AWSS Sharing of a Polynomial) If we closely look into the computations of AWSS-Share, then we observe that the shares of AWSS-shared secret s are nothing but the points on degree-t polynomial $f_{0}(x)=$ $F(x, 0)$, where $f_{0}(0)=s$. Due to asynchrony of the network, instead of all $3 t+1$ parties, only a set of $2 t+1$ parties WCORE will hold the shares of s. Similarly, to reconstruct s we try to reconstruct the degree-t polynomial $f_{0}(x)$ using the shares (IC-commitments) of the parties in WCORE. So we now abuse the notion of AWSS-sharing of a secret and say that:

1. D executes $\operatorname{AWSS}-\operatorname{Share}(D, \mathcal{P}, f(x), \epsilon)$ to mean that D AWSS-shares degree-t polynomial $f(x)$ during AWSS-Share. To do so, D will choose a symmetric bivariate polynomial $F(x, y)$ of degree-t in x and y, where $F(x, 0)=f(x)$ holds and will execute the steps of protocol AWSS-Share.
2. Parties execute $\operatorname{AWSS}-\operatorname{Rec}(D, \mathcal{P}, f(x), \epsilon)$, which allows the (honest) parties to reconstruct either the AWSS-Shared polynomial $f(x)$ or NULL, except with an error probability of ϵ.

Remark 4 The above notation of abusing the notion of sharing (reconstructing) a secret to sharing (reconstructing) a degree- t polynomial $f(x)$ is very well known and commonly used in WSS protocols in synchronous settings $[45,33,40]$. This does not break the interface when WSS is further used as a black-box in VSS because internally, to share a degree- t polynomial $f(x)$, D has to follow the same steps as in the WSS protocol, with the condition that now the selected bivariate polynomial $F(x, y)$ should satisfy $F(x, 0)=f(x)$.

3.3 Our AVSS Scheme for Sharing a Single Secret

In this section, we present our novel AVSS scheme consisting of sub-protocols AVSS-Share and AVSS-Rec. Be-
fore presenting the protocol, lets recall why the protocol in the previous section fails to qualify as an AVSS scheme. In the previous protocol, if D is corrupted and $P_{i} \in W C O R E$ is also corrupted, then any value can be reconstructed as P_{i} 's IC-commitment. This is because during reconstruction phase, any degree- t polynomial can be reconstructed on behalf of $P_{i} \in W C O R E$. If we can ensure that this reconstructed degree- t polynomial is either the same as received by P_{i} from D during the sharing phase or $N U L L$, then we can achieve strong commitment. We now see how we achieve this property by using AWSS as a black-box.

High Level Idea of AVSS-Share: D selects a symmetric bivariate polynomial $F(x, y)$ of degree- t in x and y, such that $F(0,0)=s$ and sends $f_{i}(x)=F(x, i)$ to party P_{i}. Now each party P_{i} is asked to act as a dealer and WSS-share his received polynomial $f_{i}(x)$. Then the parties agree on a set of $2 t+1$ parties, say $V C O R E$, such that each $P_{i} \in V C O R E$ has WSS-shared $f_{i}(x)$. However, we have to ensure that even a corrupted $P_{i} \in$ $V C O R E$ has indeed AWSS-shared $f_{i}(x)$. This is done as follows: during the instance of WSS initiated by P_{i}, the party P_{i} selects a degree- t symmetric bivariate polynomial $Q^{P_{i}}(x, y)$, such that $Q^{P_{i}}(x, 0)=f_{i}(x)$. Since every party P_{j} receives $q_{j}^{P_{i}}(x)=Q^{P_{i}}(x, j)$ from P_{i} as part of AWSS-Share, P_{j} can check whether $q_{j}^{P_{i}}(0) \stackrel{?}{=} f_{j}(i)$, as ideally $q_{j}^{P_{i}}(0)=f_{i}(j)=f_{j}(i)$ should hold in case of honest D, P_{i} and P_{j}. A party P_{j} participates in the remaining steps of the instance of AWSS-Share where P_{i} is the dealer, only if $q_{j}^{P_{i}}(0)=f_{j}(i)$ holds. Moreover, we also ensure that each party $P_{j} \in \operatorname{VCORE}$ has AWSS-shared $f_{j}(x)$ to at least $2 t+1$ parties in $V C O R E$. The agreement on VCORE and WCORE sets corresponding to each $P_{j} \in V C O R E$ is achieved using a mechanism, similar to the one used in AWSSShare for achieving agreement on WCORE and corresponding $O K$ sets. Protocol AVSS-Share is given in Fig. 4. Before proceeding further, we define what we call as D's commitment during AVSS-Share.
Definition 9 (D 's AVSS-commitment) We say that D has AVSS-committed $s \in \mathbb{F}$ in AVSS-Share if there is a unique symmetric bivariate polynomial $F(x, y)$ of degree- t in x and y, such that $F(0,0)=s$ and every honest P_{i} in $V C O R E$ receives $f_{i}(x)=F(x, i)$ from D. Otherwise, we say that D has committed $N U L L$ and D's AVSS-committed secret is not meaningful.
If a corrupted D has committed $N U L L$, then it implies that the $f_{i}(x)$'s of honest parties in VCORE do not define a symmetric bivariate polynomial of degree- t in x and y. This further implies that there is an honest pair $\left(P_{\gamma}, P_{\delta}\right)$ in $V C O R E$ such that $f_{\gamma}(\delta) \neq f_{\delta}(\gamma)$. Also

Fig. 4 Sharing Phase of AVSS Scheme

AVSS-Share $(D, \mathcal{P}, s, \epsilon)$

Distribution: Code for D - Only D executes this code

1. Select a random symmetric bivariate polynomial $F(x, y)$ of degree- t in x and y such that $F(0,0)=s$ and send $f_{i}(x)=F(x, i)$ to party P_{i}, for $i=1, \ldots, n$.
WSS Sharing of $f_{i}(x)$: Code for P_{i} - Every party, including D executes this code
2. Wait to obtain $f_{i}(x)$ from D.
3. If $f_{i}(x)$ is a degree- t polynomial then invoke AWSSShare $\left(P_{i}, \mathcal{P}, f_{i}(x), \epsilon^{\prime}\right)$ after selecting a symmetric bivariate polynomial $Q^{P_{i}}(x, y)$ of degree- t in x and y, such that $Q^{P_{i}}(x, 0)=q_{0}^{P_{i}}(x)=f_{i}(x)$ and $\epsilon^{\prime}=\frac{\epsilon}{n}$. We call this instance of AWSS-Share initiated by P_{i} as AWSS-Share ${ }^{P_{i}}$.
4. As a part of the execution of AWSS-Share ${ }^{P_{j}}$, wait to receive $q_{i}^{P_{j}}(x)=Q^{P_{j}}(x, i)$ from P_{j}. Then check $f_{i}(j) \stackrel{?}{=} q_{i}^{P_{j}}(0)$. If the test passes then participate in AWSS-Share ${ }^{P_{j}}$ and act according to the remaining steps of AWSS-Share ${ }^{P_{j}}$.
VCORE Construction: Code for D — Only D executes this code
5. If AWSS-Share ${ }^{P_{j}}$ is terminated, then denote corresponding $W C O R E$ and $O K P_{k}$ sets by $W C O R E^{P_{j}}$ and $O K P_{k}^{P_{j}}$ for every $P_{k} \in W C O R E^{P_{j}}$. Add P_{j} in a set VCORE (initially empty).
6. Keep updating $V C O R E, W C O R E^{P_{j}}$ and corresponding $O K P_{k}^{P_{j}}$,s for every $P_{j} \in V C O R E$ upon receiving new Acasts of the form $\mathrm{OK}(.,$.$) (during AWSS-Share { }^{P_{j}} \mathrm{~S}$), until for at least $2 t+1 P_{j} \in V C O R E$, the condition $\mid V C O R E \cap$ $W C O R E^{P_{j}} \mid \geq 2 t+1$ is satisfied. Remove (from VCORE) all $P_{j} \in V C O R E$ for whom the above condition is not satisfied.
7. A-cast $V C O R E, W C O R E E^{P_{j}}$ for $P_{j} \in V C O R E$ and $O K P_{k}^{P_{j}}$ for every $P_{k} \in W C O R E^{P_{j}}$.
VCORE Verification \& Agreement on VCORE : Code for P_{i} - Every party executes this code
8. Wait to receive $V C O R E, W C O R E^{P_{j}}$ for $P_{j} \in V C O R E$ and $O K P_{k}^{P_{j}}$ for every $P_{k} \in W C O R E^{P_{j}}$ from D 's A-cast.
9. Wait to terminate AWSS-Share ${ }^{P_{j}}$ corresponding to every P_{j} in VCORE.
10. Wait to receive $\mathrm{OK}\left(P_{m}, P_{k}\right)$ for every $P_{k} \in W C O R E^{P_{j}}$ and every $P_{m} \in O K P_{k}^{P_{j}}$, corresponding to every $P_{j} \in$ VCORE.
11. After receiving all the desired OK 's, consider $V C O R E$, $W C O R E^{P_{j}}$ for $P_{j} \in V C O R E$ and $O K P_{k}^{P_{j}}$ for every $P_{k} \in W C O R E^{P_{j}}$ received from D as valid, accept them and terminate AVSS-Share.
notice that we can not ensure that a corrupted D has committed $s \in \mathbb{F}$. This is because we are not checking whether $f_{i}(x), f_{j}(x)$ of every $P_{i}, P_{j} \in V C O R E$ satisfies $f_{i}(j)=f_{j}(i)$. Performing such a check will require extra communication and computation in asynchronous settings. However, it is enough in our context that D is committed to a value (including $N U L L$), which will be reconstructed uniquely during reconstruction phase.

High Level Idea of AVSS-Rec: In AVSS-Rec, we reconstruct D's AVSS-commitment. For this, it is enough to reconstruct the AWSS-shared $f_{j}(x)$'s of each honest $P_{j} \in V C O R E$. So we execute AVSS-Rec for each $P_{j} \in V C O R E$ to reconstruct either $N U L L$ or $f_{j}(x)$. Now with the reconstructed $f_{j}(x)$'s, either $F(x, y)$ and hence $s=F(0,0)$ or $N U L L$ will be reconstructed. The formal details of AVSS-Rec are given in Fig. 5.

Fig. 5 Reconstruction Phase of AVSS Scheme

$$
\begin{aligned}
& \text { AVSS-Rec }(D, \mathcal{P}, s, \epsilon) \\
& \text { Secret Reconstruction: Code for } P_{i} \text { - Every party exe- } \\
& \text { cutes this code } \\
& \text { 1. For every } P_{j} \in \quad V C O R E \text {, participate in AWSS- } \\
& \operatorname{Rec}\left(P_{j}, \mathcal{P}, f_{j}(x), \epsilon^{\prime}\right) \text { with } W C O R E^{P_{j}} \text { and } O K P_{k}^{P_{j}} \text { for ev- } \\
& \text { ery } P_{k} \in W C O R E^{P_{j}} \text {, where } \epsilon^{\prime}=\frac{\epsilon}{n} \text {. We call this instance } \\
& \text { of AWSS-Rec as AWSS-Rec } P_{j} . \\
& \text { 2. Wait for termination of AWSS-Rec } P_{j} \text { for every } P_{j} \in \\
& V C O R E \text { with output either } \overline{f_{j}(x)} \text { or NULL. Add } P_{j} \text { to } \\
& F I N A L \text { if AWSS-Rec } P_{j} \text { gives non-NULL output. } \\
& \text { 3. For every pair }\left(P_{\gamma}, P_{\delta}\right) \in F I N A L \text { check } \overline{f_{\gamma}(\delta)} ? \overline{=} \overline{f_{\delta}(\gamma)} \text {. } \\
& \text { If the test passes then recover } \overline{F(x, y)} \text { using } \overline{f_{j}(x)} \text { 's corre- } \\
& \text { sponding to each } P_{j} \in F I N A L \text { and set } \bar{s}=\overline{F(0,0)} \text {. Else } \\
& \text { set } \bar{s}=N U L L \text {. Finally output } \bar{s} \text { and terminate AVSS-Rec. }
\end{aligned}
$$

We now prove the properties of our AVSS scheme.
Lemma 9 (AVSS-Termination) Protocols AVSS-Share, AVSS-Rec satisfies termination property of Definition 4.

Proof:

- Termination 1: In AVSS-Share, D keeps on updating (i.e., adding new parties) to $W C O R E^{P_{j}}$ during AWSS-Share ${ }^{P_{j}}$, even after $W C O R E^{P_{j}}$ contains $2 t+1$ parties. So if D is honest and all honest parties participate in the protocol, then $2 t+1$ honest parties will be eventually included in $W C O R E^{P_{j}}$ of every honest P_{j}. So eventually at least $2 t+1$ honest parties will be included in $V C O R E$, such that $\left|V C O R E \cap W C O R E^{P_{j}}\right| \geq 2 t+1$ for each $P_{j} \in V C O R E$. Now from similar argument given in Termination 1 of Lemma 5, all honest parties will eventually accept $V C O R E, W C O R E^{P_{j}}$ for $P_{j} \in$ $V C O R E$ and $O K P_{k}^{P_{j}}$ and will terminate AVSS-Share.
- Termination 2: If some honest party has terminated AVSS-Share then it implies that he has received $V C O R E, W C O R E^{P_{j}}$ for $P_{j} \in V C O R E$ and $O K P_{k}^{P_{j}}$ for every $P_{k} \in W C O R E^{P_{j}}$ from the A-cast of D and checked their validity. So by the property of A-cast, every other honest party will also eventually do the same and terminate AVSS-Share.
- Termination 3: Follows from the fact that corresponding to each $P_{j} \in V C O R E$, every honest P_{i} will eventually terminate AWSS- $\operatorname{Rec}^{P_{j}}$ (from Termination 3 of Lemma 5), except with an error probability of ϵ^{\prime}. As there are at least $t+1$ honest parties in VCORE, AWSS-Rec corresponding to all honest parties in $V C O R E$ will terminate with probability at least $\left(1-(t+1) \epsilon^{\prime}\right) \approx(1-\epsilon)$.

Lemma 10 (AVSS-Correctness) Protocol AVSS-Share, AVSS-Rec satisfies correctness property of Definition 4.
Proof:

- Correctness 1: We have to consider the case when D is honest. If D is honest then we prove that except with probability ϵ^{\prime}, AWSS-Rec ${ }^{P_{i}}$ will reconstruct $\overline{f_{i}(x)}$ $=f_{i}(x)$ for every $P_{i} \in F I N A L$. If P_{i} is honest then this follows from the Correctness1 of our AWSS scheme. We now show that same holds even for a corrupted $P_{i} \in F I N A L$. If a corrupted P_{i} belongs to FINAL, it implies that AWSS-Rec ${ }^{P_{i}}$ outputs a degree- t polynomial and AWSS-Share ${ }^{P_{i}}$ had terminated during AVSS-Share, such that $\mid V C O R E \cap$ $W C O R E^{P_{i}} \mid \geq 2 t+1$. The above statements have the following implications: as a part of AWSS-Share ${ }^{P_{i}}$, P_{i} handed over $q_{j}^{P_{i}}(x)$ to an honest $P_{j}\left(\right.$ in $\left.W C O R E^{P_{i}}\right)$ satisfying $f_{j}(i)=q_{j}^{P_{i}}(0)$. This further implies that P_{i} must have AWSS-shared $f_{i}(x)$. Thus if AWSS-Rec ${ }^{P_{i}}$ is successful, then except with probability $\epsilon^{\prime}, \overline{f_{i}(x)}=$ $f_{i}(x)$. In the worst case, there can be at most t corrupted parties in FINAL and hence except with probability $\epsilon^{\prime} t \approx \epsilon, \overline{f_{i}(x)}$'s corresponding to each $P_{i} \in F I N A L$ will define $\overline{F(x, y)}=F(x, y)$ and thus $s=\overline{F(0,0)}=F(0,0)$ will be recovered.
- Correctness 2: Here we have to consider a corrupted D. Now there are two cases:

1. D's AVSS-committed secret $s=N U L L$: this implies that there exists some pair of honest parties $P_{\gamma}, P_{\delta} \in V C O R E$, such that $f_{\gamma}(\delta) \neq f_{\delta}(\gamma)$. From Correctness 1 of our AWSS scheme, for every honest $P_{i} \in V C O R E$, AWSS- $\operatorname{Rec}^{P_{i}}$ will reconstruct $\overline{f_{i}(x)}=f_{i}(x)$ and thus P_{i} will be added to FINAL, except with error probability ϵ^{\prime}. Since there are at least $t+1$ honest parties in $V C O R E$, all the honest parties from VCORE will be added to FINAL except with error probability of $n \epsilon^{\prime}=\epsilon$. Now irrespective of the remaining (corrupted) parties included in FINAL, the consistency checking (i.e., $\left.\overline{f_{\gamma}(\delta)} \stackrel{?}{=} \overline{f_{\delta}(\gamma)}\right)$ will fail for P_{γ}, P_{δ} and $N U L L$ will be reconstructed.
2. D 's AVSS-committed secret $s=F(0,0)$: this case completely resembles the case when D is honest and so the proof follows from the proof of Correctness 1 .

Lemma 11 (AVSS-Secrecy) Protocol AVSS-Share satisfies secrecy property of Definition 4.

Proof: Without loss of generality, let P_{1}, \ldots, P_{t} be under the control of \mathcal{A}_{t}. It is easy to see that through out AVSS-Share, \mathcal{A}_{t} will know $f_{1}(x), \ldots, f_{t}(x)$ and t points on $f_{t+1}(x), \ldots, f_{n}(x)$. However, from the property of symmetric polynomial of degree- t in x and y [17], the adversary \mathcal{A}_{t} will lack one more point on $F(x, y)$ to uniquely interpolate $F(x, y)$ and get $s=F(0,0)$.

Lemma 12 (AVSS-Communication Complexity) Protocol AVSS-Share incurs a private communication of $\mathcal{O}\left(n^{4} \log \frac{1}{\epsilon}\right)$ bits and A-cast of $\mathcal{O}\left(n^{4} \log \frac{1}{\epsilon}\right)$ bits. Protocol AVSS-Rec incurs A-cast of $\mathcal{O}\left(n^{4} \log \frac{1}{\epsilon}\right)$ bits.

Proof: Follows from Lemma 8 and the fact that $\Theta(n)$ instances of AWSS-Share and AWSS-Rec are executed, each with an error parameter of $\epsilon^{\prime}=\frac{\epsilon}{n}$.
Remark 5 In AVSS-Share, we may assume that if D's AVSS-committed secret is $N U L L$, then D has AVSScommitted some predefined value $s^{*} \in \mathbb{F}$, which is known publicly. Hence in AVSS-Rec, whenever $N U L L$ is reconstructed, every honest party replaces $N U L L$ by the predefined secret s^{*}. Interpreting this way, we say that our AVSS scheme allows D to AVSS-commit secret from \mathbb{F}.

4 Existing Common Coin Protocol

Here we recall the definition of common coin and construction of common coin protocol following the description of [14]. The common coin protocol invokes many instances of AVSS scheme. In the following description, we replace the AVSS scheme of [14] by our AVSS scheme presented in Section 3.3.

Definition 10 (Common Coin [14]) Let π be an asynchronous protocol, where each party has local random input and binary output. We say that π is a $(1-\epsilon)$ terminating, t-resilient common coin protocol if the following requirements hold for every adversary \mathcal{A}_{t} :

1. Termination: If all honest parties participate, then with probability at least $(1-\epsilon)$, all honest parties terminate.
2. Correctness: For every value $\sigma \in\{0,1\}$, with probability at least $\frac{1}{4}$ all honest parties output σ.

The Intuition: The common coin protocol, referred as Common-Coin, consists of two stages. In the first stage, each party acts as a dealer and shares n random secrets, using n distinct instances of AVSS-Share each with allowed error probability of $\epsilon^{\prime}=\frac{\epsilon}{n^{2}}$. The $i^{t h}$ secret shared by each party is actually associated with party P_{i}. Once a party P_{i} terminates any $t+1$ instances of AVSS-Share
corresponding to $t+1$ secrets associated with him, he Acasts the identity of the dealers who have shared these $t+1$ secrets. We say that these $t+1$ secrets are attached to P_{i} and later these $t+1$ secrets will be used to compute a value that will be associated with P_{i}.

Now in the second stage, after terminating the AVSSShare instances of all the secrets attached to some P_{i}, party P_{j} is sure that a fixed (yet unknown) value is attached to P_{i}. Once P_{j} is assured that values have been attached to enough number of parties, he participates in AVSS-Rec instances of the relevant secrets. This process of ensuring that there are enough parties that are attached with values is the core idea of the protocol. Once all the relevant secrets are reconstructed, each party locally computes his binary output based on the reconstructed secrets, in a way described in the protocol, which is presented in Fig. 6.

Fig. 6 Existing Common Coin Protocol

Protocol Common-Coin(ϵ)

Code for P_{i} : - Every party executes this code

1. For $j=1, \ldots, n$, choose a random value $x_{i j}$ and execute $\operatorname{AVSS}-S h a r e\left(P_{i}, \mathcal{P}, x_{i j}, \epsilon^{\prime}\right)$ where $\epsilon^{\prime}=\frac{\epsilon}{n^{2}}$.
2. Participate in $\operatorname{AVSS}-\operatorname{Share}\left(P_{j}, \mathcal{P}, x_{j k}, \epsilon^{\prime}\right)$ for every $j, k \in$ $\{1, \ldots, n\}$. We denote $\operatorname{AVSS}-\operatorname{Share}\left(P_{j}, \mathcal{P}, x_{j k}, \epsilon^{\prime}\right)$ by AVSSShare $_{j k}$.
3. Create a dynamic set \mathcal{T}_{i}. Add party P_{j} to \mathcal{T}_{i} if AVSSShare $\left(P_{j}, \mathcal{P}, x_{j k}, \epsilon^{\prime}\right)$ has been terminated for all $k=$ $1, \ldots, n$. Wait until $\left|\mathcal{T}_{i}\right|=t+1$. Then assign $T_{i}=\mathcal{T}_{i}$ and A-cast "Attach T_{i} to P_{i} ". We say that the secrets $\left\{x_{j i} \mid P_{j} \in T_{i}\right\}$ are attached to party P_{i}.
4. Create a dynamic set \mathcal{A}_{i}. Add party P_{j} to \mathcal{A}_{i} if
(a) "Attach T_{j} to P_{j} " is received from the A-cast of P_{j} and
(b) $T_{j} \subseteq \mathcal{T}_{i}$

Wait until $\left|\mathcal{A}_{i}\right|=2 t+1$. Then assign $A_{i}=\mathcal{A}_{i}$ and A-cast " P_{i} Accepts A_{i} ".
5. Create a dynamic set \mathcal{S}_{i}. Add party P_{j} to \mathcal{S}_{i} if
(a) " P_{j} Accepts $A_{j} "$ is received from the A-cast of P_{j} and (b) $A_{j} \subseteq \mathcal{A}_{i}$.

Wait until $\left|\mathcal{S}_{i}\right|=2 t+1$. Then A-cast "Reconstruct Enabled". Let H_{i} be the current content of \mathcal{A}_{i}.
6. Participate in $\operatorname{AVSS-Rec}\left(P_{k}, \mathcal{P}, x_{k j}, \epsilon^{\prime}\right)$ for every $P_{k} \in T_{j}$ of every $P_{j} \in \mathcal{A}_{i}$ (note that some parties may be included in \mathcal{A}_{i} after the A-cast of "Reconstruct Enabled". The corresponding AVSS-Rec are invoked immediately). We denote $\operatorname{AVSS}-\operatorname{Rec}\left(P_{k}, \mathcal{P}, x_{k j}, \epsilon^{\prime}\right)$ by AVSS-Rec ${ }_{k j}$.
7. Let $u=\lceil 0.87 n\rceil$. Every party $P_{j} \in \mathcal{A}_{i}$ is associated with a value, say V_{j} which is computed as follows: $V_{j}=$ $\left(\sum_{P_{k} \in T_{j}} x_{k j}\right)$ mod u where $x_{k j}$ is reconstructed back from $\operatorname{AVSS}-\operatorname{Rec}\left(P_{k}, \mathcal{P}, x_{k j}, \epsilon^{\prime}\right)$.
8. Wait until the values associated with all the parties in H_{i} are computed. Now if there exits a party $P_{j} \in H_{i}$ such that $V_{j}=0$, then output 0 . Otherwise output 1 .

Let E be an event, defined as follows: All invocations of AVSS scheme have been terminated properly. That is, if an honest party has terminated AVSS-Share, then a value, say s^{\prime} is fixed. All honest parties will terminate the corresponding invocation of AVSS-Rec with output s^{\prime}. Moreover if the dealer of this invocation of AVSSShare is honest, then s^{\prime} is indeed the shared secret of this invocation. It is easy to see that event E occurs with probability at least $1-n^{2} \epsilon^{\prime}=1-\epsilon$. We now state the following lemmas which are more or less identical to the Lemmas 5.28-5.31 presented in [14]. For the sake of completeness, the proofs of these lemmas are given in APPENDIX B.

Lemma 13 ([14]) All honest parties terminate Protocol Common-Coin in constant time.

Lemma 14 ([14]) In Common-Coin, once some honest P_{j} receives "Attach T_{i} to P_{i} " from A-cast of P_{i} and includes P_{i} in \mathcal{A}_{j}, a unique value V_{i} is fixed such that

1. Every honest party will associate V_{i} with P_{i}, except with probability $1-\frac{\epsilon}{n}$.
2. V_{i} is distributed uniformly over $[0, \ldots, u]$ and independent of values associated with other parties.

Lemma 15 ([14]) Once an honest party A-cast
"Reconstruct Enabled", there exists a set M such that:

1. For every party $P_{j} \in M$, some honest party has received "Attach T_{j} to P_{j} " from the A-cast of P_{j}.
2. When any honest party $P_{j} A$-casts "Reconstruct Enabled", then it will hold that $M \subseteq H_{j}$.
3. $|M| \geq \frac{n}{3}$.

Lemma 16 ([14]) Let $\epsilon \leq 0.2$ and assume that all the honest parties have terminated protocol Common-Coin. Then for every value $\sigma \in\{0,1\}$, with probability at least $\frac{1}{4}$, all the honest parties output σ.

Theorem 4 ([14]) Common-Coin is a (1- $)$-terminating, common coin protocol for every $0<\epsilon \leq 0.2$.

Proof: Follows from Lemma 13, 14, 15 and 16.
Theorem 5 Protocol Common-Coin privately communicates $\mathcal{O}\left(n^{6} \log \frac{1}{\epsilon}\right)$ bits and A-cast $\mathcal{O}\left(n^{6} \log \frac{1}{\epsilon}\right)$ bits.

Proof: Easy, as n^{2} instances of AVSS-Share and AVSSRec are executed, each with error parameter $\frac{\epsilon}{n^{2}}$.

5 Existing Voting Protocol

The Voting protocol is another requirement for the construction of ABA protocol. In a Voting protocol, every party has a single bit as input. Roughly, Voting protocol tries to find out whether there is a detectable majority
for some value among the inputs of the parties. Here we recall the Voting protocol called Vote from [14].

The Intuition: Each party's output in Vote protocol can take five different forms:

1. For $\sigma \in\{0,1\}$, the output $(\sigma, 2)$ stands for 'overwhelming majority for σ^{\prime};
2. For $\sigma \in\{0,1\}$, the output $(\sigma, 1)$ stands for 'distinct majority for σ^{\prime};
3. Output $(\Lambda, 0)$ stands for 'non-distinct majority'.

We can show that:

1. If all the honest parties have the same input σ, then all honest parties will output $(\sigma, 2)$;
2. If some honest party outputs $(\sigma, 2)$, then every other honest party will output either $(\sigma, 2)$ or $(\sigma, 1)$;
3. If some honest party outputs $(\sigma, 1)$ and no honest party outputs $(\sigma, 2)$ then each honest party outputs either $(\sigma, 1)$ or $(\Lambda, 0)$.

The Vote protocol consists of three stages, having similar structure. The protocol is presented in Fig. 7. In the protocol, we assume party P_{i} has input bit x_{i}. We now

Fig. 7 Existing Vote Protocol

Protocol Vote()

Code for P_{i} : - Every party executes this code

1. A-cast (input, P_{i}, x_{i}).
2. Create a dynamic set \mathcal{A}_{i}. Add $\left(P_{j}, x_{j}\right)$ to \mathcal{A}_{i} if (input, $\left.P_{j}, x_{j}\right)$ is received from the A-cast of P_{j}.
3. Wait until $\left|\mathcal{A}_{i}\right|=n-t$. Assign $A_{i}=\mathcal{A}_{i}$. Set a_{i} to the majority bit among $\left\{x_{j} \mid\left(P_{j}, x_{j}\right) \in A_{i}\right\}$ and A-cast (vote, P_{i}, A_{i}, a_{i}).
4. Create a dynamic set \mathcal{B}_{i}. Add $\left(P_{j}, A_{j}, a_{j}\right)$ to \mathcal{B}_{i} if (vote, P_{j}, A_{j}, a_{j}) is received from the A-cast of $P_{j}, A_{j} \subseteq$ \mathcal{A}_{i}, and a_{j} is the majority bit of A_{j}.
5. Wait until $\left|\mathcal{B}_{i}\right|=n-t$. Assign $B_{i}=\mathcal{B}_{i}$. Set b_{i} to the majority bit among $\left\{a_{j} \mid\left(P_{j}, A_{j}, a_{j}\right) \in B_{i}\right\}$ and A-cast (re-vote, P_{i}, B_{i}, b_{i}).
6. Create a set C_{i}. Add $\left(P_{j}, B_{j}, b_{j}\right)$ to C_{i} if (re-vote, P_{j}, B_{j}, b_{j}) is received from the A-cast of $P_{j}, B_{j} \subseteq \mathcal{B}_{i}$, and b_{j} is the majority bit of B_{j}.
7. Wait until $\left|C_{i}\right| \geq n-t$. If all the parties $P_{j} \in B_{i}$ had the same vote $a_{j}=\sigma$, then output $(\sigma, 2)$ and terminate. Otherwise, if all the parties $P_{j} \in C_{i}$ have the same Re-vote $b_{j}=\sigma$, then output $(\sigma, 1)$ and terminate. Otherwise, output $(\Lambda, 0)$ and terminate.
recall the following lemmas and theorem from [14]. For the sake of completeness, the proofs of these lemmas and theorem are given in APPENDIX C.

Lemma 17 ([14]) All the honest parties terminate protocol Vote in constant time.

Lemma 18 ([14]) If all honest parties have same input σ, then all honest parties will output $(\sigma, 2)$.

Lemma 19 ([14]) If some honest party outputs ($\sigma, 2$), then every other honest party will eventually output either $(\sigma, 2)$ or $(\sigma, 1)$ in protocol Vote.

Lemma 20 ([14]) If some honest party outputs ($\sigma, 1$) and no honest party outputs $(\sigma, 2)$ then every other honest party will eventually output either $(\sigma, 1)$ or $(\Lambda, 0)$.

Theorem 6 Protocol Vote A-cast of $\mathcal{O}\left(n^{2} \log n\right)$ bits.
Proof: Follows from the protocol description.

6 Efficient ABA Protocol for Single Bit

Once we have an efficient Common Coin protocol and Vote protocol, we can design an efficient ABA protocol using the approach of [14]. The ABA protocol proceeds in iterations where in each iteration every party computes a 'modified input' value. In the first iteration the 'modified input' of party P_{i} is his private input bit x_{i}. In each iteration, every party executes protocol Vote and Common-Coin sequentially. If a party outputs $\{(\sigma, 2),(\sigma, 1)\}$ in Vote protocol, then he sets his 'modified input' for next iteration to σ, irrespective of the value which is going to be output in Common-Coin. Otherwise, he sets his 'modified input' for next iteration to be the output of Common-Coin protocol which is invoked by all the honest parties in each iteration irrespective of whether the output of Common-Coin is used or not. Once a party outputs $(\sigma, 2)$, he A-casts σ and once he receives $t+1 \mathrm{~A}$-cast for σ, he terminates the ABA protocol with σ as final output. The protocol is given in Fig. 8. We now state the following lemmas which are more or less identical to the Lemmas 5.365.39 presented in [14]. For the sake of completeness, their proofs are given in APPENDIX D.

Lemma 21 ([14]) Protocol ABA satisfies Validity.
Lemma 22 ([14]) Protocol ABA satisfies Agreement.
Lemma 23 ([14]) If all honest parties have initiated and completed iteration k, then with probability at least $\frac{1}{4}$ all honest parties have same value for v_{k+1}.

Let C_{k} be the event that each honest party completes all the iterations he initiated up to (and including) the $k^{\text {th }}$ iteration (that is, for each iteration $1 \leq l \leq k$ and for each party P, if P initiated iteration l then he computes $\left.v_{l+1}\right)$. Let C denote the event that C_{k} occurs for all k.

Lemma 24 ([14]) Conditioned on the event C, all honest parties terminate $A B A$ in constant expected time.

Fig. 8 Efficient ABA Protocol for Single Bit.

Protocol ABA(ϵ)

Code for P_{i} : Every party executes this code

1. Set $\mathrm{r}=0$. and $v_{1}=x_{i}$.
2. Repeat until terminating.
(a) Set $r:=r+1$. Invoke Vote with v_{r} as input. Wait to terminate Vote and assign output of Vote to $\left(y_{r}, m_{r}\right)$.
(b) Invoke Common-Coin $\left(\frac{\epsilon}{4}\right)$ and wait until its termination. Let c_{r} be the output of Common-Coin.
(c) i. If $m_{r}=2$, set $v_{r+1}:=y_{r}$ and A-cast (Terminate with v_{r+1}). Participate in only one more instance of Vote and only one more instance of Common-Coin protocol /* This is to prevent the parties from participating in an unbounded number of iterations before enough (Terminate with σ) A-casts are completed.*/
ii. If $m_{r}=1$, set $v_{r+1}:=y_{r}$.
iii. Otherwise, set $v_{r+1}:=c_{r}$.
(d) Upon receiving $t+1$ (Terminate with σ) A-cast for same value σ, output σ and terminate ABA.

Lemma 25 ([14]) $\operatorname{Prob}(C) \geq(1-\epsilon)$.
Summing up, we have the following theorem.
Theorem 7 (ABA for Single Bit) Let $n=3 t+1$. Then for every $0<\epsilon \leq 0.2$, protocol $A B A$ is a $(\epsilon, 0)$ ABA protocol. Given the parties terminate, they do so in constant expected time. The protocol privately communicates $\mathcal{O}\left(n^{6} \log \frac{1}{\epsilon}\right)$ bits and \mathcal{A}-cast $\mathcal{O}\left(n^{6} \log \frac{1}{\epsilon}\right)$ bits.

Proof: The properties of ABA follows from Lemma 21, 22, 23 and Lemma 24. Let \mathcal{C} be the expected number of time Common-Coin and Vote protocol are executed in ABA protocol. Then from Theorem 5 protocol ABA privately communicates $\mathcal{O}\left(\mathcal{C} n^{6} \log \frac{1}{\epsilon}\right)$ bits and A-cast $\mathcal{O}\left(\mathcal{C} n^{6} \log \frac{1}{\epsilon}\right)$ bits. Substituting $\mathcal{C}=\mathcal{O}(1)$, we get the final communication complexity.

7 Efficient ABA Protocol for Multiple Bits

Till now we have concentrated on the construction of efficient ABA protocol that allows the parties to agree on a single bit. We now present another efficient ABA protocol called ABA-MB ${ }^{4}$, which achieves agreement on $n-2 t=t+1$ bits concurrently. Notice that we could parallely execute protocol ABA $t+1$ times to achieve agreement on $t+1$ bits. This would require a private communication as well as A-cast of $\mathcal{O}\left(n^{7} \log \frac{1}{\epsilon}\right)$ bits. However our protocol ABA-MB requires private communication and A-cast of $\mathcal{O}\left(n^{5} \log \frac{1}{\epsilon}\right)$ bits for the same task. Consequently, in protocol ABA-MB, the amortized

[^3]cost to reach agreement on a single bit is $\mathcal{O}\left(n^{4} \log \frac{1}{\epsilon}\right)$ bits of private and A-cast communication.

In asynchronous multiparty computation (AMPC) [$6,14,3,46]$, where typically lot of ABA invocations are required, many of the invocations can be parallelized and optimized to a single invocation with a long message. Hence ABA protocols with long message are very relevant to many situations. All existing protocols for ABA [50, 4, 10, 27, 28, 15, 14, 1, 47] are designed for single bit message. A naive approach to design ABA for $\ell>1$ bit message is to parallelize ℓ invocations of existing ABA protocols dealing with single bit. This approach requires a communication complexity that is ℓ times the communication complexity of the existing protocols for single bit and hence is inefficient. In this article, we provide a far better way to design an ABA with multiple bits. For ℓ bits message with $\ell \geq t+1$, we may break the message into blocks of $t+1$ bits and invoke one instance of our ABA-MB for each one of the $t+1$ blocks. To design ABA-MB, we extend our AWSS and AVSS scheme to share $\ell>1$ secrets simultaneously. This involves less communication complexity than ℓ parallel invocations of our AWSS and AVSS scheme sharing single secret.

7.1 AWSS Scheme for Sharing Multiple Secrets

We now extend protocol AWSS-Share and AWSS-Rec to AWSS-MS-Share and AWSS-MS-Rec respectively ${ }^{5}$. Protocol AWSS-MS-Share allows $D \in \mathcal{P}$ to concurrently share a secret $S=\left(s^{1} \ldots s^{\ell}\right)$, containing ℓ elements. On the other hand, protocol AWSS-MS-Rec allows the parties in \mathcal{P} to reconstruct either S or $N U L L$.

The Intuition: The high level idea of protocol AWSS-MS-Share is similar to AWSS-Share. For each $s^{l}, l=$ $1, \ldots, \ell$, the dealer D selects a random symmetric bivariate polynomial $F^{l}(x, y)$ of degree- t in x and y, where $F^{l}(0,0)=s^{l}$ and gives his IC-signature on $f_{i}^{l}(1), \ldots, f_{i}^{l}(n)$ to party P_{i}, for $i=1, \ldots, n$. However, to reduce the communication complexity, instead of executing ℓn^{2} instances of AICP (each dealing with a single secret), D executes n^{2} instances of AICP (each dealing with ℓ secrets) and D gives his IC-signature collectively on $\left(f_{i}^{1}(j), f_{i}^{2}(j), \ldots, f_{i}^{\ell}(j)\right)$ to P_{i}.

Next, every P_{i}, P_{j} exchange their IC signatures on common values. Notice that now P_{i}, P_{j} have ℓ common values, namely $f_{i}^{1}(j), \ldots, f_{i}^{\ell}(j)$. Intead of exchanging IC signatures on individual common value, they exchange IC signatures collectively on $\left(f_{i}^{1}(j), \ldots, f_{i}^{\ell}(j)\right)$ and $\left(f_{j}^{1}(i), \ldots, f_{j}^{\ell}(i)\right)$. Next the parties check whether $f_{i}^{l}(j)=f_{j}^{l}(i)$ for all $l=1, \ldots, \ell$ and if so they A-cast OK

[^4]signal. After this, the remaining steps (like WCORE construction, agreement on $W C O R E$, etc) are same as in AWSS-Share. The protocol is given in Fig. 9.

Fig. 9 Sharing Phase of AWSS Scheme for Sharing S Containing $\ell \geq 1$ Secrets

AWSS-MS-Share($D, \mathcal{P}, S=\left(s^{1} \ldots s^{\ell}\right), \epsilon$)

Distribution: Code for D - Only D executes this code.

1. For $l=1, \ldots, \ell$, select a random, symmetric bivariate polynomial $F^{l}(x, y)$ of degree- t in x and y such that $F^{l}(0,0)=s^{l}$. Let $f_{i}^{l}(x)=F^{l}(x, i)$, for $l=1, \ldots, \ell$.
2. For $i=1, \ldots, n$, give $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P},\left(f_{i}^{1}(j), \ldots, f_{i}^{\ell}(j)\right)\right.$ for each $j=1, \ldots, n$ to P_{i}. For this, D initiates n^{2} instances of Gen, each with an error parameter of $\epsilon^{\prime}=\frac{\epsilon}{n^{2}}$.
Verification: Code for P_{i} - Every party including D executes this code.
3. Wait to receive $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P},\left(f_{i}^{1}(j), \ldots, f_{i}^{\ell}(j)\right)\right)$ for $j=1, \ldots, n$ from D.
4. Check if $\left(f_{i}^{l}(1), \ldots, f_{i}^{l}(n)\right)$ defines degree- t polynomial for $l=1, \ldots, \ell$. If yes then give $\operatorname{ICSig}\left(P_{i}, P_{j}, \mathcal{P},\left(f_{i}^{1}(j), \ldots, f_{i}^{\ell}(j)\right)\right) \quad$ to $\quad P_{j} \quad$ for $j=1, \ldots, n$.
5. If $\operatorname{ICSig}\left(P_{j}, P_{i}, \mathcal{P},\left(f_{j}^{1}(i), \ldots, f_{j}^{\ell}(i)\right)\right)$ is received from P_{j} and if $f_{j}^{l}(i)=f_{i}^{l}(j)$ for $l=1, \ldots, \ell$, then A-cast OK $\left(P_{i}, P_{j}\right)$.
WCORE Construction : Code for D - This is same as in protocol AWSS-Share.
WCORE Verification \& Agreement on WCORE - This is same as in protocol AWSS-Share.

Remark 6 (D 's AWSS-commitment) In AWSS-MS-
Share, we say that D has AWSS-committed $S=\left(s^{1}, \ldots\right.$, $\left.s^{\ell}\right) \in \mathbb{F}^{\ell}$ if for every $l=1, \ldots, \ell$, there is a unique degree-t polynomial $f^{l}(x)$ such that $f^{l}(0)=s^{l}$ and every honest P_{i} in $W C O R E$ receives $f^{l}(i)$ from D. Otherwise, we say that D has AWSS-committed $N U L L$.
An honest D always AWSS-commits $S \in \mathbb{F}^{\ell}$, as in this case $f^{l}(x)=f_{0}^{l}(x)=F^{l}(x, 0)$, where $F^{l}(x, y)$ is the symmetric bivariate polynomial of degree- t chosen by D. But AWSS-MS-Share can not ensure that a corrupted D also AWSS-commits $S \in \mathbb{F}^{\ell}$. Protocol AWSS-MSRec is a straightforward extension of protocol AWSSRec and is given in Fig. 10.

Since technique wise, protocols (AWSS-MS-Share, AWSS-MS-Rec) are very similar to protocols (AWSSShare, AWSS-Rec), we do not provide the proofs of the properties of protocols (AWSS-MS-Share, AWSS-MS-Rec) for the sake of avoiding repetition. Rather, we give the following theorem on the communication complexity.
Theorem 8 (AWSS-MS-Communication Complexity) Protocol AWSS-MS-Share incurs a private communication of $\mathcal{O}\left(\left(\ell n^{2}+n^{3}\right) \log \frac{1}{\epsilon}\right)$ bits and A-cast of $\mathcal{O}\left(\left(\ln ^{2}+n^{3}\right) \log \frac{1}{\epsilon}\right)$ bits. Protocol AWSS-MS-Rec involves A-cast of $\mathcal{O}\left(\left(\ell n^{2}+n^{3}\right) \log \frac{1}{\epsilon}\right)$ bits.

Fig. 10 Reconstruction Phase of AWSS Scheme for Sharing S Containing ℓ Secrets

AWSS-MS-Rec $\left(D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), \epsilon\right)$

Signature Revelation: Code for $P_{i}-$

1. If P_{i} belongs to $O K P_{j}$ for some $P_{j} \in W C O R E$, then reveal $\operatorname{ICSig}\left(D, P_{i}, \mathcal{P},\left(f_{i}^{1}(j), \ldots, f_{i}^{\ell}(j)\right)\right)$ and $\operatorname{ICSig}\left(P_{j}, P_{i}, \mathcal{P},\left(f_{j}^{1}(i), \ldots, f_{j}^{\ell}(i)\right)\right)$.
Local Computation: Code for P_{i}
2. For every $P_{j} \in W C O R E$, reconstruct P_{j} 's $I C$ commitment, say $\left(\overline{f_{j}^{1}(0)}, \ldots, \overline{f_{j}^{\ell}(0)}\right)$ as follows:
(a) Construct a set $\operatorname{ValidP}_{j}=\emptyset$.
(b) Add $P_{k} \in O K P_{j}$ to Valid_{j} if the following conditions hold:
i. Revelation of $\operatorname{ICSig}\left(D, P_{k}, \mathcal{P},\left(f_{k}^{1}(j), \ldots, f_{k}^{\ell}(j)\right)\right)$ and $\operatorname{ICSig}\left(P_{j}, P_{k}, \mathcal{P},\left(f_{j}^{1}(k), \ldots, f_{j}^{\ell}(k)\right)\right)$ are completed with Reveal ${ }_{i}=\left(\overline{f_{k}^{1}(j)}, \ldots, \overline{f_{k}^{\ell}(j)}\right)$ and Reveal $_{i}=\left(\overline{f_{j}^{1}(k)}, \ldots, \overline{f_{j}^{\ell}(k)}\right)$ respectively; and ii. $\overline{f_{k}^{l}(j)}=\overline{f_{j}^{l}(k)}$, for $l=1, \ldots, \ell$.
(c) Wait until $\left|V_{\text {alid }}^{j}\right|=t+1$. For $l=1, \ldots, \ell$, construct a degree- t polynomial $\overline{f_{j}^{l}(x)}$ passing through the points $\left(k, \overline{f_{j}^{l}(k)}\right)$ where $P_{k} \in \operatorname{ValidP} P_{j}$. For $l=1, \ldots, \ell$, associate $\overline{f_{j}^{l}(0)}$ with $P_{j} \in W C O R E$.
3. Wait for $\overline{f_{j}^{1}(0)}, \ldots, \overline{f_{j}^{\ell}(0)}$ to be reconstructed for every P_{j} in $W C O R E$.
4. For $l=1, \ldots, \ell$, do the following:
(a) Check whether the points $\left(j, \overline{f_{j}^{l}(0)}\right)$ for $P_{j} \in W C O R E$ lie on a unique degree- t polynomial $\overline{f_{0}^{l}(x)}$. If yes, then set $\overline{s^{l}}=\overline{f_{0}^{l}(0)}$, else set $\overline{s^{l}}=N U L L$.
5. If $\overline{s^{l}}=N U L L$ for any $l \in\{1, \ldots, \ell\}$, then output $\bar{S}=N U L L$ and terminate AWSS-MS-Rec. Else output $\bar{S}=\left(\overline{s^{1}}, \ldots, \overline{s^{\ell}}\right)$ and terminate AWSS-MS-Rec.

Proof: Follows from the fact that n^{2} instances of AICP, each dealing with ℓ values and having error parameter of $\epsilon^{\prime}=\frac{\epsilon}{n^{2}}$ are executed.

Notation 4 (AWSS Sharing of ℓ Polynomials) $A s$ in Notation 3, we abuse the notion of AWSS-sharing of ℓ secrets and say that:

1. D executes $\operatorname{AWSS}-M S-\operatorname{Share}\left(D, \mathcal{P},\left(f^{1}(x), \ldots, f^{\ell}(x)\right)\right.$, є) to mean that D AWSS-shares degree-t polynomials $f^{1}(x), \ldots, f^{\ell}(x)$ during AWSS-MS-Share. To do so, D will choose ℓ symmetric bivariate polynomial $F^{l}(x, y)$, for $l=1, \ldots, \ell$, each of degree-t in x and y, where $F^{l}(x, 0)=f^{l}(x)$ holds and will execute the steps of protocol AWSS-MS-Share.
2. Parties execute $\operatorname{AWSS}-M S-\operatorname{Rec}\left(D, \mathcal{P},\left(f^{1}(x), \ldots\right.\right.$, $\left.\left.f^{\ell}(x)\right), \epsilon\right)$, which allows the (honest) parties to reconstruct either the AWSS-Shared polynomials $f^{1}(x)$, $\ldots, f^{\ell}(x)$ or $N U L L$, except with probability ϵ.
7.2 AVSS Scheme for Sharing Multiple Secrets

We now extend protocol AVSS-Share and AVSS-Rec to AVSS-MS-Share and AVSS-MS-Rec respectively Protocol AVSS-MS-Share allows $D \in \mathcal{P}$ to concurrently share a secret $S=\left(s^{1} \ldots s^{\ell}\right)$, containing ℓ elements. Moreover, if D is corrupted then either $S \in \mathbb{F}^{\ell}$, where each element of S belongs to \mathbb{F} or $S=N U L L$ (in a sense explained in the sequel). Protocol AVSS-MS-Rec allows the parties in \mathcal{P} to reconstruct S.

The Intuition: The high level idea of AVSS-MS-Share is similar to AVSS-Share. Specifically, for each $s^{l} \in S$, the dealer D selects a symmetric bivariate polynomial $F^{l}(x, y)$ of degree- t in x and y, such that $F^{l}(0,0)=s^{l}$ and sends $f_{i}^{l}(x)=F^{l}(x, i)$ to party P_{i}. Then each party P_{i} is asked to $A W S S$-share his received polynomials $f_{i}^{1}(x), \ldots, f_{i}^{\ell}(x)$. However, instead of executing ℓ instances of AWSS-Share, one for sharing each $f_{i}^{l}(x)$, party P_{i} executes a single instance of AWSS-MSShare to share $f_{i}^{1}(x), \ldots, f_{i}^{\ell}(x)$ simultaneously. It is this step, which leads to the reduction in the communication complexity of AVSS-MS-Share. The remaining steps like $V C O R E$ construction, agreement on $V C O R E$, etc are similar to protocol AVSS-Share. Protocol AVSS-MS-Share is formally presented in Fig. 11.

Remark 7 (D 's AVSS-commitment) We say that D has AVSS-committed $S=\left(s^{1}, \ldots, s^{\ell}\right) \in \mathbb{F}^{\ell}$ in AVSS-MS-Share if for every $l=1, \ldots, \ell$ there is a unique degree- t symmetric bivariate polynomial $F^{l}(x, y)$ such that $F^{l}(0,0)=s^{l}$ and every honest P_{i} in VCORE receives $f_{i}^{l}(x)=F^{l}(x, i)$ from D. Otherwise, we say that D has committed NULL and D's AVSS-committed secrets are not meaningful.

If a corrupted D commits $N U L L$, the $f_{i}^{l}(x)$ polynomials of the honest parties in $V C O R E$ do not define a symmetric bivariate polynomial of degree- t in x and y for at least one $l \in\{1, \ldots, \ell\}$. This further implies that there will be an honest pair $\left(P_{\gamma}, P_{\delta}\right)$ in $V C O R E$ such that $f_{\gamma}^{l}(\delta) \neq f_{\delta}^{l}(\gamma)$.

Protocol AVSS-MS-Rec is a straightforward extension of protocol AVSS-Rec and is given in Fig. 12. The properties of AVSS-MS-Share and AVSS-MS-Rec follows from AVSS-Share and AVSS-Rec. For the sake of completeness, we state the communication complexity of AVSS-MS-Share and AVSS-MS-Rec.

Theorem 9 (AVSS-MS-Communication Complexity) Protocol AVSS-MS-Share incurs a private communication and A-cast of $\mathcal{O}\left(\left(\ell n^{3}+n^{4}\right) \log \frac{1}{\epsilon}\right)$ bits. Protocol AVSS-MS-Rec involves A-cast of $\mathcal{O}\left(\left(\ell n^{3}+n^{4}\right) \log \frac{1}{\epsilon}\right)$ bits.

Fig. 11 Sharing Phase of AVSS Scheme for Sharing a Secret S Containing ℓ Elements

AVSS-MS-Share $\left(D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), \epsilon\right)$

Distribution: Code for D - Only D executes this code.

1. For $l=1, \ldots, \ell$, select a random symmetric bivariate polynomial $F^{l}(x, y)$ of degree- t in x and y such that $F^{l}(0,0)=$ s^{l} and send $f_{i}^{l}(x)=F^{l}(x, i)$ to party P_{i}, for $i=1, \ldots, n$.
AWSS Sharing of Polynomials: Code for P_{i} - Every party in \mathcal{P}, including D, executes this code.
2. Wait to obtain $f_{i}^{1}(x), \ldots, f_{i}^{\ell}(x)$ from D.
3. If $f_{i}^{1}(x), \ldots, f_{i}^{\ell}(x)$ are degree- t polynomials then as a dealer, execute AWSS-MSShare $\left(P_{i}, \mathcal{P},\left(f_{i}^{1}(x), \ldots, f_{i}^{\ell}(x)\right), \epsilon^{\prime}\right)$ by selecting symmetric bivariate polynomials $Q^{\left(P_{i}, 1\right)}(x, y), \ldots, Q^{\left(P_{i}, \ell\right)}(x, y)$ of degree- t in x and y, such that $Q^{\left(P_{i}, l\right)}(x, 0)=q_{0}^{\left(P_{i}, l\right)}(x)=$ $f_{i}^{l}(x)$, for $l=1, \ldots, \ell$ and $\epsilon^{\prime}=\frac{\epsilon}{n}$. We call this instance of AWSS-MS-Share initiated by P_{i} as AWSS-MS-Share ${ }^{P_{i}}$
4. As a part of the execution of AWSS-MS-Share ${ }^{P_{j}}$, wait to receive $q_{i}^{\left(P_{j}, l\right)}(x)=Q^{\left(P_{j}, l\right)}(x, i)$, for $l=1, \ldots, \ell$ from P_{j}. Then check $f_{i}^{l}(j) \stackrel{?}{=} q_{i}^{P_{j}, l}(0)$. If the test passes for all $l=1, \ldots, \ell$ then participate in AWSS-MS-Share P_{j} and act according to the remaining steps of AWSS-MS-Share ${ }^{P_{j}}$.
VCORE Construction: Code for D - This is same as in protocol AVSS-Share except that AWSS-Share is replaced by AWSS-MS-Share everywhere.

VCORE Verification \& Agreement on VCORE : Code for P_{i} — This is same as in protocol AVSS-Share except that AWSSShare is replaced by AWSS-MS-Share everywhere.

Proof: Follows from the fact that n instances of AWSS-MS-Share and AWSS-MS-Rec are executed.

Remark 8 In AVSS-MS-Share, we may assume that if D 's AVSS-committed secret is $N U L L$, then D has AVSScommitted some predefined $S^{\star} \in \mathbb{F}^{\ell}$, which is known publicly. Hence in AVSS-MS-Rec, whenever $N U L L$ is reconstructed, every honest party replaces $N U L L$ by the predefined S^{\star}. Interpreting this way, we say that our AVSS scheme allows D to $A V S S$-commit secrets from \mathbb{F}.

7.3 An Incorrect Common Coin Protocol

Recall that in protocol Common-Coin, each party invokes n instances of protocol AVSS-Share each sharing a single secret. Simple thinking would suggest that those n instances of AVSS-Share could be replaced by more efficient, single instance of AVSS-MS-Share, sharing n secrets simultaneously. This would naturally lead to more efficient common coin protocol, which would further imply more efficient ABA protocol. In the following, we do the same in protocol Common-Coin-Wrong. But as the name suggests, we then show that this direct replacement of AVSS-Share by AVSS-MS-Share without further

Fig. 12 Reconstruction Phase of AVSS Scheme for Sharing Secret S Containing ℓ Elements

$$
\operatorname{AVSS}-M S-\operatorname{Rec}\left(D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), \epsilon\right)
$$

Secret Reconstruction: Code for P_{i} - Every party in \mathcal{P} executes this code.

1. For every $P_{j} \in V C O R E$, participate in AWSS-MS$\operatorname{Rec}\left(P_{j}, \mathcal{P},\left(f_{j}^{1}(x), \ldots, f_{j}^{\ell}(x)\right), \epsilon^{\prime}\right)$. We call this instance of AWSS-MS-Rec as AWSS-MS-Rec ${ }^{P_{j}}$.
2. Wait for termination of AWSS-MS-Rec ${ }^{P_{j}}$ for every $P_{j} \in$ $V C O R E$ with output either $\left(\overline{f_{j}^{1}(x)}, \ldots, \overline{f_{j}^{\ell}(x)}\right)$ or $N U L L$. Add P_{j} to FINAL if AWSS-MS-Rec ${ }^{P_{j}}$ gives non- $N U L L$ output.
3. For $l=1, \ldots, \ell$, do the following: for every pair $\left(P_{\gamma}, P_{\delta}\right) \in$ FINAL check $\overline{f_{\gamma}^{l}(\delta)} \stackrel{?}{=} \overline{f_{\delta}^{l}(\gamma)}$. If the test passes for every pair of parties then recover $\overline{F^{l}(x, y)}$ using $\overline{f_{j}^{l}(x)}$'s corresponding to each $P_{j} \in F I N A L$ and reconstruct $\overline{s^{l}}=$ $\overline{F^{l}(0,0)}$. Else reconstruct $\overline{s^{l}}=N U L L$.
4. For $l=1, \ldots, \ell$, if any $\overline{s^{l}}=N U L L$ then output $\bar{S}=$ $N U L L$, else output $\bar{S}=\left(\overline{s^{1}}, \ldots, \overline{s^{\ell}}\right)$ and terminate.
modification will lead to an incorrect common coin protocol. Protocol Common-Coin-Wrong is given in Fig. 13.

We now show that protocol Common-Coin-Wrong does not satisfy second part of Lemma 14. That is, the adversary can behave in such a way that unique value V_{i}, associateed with an honest P_{i} may not be distributed uniformly over $[0, \ldots, u]$. More specifically, \mathcal{A}_{t} can decide V_{i} for up to $t-1$ honest parties and thus those V_{i} 's are no longer random and uniformly distributed over $[0, \ldots, u]$. Consequently, \mathcal{A}_{t} can enforce some honest parties to always output 0 , while other honest parties may output $\sigma \in\{0,1\}$ with probability at least $\frac{1}{4}$. This will strictly violate the property of of common coin.

Let P_{i} be an honest party. We now describe a specific behavior of \mathcal{A}_{t} in Common-Coin-Wrong which would allow \mathcal{A}_{t} to decide V_{i} to be 0 and thus make honest P_{i} to output 0 (this can be extended for $t-1$ honest $P_{i} \mathrm{~s}$) whereas the remaining honest parties output $\sigma \in\{0,1\}$ with probability at least $\frac{1}{4}$. The specific behavior is given in Fig. 14.
The Reason for the Problem: The adversary behavior specified in Fig. 14 become possible due to the fact that a corrupted P_{j} is able to select his secret $x_{j i}$ for an honest P_{i} after knowing the secrets which other honest parties has selected for P_{i}. This was not possible in Common-Coin because every party $P_{k} \in T_{i}$ shared their secrets independently using different instance of AVSSShare and as per requirement, corresponding AVSS-Rec was invoked to reconstruct the desired secret. However

Fig. 13 An Incorrect Common Coin Protocol Obtained by Replacing AVSS-Share and AVSS-Rec by AVSS-MS-Share and AVSS-MS-Rec Respectively in Protocol Common-Coin

Protocol Common-Coin-Wrong(ϵ)

Code for P_{i} : - Every party in \mathcal{P} executes this code.

1. For $j=1, \ldots, n$, choose a random value $x_{i j}$ and execute $\operatorname{AVSS}-M S-S h a r e\left(P_{i}, \mathcal{P},\left(x_{i 1}, \ldots, x_{i n}\right), \epsilon^{\prime}\right)$ where $\epsilon^{\prime}=\frac{\epsilon}{n}$.
2. Participate in AVSS-MS-Share $\left(P_{j}, \mathcal{P},\left(x_{j 1}, \ldots, x_{j n}\right), \epsilon^{\prime}\right)$ for every $j \in\{1, \ldots, n\}$. We denote AVSS-MSShare $\left(P_{j}, \mathcal{P},\left(x_{j 1}, \ldots, x_{j n}\right), \epsilon^{\prime}\right)$ by AVSS-MS-Share ${ }_{j}$.
3. Create a dynamic set \mathcal{T}_{i}. Add party P_{j} to \mathcal{T}_{i} if AVSS-MSShare $\left(P_{j}, \mathcal{P},\left(x_{j 1}, \ldots, x_{j n}\right), \epsilon^{\prime}\right)$ has been completed. Wait until $\left|\mathcal{T}_{i}\right|=t+1$. Then assign $T_{i}=\mathcal{T}_{i}$ and A-cast "Attach T_{i} to P_{i} ". We say that the secrets $\left\{x_{j i} \mid P_{j} \in T_{i}\right\}$ are the secrets attached to party P_{i}.
4. Create a dynamic set \mathcal{A}_{i}. Add P_{j} to \mathcal{A}_{i} if following holds:
(a) "Attach T_{j} to P_{j} " is received from A-cast of P_{j};
(b) $T_{j} \subseteq \mathcal{T}_{i}$.

Wait until $\left|\mathcal{A}_{i}\right|=n-t$. Then assign $A_{i}=\mathcal{A}_{i}$ and A-cast $" P_{i}$ Accepts A_{i} ".
5. Create a dynamic set \mathcal{S}_{i}. Add P_{j} to \mathcal{S}_{i} if following holds:
(a) " P_{j} Accepts A_{j} " is received from the A-cast of P_{j} and
(b) $A_{j} \subseteq \mathcal{A}_{i}$

Wait until $\left|\mathcal{S}_{i}\right|=n-t$. Then A-cast "Reconstruct Enabled". Let H_{i} be the current content of \mathcal{A}_{i}.
6. Participate in $\operatorname{AVSS}-\operatorname{MS}-\operatorname{Rec}\left(P_{k}, \mathcal{P},\left(x_{k 1}, \ldots, x_{k n}\right), \epsilon^{\prime}\right)$ for every $P_{k} \in T_{j}$ of every $P_{j} \in \mathcal{A}_{i}$ (Note that some parties may be included in \mathcal{A}_{i} after the A-cast of "Reconstruct Enabled". The corresponding AVSS-MSRec are invoked immediately). We denote AVSS-MS$\operatorname{Rec}\left(P_{k}, \mathcal{P},\left(x_{k 1}, \ldots, x_{k n}\right), \epsilon^{\prime}\right)$ by AVSS-MS-Rec ${ }_{k}$.
7. Let $u=\lceil 0.87 n\rceil$. Every party $P_{j} \in \mathcal{A}_{i}$ is associated with a value, say V_{j} which is computed as follows: $V_{j}=$ $\left(\sum_{P_{k} \in T_{j}} x_{k j}\right)$ mod u where $x_{k j}$ is reconstructed back after executing $\operatorname{AVSS}-\operatorname{MS}-\operatorname{Rec}\left(P_{k}, \mathcal{P},\left(x_{k 1}, \ldots, x_{k n}\right), \epsilon^{\prime}\right)$.
8. Wait until the values associated with all the parties in H_{i} are computed. Now if there exits a party $P_{j} \in H_{i}$ such that $V_{j}=0$, then output 0 . Otherwise output 1 .
in Common-Coin-Wrong, simultaneous sharing and reconstruction of n secrets is performed using AVSS-MSShare and AVSS-MS-Rec. So if a party P_{l} containing an honest P_{k} in T_{l} A-cast "Reconstruct Enabled" early and starts executing AVSS-MS-Rec ${ }_{k}$, then it will disclose the desired secret $x_{k l}$; but at the same time it will disclose other $n-1$ undesired secrets, selected by P_{k} corresponding to other $n-1$ parties. Now later the adversary may always schedule messages such that P_{i} includes such honest P_{k} 's in T_{i} and some other corrupted parties who have seen the secrets shared by P_{k} for P_{i} and then have shared their secrets for P_{i}. This clearly shows that the adversary can completely control the final output of P_{i} by deciding the value to be associated with P_{i}. This problem can be eliminated if we can ensure that no corrupted party can ever share any secret after any honest party starts reconstructing

Fig. 14 Adversary Behavior in Common-Coin-Wrong

Possible Behavior of \mathcal{A}_{t} in Protocol Common-Coin-Wrong() with respect to an honest P_{i}

1. Let P_{j} be a corrupted party. All corrupted parties participate in Common-Coin-Wrong honestly. However, P_{j} does not start AVSS-MS-Share ${ }_{j}$.
2. Except for AVSS-MS-Share ${ }_{i}$ and corresponding AVSS-MS$\operatorname{Rec}_{i}, \mathcal{A}_{t}$ (as a scheduler) stops all the messages sent to P_{i} and sent by P_{i} in every other AVSS-MS-Share ${ }_{k}$ and corresponding AVSS-MS-Rec ${ }_{k}$. This will prevent P_{i} to participate in any AVSS-MS-Share ${ }_{k}$ and corresponding AVSS-MS-Rec ${ }_{k}$ and hence to construct \mathcal{T}_{i}. However, this will not prevent P_{i} to be part of \mathcal{T}_{k} for some $P_{k} . \mathcal{A}_{t}$ does so until the following happen:
(a) $n-t-1$ honest parties (except P_{i}) and $t-1$ corrupted parties (except P_{j}) carry out all the steps of Common-Coin-Wrong honestly, construct respective sets, A-cast "Reconstruct Enabled" and start invoking corresponding AVSS-MS-Rec ${ }_{k}$ protocols. This way the n secrets of each of $n-t-1$ honest parties (except P_{i}) and $t-1$ corrupted parties will be revealed. $/^{*}$ It is to be noted that the corrupted parties can successfully reconstruct secrets in each AVSS-MS-Rec ${ }_{k}$ by behaving honestly, even if the honest P_{i} is unable to participate in AVSS-MS-Rec ${ }_{k}$'s.*/
(b) Now \mathcal{A}_{t} computes a set T_{i} of size $t+1$ containing the corrupted P_{j} and any t honest P_{k} 's, whose AVSS-$\mathrm{MS}-\mathrm{Rec}_{k}$'s have been terminated. Notice that now the shared values $\left(x_{k 1}, \ldots, x_{k n}\right)$, corresponding to each honest $P_{k} \in T_{i}$ are known to the adversary.
(c) Now \mathcal{A}_{t} selects $x_{j i}$, corresponding to P_{j}, such that $V_{i}=$ $\left(\sum_{P_{k} \in T_{i}} x_{k i}\right) \bmod u=0$. Now \mathcal{A}_{t} asks the corrupted P_{j} to invoke AVSS-MS-Share ${ }_{j}$ with $x_{j i}$ as the secret assigned to P_{i}.
3. \mathcal{A}_{t} now schedules the messages to and from P_{i} corresponding to every AVSS-MS-Share ${ }_{k}$ in such a way that T_{i} computed by \mathcal{A}_{t} (in step 2(b)) indeed becomes T_{i} for P_{i} and P_{i} A-casts "Attach T_{i} to P_{i} " and eventually includes P_{i} in \mathcal{A}_{i}. So clearly H_{i} will contain P_{i} and hence P_{i} will output 0 since V_{i} is 0 .
secrets. This is what we have achieved in our new common coin protocol presented in the next section.

7.4 A New Common Coin Protocol for Multiple Bits

In this section, we show how to enhance protocol CommonCoin, so that it can handle the problem described in the previous section and can still use protocols AVSS-MSShare and AVSS-MS-Rec as black-boxes. We first give the following definition:
Definition 11 (Multi-Bit Common Coin) Let π be an asynchronous protocol, where each party has local random input and ℓ bit output, where $\ell \geq 1$. We say that π is a $(1-\epsilon)$-terminating, t-resilient, multi-bit common coin protocol if the following holds:

1. Termination: If all honest parties participate, then with probability $(1-\epsilon)$, all honest parties terminate.
2. Correctness: For $l=1, \ldots, \ell$, all honest parties output σ_{l} with probability at least $\frac{1}{4}$ for every $\sigma_{l} \in$ $\{0,1\}$.

We now present a multi-bit common coin protocol, called Common-Coin-MB, which goes almost in the same line as Common-Coin-Wrong except that we add some more steps and modify some of the steps due to which the corrupted parties are forced to share their secrets much before they can reconstruct anybody elses' secrets. We now discuss the high level idea of the protocol.

The Intuition: Each party shares n random secrets, using a single instance of AVSS-MS-Share, where the $i^{\text {th }}$ secret is associated with P_{i}. Now a party P_{i} adds a party P_{j} to \mathcal{T}_{i}, only when at least $n-t$ parties have terminated P_{j} 's instance of AVSS-MS-Share. Recall that in Common-Coin-Wrong, P_{i} adds P_{j} to \mathcal{T}_{i}, when P_{i} himself has terminated P_{j} 's instance of AVSS-MS-Share. After that party P_{i} constructs $\mathcal{T}_{i}, \mathcal{A}_{i}$ and \mathcal{S}_{i} and A-cast T_{i}, A_{i} and "Reconstruct Enabled" in the same way as performed in Common-Coin-Wrong, except with the following difference: P_{i} ensures T_{i} to contain $n-t$ parties (contrary to $t+1$ parties in Common-Coin-Wrong). The reason for enforcing $\left|T_{i}\right|=n-t$ is to obtain multiple bit output in protocol Common-Coin-MB and will be clear in the sequel. Now what follows is the most important step of Common-Coin-MB. Party P_{i} starts participating in AVSS-MS-Rec of the parties who are in his \mathcal{T}_{i} only after receiving at least $n-t$ "Reconstruct Enabled" A-casts. Moreover party P_{i} halts execution of all the instances of AVSS-MS-Share corresponding to the parties not in \mathcal{T}_{i} currently and later resume them only when they are included in \mathcal{T}_{i}. This step along with the step for constructing \mathcal{T}_{i} will ensure the desired property that in order to be part of any honest party's \mathcal{T}_{i}, a corrupted party must have to commit his secrets well before the first honest party receives $n-t$ "Reconstruct Enabled" A-casts and starts reconstructing secrets. This ensures that a corrupted party who is in \mathcal{T}_{i} of any honest party had no knowledge what so ever about the secrets committed by other honest parties at the time he commits to his own secrets.

Let us see, how our protocol steps achieve the above task. Let P_{i} be the first honest party to receive $n-t$ "Reconstruct Enabled" A-casts and start invoking reconstruction process. Also let P_{k} be a corrupted party who belongs to \mathcal{T}_{j} of some honest party P_{j}. This means that at least $t+1$ honest parties have already terminated AVSS-MS-Share instance of P_{k} (this is because P_{j} has added P_{k} in \mathcal{T}_{j} only after confirming that $n-t$ parties have terminated P_{k} 's instance of AVSS-MS-Share). This
further means that there is at least one honest party, say P_{α}, who terminated P_{k} 's instance of AVSS-MS-Share before A-casting "Reconstruct Enabled" (because if it not the case, then the honest party P_{α} would have halted the execution of P_{k} 's instance of AVSS-MS-Share for ever and would never terminate it). This indicates that P_{k} is already committed to his secrets before the first honest party receives $n-t$ "Reconstruct Enabled" A-casts and starts the reconstruction. A more detailed proof is given in Lemma 27.

Another important feature of protocol Common-CoinMB is that it is a multi-bit common coin protocol. This is attained by using the ability of Vandermonde matrix [53,19] for extracting randomness. As a result, we could associate $n-2 t$ values with each P_{i}, namely $V_{i 1}, \ldots$, $V_{i(n-2 t)}$ in Common-Coin-MB, while a single value V_{i} was associated with P_{i} in Common-Coin. This leads every party to output $\ell=n-2 t$ bits in protocol Common-Coin-MB. We now briefly recall the properties of Vandermonde matrix and then present our protocol.

Vandermonde Matrix and Randomness Extraction [53, 19]: Let $\beta_{1}, \ldots, \beta_{c}$ be distinct and publicly known elements of \mathbb{F}. We denote an $(r \times c)$ Vandermonde matrix by $V^{(r, c)}$, where for $i=1, \ldots, c$, the $i^{t h}$ column of $V^{(r, c)}$ is $\left(\beta_{i}^{0}, \ldots, \beta_{i}^{r-1}\right)^{T}$. The idea behind extracting randomness using $V^{(r, c)}$ is as follows: without loss of generality, assume that $r>c$. Moreover, let $\left(x_{1}, \ldots, x_{r}\right)$ be such that:

1. Any c elements of it are completely random and are unknown to adversary \mathcal{A}_{t}.
2. The remaining $r-c$ elements are completely independent of the c elements and also known to \mathcal{A}_{t}.
Now if we compute $\left(y_{1}, \ldots, y_{c}\right)=\left(x_{1}, \ldots, x_{r}\right) V$, then $\left(y_{1}, \ldots, y_{c}\right)$ is a random vector of length c unknown to $\mathcal{A}_{t}[53,19]$. This principle is used in protocol Common-Coin-MB, which is given in Fig. 15.

Let E be an event, defined as follows: All invocations of AVSS scheme in Common-Coin-MB have been terminated properly, with correct outputs. It is easy to see that event E occurs with probability at least $1-n \epsilon^{\prime}=1-\epsilon$. We now prove the properties of protocol Common-Coin-MB.

Lemma 26 All honest parties terminate Common-Coin$M B$ in constant time.

Proof: We structure the proof in the following way. We first show that assuming every honest party has A-casted "Reconstruct Enabled", every honest party will terminate protocol Common-Coin-MB in constant time. Then we show that there exists at least one honest party who will A-cast "Reconstruct Enabled". Consequently, we prove that if one honest party A-casts

Fig. 15 Multi-Bit Common Coin Protocol

Protocol Common-Coin-MB(ϵ)

Code for P_{i} : - All parties execute this code

1. For $j=1, \ldots, n$, choose a random value $x_{i j}$ and execute $\operatorname{AVSS}-M S-S h a r e\left(P_{i}, \mathcal{P},\left(x_{i 1, \ldots, x_{i n}}\right), \epsilon^{\prime}\right)$ where $\epsilon^{\prime}=\frac{\epsilon}{n}$.
2. Participate in AVSS-MS-Share $\left(P_{j}, \mathcal{P},\left(x_{j 1}, \ldots, x_{j n}\right), \epsilon^{\prime}\right)$ for every $j \in\{1, \ldots, n\}$. We denote AVSS-MSShare $\left(P_{j}, \mathcal{P},\left(x_{j 1}, \ldots, x_{j n}\right), \epsilon^{\prime}\right)$ by AVSS-MS-Share ${ }_{j}$.
3. Upon terminating AVSS-MS-Share ${ }_{j}$, A-cast " P_{i} terminated P_{j} ".
4. Create a dynamic set \mathcal{T}_{i}. Add party P_{j} to \mathcal{T}_{i} if " P_{k} terminated P_{j} " is received from the A-cast of at least $n-t P_{k}$'s. Wait until $\left|\mathcal{T}_{i}\right|=n-t$. Then assign $T_{i}=\mathcal{T}_{i}$ and A-cast "Attach T_{i} to P_{i} ". We say that the secrets $\left\{x_{j i} \mid P_{j} \in T_{i}\right\}$ are the secrets attached to party P_{i}.
5. Create a dynamic set \mathcal{A}_{i}. Add party P_{j} to \mathcal{A}_{i} if
(a) "Attach T_{j} to P_{j} " is received from the A-cast of P_{j} and
(b) $T_{j} \subseteq \mathcal{T}_{i}$.

Wait until $\left|\mathcal{A}_{i}\right|=n-t$. Then assign $A_{i}=\mathcal{A}_{i}$ and A-cast $" P_{i}$ Accepts A_{i} ".
6. Create a dynamic set \mathcal{S}_{i}. Add party P_{j} to \mathcal{S}_{i} if
(a) " P_{j} Accepts A_{j} " is received from the A-cast of P_{j} and
(b) $A_{j} \subseteq \mathcal{A}_{i}$

Wait until $\left|\mathcal{S}_{i}\right|=n-t$. Then A-cast "Reconstruct Enabled". Let H_{i} be the current content of \mathcal{A}_{i}. Stop participating in AVSS-MS-Share j_{j} for all P_{j} who are are not yet included in current \mathcal{T}_{i}. Later resume all such instances of AVSS-MS-Share ${ }_{j}$'s if P_{j} is included in \mathcal{T}_{i}.
7. Wait to receive "Reconstruct Enabled" from A-cast of at least $n-t$ parties. Participate in AVSS-MS$\operatorname{Rec}\left(P_{k}, \mathcal{P},\left(x_{k 1}, \ldots, x_{k n}\right), \epsilon^{\prime}\right)$ for every $P_{k} \in \mathcal{T}_{i}$. We denote AVSS-MS-Rec $\left(P_{k}, \mathcal{P},\left(x_{k 1}, \ldots, x_{k n}\right), \epsilon^{\prime}\right)$ by AVSS-MS-Rec ${ }_{k}$. Notice that as on when new parties are added to \mathcal{T}_{i}, P_{i} participates in corresponding AVSS-MS-Rec.
8. Let $u=\lceil 0.87 n\rceil$. Every party $P_{j} \in \mathcal{A}_{i}$ is associated with $n-2 t$ values, say $V_{j 1}, \ldots, V_{j(n-2 t)}$ in the following way. Let $x_{k j}$ for every $P_{k} \in T_{j}$ has been reconstructed. Let X_{j} be the $n-t$ length vector consisting of $\left\{x_{k j} \mid P_{k} \in\right.$ $\left.T_{j}\right\}$. Then set $\left(v_{j 1}, \ldots, v_{j(n-2 t)}\right)=X_{j} \cdot V^{(n-t, n-2 t)}$, where $V^{(n-t, n-2 t)}$ is an $(n-t) \times(n-2 t)$ Vandermonde Matrix. Now $V_{j l}=v_{j l} \bmod u$ for $l=1, \ldots, n-2 t$.
9. Wait until $n-2 t$ values associated with all the parties in H_{i} are computed. Now for every $l=1, \ldots, n-2 t$ if there exits a party $P_{j} \in H_{i}$ such that $V_{j l}=0$, then set 0 as the $l^{t h}$ binary output; otherwise set 1 as the $l^{t h}$ binary output. Finally output the $n-2 t$ length binary vector.
"Reconstruct Enabled", then eventually every other honest party will do the same.

So let us first prove the first statement. Assuming every honest party has A-casted "Reconstruct Enabled", it will hold that eventually every honest party P_{i} will receive $n-t$ A-casts of "Reconstruct Enabled" from $n-t$ honest parties and will invoke AVSS-MS-Rec corresponding to every party in \mathcal{T}_{i}. It clear that a party P_{k} that is included in \mathcal{T}_{i} of some honest P_{i}, will be eventually included in \mathcal{T}_{j} of every other P_{j}. Hence if
P_{i} participates in $\mathrm{AVSS}-\mathrm{MS}-\mathrm{Rec}_{k}$, then eventually every other honest party will do the same. Given event E, all invocations of AVSS-MS-Rec terminate in constant time. Also black box protocol for A-cast terminates in constant time. This proves the first statement.

We next show that there is at least one honest party who will A-cast "Reconstruct Enabled". So assume that P_{i} is the first honest party to A-cast "Reconstruct Enabled". We will show that this event will always take place. First notice that till P_{i} A-cast "Reconstruct Enabled", no honest party would halt any AVSS-MSShare ${ }_{j}$. By the termination property of AVSS-MS-Share, every honest party will eventually terminate the instance of AVSS-MS-Share of every other honest party. Moreover, there are at least $n-t$ honest parties. So from the protocol steps, it is easy to see that for honest P_{i}, \mathcal{T}_{i} will eventually contain at least $n-t$ parties and hence P_{i} will eventually A-cast "Attach T_{i} to P_{i} ". Similarly, every other honest P_{j} will be eventually included in \mathcal{A}_{i} and so \mathcal{A}_{i} will eventually contain at least $n-t$ parties and hence P_{i} will A-cast " P_{i} Accepts A_{i} ". Similarly, \mathcal{S}_{i} will eventually be of size $n-t$ and hence P_{i} will A-cast "Reconstruct Enabled".

Now we show that every other honest party P_{j} will also A-cast "Reconstruct Enabled" eventually. It is easy to see that every party that is included in \mathcal{T}_{i} will also be included in \mathcal{T}_{j} eventually. And hence, all the conditions that are satisfied for honest P_{i} above will be eventually satisfied for every other honest P_{j}. So P_{j} will eventually A-cast "Reconstruct Enabled".

We now prove the following important lemma, which is at the heart of Common-Coin-MB. The lemma shows that the adversary behavior of Fig. 14 is not applicable in Common-Coin-MB.

Lemma 27 Let a corrupted party P_{k} is included in \mathcal{T}_{j} of an honest P_{j} in protocol Common-Coin-MB. Then the values shared by P_{k} in AVSS-MS-Share ${ }_{k}$ are completely independent of the values shared by the honest parties.

Proof: Let P_{i} be the first honest party who receives A-cast of "Reconstruct Enabled" from at least $n-t$ parties and starts participating in AVSS-MS-Rec, corresponding to each party in \mathcal{T}_{i}. To prove the lemma, we first assert that a corrupted party P_{k} will never be included in \mathcal{T}_{j} of any honest P_{j}, if P_{k} invokes AVSS-MSShare $_{k}$ only after P_{i} starts participating in AVSS-MSRec corresponding to each party in \mathcal{T}_{i}. We prove this by contradiction. Let P_{i} has received "Reconstruct Enabled" from the parties in \mathcal{B}_{1} with $\left|\mathcal{B}_{1}\right| \geq n-t$. Moreover, assume P_{k} invokes AVSS-MS-Share ${ }_{k}$ only after P_{i} received "Reconstruct Enabled" from the parties in \mathcal{B}_{1} and starts participating in AVSS-MS-Rec cor-
responding to each party in \mathcal{T}_{i}. Furthermore, assume that P_{k} is still in \mathcal{T}_{j} of some honest P_{j}. Now $P_{k} \in \mathcal{T}_{j}$ implies that P_{j} must have received " P_{m} terminated P_{k} " from A-cast of at least $n-t P_{m}$'s, say \mathcal{B}_{2}. Now $\mid \mathcal{B}_{1} \cap$ $\mathcal{B}_{2} \mid \geq n-2 t$ and thus the intersection set contains at least one honest party, say P_{α}, as $n=3 t+1$. This implies that honest $P_{\alpha} \in \mathcal{B}_{1}$ and must have terminated AVSS-MS-Share ${ }_{k}$ before A-casting "Reconstruct Enabled". Otherwise P_{α} would have halted the execution of AVSS-MS-Share ${ }_{k}$ and would never A-cast
" P_{α} terminated P_{k} " (see step 6 in the protocol). This further implies that P_{k} must have invoked AVSS-MSShare ${ }_{k}$ before P_{i} starts participating in AVSS-MS-Recs. But this is a contradiction to our assumption.

Hence if the corrupted P_{k} is included in \mathcal{T}_{j} of any honest P_{j} then he must have invoked AVSS-MS-Share ${ }_{k}$ before any AVSS-MS-Rec has been invoked by any honest party. Thus P_{k} will have no knowledge of the secrets shared by honest parties when he chooses his own secrets for AVSS-MS-Share ${ }_{k}$.

Lemma 28 In protocol Common-Coin-MB, once some honest party P_{j} receives "Attach T_{i} to P_{i} " from the A-cast of P_{i} and includes P_{i} in $\mathcal{A}_{j}, n-2 t$ unique values $V_{i 1}, \ldots, V_{i(n-2 t)}$ are fixed such that

1. Every honest party will associate $V_{i 1}, \ldots, V_{i(n-2 t)}$ with P_{i}, except with probability ϵ.
2. Each of $V_{i 1}, \ldots, V_{i(n-2 t)}$ is distributed uniformly over $[0, \ldots, u]$ and independent of the values associated with the other parties.

Proof: The values $V_{i 1}, \ldots, V_{i(n-2 t)}$ are defined in step 8 of the protocol. We now prove the first part of the lemma. According to the lemma condition, $P_{i} \in \mathcal{A}_{j}$. This implies that $T_{i} \subseteq \mathcal{T}_{j}$. So honest P_{j} will participate in AVSS-MS-Rec ${ }_{k}$ corresponding to each $P_{k} \in T_{i}$. Moreover, eventually $T_{i} \subseteq \mathcal{T}_{m}$ and $P_{i} \in \mathcal{A}_{m}$ will hold for every other honest P_{m}. So, every other honest party will also participate in AVSS-MS-Rec ${ }_{k}$ corresponding to each $P_{k} \in T_{i}$. Now by the property of AVSS-MS-Rec, each honest party will reconstruct $x_{k i}$ at the completion of AVSS-MS-Rec ${ }_{k}$, except with probability ϵ^{\prime}. Thus, with probability $1-(n-t) \epsilon^{\prime} \approx 1-\epsilon$, every honest party will associate $V_{i 1}, \ldots, V_{i(n-2 t)}$ with P_{i}.

We now prove second part of the lemma. By Lemma 27 , when T_{i} is fixed, the values that are shared by corrupted parties in T_{i} are completely independent of the values shared by the honest parties in T_{i}. Now, each T_{i} contains at least $n-2 t$ honest parties and every honest partys' shared secrets are uniformly distributed and mutually independent. Hence by the property of Vandermonde matrix the values $v_{i 1}, \ldots, v_{i(n-2 t)}$ are completely random and thus $V_{i 1}, \ldots, V_{i(n-2 t)}$ are uniformly and independently distributed over $[0, \ldots, u]$.

Lemma 29 In protocol Common-Coin-MB, once an honest party A-casts "Reconstruct Enabled", there exists a set M of size $|M| \geq \frac{n}{3}$, such that:

1. For every party $P_{j} \in M$, some honest party has received "Attach T_{j} to P_{j} " from the A-cast of P_{j}.
2. When any honest party P_{j} A-casts "Reconstruct Enabled", then it will hold that $M \subseteq H_{j}$.

Proof: Follows from the proof of Lemma 15
Lemma 30 Let $\epsilon \leq 0.2$ and assume that all honest parties have terminated protocol Common-Coin-MB. Then for every $l \in\{1, \ldots, n-2 t\}$, all honest parties output σ_{l} with probability at least $\frac{1}{4}$ for every value of $\sigma_{l} \in\{0,1\}$.

Proof: Follows from Lemma 28 and similar arguments as given in the proof of Lemma 16.

Theorem 10 Common-Coin-MB is a $(1-\epsilon)$-terminating, t-resilient multi-bit common coin protocol with $t+1$ bits output for every $0<\epsilon \leq 0.2$.

Proof: Follows from Lemma 26, 27, 28, 29 and 30.
Theorem 11 Protocol Common-Coin-MB privately communicates $\mathcal{O}\left(n^{5} \log \frac{1}{\epsilon}\right)$ bits and A-cast $\mathcal{O}\left(n^{5} \log \frac{1}{\epsilon}\right)$ bits for $(t+1)=\Theta(n)$ bit output.

Proof: Easy, as n instances of AVSS-MS-Share and AVSS-MS-Rec with $\ell=n$ secrets are executed.

From Theorem 11, we get the following corollary.
Corollary 1 The amortized communication cost of generating a single bit output in Common-Coin-MB is $\mathcal{O}\left(n^{4}\right.$ $\left.\log \frac{1}{\epsilon}\right)$ bits of private communication and $\mathcal{O}\left(n^{4} \log \frac{1}{\epsilon}\right)$ bits of A-cast communication.

The above corollary shows that the amortized communication complexity of generating single bit output in Common-Coin-MB is $\mathcal{O}\left(n^{2}\right)$ times better than CommonCoin. In the next section, we use Common-Coin-MB to design an ABA protocol which allows the parties to reach agreement on $t+1$ bits concurrently.

7.5 ABA Protocol for Agreement on $t+1$ Bits

We now design protocol $A B A-M B$, which attains agreement on $n-2 t=t+1$ bits concurrently. So initially every party has a private input of $n-2 t$ bits. Let the $n-2 t$ bit input of P_{i} be denoted by $x_{i 1}, \ldots, x_{i(n-2 t)}$.

The Intuition:The high level idea of ABA-MB is similar to ABA (given in Section 6). The ABA protocol proceeds in iterations where in each iteration every party computes his 'modified input', consisting of $n-2 t$ bits.

In the first iteration the 'modified input' of P_{i} is the private input bits of P_{i}. In each iteration, every party executes the following protocols sequentially:

1. $n-2 t$ parallel instances of Vote protocol, one corresponding to each bit of the 'modified input';
2. A single instance of Common-Coin-MB.

Notice that the parties participate in Common-CoinMB , only after terminating all the $n-2 t$ instances of Vote protocol. Now the parties parallely perform almost similar computation as in protocol ABA, corresponding to each of the $t+1$ bits. However, instead of executing $n-2 t$ instances of Common-Coin protocol, the parties execute only a single instance of Common-CoinMB. The protocol is given in Fig. 16. We now prove the

Fig. 16 ABA Protocol for Agreement on $t+1$ Bits

Protocol ABA-MB(ϵ)

Code for P_{i} : - Every party executes this code
Set $r:=0$. For $l=1, \ldots, n-2 t$, set $v_{1 l}=x_{i l}$.
2. Repeat until terminating.
(a) Set $r:=r+1$. Participate in $n-2 t$ instances of Vote protocol, with $v_{r l}$ as the input in the $l^{t h}$ instance of Vote protocol, for $l=1, \ldots, n-2 t$. Set ($y_{r l}, m_{r l}$) as the output of the $l^{t h}$ instance of Vote protocol.
(b) Wait to terminate all the $n-2 t$ instances of Vote protocol. Then invoke Common-Coin- $\mathrm{MB}\left(\frac{\epsilon}{4}\right)$ and wait until its termination. Let $c_{r 1}, \ldots, c_{r(n-2 t)}$ be the output of Common-Coin-MB.
(c) For every $l \in\{1, \ldots, n-2 t\}$ such that agreement on $l^{t h}$ bit is not achieved, parallely do the following:
i. If $m_{r l}=2$, then set $v_{(r+1) l}=y_{r l}$ and Acast ("Terminate with $v_{(r+1) l}$ ", l). Participate in only one more instance of Vote corresponding to $l^{t h}$ bit with $v_{(r+1) l}$ as the input. Participate in only one more instance of Common-Coin-MB if ("Terminate with $v_{(r+1) l}$ ",l) is A-casted for all $l=1, \ldots, n-2 t$.
ii. If $m_{r l}=1$, set $v_{(r+1) l}=y_{r l}$.
iii. Otherwise, set $v_{(r+1) l}=c_{r l}$.
(d) Upon receiving ("Terminate with $\sigma_{l} ", l$) from the Acast of at least $t+1$ parties, for some value σ_{l}, output σ_{l} as the $l^{t h}$ bit and terminate all the computation regarding $l^{t h}$ bit. In this case, we say that agreement on $l^{t h}$ bit is achieved.
(e) Terminate ABA-MB when agreement is achieved on all l bits, for $l=1, \ldots, n-2 t$.
properties of protocol ABA-MB.
Lemma 31 In protocol $A B A-M B$, if all the honest parties have input $\sigma_{1}, \ldots, \sigma_{n-2 t}$, then all the honest parties terminate and output $\sigma_{1}, \ldots, \sigma_{n-2 t}$.

Proof: Directly follows from Lemma 21 and protocol steps.

Lemma 32 If some honest party terminates protocol ABA-MB with output $\sigma_{1}, \ldots, \sigma_{n-2 t}$, then all honest parties will eventually terminate $A B A-M B$ with output σ_{1}, $\ldots, \sigma_{n-2 t}$.

Proof: To prove the lemma, it is enough to show that for every $l=1, \ldots, n-2 t$, if an honest party terminates $\mathrm{ABA}-\mathrm{MB}$ with output σ_{l}, then all honest parties will eventually terminate ABA-MB with output σ_{l}. However, this follows from the proof of Lemma 22.

Lemma 33 If all honest parties have initiated and completed some iteration k, then with probability at least $\frac{1}{4}$, all honest parties will have same value for 'modified input' $v_{(k+1) l}$, for every $l=1, \ldots, n-2 t$.

Proof: Follows from the proof of Lemma 23.
We now recall event C_{k} and C from section 6 . Let C_{k} be the event that each honest party completes all the iterations he initiated up to (and including) the $k^{t h}$ iteration (that is, for each iteration $1 \leq r \leq k$ and for each party P, if P initiated iteration r then he computes $v_{(r+1) l}$ for every $l^{t h}$ bit). Let C denote the event that C_{k} occurs for all k.

Lemma 34 Conditioned on event C, all honest parties terminate protocol $A B A-M B$ in constant expected time.

Proof: Let the first instance of A-cast of ("Terminate with σ_{l} ", l) is initiated by some honest party in iteration τ_{l}. Following Lemma 22, every other honest party will A-cast ("Terminate with σ_{l} ", l) in iteration $\tau_{l}+1$. Now it is true that agreement on $l^{t h}$ bit will be achieved within constant time after $\left(\tau_{l}+1\right)^{t h}$ iteration (this is because the A-casts can be completed in constant time). Let m be such that τ_{m} is the maximum among $\tau_{1}, \ldots, \tau_{n-2 t}$. We first show that all honest parties will terminate protocol ABA-MB within constant time after some honest party initiates the first instance of A-cast ("Terminate with $\sigma_{m} ", m$). Since the first instance of A-cast of ("Terminate with $\sigma_{m} ", m$) is initiated by some honest party in iteration τ_{m}, all the parties will participate in Vote and Common-Coin-MB in iteration $\tau_{m}+1$. Both the executions can be completed in constant time. Moreover, by Lemma 22 every honest party will A-cast ("Terminate with $\sigma_{m} ", m$) by the end of iteration $\tau_{m}+1$. The A-casts can be completed in constant time. Moreover, it is to be noted that for all other bits l, agreement will be reached either before reaching agreement on $m^{t h}$ bit or within constant time of reaching agreement on $m^{t h}$ bit. Hence all honest parties will terminate ABA-MB within constant time after the first instance of A-cast of ("Terminate with $\sigma_{m} ", m$) is initiated by some honest party in iteration τ_{m}.

Now conditioned on event C, all honest parties terminate each iteration in constant time. So it is left to show that $E\left(\tau_{m} \mid C\right)$ is constant. We have

$$
\begin{aligned}
\operatorname{Prob}\left(\tau_{m}>k \mid C_{k}\right) & \leq \operatorname{Prob}\left(\tau_{m} \neq 1 \mid C_{k}\right) \times \\
& \ldots \times \operatorname{Prob}\left(\tau_{m} \neq k \cap \ldots \cap \tau_{m} \neq 1 \mid C_{k}\right)
\end{aligned}
$$

From the Lemma 33, it follows that each one of the k multiplicands of the right hand side of the above equation is at most $\frac{3}{4}$. Thus we have $\operatorname{Prob}\left(\tau_{m}>k \mid C_{k}\right) \leq$ $\left(\frac{3}{4}\right)^{k}$. Now simple calculation gives $E\left(\tau_{m} \mid C\right) \leq 16$.

Lemma $35 \operatorname{Prob}(C) \geq(1-\epsilon)$.

Proof: Follows from the proof of Lemma 25.

Summing up, we have the following theorem.

Theorem 12 (ABA for $t+1$ Bits) Let $n=3 t+1$. Then for every $0<\epsilon \leq 0.2$, protocol $A B A-M B$ is a t resilient, $(\epsilon, 0)-A B A$ protocol for n parties. Given the parties terminate, they do so in constant expected time. The protocol allows the parties to reach agreement on $t+1$ bits simultaneously and involves private communication and A-cast of $\mathcal{O}\left(n^{5} \log \frac{1}{\epsilon}\right)$ bits.

8 Conclusion and Open Problems

We have presented a novel, constant expected time, optimally resilient, $(\epsilon, 0)$-ABA protocol whose communication complexity is significantly better than best known existing ABA protocols of $[15,1]$ (though the ABA protocol of [1] has a strong property of being almost surely terminating) with optimal resilience. Here we summarize the key factors that have contributed to the gain in the communication complexity of our ABA protocol: (a) A shorter route: $I C P \rightarrow A W S S \rightarrow A V S S \rightarrow A B A$, (b) Improving each of the building blocks by introducing new techniques and (c) By exploiting the advantages of dealing with multiple secrets concurrently in each of these blocks. It is to be mentioned that our new AVSS scheme significantly outperforms the existing AVSS schemes in the same settings in terms of communication complexity. An interesting open problem is to further improve the communication complexity of ABA protocols. Also one can try to provide an almost surely terminating, optimally resilient, constant expected time ABA protocol whose communication complexity is less than the ABA protocol of [1].

References

1. I. Abraham, D. Dolev, and J. Y. Halpern. An almost-surely terminating polynomial protocol for asynchronous Byzantine Agreement with optimal resilience. In R. A. Bazzi and B. Patt-Shamir, editors, Proceedings of the Twenty-Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages 405-414. ACM Press, 2008.
2. B. Altmann, M. Fitzi, and U. M. Maurer. Byzantine Agreement secure against general adversaries in the dual failure model. In P. Jayanti, editor, Distributed Computing, 13th International Symposium, Bratislava, Slavak Republic, September 27-29, 1999, Proceedings, volume 1693 of Lecture Notes in Computer Science, pages 123-137. Springer Verlag, 1999.
3. Z. Beerliová-Trubíniová and M. Hirt. Simple and efficient perfectly-secure asynchronous MPC. In K. Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science, pages 376-392. Springer Verlag, 2007.
4. M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols. In Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium on Princiles of Distributed Computing, August 17-19, 1983, Montreal, Quebec, Canada, pages 27-30. ACM Press, 1983.
5. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 24, 1988, Chicago, Illinois, USA, pages 1-10. ACM Press, 1988.
6. M. BenOr, B. Kelmer, and T. Rabin. Asynchronous secure computations with optimal resilience. In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing, Los Angeles, California, USA, August 14-17, pages 183-192. ACM Press, 1994.
7. P. Berman and J. A. Garay. Asymptotically optimal distributed consensus (extended abstract). In G. Ausiello, M. Dezani-Ciancaglini, and S. R. D. Rocca, editors, $A u$ tomata, Languages and Programming, 16th International Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings, volume 372 of Lecture Notes in Computer Science, pages 80-94. Springer, 1989.
8. P. Berman and J. A. Garay. Cloture votes: n/4-resilient distributed consensus in t+1 rounds. Mathematical Systems Theory, 26(1):3-19, 1993.
9. P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed consensus (extended abstract). In Proceedings of 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, 30 October 1 November 1989, pages 410-415. IEEE Computer Society, 1989.
10. G. Bracha. An asynchronous $\lfloor(n-1) / 3\rfloor$-resilient consensus protocol. In Proceedings of the Third Annual ACM Symposium on Princiles of Distributed Computing, Vancouver, B. C., Canada, August 27-29, 1984, pages $154-162$. ACM Press, 1984.
11. G. Bracha. Asynchronous Byzantine Agreement protocols. Inf and Computation, 75(2):130-143, 1987.
12. G. Bracha. An $O(\log n)$ expected rounds randomized Byzantine generals protocol. J. ACM, 34(4):910-920, 1987.
13. G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. J. ACM, 32(4):824-840, 1985.
14. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute, Israel, 1995.
15. R. Canetti and T. Rabin. Fast asynchronous Byzantine Agreement with optimal resilience. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 42-51. ACM Press, 1993.
16. B. A. Coan and J. L. Welch. Modular construction of a Byzantine Agreement protocol with optimal message bit complexity. Information and Computation, 97(1):61-85, 1992.
17. R. Cramer and I. Damgård. Multiparty Computation, an Introduction. Contemporary Cryptography. Birkhuser Basel, 2005.
18. R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations secure against an adaptive adversary. In J. Stern, editor, Advances in Cryptology - EUROCRYPT '99, International Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science, pages 311-326. Springer Verlag, 1999.
19. I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In A. Menezes, editor, $A d-$ vances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science, pages 572-590. Springer Verlag, 2007.
20. D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14-30, 1982.
21. D. Dolev, M. J. Fischer, R. J. Fowler, N. A. Lynch, and H. R. Strong. An efficient algorithm for Byzantine Agreement without authentication. Information and Control, 52(3):257274, 1982.
22. D. Dolev and R. Reischuk. Bounds on information exchange for Byzantine Agreement. Journal of ACM, 32(1):191-204, 1985.
23. D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in Byzantine Agreement. Journal of ACM, 37(4):720-741, 1990.
24. D. Dolev and H. R. Strong. Polynomial algorithms for multiple processor agreement. In Proceedings of the 14 th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 401-407. ACM Press, 1982.
25. D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine Agreement. SIAM Journal of Computing, 12(4):656-666, 1983.
26. P. Feldman and S. Micali. Byzantine Agreement in constant expected time (and trusting no one). In Proceedings of 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, 21-23 October 1985, pages 267-276. IEEE Computer Society, 1985.
27. P. Feldman and S. Micali. An optimal algorithm for synchronous Byzantine Agreemet. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 24, 1988, Chicago, Illinois, USA, pages 639-648. ACM Press, 1988.
28. P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous Byzantine Agreement. SIAM Journal of Computing, 26(4):873-933, 1997.
29. M. J. Fischer. The consensus problem in unreliable distributed systems (a brief survey). In $F C T$, pages 127-140, 1983.
30. M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus problems. In FaultTolerant Distributed Computing, pages 147-170, 1986.
31. M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty process. JACM, 32(2):374-382, 1985.
32. M. Fitzi. Generalized Communication and Security Models in Byzantine Agreement. PhD thesis, ETH Zurich, 2002.
33. M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-optimal and efficient verifiable secret sharing. In S. Halevi and T. Rabin, editors, Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer Science, pages 329-342. Springer Verlag, 2006.
34. M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith. Detectable Byzantine Agreement secure against faulty majorities. In PODC 2002, Proceedings of the TwentyFirst Annual ACM Symposium on Principles of Distributed Computing, July 21-24, 2002 Monterey, California, USA, pages 118-126. ACM Press, 2002.
35. M. Fitzi and M. Hirt. Optimally efficient multi-valued Byzantine Agreement. In Ruppert E and Malkhi D, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, Denver, CO, USA, July 23-26, 2006, pages 163-168, 2006.
36. M. Fitzi and U. M. Maurer. From partial consistency to global broadcast. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 494-503. ACM Press, 2000.
37. Z. Galil, A. J. Mayer, and M. Yung. Resolving message complexity of Byzantine Agreement and beyond. In Proceedings of 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, 23-25 October 1995, pages 724-733. IEEE Computer Society, 1995.
38. J. A. Garay and K. J. Perry. A continuum of failure models for distributed computing. In A. Segall and S. Zaks, editors, Distributed Algorithms, 6th International Workshop, WDAG '92, Haifa, Israel, November 2-4, 1992, Proceedings, volume 647 of Lecture Notes in Computer Science, pages 153-165. Springer Verlag, 1992.
39. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of verifiable secret sharing and secure multicast. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece. ACM, pages 580-589. ACM Press, 2001.
40. J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of VSS in point-to-point networks. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming \& Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pages 499-510. Springer Verlag, 2008.
41. J. Katz and C. Y. Koo. On expected constant-round protocols for Byzantine Agreement. In C. Dwork, editor, Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings, Lecture Notes in Computer Science, pages 445-462. Springer Verlag, 2006.
42. L. Lamport. The weak Byzantine generals problem. Journal of $A C M, 30(3): 668-676,1983$.
43. Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenticated Byzantine Agreement. In Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montral, Qubec, Canada, pages 514-523. ACM Press, 2002.
44. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
45. A. Patra, A. Choudhary, T. Rabin, and C. Pandu Rangan. The round complexity of verifiable secret sharing revisited. In S. Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science, pages 487504. Springer Verlag, 2009.
46. A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient asynchronous multiparty computation with optimal resilience. Cryptology ePrint Archive, Report 2008/425, 2008.
47. A. Patra, A. Choudhary, and C. Pandu Rangan. Simple and efficient asynchronous Byzantine Agreement with optimal resilience. In S. Tirthapura and L. Alvisi, editors, Proceedings of the 28th Annual ACM Symposium on Principles of Distributed Computing, PODC 2009, Calgary, Alberta, Canada, August 10-12, 2009, pages 92-101. ACM Press, 2009.
48. M. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults. JACM, 27(2):228-234, 1980.
49. B. Pfitzmann and M. Waidner. Unconditional Byzantine Agreement for any number of faulty processors. In A. Finkel and M. Jantzen, editors, STACS 92, 9th Annual Symposium on Theoretical Aspects of Computer Science, Cachan, France, February 13-15, 1992, Proceedings, volume 577 of Lecture Notes in Computer Science, pages 339-350. Springer Verlag, 1992.
50. M. O. Rabin. Randomized Byzantine generals. In 34th Annual Symposium on Foundations of Computer Science, Palo Alto California, 3-5 November 1993, pages 403-409. IEEE Computer Society, 1983.
51. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 73-85. ACM Press, 1989.
52. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, 1979.
53. K. Srinathan, A. Narayanan, and C. Pandu Rangan. Optimal perfectly secure message transmission. In M. K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science, pages 545-561. Springer Verlag, 2004.
54. S. Toueg. Randomized Byzantine Agreements. In Proceedings of the Third Annual ACM Symposium on Princiles of Distributed Computing, Vancouver, B. C., Canada, August 27-29, 1984, pages 163-178. ACM Press, 1984.
55. S. Toueg, K. J. Perry, and T. K. Srikanth. Fast distributed agreement. SIAM Journal of Computing, 16(3):445-457, 1987.
56. R. Turpin and B. A. Coan. Extending binary Byzantine Agreement to multivalued Byzantine Agreement. Information Processing Letters, 18(2):73-76, 1984.

APPENDIX A: Analysis of the Communication Complexity of the AVSS, ABA Scheme of [15]

The communication complexity analysis of the AVSS and ABA protocol of [15] was not reported anywhere so far. So we have carried out the same at this juncture. To do so, we have considered the detailed description of the

AVSS protocol of [15] given in Canetti's Thesis [14]. To bound the error probability by ϵ, all the communication and computation in the protocol of [15] is done over a finite field \mathbb{F}, where $|\mathbb{F}|=G F\left(2^{\kappa}\right)$ and $\epsilon=2^{-\Omega(\kappa)}$. Thus each field element can be represented by $\mathcal{O}(\kappa)=$ $\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$ bits.

To begin with, in the ICP protocol of [15], D gives $\mathcal{O}(\kappa)$ field elements to $I N T$ and $\mathcal{O}(\kappa)$ field elements to verifier R. Though the ICP protocol of [14] is presented with a single verifier, it is executed with n verifiers in protocol A-RS. In order to execute ICP with n verifiers, D gives $\mathcal{O}(n \kappa)$ field elements to $I N T$ and $\mathcal{O}(\kappa)$ field elements to each of the n verifiers. So the communication complexity of ICP of [14] when executed with n verifiers is $\mathcal{O}(n \kappa)$ field elements and hence $\mathcal{O}\left(n \kappa^{2}\right)$ bits.

Now by incorporating their ICP protocol with n verifiers in Shamir secret sharing [52], the authors in [15] designed an asynchronous primitive called A-RS, which consists of two sub-protocols, namely A-RS-Share and A-RS-Rec. In the A-RS-Share protocol, D generates n shares (Shamir shares) of a secret s and for each of the n shares, D executes an instance of ICP protocol with n verifiers. So the A-RS-Share protocol of [15] involves a private communication of $\mathcal{O}\left(n^{2} \kappa^{2}\right)$ bits. In addition to this, the A-RS-Share protocol also involves an A-cast of $\mathcal{O}(\log (n))$ bits. In the A-RS-Rec protocol, the IC signatures given by D in A-RS-Share are revealed, which involves a private communication of $\mathcal{O}\left(n^{2} \kappa^{2}\right)$ bits. In addition, the A-RS-Rec protocol involves A-cast of $\mathcal{O}\left(n^{2} \log (n)\right)$ bits.

Proceeding further, by incorporating their A-RS protocol, the authors in [15] designed an AWSS scheme. The AWSS protocol consists of two sub-protocols, namely AWSS-Share and AWSS-Rec. In the AWSS-Share protocol, D generates n shares (Shamir shares [52]) of the secret and instantiate n instances of the ICP protocol for each of the n shares. Now each individual party A-RS-Share all the values that it has received in the n instances of the ICP protocol. Since each individual party receives a total of $\mathcal{O}(n \kappa)$ field elements in the n instances of ICP, the above step incurs a private communication of $\mathcal{O}\left(n^{4} \kappa^{3}\right)$ bits and A-cast of $\mathcal{O}\left(n^{2} \kappa \log (n)\right)$ bits. In the AWSS-Rec protocol, each party P_{i} tries to reconstruct the values which are A-RS-Shared by each party P_{j} in a set \mathcal{E}_{i}. Here \mathcal{E}_{i} is a set which is defined in the AWSS-Share protocol. In the worst case, the size of each \mathcal{E}_{i} is $\mathcal{O}(n)$. So in the worst case, the AWSSRec protocol privately communicates $\mathcal{O}\left(n^{5} \kappa^{3}\right)$ bits and A-cast $\mathcal{O}\left(n^{5} \kappa \log (n)\right)$ bits.

The authors in [15] then further extended their AWSSShare protocol to Two\&Sum AWSS-Share protocol, where each party P_{i} has to A-RS-Share $\mathcal{O}\left(n \kappa^{2}\right)$ field elements.

So the communication complexity of Two\&Sum AWSSShare is $\mathcal{O}\left(n^{4} \kappa^{4}\right)$ bits and A-cast of $\mathcal{O}\left(n^{2} \kappa^{2} \log (n)\right)$ bits.

Finally using their Two\&Sum AWSS-Share and AWSSRec protocol, the authors in [15] have deigned their AVSS scheme, which consists of two sub-protocols, namely AVSS-Share and AVSS-Rec. In the AVSS-Share protocol, the most communication expensive step is the one where each party has to AWSS-Rec $\mathcal{O}\left(n^{3} \kappa\right)$ field elements. So in total, the AVSS-Share protocol of [15] involves a communication complexity of $\mathcal{O}\left(n^{9} \kappa^{4}\right)$ bits and A-cast $\mathcal{O}\left(n^{9} \kappa^{2} \log (n)\right)$ bits. The AVSS-Rec protocol involves n instances of AWSS-Rec, resulting in a communication complexity of $\mathcal{O}\left(n^{6} \kappa^{3}\right)$ bits and A-cast of $\mathcal{O}\left(n^{6} \kappa \log (n)\right)$ bits.

Now in the common coin protocol, each party in \mathcal{P} acts as a dealer and invokes n instances of AVSS-Share to share n secrets. So the communication complexity of the common protocol of [15] is $\mathcal{O}\left(n^{11} \kappa^{4}\right)$ bits of private communication and $\mathcal{O}\left(n^{11} \kappa^{2} \log (n)\right)$ bits of A-cast. Now in the ABA protocol of [15], AVSS-Share protocol is called for $\mathcal{C}=\mathcal{O}(1)$ expected time. Hence the ABA protocol of [15] involves a private communication of $\mathcal{O}\left(n^{11} \kappa^{4}\right)$ bits and A-cast of $\mathcal{O}\left(n^{11} \kappa^{2} \log (n)\right)$ bits. As mentioned earlier, $\mathcal{O}(\kappa)=\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$. Thus the ABA protocol of [15] involves a private communication of $\mathcal{O}\left(n^{11} \log \left(\frac{1}{\epsilon}\right)^{4}\right)$ bits and A-cast of $\mathcal{O}\left(n^{11} \log \left(\frac{1}{\epsilon}\right)^{2} \log (n)\right)$ bits.

APPENDIX B: Proof for Protocol Common-Coin

Lemma 13 [14] All honest parties terminate Protocol Common-Coin in constant time.

Proof: First we show that every honest party P_{i} will Acast "Reconstruct Enabled". By the termination property of our AVSS scheme, every honest party will eventually terminate all the n instances of AVSS-Share of every other honest party. As there are at least $2 t+1$ honest parties, it implies that \mathcal{T}_{i} of every honest P_{i} will eventually contain at least $2 t+1$ honest parties. Also from termination property of AVSS protocol, eventually $T_{j} \subseteq \mathcal{T}_{i}$ will hold good for every honest P_{j}, P_{i}. So for every honest P_{i}, \mathcal{A}_{i} will eventually be of size $2 t+1$ and similarly \mathcal{S}_{i} will eventually be of size $2 t+1$ and hence P_{i} will A-cast "Reconstruct Enabled".

Now it remains to show that AVSS-Rec protocols invoked by any honest party will be terminated eventually. Once this is proved, every honest party will terminate protocol Common-Coin after executing the remaining steps of Common-Coin such as computing V_{i} etc. By the properties of our AVSS scheme, if an honest party P_{i} receives "Attach T_{j} to P_{j} " from P_{j} and
includes P_{j} in \mathcal{A}_{i}, then eventually every other honest party will do the same. Hence if P_{i} invokes AVSS-Rec ${ }_{k j}$ for $P_{j} \in \mathcal{A}_{i}$ and $P_{k} \in T_{j}$, then eventually every other honest party will also do the same. Now by the termination property of AVSS protocol, every AVSS-Rec ${ }_{k j}$ protocols will be terminated by every honest party.

Given event E, all invocations of AVSS-Share and AVSS-Rec terminate in constant time. The black box protocol for A-cast terminates in constant time. Thus protocol Common-Coin terminates in constant time.

Lemma 14 [14] In Common-Coin, once some honest P_{j} receives "Attach T_{i} to P_{i} " from A-cast of P_{i} and includes P_{i} in \mathcal{A}_{j}, a unique value V_{i} is fixed such that

1. Every honest party will associate V_{i} with P_{i}, except with probability $1-\frac{\epsilon}{n}$.
2. V_{i} is distributed uniformly over $[0, \ldots, u]$ and independent of values associated with other parties.

Proof: Once some honest P_{j} receives "Attach T_{i} to P_{i} " from A-cast of P_{i} and includes P_{i} in \mathcal{A}_{j}, a unique value V_{i} is fixed. Here $V_{i}=\left(\sum_{P_{k} \in T_{i}} x_{k i}\right) \bmod u$, where $x_{k i}$ is shared by P_{k} as a dealer during AVSSShare $_{k i}$. According to the protocol steps eventually all honest parties will invoke AVSS-Rec ${ }_{k i}$ corresponding to each $P_{k} \in T_{i}$ and consequently each honest party will reconstruct $x_{k i}$ at the completion of $\mathrm{AVSS}-\mathrm{Rec}_{k i}$, except with probability ϵ^{\prime}. Now since $\left|T_{i}\right|=t+1$, every honest party will associate V_{i} with P_{i} with probability at least $1-(t+1) \epsilon^{\prime} \approx 1-\frac{\epsilon}{n}$.

An honest party starts invoking AVSS-Rec ${ }_{k i}$ for every $P_{k} \in T_{i}$ only after it receives "Attach T_{i} to P_{i} " from A-cast of P_{i}. So the set T_{i} is fixed before any honest party invokes AVSS-Rec ${ }_{k i}$ for some k. The secrecy property of AVSS-Share ensures that corrupted parties will have no information about the value shared by any honest party until the value is reconstructed after executing corresponding AVSS-Rec. Thus when T_{i} is fixed, the values that are shared by corrupted parties corresponding to P_{i} are completely independent of the values shared by the honest parties corresponding to P_{i}. Now, each T_{i} contains at least one honest party and every honest party's shared secrets are uniformly distributed and mutually independent. Hence the sum V_{i} is uniformly and independently distributed over $[0, \ldots, u]$. \square

Lemma 15 [14] Once an honest party A-cast
"Reconstruct Enabled", there exists a set M such that:

1. For every party $P_{j} \in M$, some honest party has received "Attach T_{j} to P_{j} " from the A-cast of P_{j}.
2. When any honest party P_{j} A-casts "Reconstruct Enabled", then it will hold that $M \subseteq H_{j}$.
3. $|M| \geq \frac{n}{3}$.

Proof: Let P_{i} be the first honest party to A-cast "Reconstruct Enabled". Then let $M=\left\{P_{k} \mid P_{k}\right.$ belongs to $A_{l}^{\prime} s$ of at least $t+1 P_{l}^{\prime} s$ who belongs to \mathcal{S}_{i} when P_{i} A-casted Reconstruct Enabled $\}$. It is clear that $M \subseteq H_{i}$. Thus party P_{i} has received "Attach T_{j} to P_{j} " from the A-cast of every $P_{j} \in M$. So this proves the first part of the lemma.

An honest P_{j} A-casts "Reconstruct Enabled" only when \mathcal{S}_{j} contains $2 t+1$ parties. Now note that $P_{k} \in M$ implies that P_{k} belongs to A_{l} 's of at least $t+1 P_{l}$'s who belong to \mathcal{S}_{i}. This ensures that there is at least one such P_{l} who belongs to \mathcal{S}_{j}, as well as \mathcal{S}_{i}. Now $P_{l} \in \mathcal{S}_{j}$ implies that P_{j} had ensured that $A_{l} \subseteq \mathcal{A}_{j}$. This implies that $P_{k} \in M$ belongs to \mathcal{A}_{j} before party P_{j} A-casted "Reconstruct Enabled". Since H_{j} is the instance of \mathcal{A}_{j} at the time when P_{j} A-casts "Reconstruct Enabled", it is obvious that $P_{k} \in M$ belongs to H_{j} also. Using similar argument, it can be shown that every $P_{k} \in M$ also belong to H_{j}, thus proving second part of the lemma.

To prove the third part of the lemma, we use counting argument. Let $m=\left|\mathcal{S}_{i}\right|$ at the time P_{i} A-casted "Reconstruct Enabled". So we have $m \geq 2 t+1$. Now consider an $n \times n$ table Λ_{i} (relative to party P_{i}), whose $l^{\text {th }}$ row and $k^{\text {th }}$ column contains 1 for $k, l \in\{1, \ldots, n\}$ iff the following hold: (a) P_{i} has received " P_{l} Accepts A_{l} " from A-cast of P_{l} and included P_{l} in \mathcal{S}_{i} before A-casting "Reconstruct Enabled" AND (b) $P_{k} \in A_{l}$. The remaining entries (if any) of Λ_{i} are left blank. Then M is the set of parties P_{k} such that $k^{t h}$ column in Λ_{i} contains 1 at least at $t+1$ positions. Notice that each row of Λ_{i} contains 1 at $n-t$ positions. Thus Λ_{i} contains 1 at $m(n-t)$ positions. Let q denote the minimum number of columns in Λ_{i} that contain 1 at least at $t+1$ positions. We will show that $q \geq \frac{n}{3}$. The worst distribution of 1 entries in Λ_{i} is letting q columns to contain all 1 entries and letting each of the remaining $n-q$ columns to contain 1 at t locations. This distribution requires Λ_{i} to contain 1 at no more than $q m+(n-q) t$ positions. But we have already shown that Λ_{i} contains 1 at $m(n-t)$ positions. So we have
$q m+(n-q) t \geq m(n-t)$.
This gives $q \geq \frac{m(n-t)-n t}{m-t}$. Since $m \geq n-t$ and $n \geq$ $3 t+1$, we have
$q \geq \frac{m(n-t)-n t}{m-t} \geq \frac{(n-t)^{2}-n t}{n-2 t}$
$\geq \frac{(n-2 t)^{2}+n t-3 t^{2}}{n-2 t} \geq n-2 t+\frac{n t-3 t^{2}}{n-2 t}$
$\geq n-2 t+\frac{t}{n-2 t} \geq \frac{n}{3}$
This shows that $|M|=q \geq \frac{n}{3}$

Lemma 16[14] Let $\epsilon \leq 0.2$ and assume that all the honest parties have terminated protocol Common-Coin. Then for every value $\sigma \in\{0,1\}$, with probability at least $\frac{1}{4}$, all the honest parties output σ.

Proof: By Lemma 14, for every P_{i} that is included in \mathcal{A}_{j} of some honest P_{j}, there exists some fixed (yet unknown) value V_{i} that is distributed uniformly and independently over $[0, \ldots, u]$ and with probability $1-\frac{\epsilon}{n}$ all honest parties will associate V_{i} with P_{i}. Consequently, with probability at least $(1-\epsilon)$, all honest parties will agree on the value associated with every party. Now we consider two cases:

- We now show that the probability of outputting $\sigma=$ 0 by all honest parties is at least $\frac{1}{4}$. Let M be the set of parties discussed in Lemma 15. Clearly if $V_{j}=0$ for some $P_{j} \in M$ and all honest parties associate V_{j} with P_{j}, then all the honest parties will output 0 . The probability that for at least one party $P_{j} \in$ $M, V_{j}=0$ is $1-\left(1-\frac{1}{u}\right)^{|M|}$. Now $u=\lceil 0.87 n\rceil$. Also $|M| \geq \frac{n}{3}$. Therefore for all $n>4$, we have $1-\left(1-\frac{1}{u}\right)^{|M|} \geq 0.316$. So, Prob(all honest parties output 0$) \geq 0.316 \times(1-\epsilon) \geq 0.25=\frac{1}{4}$.
- We now show that the probability of outputting $\sigma=$ 1 by all honest parties is at least $\frac{1}{4}$. It is obvious that if no party P_{j} has $V_{j}=0$ and all honest parties associate V_{j} with P_{j}, then all honest parties will output 1. The probability of the first event is at least $\left(1-\frac{1}{u}\right)^{n} \geq e^{-1.15}$. Thus Prob(all honest parties output 1$) \geq e^{-1.15} \times(1-\epsilon) \geq 0.25=\frac{1}{4}$.

APPENDIX C: Proof for Protocol Vote

Lemma 17 [14] All honest parties terminate Vote in constant time.

Proof (sketch): Every honest party P_{i} will A-cast his input x_{i}. As there are at least $n-t$ honest parties, from the properties of A-cast, every honest P_{i} will eventually have $\left|\mathcal{A}_{i}\right|=n-t$ and then will eventually have $\left|\mathcal{B}_{i}\right|=n-t$ and finally will eventually have $\left|C_{i}\right|=n-t$. Consequently, every honest P_{i} will terminate the protocol in constant time.

Lemma 18 [14] If all honest parties have same input σ, then all honest parties will output $(\sigma, 2)$.

Proof: Consider an honest party P_{i}. If all honest parties have same input σ, then at most t (corrupted) parties may A-cast $\bar{\sigma}$ as their input. Therefore, it is easy to see that every $P_{k} \in \mathcal{B}_{i}$ must have A-casted his vote
$b_{k}=\sigma$. Hence honest P_{i} will output $(\sigma, 2)$.

Lemma 19 [14] If some honest party outputs ($\sigma, 2$), then every other honest party will eventually output either $(\sigma, 2)$ or $(\sigma, 1)$ in protocol Vote.

Proof: Let an honest P_{i} outputs ($\sigma, 2$). This implies that every $P_{j} \in B_{i}$ had A-casted vote $a_{j}=\sigma$. As $\left|B_{i}\right|=2 t+1$, it implies that for every other honest P_{j}, it holds that $\left|B_{i} \cap B_{j}\right| \geq t+1$. So every other honest P_{j} is bound to A-cast re-vote b_{i} as σ and hence will eventually output either $(\sigma, 2)$ or $(\sigma, 1)$.

Lemma 20 [14] If some honest party outputs $(\sigma, 1)$ and no honest party outputs $(\sigma, 2)$ then every other honest party will eventually output either $(\sigma, 1)$ or $(\Lambda, 0)$.

Proof: Assume that some honest party P_{i} outputs $(\sigma, 1)$. This implies that all the parties $P_{j} \in C_{i}$ had A-casted the same re-vote $b_{j}=\sigma$. Since $\left|C_{i}\right| \geq n-t$, in the worst case there are at most t parties (outside C_{i}) who may A-cast re-vote $\bar{\sigma}$. Thus it is clear that no honest party will output $(\bar{\sigma}, 1)$. Now since the honest parties in C_{i} had re-vote as σ, there must be at least $t+1$ parties who have A-casted their vote as σ. Thus no honest party can output $(\bar{\sigma}, 2)$ for which at least $n-t=2 t+1$ parties are required to A-cast their vote as $\bar{\sigma}$. So we have proved that no honest party will output from $\{(\bar{\sigma}, 2),(\bar{\sigma}, 1)\}$. Therefore the honest parties will output either $(\sigma, 1)$ or $(\Lambda, 0)$.

APPENDIX D: Proof for Protocol ABA

Lemma 21 [14] Protocol ABA satisfies validity.
Proof: The proof follows from the fact that if all honest parties have input σ, then by Lemma 18 every honest party will output $\left(y_{1}, m_{1}\right)=(\sigma, 2)$ upon termination of Vote and consequently A-cast (Terminate with σ) in the first iteration.

Lemma 22 [14] Protocol ABA satisfies Agreement.

Proof: We show that if an honest party A-casts
(Terminate with σ), then eventually every other honest party will A-cast the same. Let k be the first iteration when an honest party P_{i} A-casts (Terminate with σ). Then we prove that every other honest party will Acast the same either in $k^{t h}$ iteration or in $(k+1)^{t h}$ iteration. Since honest P_{i} has A-casted (Terminate with σ), it implies that $y_{k}=\sigma$ and $m_{k}=2$ and P_{i} has outputted $(\sigma, 2)$ in the Vote protocol invoked in $k^{\text {th }}$ iteration. By

Lemma 19, every other honest party P_{j} will output either $(\sigma, 2)$ or $(\sigma, 1)$ in the Vote protocol invoked in $k^{t h}$ iteration. In case P_{j} outputs $(\sigma, 2)$, the it will A-cast (Terminate with σ) in $k^{t h}$ iteration itself. Furthermore every honest P_{j} will execute Vote with input $v_{k+1}=\sigma$ in the $(k+1)^{t h}$ iteration. So clearly, in $(k+1)^{t h}$ iteration every honest party will have same input σ. Therefore by Lemma 18 , every honest party will output $(\sigma, 2)$ in Vote protocol invoked in $(k+1)^{\text {th }}$ iteration. Hence all the honest parties will A-cast (Terminate with σ) either in iteration k or iteration $k+1$. As all honest parties will eventually A-cast (Terminate with σ), every honest party will receive $n-t$ A-casts of (Terminate with σ) and will eventually output σ.

Lemma 23 [14] If all honest parties have initiated and completed iteration k, then with probability at least $\frac{1}{4}$ all honest parties have same value for v_{k+1}.

Proof: We have two cases here:

1. If all honest parties execute step 4(c) in iteration k, then they have set their v_{k+1} as the output of Common-Coin. So by the property of Common-Coin, all the honest party have same v_{k+1} with probability at least $\frac{1}{4}$.
2. If some honest party has set $v_{k+1}=\sigma$ for some $\sigma \in\{0,1\}$, either in step $4(\mathrm{a})$ or step $4(\mathrm{~b})$ of iteration k, then by Lemma 20 no honest party will set $v_{k+1}=\bar{\sigma}$ in step 4(a) or step 4(b). Moreover, all the honest honest parties will output σ from Common-Coin with probability at least $\frac{1}{4}$. Now the parties starts executing Common-Coin, only after the termination of Vote. Hence the outcome of Vote is fixed before Common-Coin is invoked. Thus corrupted parties can not decide the output of Vote to prevent agreement. Hence with probability at least $\frac{1}{4}$, all the honest parties will set $v_{k+1}=\sigma$.

Lemma 24 [14] Conditioned on the event C, all honest parties terminate $A B A$ in constant expected time.

Proof: We first show that all the honest parties terminate protocol ABA within constant time after the first instance of A-cast of (Terminate with σ) is initiated by some honest party. Let the first instance of A-cast of (Terminate with σ) is initiated by some honest party in iteration k. Then all the parties will participate in Vote and Common-Coin protocols of all iterations up to iteration $k+1$. Both the executions can be completed in constant time. Moreover, by the proof of Lemma 22 every honest party will A-cast (Terminate with σ) by the end of iteration $k+1$. These A-casts can be completed in constant time. Since an honest party terminates ABA
after completing $t+1$ such A -casts, all the honest parties will terminate ABA within constant time after the first instance of A-cast of (Terminate with σ) is initiated by some honest party.

Now let the random variable τ be the count of number of iterations until the first instance of A-cast of (Terminate with σ) is initiated by some honest party. Obviously if no honest party ever A-casts (Terminate with $\sigma)$ then $\tau=\infty$. Now conditioned on event C, all the honest parties terminate each iteration in constant time. So it is left to show that $E(\tau \mid C)$ is constant. We have

$$
\begin{aligned}
\operatorname{Prob}\left(\tau>k \mid C_{k}\right) & \leq \operatorname{Prob}\left(\tau \neq 1 \mid C_{k}\right) \times \ldots \\
& \times \operatorname{Prob}\left(\tau \neq k \cap \ldots \cap \tau \neq 1 \mid C_{k}\right)
\end{aligned}
$$

From Lemma 23, it follows that each one of the k multiplicands of the right hand side of the above equation is at most $\frac{3}{4}$. Thus we have $\operatorname{Prob}\left(\tau>k \mid C_{k}\right) \leq\left(\frac{3}{4}\right)^{k}$. Now simple calculation shows that $E(\tau \mid C) \leq 16$.

Lemma $25[14] \operatorname{Prob}(C) \geq(1-\epsilon)$.
Proof: We have

$$
\begin{aligned}
\operatorname{Prob}(\bar{C}) & \leq \sum_{k \geq 1} \operatorname{Prob}\left(\tau>k \cap \overline{C_{k+1}} \mid C_{k}\right) \\
& \leq \sum_{k \geq 1} \operatorname{Prob}\left(\tau>k \mid C_{k}\right) \cdot \operatorname{Prob}\left(\overline{C_{k+1}} \mid C_{k} \cap \tau>k\right)
\end{aligned}
$$

From the proof of Lemma 23, we have $\operatorname{Prob}(\tau>$ $\left.k \mid C_{k}\right) \leq\left(\frac{3}{4}\right)^{k}$. We will now bound $\operatorname{Prob}\left(\overline{C_{k+1}} \mid C_{k} \cap \tau \geq\right.$ k). If all the honest parties execute the $k^{t h}$ iteration and complete the $k^{\text {th }}$ invocation of Common-Coin, then all the honest parties complete $k^{t h}$ iteration. Protocol Common-Coin is invoked with termination parameter $\frac{\epsilon}{4}$. Thus with probability $1-\frac{\epsilon}{4}$, all the honest parties complete the $k^{\text {th }}$ invocation of Common-Coin. Therefore, for each $k, \operatorname{Prob}\left(\overline{C_{k+1}} \mid C_{k} \cap \tau \geq k\right) \leq \frac{\epsilon}{4}$. So we get
$\operatorname{Prob}(\bar{C}) \leq \sum_{k \geq 1} \frac{\epsilon}{4}\left(\frac{3}{4}\right)^{k}=\epsilon$

[^0]: A preliminary version of this paper appeared in PODC 2009. The work was done when the first two authors were PhD students at Department of Computer Science and Engineering, IIT Madras

 ## Arpita Patra

 Dept. of Computer Science
 Aarhus University, Denmark
 E-mail: arpitapatra_10@yahoo.co.in, arpitapatra10@gmail.com, arpita@cs.au.dk

 Ashish Choudhury
 Applied Statistics Unit
 Indian Statistical Institute Kolkata
 E-mail: partho_31@yahoo.co.in, partho31@gmail.com
 C. Pandu Rangan

 Dept. of Computer Science and Engineering
 IIT Madras, Chennai India 600036
 Tel.: +91-44-22574358
 E-mail: prangan55@yahoo.com, prangan55@gmail.com

[^1]: 1 The authors in [1] followed a slightly different approach. For details, see Section 1.5.
 2 A-cast is the parallel notion of broadcast in synchronous world. A-cast allows a party to send a value to all other parties identically.

[^2]: ${ }^{3}$ The exact communication complexity analysis of the AVSS (and ABA) scheme of [15] was not done earlier. For the sake of completeness, we carry out the same in APPENDIX A.

[^3]: ${ }^{4}$ Here MB stands for multiple bits.

[^4]: ${ }^{5}$ Here MS stands for multiple secrets

