
Noname manuscript No.
(will be inserted by the editor)

Efficient Asynchronous Byzantine Agreement with
Optimal Resilience

Arpita Patra ⋅ Ashish Choudhury ⋅ C. Pandu Rangan

Received: date / Accepted: date

Abstract We present an efficient and optimally re-

silient Asynchronous Byzantine Agreement (ABA) pro-

tocol involving n = 3t + 1 parties over a completely

asynchronous network, tolerating a computationally un-

bounded Byzantine adversary, who can control at most

t parties. The amortized communication complexity of

our ABA protocol isO(n4 log 1
²) bits for attaining agree-

ment on a single bit, where ² (² > 0) denotes the prob-

ability of non-termination. We compare our protocol

with most recent optimally resilient ABA protocols of

[15] and [1] and show that our protocol gains by a factor

of O(n7(log 1
²)

3) over the ABA of [15] and by a factor

of O(n4 logn
log 1

²

) over the ABA of [1].

To design our protocol, we first present a novel, sim-

ple and optimally resilient statistical asynchronous ver-

ifiable secret sharing (AVSS) protocol with n = 3t+ 1,

which significantly improves the communication com-

plexity of the only known optimally resilient statistical

A preliminary version of this paper appeared in PODC 2009. The
work was done when the first two authors were PhD students at
Department of Computer Science and Engineering, IIT Madras

Arpita Patra
Dept. of Computer Science
Aarhus University, Denmark
E-mail: arpitapatra 10@yahoo.co.in, arpitapatra10@gmail.com,
arpita@cs.au.dk

Ashish Choudhury
Applied Statistics Unit
Indian Statistical Institute Kolkata
E-mail: partho 31@yahoo.co.in, partho31@gmail.com

C. Pandu Rangan
Dept. of Computer Science and Engineering
IIT Madras, Chennai India 600036
Tel.: +91-44-22574358
E-mail: prangan55@yahoo.com, prangan55@gmail.com

AVSS protocol of [15]. Our AVSS shares multiple secrets

concurrently and is far better than multiple parallel ex-

ecutions of AVSS sharing single secret. We believe that

our AVSS can be used in many other applications for

improving communication complexity and hence is of

independent interest.

The common coin primitive is one of the most im-

portant building blocks for the construction of ABA

protocol. The only known efficient common coin pro-

tocol [28,14] uses multiple executions of AVSS shar-

ing a single secret as a black-box. Unfortunately, this

common coin protocol does not achieve its goal when
multiple invocations of AVSS sharing single secret are

replaced by single invocation of AVSS sharing multiple

secrets. Therefore in this paper, we extend the existing

common coin protocol to make it compatible with our

new AVSS. As a byproduct, our new common coin pro-

tocol is much more communication efficient than the

existing common coin protocol.

1 Introduction

The problem of Byzantine Agreement (BA) was intro-

duced in [47] and since then it has emerged as the most

fundamental problem in distributed computing [43]. In-

formally, a BA protocol allows a set of parties, each

holding some input bit, to agree on a common bit,

even though some of the parties may act maliciously

in order to make the honest parties disagree. The BA

problem has been investigated extensively in various

models [29,4,10,15,14,43,32,40,2,7–9,11–13,16,21,20,

22–25,34,30,31,26,28,36–38,41,42,48,49,55,53,54]. It has

been considered to be very interesting to study BA

in asynchronous network tolerating a computationally

unbounded malicious adversary [4,10,15], for the asyn-

2

chronous network models real-life network like Internet

in a more appropriate way than synchronous network.

Though considered to be interesting, the problem of

asynchronous BA (ABA) has got relatively less atten-

tion in comparison to the BA problem in synchronous

network. In this paper, we study ABA and present a

simple and communication efficient ABA protocol.

1.1 The Model and Definition

We follow the network model of [15,14]. Specifically,

there is a set of n parties, say P = {P1, . . . , Pn}, where
every two parties are directly connected by a secure

and authentic channel and t out of the n parties can

be under the influence of a computationally unbounded

Byzantine (active) adversary, denoted as At. The ad-

versary At, completely dictates the parties under its

control and can force them to deviate from the proto-

col in any arbitrary manner. The parties not under the

influence of At are called honest or uncorrupted.

The underlying network is asynchronous, where the

communication channels between the parties have arbi-

trary, yet finite delay (i.e the messages are guaranteed

to reach eventually). To model the worst case scenario,

At is given the power to schedule the delivery of all

messages in the network. However, At can only sched-

ule the messages communicated between honest parties,

without having any access to them. In asynchronous

network, the inherent difficulty in designing a protocol

comes from the fact that a party cannot distinguish be-

tween a slow sender and a corrupted sender. Due to this,

the protocols in asynchronous network are generally in-

volved in nature and require new set of primitives. We

now formally define ABA.

Definition 1 (ABA [15]) : Let¦ be an asynchronous

protocol executed among the set of parties P, with each

party having a private binary input. We say that ¦ is

an ABA protocol tolerating At if the following hold:

1. Termination: If all honest parties participate in

the protocol then all honest parties eventually ter-

minate the protocol.

2. Correctness: All honest parties who have termi-

nated the protocol hold identical outputs. Moreover,

if all honest parties had same input ½, then all hon-

est parties upon termination output ½.

We now define (², ±)-ABA protocol for a given ² and ±,

where ², ± > 0.

Definition 2 ((², ±)-ABA) : An ABA protocol ¦ is

called (², ±)-ABA if ¦ satisfies Termination property

except with an error probability of ² and Correctness

property except with error probability of ±.

The important parameters of any ABA protocol are:

1. Resilience: It is the maximum number of corrupted

parties (t) that the protocol can tolerate;

2. Communication Complexity: It is the total num-

ber of bits communicated by honest parties;

3. Computational Complexity: It is the computa-

tional resources required by the honest parties. An

ABA protocol is called computationally efficient if

the computational resources required by each hon-

est party are polynomial in n, log 1
² and log 1

± ; and

4. Running Time: We present an informal defini-

tion of the running time of an asynchronous pro-

tocol, taken from [15,14] (for more details, see [43]):

Consider a virtual ‘global clock’ measuring time in

the network. Note that the parties cannot read this

clock. Let the delay of a message be the time elapsed

from its sending to its receipt. Let the period of a

finite execution of a protocol be the longest delay of

a message in the execution. The duration of a finite

execution is the total time measured by the global

clock divided by the period of the execution.

The expected running time of a protocol, conditioned

on an event, is the maximum over all inputs and ap-

plicable adversaries, of the average over the random

inputs of the parties, of the duration of executions

of the protocol in which this event occurs.

1.2 Existing Results for ABA

From [47], BA (and hence ABA) tolerating At is possi-

ble if and only if n ≥ 3t+1. Thus, any ABA protocol de-

signed with n = 3t+1 is called as optimally resilient. By

the seminal result of [31], any ABA protocol, irrespec-

tive of the value of n, must have some non-terminating

runs, where some honest party(ies) may not output any

value and thus may not terminate at all. So in any (², ±)-

ABA protocol with non-zero ², the probability of the

occurrence of a non-terminating execution is at most ²

(these type of protocols are called (1 − ²)-terminating

[15,14]). On the other hand in any (0, ±)-ABA proto-

col, the probability of occurrence of a non-terminating

execution is asymptotically zero (these type of protocols

are called almost-surely terminating [1]). In Table 1, we

summarize the best known ABA protocols.

1.3 Overview of Approaches Used in ABA Protocols

Over a period of time, the techniques and the design

approaches of ABA have evolved spectacularly. Rabin

[49] designed an ABA protocol assuming that the par-

ties have access to a ‘common coin protocol’, which al-

lows the honest parties to output a common random

3

Table 1 Summary of Best Known Existing ABA Protocols. In
the table, poly(x) stands for polynomial in x

Ref. Type Resilience Communication Expected
Complexity Running

(CC) Time (ERT)

[10] (0, 0) t < n/3 O(2n) O(2n)

[27,28] (0, 0) t < n/4 poly(n) O(1)

[15,14] (², 0) t < n/3 poly(n, 1
²
) O(1)

[1] (0, 0) t < n/3 poly(n) O(n2)

bit with some probability (called as the success proba-

bility). Bracha [10] presented a simple implementation

of common coin protocol, whose success probability is

£(2−n). Feldman and Micali [27,28], were the first to
come up with a common coin protocol that has con-

stant success probability. The essence of [27] is the re-

duction of the common coin to that of implementing an

Asynchronous Verifiable Secret Sharing (AVSS) proto-

col. Here AVSS is a two phase protocol (Sharing and

Reconstruction) carried out among the parties in P in

the presence of At. Informally, the goal of the AVSS

protocol is to allow a special party in P called dealer

to share a secret s among the parties in P during the

sharing phase in a way that would later allow for a

unique reconstruction of this secret in the reconstruc-

tion phase, while preserving the secrecy of s until the

reconstruction phase. Following [27,28], almost all pro-

tocols for ABA followed the same approach of reducing

the problem ABA to that of AVSS. In fact, the same

approach is followed in [15,1] for designing their opti-

mally resilient ABA protocols. 1

1.4 Our Motivation and Contribution

In literature, a lot of attention has peen paid for con-

structing communication efficient BA protocols in syn-

chronous settings (see [9,16,22,48,35]). Unfortunately,

the same is not the case for ABA protocol with optimal

resilience. Therefore, designing optimally resilient, com-

munication efficient ABA protocol that runs in constant

expected time is an important and interesting problem

to work on. Our result in this paper marks a significant

progress in this direction.

We present an optimally resilient, (², 0)-ABA proto-

col that requires private2 communication ofO(Cn5 log 1
²)

bits and A-cast 3 of O(Cn5 log 1
²) bits for reaching agree-

1 The authors in [1] followed a slightly different approach. For
details, see Section 1.5.

2 Communication over secure and authentic channels.
3 A-cast is the parallel notion of broadcast in synchronous

world. A-cast allows a party to send a value to all other parties
identically.

Table 2 Comparison of Our Optimally Resilient ABA with Best
Known Optimally Resilient ABA Protocols

Ref. Type Communication ERT
Complexity (CC)

[15] (², 0) Private– O(Cn11(log 1
²
)4) C = O(1)

A-cast– O(Cn11(log 1
²
)2 logn)

[1] (0, 0) Private– O(Cn6 logn) C = O(n2)
A-cast– O(Cn6 logn)

This (², 0) Private– O(Cn4(log 1
²
)) C = O(1)

Article A-cast– O(Cn4(log 1
²
))

ment on t+ 1 = £(n) bits concurrently, where C is the

expected running time of the protocol. So the amortized

communication complexity of our protocol for agreeing

on a single bit is O(Cn4 log 1
²) bits of private, as well as

A-cast communication. Moreover, conditioned on the

event that our ABA protocol terminates, it does so in

constant expected time; i.e., C = O(1). In Table 2, we

compare our ABA protocol with the optimally resilient

ABA protocols of [15,1]. From the table, we find that

our ABA protcol achieves a huge gain in communica-

tion complexity over the ABA of [15], while keeping all

other properties in place. On the other hand, our ABA

enjoys the following merits over the ABA of [1]:

1. Our ABA is better in terms of communication com-

plexity when (log 1
²) < n4 logn.

2. Our ABA runs in constant expected time. However,

we stress that our ABA is of type (², 0) whereas

ABA of [1] is of type (0, 0).

1.5 A Brief Discussion on the Approaches Used in the

ABA Protocols of [15,1] and Current Article

We now briefly discuss the approaches used in the ABA

protocols of [15], [1] and the current article.

1. The ABA protocol of Canetti et al. [15,14] uses

the reduction from ABA to AVSS. Hence they have

first designed an AVSS with n = 3t + 1. There are

well known inherent difficulties in designing AVSS

with n = 3t + 1 (see [15,14]). To overcome these

difficulties, the authors in [15] used the following

route to design their AVSS scheme: ICP → A-RS →
AWSS → Two & Sum AWSS → AVSS, where X →
Y means that protocol Y is designed using protocol

X as a black-box. Since the final AVSS scheme is

designed on the top of so many sub-protocols, it is

highly communication intensive as well as very much

involved. The protocol privately communicates

O(n9(log 1
²)

4) bits, A-casts O(n9(log 1
²)

2 log(n)) bits

during sharing phase and privately communicates

O(n6(log 1
²)

3) bits, A-casts O(n6(log 1
²) log(n)) bits

4

during reconstruction phase 4 for sharing a single

secret s, where all the honest parties terminate the

protocol with probability at least (1− ²).

2. The ABA protocol of [1] followed the same reduction

from ABA to AVSS as in [15], except that the use of

AVSS is replaced by a variant of AVSS that the au-

thors called shunning (asynchronous) VSS (SVSS),

where each party is guaranteed to terminate almost-

surely. SVSS is a slightly weaker notion of AVSS in

the sense that if all the parties behave correctly, then

SVSS satisfies all the properties of AVSS without

any error. Otherwise it does not satisfy the proper-

ties of AVSS; but it enables some honest party to

identify at least one corrupted party, whom the hon-

est party shuns from then onwards. The use of SVSS

instead of AVSS in generating common coin causes

the ABA of [1] to run for O(n2) expected time. The

SVSS protocol requires private communication of

O(n4 log(n)) bits and A-cast of O(n4 log(n)) bits.

3. Similar to [15,14] and [1], we too follow the same

path of constructing AVSS to design our ABA pro-

tocol. So we first design a communication efficient

AVSS protocol with n = 3t+ 1. But now instead of

following the fairly complex route taken by [15] for

the design of their AVSS, we follow a much shorter

route: ICP → AWSS → AVSS. Beside this, we sig-

nificantly improve each of these building blocks by

employing new design approaches. In addition, each

of the building blocks deals with multiple secrets

concurrently and thus leads to significant gain in

communication complexity. Specifically, our AVSS

requires private communication and A-cast commu-

nication of O((ℓn3 + n4) log 1
²) bits to share ℓ se-

cret(s) concurrently, where ℓ ≥ 1. Moreover, it re-

quires A-cast communication of O((ℓn3 + n4) log 1
²)

bits to reconstruct the ℓ secret(s).

As discussed earlier in subsection 1.3, the common-

coin protocol is a very important building block of

ABA protocol. Previously, the only known common-

coin protocol with polynomial communication com-

plexity [28,14] employs AVSS sharing single secret.

Informally, in the common coin protocol of [28], each

party Pi in P is asked to act as a dealer and share

n random secrets using AVSS. So each Pi invokes n

parallel instances of AVSS as a dealer to share n se-

crets in parallel. It is obvious that we can do better

if Pi invokes a single instance of our new AVSS that

can share n secrets concurrently. However, our de-

tailed analysis of the existing common coin protocol

shows that the above modification leads to an incor-

4 The exact communication complexity analysis of the AVSS
(and ABA) scheme of [15] was not done earlier. For the sake of
completeness, we carry out the same in APPENDIX A.

rect common coin protocol. Hence we bring several

new modifications to the existing common-coin so

that it can use our new AVSS (that shares multiple

secrets concurrently). As a result, our new common

coin protocol is now more communication efficient

than the existing common coin of [14,15]. Finally,

this new common coin coupled with our AVSS pro-

tocol leads to our efficient ABA protocol.

1.6 Primitives To be Used

We now present the definition of the primitives which

are used for the construction of our ABA. Our ABA

protocol has error probability of ² in Termination,

where ² > 0. To bound the error probability by ², all our

protocols work over a finite field F where F = GF (2·)

and ² = 2−(·), for some non-zero ·. Thus each field

element can be represented by · = O(log 1
²) bits. More-

over, without loss of generality, we assume n = poly(·).

That is, n is polynomial in ·. Thus we have that n =

poly(log 1
²).

Definition 3 (Statistical Asynchronous Weak Secret
Sharing (AWSS) [15]) Let (Sh, Rec) be a pair of proto-

cols in which a dealer D ∈ P shares a secret s. We say

that (Sh, Rec) is a t-resilient statistical AWSS scheme

for n parties if the following hold for every possible be-

havior of At:

– Termination: With probability at least (1−²), the

following requirements hold:

1. If D is honest and all honest parties participate

in the protocol, then each honest party will even-

tually terminate protocol Sh.
2. If some honest party has terminated protocol Sh,

then irrespective of the behavior of D, each hon-

est party will eventually terminate Sh.
3. If all honest parties have terminated Sh and in-

voked Rec, then each honest party will eventu-

ally terminate Rec.
– Correctness: With probability at least (1− ²), the

following requirements hold:

1. If D is honest then each honest party upon ter-

minating Rec, outputs the shared secret s.

2. If D is faulty and some honest party has termi-

nated Sh, then there exists a unique s′ ∈ F ∪
{NULL}, such that each honest party upon ter-

minating Rec will output either s′ or NULL.

This property is also called as weak-commitment.
– Secrecy: If D is honest and no honest party has

begun executing protocol Rec, then At has no infor-

mation about s.

Definition 4 (Statistical Asynchronous Verifiable Se-
cret Sharing (AVSS) [15]) The Termination and Se-

5

crecy conditions for AVSS are same as in AWSS. The

only difference is in the second requirement of Cor-

rectness property, which is strengthened as follows:

– Correctness 2: IfD is faulty and some honest party

has terminated Sh, then there exists a unique s′ ∈
F ∪ {NULL}, such that with probability at least

(1−²), each honest party upon terminating Rec will
output only s′. This property is also called as strong-
commitment.

Remark 1 There exists stronger definition of VSS which

requires that D’s committed secret s′ ∈ F, instead of

F ∪ {NULL} [39]. Such stronger definition is required

if VSS is used for multi-party computation MPC [5].

However, VSS (AVSS) satisfying the above (weak) def-

inition is enough for the construction of (asynchronous)

BA. We also note that the above weak definition of VSS

is used in [44] to study the round complexity of VSS.

The above definition of AWSS and AVSS can be ex-

tended for secret S containing ℓ element(s) from F.

Definition 5 (A-cast [15]) Let¦ be an asynchronous

protocol initiated by a special party (called the sender),

having input m (the message to be broadcast). We say

that ¦ is a t-resilient A-cast protocol if the following

hold:

– Termination:

1. If the sender is honest and all the honest par-

ties participate in the protocol, then each honest

party will eventually terminate the protocol.

2. Irrespective of the behavior of the sender, if any

honest party terminates the protocol then each

honest party will eventually do the same.

– Correctness: If the honest parties terminate the

protocol then they do so with a common output m∗.
Furthermore, if the sender is honest then m∗ = m.

Bracha [10] gave an elegant implementation of A-cast
with n = 3t+1. For details, see [14]. The following the-

orem states the communication complexity of Bracha’s

A-cast protocol.

Theorem 1 Bracha’s A-cast protocol privately commu-

nicates O(ℓn2) bits to A-cast an ℓ bit message.

Notation 1 In the rest of the paper, we use the fol-

lowing convention: we say that Pj receives m from the

A-cast of Pi, if Pj terminates the execution of Pi’s A-
cast (where Pi acts as a sender), with m as the output.

2 Organization of the Paper

For the ease of presentation, we divide the paper into

two parts. In the first part, we present our AWSS and

AVSS scheme sharing single secret. This part will bring

out the the main ideas used in our AWSS and AVSS

protocols. Then by incorporating this AVSS into the

existing common coin protocol [28,14], we devise an

ABA scheme which allows the parties to agree on a

single bit and requires private communication as well

as A-cast of O(n6(log 1
²)) bits. In fact, this ABA scheme

was reported in [46].

In the second part of the paper, we extend our AWSS

and AVSS scheme to sharemultiple secrets concurrently.

We then show why the existing common coin proto-
col can not incorporate our AVSS sharing multiple se-

crets in a straight-forward manner. This is followed by

our new modified common coin protocol that uses our

AVSS sharing multiple secrets. Finally, using this com-

mon coin protocol, we present our new ABA scheme

whose amortized communication cost of reaching agree-

ment on a single bit is O(n4(log 1
²)) bits of private as

well as A-cast communication. We then conclude our

article with conclusion and open problems.

3 AVSS Scheme for Sharing a Single Secret

In this section, we first present a new Information Check-

ing Protocol (ICP). Then using ICP, we design an AWSS

scheme. Finally, a new AVSS scheme is constructed us-

ing our AWSS scheme. So the next three subsections

are dedicated to ICP, AWSS and AVSS respectively.

3.1 Information Checking Protocol (ICP)

The Information Checking Protocol (ICP) is a tool for

authenticating messages in the presence of computa-

tionally unbounded corrupted parties. The notion of

ICP was first introduced by Rabin et al. [50]. As de-

scribed in [50,15,18], an ICP is executed among three

parties: a dealer D ∈ P, an intermediary INT ∈ P and

a verifier R ∈ P. The dealerD gives a secret value s ∈ F
to INT . At a later stage, INT is required to reveal s

to R and convince R, that s is indeed the value which

INT received from D. To make the above happen, D

sends the secret and its authentication information to

INT and at the same time, D sends some verification

information to R. Then to ensure that the authenti-

cation information (and the secret) of INT is consis-

tent with the verification information of R, intermedi-

ary INT and R interact in a zero-knowledge fashion

and decide whether they hold consistent information or

not. Their interaction is zero-knowledge, as the com-

munication above does not compromise the privacy of

the information held by INT and R to each other. Now

if INT is sure that his information is consistent with

6

that of R, then later he can indeed prove R about the

authenticity of the value s received from D. The above

process can be viewed as if D gives his signature on s

to INT , INT later reveals the signature to R and R

then verifies whether the signature is valid or not. In

[50], the authors called the signature as IC Signature.

The basic definition of ICP involves only a single

verifier R [50,18,15]. We extend this notion to multiple

verifiers, where all the n parties in P act as verifiers

simultaneously. This will be later helpful in using ICP

as a tool in our AWSS protocol. It is here important

to note that D and INT can be any two parties from

the set P. They just play their special role as D and

INT . Lastly, our ICP can deal with multiple secrets

concurrently and thus achieves better communication

complexity than multiple execution of ICP dealing with

single secret. Our ICP is executed in asynchronous set-

tings and thus we refer it as AICP. We now formally

define AICP.

Definition 6 (Asynchronous Information Check-

ing Protocol (AICP)) Let D ∈ P and D has a se-

cret S = (s1, . . . , sℓ), containing ℓ element(s) from F. D
wants to give S to INT ∈ P , such that later INT can

prove to the n parties in P (who act as verifiers) that

indeed he has received S fromD. Any AICP protocol to

achieve the above task is a sequence of following three

phases:

1. Generation Phase: This is initiated by D, where

D privately sends S, along with some authentication

information to INT and some verification informa-

tion to individual verifiers.

2. Verification Phase: This is initiated by INT where

INT interacts with D and the verifiers in P to en-

sure that the secret S obtained from D will be later

accepted/validated by each (honest) verifier in P.

The secret S, along with the authentication infor-

mation, which is finally possessed by INT at the

end of Verification Phase is called as D’s IC sig-

nature on S, denoted by ICSig(D, INT,P, S).

3. Revelation Phase: This is carried out by INT and

the verifiers in P. Here INT reveals ICSig(D, INT,

P, S). Thus INT reveals S, along with the authen-

tication information. The verifiers then verify the IC

signature using their verification information and

publish their responses. Based on these responses,

every individual verifier Pi ∈ P either accepts S

(indicating that Pi is convinced that INT indeed

obtained S from D) or otherwise rejects it. Upon ac-

ceptance (resp., rejection), verifier Pi sets Reveali =
S (resp., Reveali = NULL).

Any AICP should satisfy the following properties:

1. AICP-Correctness1: If D and INT are honest,

then S will be accepted in Revelation Phase by

each honest verifier.

2. AICP-Correctness2: At the end of Verification

Phase, an honest INT will possess an S, such that

when INT reveals S during Revelation Phase,

then it will be accepted by each honest verifier, ex-

cept with probability ².

3. AICP-Correctness3: If D is honest, then during

Revelation Phase, with probability at least (1−²),

every S′ ∕= S revealed by a corrupted INT will not

be accepted by an honest verifier.

4. AICP-Secrecy: IfD and INT are honest and INT

has not started Revelation Phase, then At will

have no information about S.

We now present an informal idea of our novel AICP

called Multi-Verifier-AICP. The protocol operates over

field F = GF (2·), where ² = 2−(k).

The Intuition: In Multi-Verifier-AICP, D selects a ran-

dom polynomial F (x) of degree ℓ+ t, whose first ℓ coef-

ficients are the elements of S and delivers F (x) to INT .

In addition, to each verifier Pi, D delivers the value of

F (x) at a random evaluation point ®i. During the reve-

lation phase, INT will A-cast F (x) and each verifier Pi

will check if the value held by him is indeed the value

of F (x) at ®i. It is easy to note that the above simple

protocol ensures AICP-Correctness3. Specifically, if

D is honest, then a corrupted INT will never know ®i of
an honest Pi and therefore he can not produce a poly-

nomial F ′(x) different from F (x) and still remain unno-

ticed by an honest verifier Pi with very high probability.

The above protocol also maintains AICP-Secrecy, as

the degree of F (x) is ℓ+t and only t points on F (x) will

be disclosed to At. So At will lack ℓ points to uniquely

interpolate F (x).

But the above protocol steps alone are not enough

to achieve AICP-Correctness2. A corrupted D might

distribute F (x) to INT and value of F ′(x) ∕= F (x)

to each honest verifier. To avoid this situation, INT

and the verifiers interact in a zero-knowledge fashion to

check the consistency of F (x) and its values. As men-

tioned earlier the interaction is zero-knowledge, mean-

ing that it does not compromise the privacy of the infor-

mation held by INT and the (honest) verifiers. To en-

able the zero-knowledge interaction D distributes some

more information to INT and the verifiers. Specifically,

in addition to F (x), D delivers to INT another ran-

dom polynomial R(x) of degree ℓ + t. In parallel, to

each individual verifier Pi, D gives the value of R(x)

at ®i. The specific details of the zero-knowledge consis-

7

tency checking, along with other formal steps of proto-

col Multi-Verifier-AICP are given in Fig. 1.

Remark 2 We stress that in protocolMulti-Verifier-AICP,
D, INT ∈ P. Hence they also act as verifiers and re-

ceive verification information during Gen. Moreover,

they perform all other steps (in addition to what they

are supposed to perform as D and INT) of the protocol

as verifiers, which are performed by other verifiers.

We now prove the properties of the protocol.

Claim If D and INT are honest then D will A-cast OK
(and not F (x)) during Ver.

Proof: Follows from the fact that if D is honest then

F (®i) = vi and R(®i) = ri for all Pi ∈ ReceivedSet. □

Lemma 1 (AICP-Correctness1) If D and INT are

honest, then S revealed by INT during Revelation

Phase will be accepted by each honest verifier.

Proof: From previous claim, if D and INT are honest,

then D will A-cast OK during Ver. Moreover, vi = F (®i)

and ri = R(®i) for each honest Pi ∈ ReceivedSet and

there are at least t+1 such honest Pi’s in ReceivedSet.

So during Reveal-Public, each honest Pi ∈ ReceivedSet

will A-cast Accept, as condition C1 i.e vi = F (®i) will

hold for everyone of them. Hence each honest Pi will

set Reveali = S. □

Claim Let INT be honest and D be corrupted. More-

over, during protocol Gen, let D has distributed (F (x),

R(x)) to INT and (®i, vi, ri) to an honest verifier Pi ∈
ReceivedSet such that F (®i) ∕= vi and R(®i) ∕= ri.

Then except with probability ², B(®i) ∕= dvi + ri.

Proof: We first argue that there is only one non-zero

d for which B(®i) = dvi + ri will hold, even though

F (®i) ∕= vi and R(®i) ∕= ri. For otherwise, assume there

exists another non-zero e ∕= d, for whichB(®i) = evi+ri
is true, even if F (®i) ∕= vi and R(®i) ∕= ri. This implies

that (d − e)F (®i) = (d − e)vi or F (®i) = vi, which

is a contradiction. Now since d is randomly chosen by

honest INT only after D handed over (F (x), R(x)) to

INT and (®i, vi, ri) to every honest Pi ∈ ReceivedSet,

a corrupted D has to guess d in advance during Gen to

make sure that B(®i) = dvi+ ri holds. However, D can

guess d with probability at most 1
∣F∣−1 ≈ ². □

Lemma 2 (AICP-Correctness2) At the end of pro-

tocol Ver, F (x) (and hence S) possessed by an honest

INT will be accepted in Revelation Phase by each

honest verifier, except with probability ².

Proof: If D is honest, then this lemma follows from

Lemma 1. So we consider a corrupted D. We claim

that in this case, each honest Pi ∈ ReceivedSet will

Fig. 1 AICP with n = 3t+ 1

Protocol Multi-Verifier-AICP(D, INT,P, S = (s1, . . . , sℓ), ²)

Generation Phase: Gen(D, INT,P, S, ²)

1. D picks and sends the following to INT :
(a) A random degree-(ℓ+ t) polynomial F (x) = s1+s2x+

. . . + sℓxℓ−1 + r1xℓ + r2xℓ+1 + . . . + rt+1xℓ+t, where
ri’s are random elements of F, for i = 1, . . . t+ 1.

(b) A random degree-(ℓ+ t) polynomial R(x) over F.
2. D privately sends the following to every verifier Pi:

(a) (®i, vi, ri), where ®i ∈ F− {0} is random and all ®i’s
are distinct.

(b) vi = F (®i) and ri = R(®i).

F (x) here forms authentication information, while
(®i, vi, ri)’s form verification information.

Verification Phase: Ver(D, INT,P, S, ²)

1. For i = 1, . . . , n, verifier Pi sends a Received-From-D signal
to INT after receiving (®i, vi, ri) from D.

2. Upon receiving Received-From-D from 2t + 1
verifiers, INT creates a set ReceivedSet =
{Pi ∣ INT received Received-From-D signal from Pi}.
INT then chooses a random d ∈ F ∖ {0} and A-casts
(d,B(x), ReceivedSet), where B(x) = dF (x) +R(x).

3. D checks dvi + ri
?
= B(®i) for every Pi ∈ ReceivedSet. If

not then he A-casts F (x). Otherwise D A-casts OK.
4. The verifiers and INT do the following:

(a) If OK is received from the A-cast of D then do nothing.
(b) If F (x) is received from the A-cast of D, then INT re-

places the F (x) privately received from D during Gen
with the F (x) now obtained from D’s A-cast. In par-
allel, each verifier Pi re-sets vi = F (®i) so that vi is
consistent with the F (x) A-casted by D.

F (x) which is now finally possessed by INT is called D’s
IC signature on S and we denote this by ICSig(D, INT,P, S).

Revelation Phase: Reveal-Public(D, INT,P, S, ²)

1. INT A-casts F (x).
2. On receiving F (x) from the A-cast of INT , verifier Pi ∈

ReceivedSet A-casts Accept if one of the following condi-
tions holds.
(a) vi = F (®i) — we call this as condition C1; OR
(b) B(®i) ∕= dvi + ri and D A-casted OK during Ver — we

call this as condition C2.
Otherwise, Pi A-casts Reject.

Local Computation (By Every Verifier in P): If (t + 1)
verifiers from ReceivedSet have A-casted Accept then accept
F (x) and set Reveali = S, where S consists of lower order ℓ
coefficients of F (x). Else reject F (x) and set Reveali = NULL.

A-cast Accept during Reveal-Public, except with prob-

ability ². Since there are at least t + 1 honest verifiers

in ReceivedSet, it implies that each honest party will

accept F (x) and hence S. We have to consider following

two cases:

1. D A-casts F (x) during Ver: In this case, the above

claim holds without any error, as honest INT will

replace the F (x) which it obtained from D dur-

8

ing Gen, with the F (x) now A-casted by D. More-

over, each honest Pi ∈ ReceivedSet will re-set their

vi, such that vi = F (®i). So during Revelation

Phase, condition C1, namely F (®i) = vi will hold.

2. D A-casts OK during Ver: Here, we have the fol-

lowing cases depending on the relation that holds

between (F (x), R(x)) and (®i, vi, ri)):

(a) F (®i) = vi: Here Pi will A-cast Accept without

any error as C1 (i.e F (®i) = vi) will hold.

(b) F (®i) ∕= vi and R(®i) = ri: Here Pi will A-cast
Accept without any error probability, as C2 (i.e

B(®i) ∕= dvi + ri) will hold.

(c) F (®i) ∕= vi and R(®i) ∕= ri: Here Pi will A-cast
Accept except with probability ², asC2 will hold

from the previous claim. □

Lemma 3 (AICP-Correctness3) If D is honest, then

during Revelation Phase, with probability at least (1−
²), every S′ ∕= S revealed by a corrupted INT will not

be accepted by an honest verifier.

Proof: To reveal S′ ∕= S during Reveal-Public, INT

must A-cast F ′(x) ∕= F (x), such that lower order ℓ coef-

ficients of F ′(x) are S′. We now claim that if INT does

so, then except with probability ², every honest verifier

Pi in ReceivedSet will A-cast Reject during Reveal-
Public. This further implies that S′ will be rejected as

there are at least t + 1 honest parties in ReceivedSet.
We consider the following two cases:

1. D A-casts F (x) during Ver: In this case, the con-

dition C2 will never be satisfied during Reveal-
Public. So the only condition in which an honest

Pi ∈ ReceivedSet will A-cast Accept is that F ′(®i) =

vi = F (®i) holds. But the corrupted INT has no in-

formation about ®i, as D and Pi are honest. Hence

the probability that INT can ensure F ′(®i) = vi =

F (®i) is same as the probability that INT can cor-

rectly guess ®i, which is at most ℓ+t
∣F−1∣ ≈ 2−(·) ≈ ²

(since F (x) and F ′(x) can have same value at most

at ℓ+ t values of x).

2. D A-casts OK during Ver: In this case, we show

that the conditions for which an honest verifier Pi

in ReceivedSet would A-cast Accept for F ′(x) are

either impossible or may happen with probability ²:

(a) F ′(®i) = vi = F (®i): As discussed above, this

can happen with probability at most ².

(b) B(®i) ∕= dvi+ ri and D A-casted OK during Ver:
This case is never possible because if B(®i) ∕=
dvi+ri, then honestD would have A-casted F (x)

during Ver. □

Lemma 4 (AICP-Secrecy) If D and INT are hon-

est and INT has not started Revelation Phase, then

At will have no information about S.

Proof: Follows from the fact that if D and INT are

honest then D will A-cast OK during Ver and At will

get at most t points on degree-(ℓ+ t) polynomial F (x)

during Gen and Ver. □

Theorem 2 Protocol Multi-Verifier-AICP is an efficient

AICP. Protocol Gen privately communicates

O((ℓ + n) log 1
²) bits. Protocol Ver requires A-cast of

O((ℓ+n) log 1
²) and private communication of O(n log n)

bits. Reveal-Public A-casts O((ℓ+ n) log 1
²) bits.

Proof: The first part of the theorem follows from Lemma

1-4. In protocol Gen, D privately delivers ℓ + t field

elements to INT and three field elements to each ver-

ifier. Since each field element can be represented by

· = O(log 1
²) bits, Gen incurs a private communication

of O((ℓ + n) log 1
²) bits. In protocol Ver, every veri-

fier privately sends Received-From-D signal to INT ,

thus incurring a private communication of O(n) bits.

In addition, INT A-casts B(x) containing ℓ + t field

elements, thus incurring A-cast of O((ℓ+n) log 1
²) bits.

In protocol Reveal-Public, INT A-casts F (x), consist-

ing of ℓ + t field elements, while each verifier A-casts
Accept/Reject signal. So Reveal-Public involves A-
cast of O((ℓ+ n) log 1

²) bits. □

Notation 2 We will use following notations while us-

ing our protocol Multi-Verifier-AICP in our AWSS scheme.

Recall that D and INT can be any party from P. We

say that:

1. “Pi gives ICSig(Pi, Pj ,P, S) to Pj” to mean that Pi

as a dealer executes Gen(Pi, Pj ,P, S, ²), considering

Pj as INT to give his IC signature on S to Pj.

2. “Pi receives ICSig(Pj , Pi,P, S) from Pj” to mean

that Pi as INT has completed Ver(Pj , Pi,P, S, ²)

with the help of the verifiers in P and finally possess

ICSig(Pj , Pi,P, S), where Pj is the dealer.

3. “Pi reveals ICSig(Pj , Pi,P, S)” to means Pi as INT

executes Reveal-Public(Pj , Pi,P, S, ²) along with the

participation of the verifiers in P to reveal S.

4. “Pk completes revelation of ICSig(Pj , Pi,P, S) with

Revealk = S (resp. Revealk = NULL)” to mean that

Pk as a verifier has completed Reveal-Public(Pj , Pi,P,

S, ²) with Revealk = S (resp. Revealk = NULL).

3.2 AWSS Scheme for Sharing a Single Secret

We now present a novel AWSS scheme with n = 3t+1,

consisting of sub-protocols AWSS-Share and AWSS-Rec.
While AWSS-Share allows D to share a secret s, AWSS-
Rec enables public reconstruction of either D’s shared

secret or NULL. Moreover, if D is corrupted, then s

can be either from F or it can be NULL (in a sense

explained in the sequel).

9

We start our discussion with a simple WSS protocol

in synchronous settings with n = 2t+1. We then explain

why this simple WSS can not be extended directly in

asynchronous settings with n = 3t+1. To deal with the

asynchrony of the network, we then come up with some

new ideas on top of the simple AWSS. Now the following

is the protocol for WSS in synchronous settings with

n = 2t+ 1:

1. Sharing Phase: D takes a random degree-t poly-

nomial f(x), such that f(0) = s and computes the

shares si = f(i), for i = 1, . . . , n. Then to every

party Pi, D gives ICSig(D,Pi,P, si). The sharing

phase terminates, once every Pi as INT , has re-

ceived ICSig(D,Pi,P, si) from D.

2. Reconstruction Phase: Each Pi is asked to re-

veal ICSig(D,Pi,P, si). Let Rec be the set of all

such Pi’s, who are successfully able to reveal the

signatures. Now we take the shares of all the par-

ties in Rec and see whether they lie on a degree-t

polynomial. If yes, then the constant term of the

polynomial is taken as the secret, otherwise NULL

is reconstructed.

It is easy to see that the above protocol satisfies se-

crecy and correctness property. For weak-commit

ment, we say that D’s committed secret is defined by

the shares of the honest parties during sharing phase.

Specifically, if the shares of the honest parties lie on

a degree-t polynomial, say f★(x), then we say that D

has committed s★ = f★(0). Otherwise, we say that D

has committed s★ = NULL. However, notice that in

this protocol, we cannot ensure that a corrupted D has

committed s★ ∕= NULL, as we are not checking whether

D is giving shares on a degree-t polynomial to honest

parties during sharing phase or not.

Now if we try to adapt the above protocol in asyn-

chronous settings with n = 3t + 1, then we have to

terminate the sharing phase, as soon as 2t+1 Pi’s, de-

noted by WCORE, have received ICSig(D,Pi,P, si)

from D. Since waiting for all 3t+1 parties to receive IC

signatures may turn out to be endless. We can now say

that D’s committed secret is defined by the shares of

the honest parties in WCORE. There are at least t+1

honest parties in WCORE. Now in the reconstruction

phase, we can wait for only t + 1 Pi’s in WCORE to

correctly reveal ICSig(D,Pi,P, si). Since again wait-

ing for all parties in WCORE to reveal the IC signa-

tures may turn out to be endless. Now the t + 1 re-

vealed shares will always define a degree-t polynomial

and hence a secret. Now in the above protocol if D is

honest, then correctness and secrecy are still satisfied

with very high probability (this is because the revealed

shares are indeed the correct shares). However, weak

commitment will be violated. The reason is that a

corrupted D allows the corrupted Pi’s in WCORE to

reveal any ICSig(D,Pi,P, si) with si ∕= si. In the worst

case, there can be t corrupted parties in WCORE. Now

adversary can schedule the messages in such a way that

the shares of t corrupted parties in WCORE and the

share of some honest party in WCORE are revealed

before anybody else in WCORE. Thereby, the adver-

sary can choose to reconstruct any value of his choice,

violating the weak commitment property.

The problem with the above protocol is that we can-

not ensure the shares of all honest parties in WCORE

to be available in the reconstruction phase due to the

asynchronous nature of the settings. This problem was

taken care in the synchronous settings by the synchronic-

ity. To deal with this problem, we share s using two level

of sharing, where each si is further committed by Pi us-

ing IC-commitment, which is defined in the sequel. We

now give the high level description of AWSS-Share.

High Level Description of AWSS-Share: FirstD se-

lects a random, symmetric bivariate polynomial F (x, y)

of degree-t in x and y such that F (0, 0) = s. D then

gives ICSig(D, INT,P, fi(j)) for every j = 1, . . . , n

to Pi. This step implicitly ensures that Pi will receive

fi(x) = F (x, i) from D. After receiving these IC sig-
natures from D, every pair of parties (Pi, Pj) exchange

their own IC signature on their common value, namely

fi(j) = fj(i) = F (i, j). Then D, in conjunction with all

other parties, perform a sequences of communications

and computations. As a result of this, at the end of

AWSS-Share, all parties agree on a set of 2t+1 parties,

called WCORE, such that every party Pj ∈ WCORE

has IC-committed fj(0) using fj(x) to a set of 2t+1 par-

ties, called as OKPj , where IC-commitment is defined

as follows:

Definition 7 (IC-commitment) In protocol AWSS-
Share, we say that Pj has IC-committed fj(0) to the

parties in OKPj , using the degree-t polynomial fj(x),

if the following hold for every Pk ∈ OKPj :

1. Pk has received ICSig(D,Pk,P, fk(j)) from D;

2. Pk has received ICSig(Pj , Pk,P, fj(k)) from Pj ; and

3. fk(j) = fj(k).

In some sense, we may view the above as if every Pj ∈
WCORE has committed his received (from D) poly-

nomial fj(x) to the parties in OKPj (by giving his IC

Signature on one point of fj(x) to each party) and the

parties in OKPj allowed him to do so after verifying

that they have gotD’s IC signature on the same value of

fj(x). We will show that later in reconstruction phase,

IC-commitment fj(0) of every honest Pj ∈ WCORE

will be reconstructed correctly irrespective of whether

D is honest or corrupted. Moreover, a corrupted Pj ’s

10

IC-commitment will be reconstructed correctly when D

is honest. But on the other hand, any value can be re-

constructed as Pj ’s IC-commitment, if both D and Pj

are corrupted. These properties are at the heart of our

AWSS protocol.

Now achieving the agreement (among the parties)

on WCORE and corresponding OKPjs is a bit tricky

in asynchronous network. Even though these sets are

constructed based on A-casted (i.e public) information,

parties may end up with different versions of WCORE

and OKPj ’s while attempting to generate them locally,

due to the asynchronous nature of the network. We

solve this problem by askingD first to constructWCORE

and OKPjs based on A-casted information and then ask

D to A-cast WCORE. After receiving WCORE and

OKPjs from the A-cast of D, individual parties ensure

the validity of these sets by waiting to receive the same

A-cast using which D would have formed these sets. A

similar approach was used in the protocols of [1].

Notice that if D is honest, then each honest party

will always satisfy all the properties for being present in

WCORE. Hence, if D is honest, then all (honest) par-

ties will eventually agree on a WCORE of size 2t + 1

and will terminate AWSS-Share. However, if D is cor-

rupted, then there may not be a WCORE of size 2t+

1, in which case the (honest) parties may not termi-

nate AWSS-Share. Protocol AWSS-Share is formally pre-

sented in Fig. 2.

Before proceeding further, we now define what we call

as D’s AWSS-commitment during AWSS-Share.

Definition 8 (D’s AWSS-commitment) We say that

D has AWSS-committed a secret s ∈ F during AWSS-
Share if there is a unique degree-t univariate polyno-

mial, say f(x), such that f(0) = s and every honest Pi

in WCORE receives f(i) from D. Otherwise, we say

that D has AWSS-committed NULL.

An honest D always AWSS-commits s ∈ F, as in this

case f(x) = f0(x) = F (x, 0). Moreover, every honest

party Pi in WCORE receives f(i) = f0(i) = fi(0) (this

can be obtained from fi(x)). But AWSS-Share can not

ensure that corrupted D has AWSS-commited s ∈ F.
This means that a corrupted D may distribute infor-

mation to the parties such that, polynomial f0(x) de-

fined by the f0(i) = fi(0) values possessed by honest

Pi’s in WCORE may not be a degree-t polynomial. In

this case we say D has AWSS-committed NULL.

High Level Idea of AWSS-Rec: In AWSS-Rec, we try
to reconstruct D’s AWSS-committed secret. In order to

do this, we reconstruct IC-commitment fj(0) = f0(j)

of every Pj ∈ WCORE and check whether the recon-

structed fj(0)’s of all Pj ∈ WCORE lie on a unique

degree-t polynomial. If yes, then the constant term of

Fig. 2 Sharing Phase of AWSS Scheme

Protocol AWSS-Share(D,P, s, ²)

Distribution: Code for D – Only D executes this code.
1. Select a random, symmetric bivariate polynomial

F (x, y) of degree-t in x and y, such that F (0, 0) = s.
For i = 1, . . . , n, let fi(x) = F (x, i).

2. For i = 1, . . . , n, give ICSig(D,Pi,P, fi(j)) to Pi for
each j = 1, . . . , n. For this, D initiates n2 instances of
Gen, each with an error parameter of ²′ = ²

n2 .
Verification: Code for Pi – Every party including D exe-

cutes this code.
1. Wait to receive ICSig(D,Pi,P, fi(j)) for each j =

1, . . . , n from D.
2. Check if (fi(1), . . . , fi(n)) defines degree-t polynomial.

If yes then give ICSig(Pi, Pj ,P, fi(j)) to Pj for j =
1, . . . , n.

3. If ICSig(Pj , Pi,P, fj(i)) is received from Pj and if
fi(j) = fj(i), then A-cast OK(Pi, Pj).

WCORE Construction : Code for D – Only D executes
this code.
1. For each Pj , build a set OKPj =

{Pk∣D receives OK(Pk, Pj) from the A-cast of Pk}.
When ∣OKPj ∣ = 2t + 1, then conclude that Pj ’s
IC-commitment on fj(0) is complete and add Pj in
WCORE (which was initially empty).

2. Wait until ∣WCORE∣ = 2t+1. Then A-cast WCORE
and OKPj for all Pj ∈ WCORE.

WCORE Verification & Agreement on WCORE : Code
for Pi — Every party executes this code
1. Wait to receive WCORE and OKPj for all Pj ∈

WCORE from D’s A-cast, such that ∣WCORE∣ =
2t+ 1 and ∣OKPj ∣ = 2t+ 1 for each Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKPj and Pj ∈
WCORE. Only after receiving all these OKs, consider
the WCORE and OKPj ’s received from D as valid,
accept them and terminate AWSS-Share.

the polynomial is considered as the reconstructed se-

cret, else NULL is taken as the reconstructed secret.

To reconstruct the IC-commitment fj(0) for Pj ∈
WCORE, it is enough to have t + 1 points on the

degree-t polynomial fj(x), used by Pj during AWSS-
Share to do the IC-commitment. We ask the parties in

OKPj to reveal these points. Specifically, every party

Pk ∈ OKPj is asked to reveal ICSig(D,Pk,P, fk(j))

and ICSig(Pj , Pk,P, fj(k)) such that fk(j) = fj(k)

holds. Every such fj(k) which is revealed successfully

by Pk ∈ OKPj is considered as a valid point on fj(x).

Since there are at least t + 1 honest parties in OKPj ,

eventually at least t + 1 fj(k)’s and fk(j)’s, satisfy-

ing fj(k) = fk(j) will be revealed correctly with which

fj(x) and thus fj(0) will be reconstructed. Notice that

due to asynchrony of the network, we cannot wait for

every Pk ∈ OKPk to reveal ICSig(D,Pk,P, fk(j)) and

ICSig(Pj , Pk,P, fj(k)) and so as soon as t + 1 Pk’s

from OKPj reveal valid points on fj(x), we have to

reconstruct fj(x) and fj(0).

11

Asking every Pk ∈ OKPj to reveal IC signature of

D as well as of Pj on the same value is required to en-

sure Correctness 1 and Correctness 2 property of

AWSS. Specifically, we will see that when at least one

of D and Pj is honest, then Pj ’s IC-commitment (i.e

fj(0)) will be reconstructed correctly. But when both

D and Pj are corrupted, Pj ’s IC-Commitment can be

reconstructed as any fj(0) which may or not be equal

to fj(0). It is this later property that makes our proto-

col to qualify as a AWSS protocol rather than a AVSS

protocol.

Finally we point out that we could ensure the shares

(namely fj(0)) of all honest Pj ’s in WCORE to be

available for the reconstruction of secret by using IC-

commitment. This helps us to achieve weak commit-

ment. And as pointed out before, this property could

not be ensured in our simple WSS protocol in asyn-

chronous setting (described in the beginning of this sec-

tion). Protocol AWSS-Rec is now given in Fig. 3.

Fig. 3 Reconstruction Phase of AWSS Scheme

AWSS-Rec(D,P, s, ²)

Signature Revelation: Code for Pi — Every party executes
this code

1. If Pi belongs to OKPj for some Pj ∈ WCORE, then reveal
ICSig(D,Pi,P, fi(j)) and ICSig(Pj , Pi,P, fj(i)).

Local Computation: Code for Pi — Every party executes
this code

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-

commitment, say fj(0) as follows:
(a) Construct a set V alidPj = ∅.
(b) Add Pk ∈ OKPj to V alidPj if the following conditions

hold:
i. Revelation of ICSig(D,Pk,P, fk(j)) and

ICSig(Pj , Pk,P, fj(k)) are completed with

Reveali = fk(j) and Reveali = fj(k) respectively;
and

ii. fk(j) = fj(k).
(c) Wait until ∣V alidPj ∣ = t + 1. Construct a degree-

t polynomial fj(x) passing through (k, fj(k)) where

Pk ∈ V alidPj . Associate fj(0) with Pj ∈ WCORE.

2. Wait for fj(0) to be reconstructed for all Pj ∈ WCORE.

3. Check whether the points (j, fj(0)) for Pj ∈ WCORE lie

on a unique degree-t polynomial f0(x). If yes, then output
s = f0(0); else output s = NULL. Terminate AWSS-Rec.

We now prove the properties of our AWSS scheme.

Lemma 5 (AWSS-Termination) (AWSS-Share, AWSS-
Rec) satisfy termination property of Definition 3.

Proof:

– Termination 1: If D is honest and all honest par-

ties participate during AWSS-Share, then eventu-

ally all honest parties will A-cast OK for each other.

So eventhough no corrupted party participates, D

will eventually include 2t + 1 parties in WCORE

and A-cast the same, along with OKPj ’s for every

Pj ∈ WCORE. As in honest D, each honest party

will also eventually receive the same OKs, consider

the WCORE and OKPj ’s as valid, accept them

and eventually terminate AWSS-Share.
– Termination 2: If an honest Pi has terminated

AWSS-Share, then he must have received WCORE

and OKPj ’s from the A-cast of D and verified their

validity by receiving the OK signals from the A-cast
of the parties in OKPj ’s for every Pj ∈ WCORE.

By property of A-cast, each honest party will also

eventually receive the same, will consider WCORE

andOKPj ’s as valid and will terminate AWSS-Share.
– Termination 3: For every Pj ∈ WCORE, there

are at least t+ 1 honest Pk’s in OKPj , who will be

able to reveal ICSig(D,Pk,P, fk(j)) and ICSig(Pj ,

Pk,P, fj(k)) with fj(k) = fk(j) during Reveal-Public,
except with probability ²′ (as each instance of AICP

is executed with an error parameter ²′). Hence each

honest Pk ∈ OKPj will be present in V alidPj ex-

cept with probability ²′. Now except with proba-

bility n2²′ = ², Pj ’s IC-commitment will be recon-

structed for all Pj ∈ WCORE and hence all honest

parties will terminate AWSS-Rec, except with prob-

ability ². □

Lemma 6 (AWSS-Secrecy) AWSS-Share satisfies se-
crecy property of Definition 3.

proof: The proof follows from the secrecy of our AICP

protocol and properties of symmetric bivariate polyno-

mial of degree-t in x and y [17]. Specifically, let P1, . . . , Pt

be under the control of At. So during AWSS-Share, At

will know f1(x), . . . , ft(x) and t points on ft+1(x), . . . ,

fn(x). However,At still lacks one more point to uniquely
interpolate F (x, y) and get s = F (0, 0). □

Lemma 7 (AWSS-Correctness) (AWSS-Share, AWSS-
Rec) satisfy correctness property of Definition 3.

Proof:

– Correctness 1: Here we have to consider the case

when D is honest. We show that D’s AWSS-commit

ment will be reconstructed correctly except with

probability ². For this, we show that Pj ’s IC-commit

ment fj(0) will be correctly reconstructed with prob-

ability at least (1 − ²
n) for every Pj ∈ WCORE.

Consequently, as ∣WCORE∣ = 2t+1, all the honest

parties will reconstruct f0(x) = F (x, 0) and hence

s = f0(0) with probability at least (1− (2t+1) ²
n) ≈

(1− ²). So we consider the following two cases:

12

1. Pj ∈ WCORE is honest: From Lemma 3 (i.e.,

AICP-Correctness3), a corrupted Pk ∈ OKPj

can reveal ICSig(Pj , Pk,P, fj(k)) where fj(k)

∕= fj(k), with probability at most ²′. As there

can be at most t corrupted parties in V alidPj ,

except with probability t²′ = ²
n , the value fj(k) =

fj(k) for all Pk ∈ V alidPj . Hence honest Pj ’s

IC-commitment fj(0) will be correctly reconstruct

ed with probability at least (1− ²
n).

2. Pj ∈ WCORE is corrupted: From Lemma 3

(i.e., AICP-Correctness3), a corrupted Pk ∈
OKPj can reveal ICSig(D,Pk,P, fk(j)) where

fk(j) ∕= fk(j), with probability at most ²′. Thus
except with probability t²′ = ²

n , the value fk(j) =

fk(j) = fj(k) for all Pk ∈ V alidPj . So corrupted

Pj ’s IC-commitment fj(0) will be correctly re-

constructed with probability at least (1− ²
n).

– Correctness 2: Here we have to consider a cor-

rupted D. We have the following two cases:

1. D’s AWSS-commitment s ∈ F: This implies that

the fj(0) values received by the honest parties in

WCORE during AWSS-Share lies on a degree-t

polynomial f0(x). Now using similar arguments

as in Correctness 1, it follows that fj(0) will

be reconstructed correctly with probability at

least (1 − (t + 1)²′) ≈ (1 − ²
n) for every honest

Pj ∈ WCORE. As there are at least t+ 1 hon-

est parties in WCORE, IC-commitment of all

honest parties in WCORE will be reconstructed

correctly with probability at least (1− ²).

But for a corrupted Pj in WCORE, Pj ’s IC-

commitment can be reconstructed to any value

fj(0). This is because a corrupted Pk ∈ OKPj

can reveal ICSig(D,Pk,P, fk(j)), as well as

ICSig(Pj , Pk,P, fj(k)), for any fk(j) = fj(k) of

adversary’s choice. Also the adversary can sched-

ule the signature revelation in such a way that

signature revelation by corrupted Pk’s in OKPj

are completed before the signature revelation by

honest Pk’s inOKPj . Now if reconstructed fj(0) =

fj(0) for all corrupted Pj ∈ WCORE, then s

will be reconstructed. Otherwise, NULL will be

reconstructed. However, since IC-commitment fj(0)

for all the honest Pj ’s in WCORE are recon-

structed correctly with probability at least (1−
²), no other secret (other than s) can be recon-

structed.

2. D’s AWSS-commitment is NULL: This implies

that fj(0)’s corresponding to honest Pj ’s in

WCORE do not define a degree-t polynomial.

In this case NULL will be reconstructed. This is

because fj(0) corresponding to each honest Pj ∈
WCORE will be reconstructed correctly except

with probability ² (following the argument given

in previous case).

□

Lemma 8 (AWSS-Communication Complexity)

Protocol AWSS-Share incurs a private communication

of O(n3 log 1
²) bits and A-cast of O(n3 log 1

²) bits. Pro-

tocol AWSS-Rec involves A-cast of O(n3 log 1
²) bits.

Proof: In AWSS-Share, there are O(n2) instances of

Gen and Ver (of Multi-Verifier-AICP), each dealing with

ℓ = 1 value and executed with an error parameter

of ²′ = ²
n2 . From Theorem 2, this requires a private

communication, as well as A-cast of O(n3 log n2

²) =

O(n3 log 1
²) bits, as n = poly(1²). Moreover, there are

A-cast of O(n2) OK signals. In addition, there is A-cast
of WCORE containing the identity of 2t + 1 parties

and OKPj ’s corresponding to each Pj ∈ WCORE,

where each OKPj contains the identity of 2t + 1 par-

ties. Now the identity of a party can be represented

by O(log n) bits. So in total, AWSS-Share incurs a pri-

vate communication of O(n3 log 1
²) bits and A-cast of

O(n2 log n+n3 log 1
²) = O(n3 log 1

²) bits. In AWSS-Rec,
there are O(n2) instances of Reveal-Public of our Multi-
Verifier-AICP, each dealing with ℓ = 1 value. This re-

quires A-cast of O(n3 log 1
²) bits.

Theorem 3 Protocols (AWSS-Share, AWSS-Rec) con-

stitutes a valid statistical AWSS scheme with n = 3t+1.

Proof: Follows from Lemma 5, 6 and 7.

Notation 3 (AWSS Sharing of a Polynomial) If we

closely look into the computations of AWSS-Share, then
we observe that the shares of AWSS-shared secret s are

nothing but the points on degree-t polynomial f0(x) =

F (x, 0), where f0(0) = s. Due to asynchrony of the net-

work, instead of all 3t + 1 parties, only a set of 2t + 1

parties WCORE will hold the shares of s. Similarly,

to reconstruct s we try to reconstruct the degree-t poly-

nomial f0(x) using the shares (IC-commitments) of the

parties in WCORE. So we now abuse the notion of

‘AWSS-sharing of a secret’ and say that:

1. D AWSS-shares degree-t polynomial f(x) in AWSS-
Share by executing AWSS-Share(D,P, f(x), ²). To do

so, D will choose a symmetric bivariate polynomial

F (x, y) of degree-t in x and y, where F (x, 0) = f(x)

holds and will execute the steps of protocol AWSS-
Share.

2. Parties execute AWSS-Rec(D,P, f(x), ²), which al-

lows the (honest) parties to reconstruct either the

AWSS-shared polynomial f(x) or NULL, except with

an error probability of ². □

13

Remark 3 The above idea of abusing the notion of ‘shar-

ing (reconstructing) a secret’ to ‘sharing (reconstruct-

ing) a degree-t polynomial f(x)’ is very well known and

commonly used in WSS protocols in synchronous set-

tings [44,33,39]. This does not break the interface when

WSS is further used as a black-box in VSS. The rea-

son is that D has to follow the same steps internally

to share a degree-t polynomial f(x), as in the WSS

protocol sharing a secret, with the condition that now

the selected bivariate polynomial F (x, y) should satisfy

F (x, 0) = f(x). □

3.3 Our AVSS Scheme for Sharing a Single Secret

In this section, we present our novel AVSS scheme con-

sisting of sub-protocols AVSS-Share and AVSS-Rec. Be-
fore presenting the protocol, lets recall why our AWSS

protocol in the previous section fails to qualify as an

AVSS scheme. In our AWSS protocol, if both D and

some Pi ∈ WCORE are corrupted, then any value can

be reconstructed as Pi’s IC-commitment. This is be-

cause during reconstruction phase, any degree-t polyno-

mial can be reconstructed on behalf of Pi ∈ WCORE.

If we can ensure that this reconstructed degree-t poly-

nomial is either the same as the one received by Pi

from D during the sharing phase or NULL, then we

can achieve strong commitment. We now see how we
achieve this property by using AWSS as a black-box.

In essence, we replace IC-commitment in our AWSS

scheme by AWSS-commitment in our AVSS scheme.

High Level Idea of AVSS-Share: D selects a sym-

metric bivariate polynomial F (x, y) of degree-t in x and

y, such that F (0, 0) = s and sends fi(x) = F (x, i) to

party Pi. Now each party Pi is asked to act as a dealer

and AWSS-share his received polynomial fi(x). Then

the parties agree on a set of 2t+1 parties, say V CORE,

such that each Pi ∈ V CORE has AWSS-shared fi(x).

However, we have to ensure that even a corrupted Pi ∈
V CORE has indeed AWSS-shared fi(x). This is done

as follows: during the instance of AWSS initiated by Pi,

the party Pi selects a degree-t symmetric bivariate poly-

nomial QPi(x, y), such that QPi(x, 0) = fi(x). Since ev-

ery party Pj receives q
Pi
j (x) = QPi(x, j) from Pi as part

of AWSS-Share, Pj can check whether qPi
j (0)

?
= fj(i),

as ideally qPi
j (0) = fi(j) = fj(i) should hold in case of

honest D, Pi and Pj . A party Pj participates in the re-

maining steps of the instance of AWSS-Share where Pi

is the dealer, only if qPi
j (0) = fj(i) holds. Moreover, we

also ensure that each party Pj ∈ V CORE has AWSS-

shared fj(x) to at least 2t+1 parties in V CORE. The

agreement on V CORE and WCORE sets correspond-

ing to each Pj ∈ V CORE is achieved using a similar

mechanism as used in AWSS-Share for achieving agree-

ment on WCORE and corresponding OK sets. Pro-

tocol AVSS-Share is given in Fig. 4. Before proceeding

Fig. 4 Sharing Phase of AVSS Scheme

AVSS-Share(D,P, s, ²)

Distribution: Code for D — Only D executes this code

1. Select a random symmetric bivariate polynomial F (x, y)
of degree-t in x and y such that F (0, 0) = s and send
fi(x) = F (x, i) to party Pi, for i = 1, . . . , n.

AWSS Sharing of fi(x): Code for Pi — Every party, includ-
ing D executes this code

1. Wait to obtain fi(x) from D.
2. If fi(x) is a degree-t polynomial then invoke AWSS-

Share(Pi,P, fi(x), ²
′) after selecting a symmetric bivariate

polynomial QPi (x, y) of degree-t in x and y, such that

QPi (x, 0) = q
Pi
0 (x) = fi(x) and ²′ = ²

n
. We call this in-

stance of AWSS-Share initiated by Pi as AWSS-SharePi .
3. As a part of the execution of AWSS-SharePj , wait to receive

q
Pj

i (x) = QPj (x, i) from Pj . Then check fi(j)
?
= q

Pj

i (0). If
the test passes then participate in AWSS-SharePj and act
according to the remaining steps of AWSS-SharePj .

VCORE Construction: Code for D — Only D executes this
code

1. If AWSS-SharePj is terminated, then denote corresponding

WCORE and OKPk sets by WCOREPj and OKP
Pj

k for

every Pk ∈ WCOREPj . Add Pj in a set V CORE (initially
empty).

2. Keep updating V CORE, WCOREPj and corresponding

OKP
Pj

k ’s for every Pj ∈ V CORE upon receiving new A-

casts of the form OK(., .) (during AWSS-SharePj s), until for
at least 2t + 1 Pj ∈ V CORE, the condition ∣V CORE ∩
WCOREPj ∣ ≥ 2t+1 is satisfied. Remove (from V CORE)
all Pj ∈ V CORE that does not satisfy the above condition.

3. A-cast V CORE, WCOREPj for Pj ∈ V CORE and

OKP
Pj

k for every Pk ∈ WCOREPj .

VCORE Verification & Agreement on VCORE : Code for
Pi — Every party executes this code

1. Wait to receive V CORE, WCOREPj for Pj ∈ V CORE

and OKP
Pj

k for every Pk ∈ WCOREPj from D’s A-cast.

2. Wait to terminate AWSS-SharePj corresponding to every
Pj in V CORE.

3. Wait to receive OK(Pm, Pk) for every Pk ∈ WCOREPj

and every Pm ∈ OKP
Pj

k , corresponding to every Pj ∈
V CORE.

4. After receiving all the desired OK’s, consider V CORE,

WCOREPj for Pj ∈ V CORE and OKP
Pj

k for every

Pk ∈ WCOREPj received from D as valid, accept them
and terminate AVSS-Share.

further, we define what we call as D’s commitment dur-

ing AVSS-Share.

14

Definition 9 (D’s AVSS-commitment) We say that

D has AVSS-committed s ∈ F in AVSS-Share if there

is a unique symmetric bivariate polynomial F (x, y) of

degree-t in x and y, such that F (0, 0) = s and every

honest Pi in V CORE receives fi(x) = F (x, i) from D.

Otherwise, we say that D has committed NULL and

D’s AVSS-committed secret is not meaningful.

If a corrupted D has committed NULL, then it im-

plies that the fi(x)’s of honest parties in V CORE do

not define a symmetric bivariate polynomial of degree-t

in x and y. This further implies that there is an hon-

est pair (P° , P±) in V CORE such that f°(±) ∕= f±(°).

Also notice that we can not ensure that a corrupted D

has committed s ∈ F. This is because we are not able

to ensure that fi(x), fj(x) of every Pi, Pj ∈ V CORE

satisfies fi(j) = fj(i). However, it is enough in our con-

text that D is committed to a value (including NULL),

which will be reconstructed uniquely during reconstruc-

tion phase.

High Level Idea of AVSS-Rec: In AVSS-Rec, we re-

construct D’s AVSS-commitment. For this, it is enough

to reconstruct the AWSS-shared fj(x)’s of each hon-

est Pj ∈ V CORE. So we execute AWSS-Rec for each

Pj ∈ V CORE to reconstruct either NULL or fj(x).
Now with the reconstructed fj(x)’s, either F (x, y) and

s = F (0, 0) or NULL will be reconstructed. The formal

details of AVSS-Rec are given in Fig. 5.

Fig. 5 Reconstruction Phase of AVSS Scheme

AVSS-Rec(D,P, s, ²)

Secret Reconstruction: Code for Pi — Every party exe-
cutes this code

1. For every Pj ∈ V CORE, participate in AWSS-

Rec(Pj ,P, fj(x), ²
′) with WCOREPj and OKP

Pj

k for ev-

ery Pk ∈ WCOREPj , where ²′ = ²
n
. We call this instance

of AWSS-Rec as AWSS-RecPj .
2. Wait for termination of AWSS-RecPj for every Pj ∈

V CORE with output either fj(x) or NULL. Add Pj to
FINAL if AWSS-RecPj gives non-NULL output.

3. For every pair (P° , P±) ∈ FINAL check f°(±)
?
= f±(°).

If the test passes then recover F (x, y) using fj(x)’s corre-

sponding to each Pj ∈ FINAL and set s = F (0, 0). Else
set s = NULL. Finally output s and terminate AVSS-Rec.

We now prove the properties of our AVSS scheme.

Lemma 9 (AVSS-Termination) Protocol (AVSS-Share,
AVSS-Rec) satisfies termination property of Definition

4.

Proof:

– Termination 1: In AVSS-Share, D keeps on updat-

ing (i.e., adding new parties to) WCOREPj dur-

ing AWSS-SharePj , even after WCOREPj contains

2t+ 1 parties. So if D is honest and all honest par-

ties participate in the protocol, then 2t + 1 honest

parties will be eventually included in WCOREPj

of every honest Pj . So eventually at least 2t + 1

honest parties will be included in V CORE, such

that ∣V CORE ∩ WCOREPj ∣ ≥ 2t + 1 for each

Pj ∈ V CORE. Now from similar argument given

in Termination 1 of Lemma 5, all honest par-

ties will eventually accept V CORE, WCOREPj for

Pj ∈ V CORE, corresponding OKP
Pj

k ’s and will

terminate AVSS-Share.
– Termination 2: If some honest party has termi-

nated AVSS-Share then it implies that he has re-

ceived V CORE, WCOREPj for Pj ∈ V CORE and

OKP
Pj

k for every Pk ∈ WCOREPj from the A-cast
of D and checked their validity. So by the property

of A-cast, every other honest party will also eventu-

ally do the same and terminate AVSS-Share.
– Termination 3: Follows from the fact that corre-

sponding to each Pj ∈ V CORE, every honest Pi

will eventually terminate AWSS-RecPj (from Ter-

mination 3 of Lemma 5), except with an error

probability of ²′. As there are at least t + 1 hon-

est parties in V CORE, AWSS-Rec corresponding to

all honest parties in V CORE will terminate with

probability at least (1− (t+ 1)²′) ≈ (1− ²). □

Lemma 10 (AVSS-Correctness) Protocol (AVSS-Share,
AVSS-Rec) satisfies correctness property of Definition 4.

Proof:

– Correctness 1: We have to consider the case when

D is honest. IfD is honest then we prove that AWSS-RecPi

will reconstruct fi(x) which is same as fi(x) for ev-

ery Pi ∈ FINAL, except with probability ²′. If Pi

is honest then this follows from the Correctness1

of our AWSS scheme. We now show that same holds

even for a corrupted Pi ∈ FINAL. If a corrupted Pi

belongs to FINAL, it implies that AWSS-RecPi out-

puts a degree-t polynomial and AWSS-SharePi had

terminated during AVSS-Share, such that ∣V CORE∩
WCOREPi ∣ ≥ 2t + 1. The above statements have

the following implications: as a part of AWSS-SharePi ,

Pi handed over qPi
j (x) to an honest Pj (inWCOREPi)

satisfying fj(i) = qPi
j (0). This further implies that

Pi must have AWSS-shared fi(x). Thus if AWSS-RecPi

is successful, then except with probability ²′, fi(x) =
fi(x). In the worst case, there can be at most t cor-

rupted parties in FINAL and hence except with

probability ²′t ≈ ², fi(x)’s corresponding to each

15

Pi ∈ FINAL will define F (x, y) = F (x, y) and thus

s = F (0, 0) = F (0, 0) will be recovered.

– Correctness 2: Here we have to consider a cor-

rupted D. Now there are two cases:

1. D’s AVSS-committed secret s = NULL: this im-

plies that there exists some pair of honest par-

ties P° , P± ∈ V CORE, such that f°(±) ∕= f±(°).

From Correctness 1 of our AWSS scheme, for

every honest Pi ∈ V CORE, AWSS-RecPi will

reconstruct fi(x) = fi(x) and thus Pi will be

added to FINAL, except with error probability

²′. Since there are at least t+1 honest parties in

V CORE, all the honest parties from V CORE

will be added to FINAL except with error prob-

ability of n²′ = ². Now irrespective of the re-

maining (corrupted) parties included in FINAL,

the consistency checking (i.e., f°(±)
?
= f±(°)) will

fail for P° , P± and NULL will be reconstructed.

2. D’s AVSS-committed secret s = F (0, 0): this

case completely resembles the case when D is

honest. Therefore the proof follows from the proof

of Correctness 1. □

Lemma 11 (AVSS-Secrecy) Protocol AVSS-Share sat-
isfies secrecy property of Definition 4.

proof: Without loss of generality, let P1, . . . , Pt be un-

der the control of At. It is easy to see that through out

AVSS-Share, At will know f1(x), . . . , ft(x) and t points

on ft+1(x), . . . , fn(x). However, from the property of

symmetric polynomial of degree-t in x and y [17], the

adversary At will lack one more point on F (x, y) to

uniquely interpolate F (x, y) and get s = F (0, 0). □

Lemma 12 (AVSS-Communication Complexity)

Protocol AVSS-Share incurs a private communication of

O(n4 log 1
²) bits and A-cast of O(n4 log 1

²) bits. Protocol

AVSS-Rec incurs A-cast of O(n4 log 1
²) bits.

Proof: Follows from Lemma 8 and the fact that £(n)

instances of AWSS-Share and AWSS-Rec are executed,

each with an error parameter of ²′ = ²
n . □

Remark 4 In AVSS-Share, we may assume that if D’s

AVSS-committed secret is NULL, then D has AVSS-

committed some predefined value s∗ ∈ F, which is known

publicly. Hence in AVSS-Rec, whenever NULL is re-

constructed, every honest party replaces NULL by the

predefined secret s∗. Interpreting this way, we say that

our AVSS allows D to AVSS-commit secret from F only.

4 Existing Common Coin Protocol

Here we recall the definition of common coin and con-

struction of common coin protocol following the de-

scription of [14]. The common coin protocol invokes

many instances of AVSS scheme. In the following de-

scription, we replace the AVSS scheme of [14] by our

AVSS scheme presented in Section 3.3.

Definition 10 (Common Coin [14]) Let ¼ be an

asynchronous protocol, where each party has local ran-

dom input and binary output. We say that ¼ is a (1−²)-

terminating, t-resilient common coin protocol if the fol-

lowing requirements hold for every adversary At:

1. Termination: If all honest parties participate, then

with probability at least (1 − ²), all honest parties

terminate.

2. Correctness: For every value ¾ ∈ {0, 1}, with

probability at least 1
4 all honest parties output ¾.

The Intuition: The common coin protocol, referred as

Common-Coin, consists of two stages. In the first stage,

each party acts as a dealer and shares n random secrets,

using n distinct instances of AVSS-Share each with al-

lowed error probability of ²′ = ²
n2 . The i

tℎ secret shared

by each party is actually associated with party Pi. Once

a party Pi terminates any t+1 instances of AVSS-Share
corresponding to t+1 secrets associated with him, he A-
casts the identity of the dealers who have shared these

t+1 secrets. We say that these t+1 secrets are attached

to Pi and later these t+ 1 secrets will be used to com-

pute a value that will be associated with Pi.

Now in the second stage, after terminating the AVSS-
Share instances of all the secrets attached to some Pi,

party Pj is sure that a fixed (yet unknown) value is at-

tached to Pi. Once Pj is assured that values have been

attached to enough number of parties, he participates

in AVSS-Rec instances of the relevant secrets. This pro-
cess of ensuring that there are enough parties that are

attached with values is the core idea of the protocol.

Once all the relevant secrets are reconstructed, each

party locally computes his binary output based on the

reconstructed secrets, in a way described in the proto-

col, which is presented in Fig. 6.

Let E be an event, defined as follows: All invocations

of AVSS scheme have been terminated properly. That

is, if an honest party has terminated AVSS-Share, then
a value, say s′ is fixed. All honest parties will terminate

the corresponding invocation of AVSS-Rec with output

s′. Moreover if the dealer of this invocation of AVSS-
Share is honest, then s′ is indeed the shared secret of
this invocation. It is easy to see that event E occurs

with probability at least 1−n2²′ = 1− ². We now state

the following lemmas which are more or less identical

to the Lemmas 5.28-5.31 presented in [14]. For the sake

of completeness, the proofs of these lemmas are given

in APPENDIX B.

Lemma 13 ([14]) All honest parties terminate Proto-

col Common-Coin in constant time.

16

Fig. 6 Existing Common Coin Protocol

Protocol Common-Coin(²)

Code for Pi: — Every party executes this code

1. For j = 1, . . . , n, choose a random value xij and execute
AVSS-Share(Pi,P, xij , ²

′) where ²′ = ²
n2 .

2. Participate in AVSS-Share(Pj ,P, xjk, ²
′) for every j, k ∈

{1, . . . , n}. We denote AVSS-Share(Pj ,P, xjk, ²
′) by AVSS-

Sharejk.
3. Create a dynamic set Ti. Add party Pj to Ti if AVSS-

Share(Pj ,P, xjk, ²
′) has been terminated for all k =

1, . . . , n. Wait until ∣Ti∣ = t + 1. Then assign Ti = Ti
and A-cast “Attach Ti to Pi”. We say that the secrets
{xji∣Pj ∈ Ti} are attached to party Pi.

4. Create a dynamic set Ai. Add party Pj to Ai if
(a) “Attach Tj to Pj” is received from the A-cast of Pj

and
(b) Tj ⊆ Ti
Wait until ∣Ai∣ = 2t+ 1. Then assign Ai = Ai and A-cast
“Pi Accepts Ai”.

5. Create a dynamic set Si. Add party Pj to Si if
(a) “Pj Accepts Aj” is received from the A-cast of Pj and
(b) Aj ⊆ Ai.
Wait until ∣Si∣ = 2t + 1. Then A-cast “Reconstruct
Enabled”. Let Hi be the current content of Ai.

6. Participate in AVSS-Rec(Pk,P, xkj , ²
′) for every Pk ∈ Tj of

every Pj ∈ Ai (note that some parties may be included in
Ai after the A-cast of “Reconstruct Enabled”. The corre-
sponding AVSS-Rec are invoked immediately). We denote
AVSS-Rec(Pk,P, xkj , ²

′) by AVSS-Reckj .
7. Let u = ⌈0.87n⌉. Every party Pj ∈ Ai is associated

with a value, say Vj which is computed as follows: Vj =
(
∑

Pk∈Tj
xkj) mod u where xkj is reconstructed back

from AVSS-Rec(Pk,P, xkj , ²
′).

8. Wait until the values associated with all the parties in Hi

are computed. Now if there exits a party Pj ∈ Hi such that
Vj = 0, then output 0. Otherwise output 1.

Lemma 14 ([14]) In Common-Coin, once some honest

Pj receives “Attach Ti to Pi” from A-cast of Pi and

includes Pi in Aj, a unique value Vi is fixed such that

1. Every honest party will associate Vi with Pi, ex-

cept with probability 1− ²
n .

2. Vi is distributed uniformly over [0, . . . , u] and inde-

pendent of values associated with other parties.

Lemma 15 ([14]) Once an honest party A-cast
“Reconstruct Enabled”, there exists a set M such that:

1. For every party Pj ∈ M , some honest party has

received “Attach Tj to Pj” from the A-cast of Pj.

2. When any honest party Pj A-casts “Reconstruct

Enabled”, then it will hold that M ⊆ Hj.

3. ∣M ∣ ≥ n
3 .

Lemma 16 ([14]) Let ² ≤ 0.2 and assume that all the

honest parties have terminated protocol Common-Coin.
Then for every value ¾ ∈ {0, 1}, with probability at least
1
4 , all the honest parties output ¾.

Theorem 4 ([14]) Common-Coin is a (1−²)-terminating,

common coin protocol for every 0 < ² ≤ 0.2.

Proof: Follows from Lemma 13, 14, 15 and 16. □

Theorem 5 Protocol Common-Coin privately commu-

nicates O(n6 log 1
²) bits and A-cast O(n6 log 1

²) bits.

Proof: Easy, as n2 instances of AVSS-Share and AVSS-
Rec are executed, each with error parameter ²

n2 . □

5 Existing Voting Protocol

The Voting protocol is another requirement for the con-

struction of ABA protocol. In a Voting protocol, every

party has a single bit as input. Roughly, Voting protocol

tries to find out whether there is a detectable majority

for some value among the inputs of the parties. Here

we recall the Voting protocol called Vote from [14].

The Intuition: Each party’s output in Vote protocol

can take five different forms:

1. For ¾ ∈ {0, 1}, the output (¾, 2) stands for ‘over-

whelming majority for ¾’;

2. For ¾ ∈ {0, 1}, the output (¾, 1) stands for ‘distinct

majority for ¾’;

3. Output (¤, 0) stands for ‘non-distinct majority’.

We can show that:

1. If all the honest parties have the same input ¾, then

all honest parties will output (¾, 2);

2. If some honest party outputs (¾, 2), then every other

honest party will output either (¾, 2) or (¾, 1);

3. If some honest party outputs (¾, 1) and no honest

party outputs (¾, 2) then each honest party outputs

either (¾, 1) or (¤, 0).

The Vote protocol consists of three stages, having simi-

lar structure. The protocol is presented in Fig. 7. In the

protocol, we assume party Pi has input bit xi. We now

recall the following lemmas and theorem from [14]. For

the sake of completeness, the proofs of these lemmas

and theorem are given in APPENDIX C.

Lemma 17 ([14]) All the honest parties terminate pro-

tocol Vote in constant time.

Lemma 18 ([14]) If all honest parties have same in-

put ¾, then all honest parties will output (¾, 2).

Lemma 19 ([14]) If some honest party outputs (¾, 2),

then every other honest party will eventually output ei-

ther (¾, 2) or (¾, 1) in protocol Vote.

17

Fig. 7 Existing Vote Protocol

Protocol Vote()

Code for Pi: — Every party executes this code

1. A-cast (input, Pi, xi).
2. Create a dynamic set Ai. Add (Pj , xj) to Ai if

(input, Pj , xj) is received from the A-cast of Pj .
3. Wait until ∣Ai∣ = n − t. Assign Ai = Ai. Set ai to

the majority bit among {xj ∣ (Pj , xj) ∈ Ai} and A-cast
(vote, Pi, Ai, ai).

4. Create a dynamic set ℬi. Add (Pj , Aj , aj) to ℬi if
(vote, Pj , Aj , aj) is received from the A-cast of Pj , Aj ⊆
Ai, and aj is the majority bit of Aj .

5. Wait until ∣ℬi∣ = n − t. Assign Bi = ℬi. Set bi to the
majority bit among {aj ∣ (Pj , Aj , aj) ∈ Bi} and A-cast
(re-vote, Pi, Bi, bi).

6. Create a set Ci. Add (Pj , Bj , bj) to Ci if
(re-vote, Pj , Bj , bj) is received from the A-cast of
Pj , Bj ⊆ ℬi, and bj is the majority bit of Bj .

7. Wait until ∣Ci∣ ≥ n − t. If all the parties Pj ∈ Bi had the
same vote aj = ¾, then output (¾, 2) and terminate. Oth-
erwise, if all the parties Pj ∈ Ci have the same Re-vote

bj = ¾, then output (¾, 1) and terminate. Otherwise, out-
put (¤, 0) and terminate.

Lemma 20 ([14]) If some honest party outputs (¾, 1)

and no honest party outputs (¾, 2) then every other hon-

est party will eventually output either (¾, 1) or (¤, 0).

Theorem 6 Protocol Vote A-cast of O(n2 logn) bits.

Proof: Follows from the protocol description. □

6 Efficient ABA Protocol for Single Bit

Once we have an efficient Common Coin protocol and

Vote protocol, we can design an efficient ABA proto-

col using the approach of [14]. The ABA protocol pro-

ceeds in iterations where in each iteration every party

computes a ‘modified input’ value. In the first iteration

the ‘modified input’ of party Pi is his private input

bit xi. In each iteration, every party executes proto-

col Vote and Common-Coin sequentially. If a party out-

puts {(¾, 2), (¾, 1)} in Vote protocol, then he sets his

‘modified input’ for next iteration to ¾, irrespective of

the value which is going to be output in Common-Coin.
Otherwise, he sets his ‘modified input’ for next itera-

tion to be the output of Common-Coin protocol which

is invoked by all the honest parties in each iteration

irrespective of whether the output of Common-Coin is

used or not. Once a party outputs (¾, 2), he A-casts ¾

and once he receives t + 1 A-cast for ¾, he terminates

the ABA protocol with ¾ as final output. The protocol

is given in Fig. 8. We now state the following lemmas

Fig. 8 Efficient ABA Protocol for Single Bit.

Protocol ABA(²)

Code for Pi: Every party executes this code

1. Set r = 0. and v1 = xi.
2. Repeat until terminating.

(a) Set r := r + 1. Invoke Vote with vr as input. Wait to
terminate Vote and assign output of Vote to (yr,mr).

(b) Invoke Common-Coin(²
4
) and wait until its termination.

Let cr be the output of Common-Coin.
(c) i. If mr = 2, set vr+1 := yr and A-cast

(Terminate with vr+1). Participate in only one
more instance of Vote and only one more in-
stance of Common-Coin protocol /* This is to
prevent the parties from participating in an
unbounded number of iterations before enough
(Terminate with ¾) A-casts are completed.*/

ii. If mr = 1, set vr+1 := yr.
iii. Otherwise, set vr+1 := cr.

(d) Upon receiving t + 1 (Terminate with ¾) A-cast for
same value ¾, output ¾ and terminate ABA.

which are more or less identical to the Lemmas 5.36-

5.39 presented in [14]. For the sake of completeness,

their proofs are given in APPENDIX D.

Lemma 21 ([14]) In protocol ABA if all honest par-

ties have input ¾, then all honest parties terminate and

output ¾.

Lemma 22 ([14]) In protocol ABA, if an honest party

terminates with output ¾, then all honest parties will

eventually terminate with output ¾.

Lemma 23 ([14]) If all honest parties have initiated

and completed iteration k, then with probability at least
1
4 all honest parties have same value for vk+1.

Let Ck be the event that each honest party completes all

the iterations he initiated up to (and including) the ktℎ

iteration (that is, for each iteration 1 ≤ l ≤ k and for

each party P , if P initiated iteration l then he computes

vl+1). Let C denote the event that Ck occurs for all k.

Lemma 24 ([14]) Conditioned on the event C, all hon-

est parties terminate ABA in constant expected time.

Lemma 25 ([14]) Prob(C) ≥ (1− ²).

Summing up, we have the following theorem.

Theorem 7 (ABA for Single Bit) Let n = 3t + 1.

Then for every 0 < ² ≤ 0.2, protocol ABA is a (², 0)-

ABA protocol. Given the parties terminate, they do so

in constant expected time. The protocol privately com-

municates O(n6 log 1
²) bits and A-casts O(n6 log 1

²) bits.

18

Proof: The properties of ABA follows from Lemma 21,

22, 23 and Lemma 24. Let C be the expected number

of time Common-Coin and Vote protocol are executed

in ABA protocol. Then from Theorem 5 protocol ABA
privately communicates O(Cn6 log 1

²) bits and A-cast
O(Cn6 log 1

²) bits. Substituting C = O(1), we get the

final communication complexity. □

7 Efficient ABA Protocol for Multiple Bits

Till now we have concentrated on the construction of

efficient ABA protocol that allows the parties to agree

on a single bit. We now present another efficient ABA

protocol called ABA-MB 5, which achieves agreement on

n − 2t = t + 1 bits concurrently. Notice that we could

execute protocol ABA t+ 1 times in parallel to achieve
agreement on t + 1 bits. This would require a private

communication as well as A-cast of O(n7 log 1
²) bits.

However our protocol ABA-MB requires private com-

munication and A-cast of O(n5 log 1
²) bits for the same

task. Consequently, the amortized cost to reach agree-

ment on a single bit in protocol ABA-MB is O(n4 log 1
²)

bits of private and A-cast communication.

In asynchronous multiparty computation (AMPC)

[6,14,3,45], where typically lot of ABA invocations are

required, many of the invocations can be parallelized

and optimized to a single invocation with a long mes-

sage. Hence ABA protocols with long message are very

relevant to many situations. All existing protocols for

ABA [49,4,10,27,28,15,14,1,46] are designed for single

bit message. A naive approach to design ABA for ℓ bit

message, where ℓ > 1, is to parallelize ℓ invocations

of existing ABA protocols dealing with single bit. This

approach requires a communication complexity that is

ℓ times the communication complexity of the existing

protocols for single bit and hence is inefficient. In this

article, we provide a far better way to design an ABA

with multiple bits. For ℓ bits message with ℓ ≥ t + 1,

we may break the message into blocks of t + 1 bits

and invoke one instance of our ABA-MB for each one

of the t+ 1 blocks. To design ABA-MB, we extend our

AWSS and AVSS scheme to share ℓ secrets simulta-

neously, where ℓ > 1. This involves less communication

complexity than ℓ parallel invocations of our AWSS and

AVSS scheme sharing single secret.

7.1 AWSS Scheme for Sharing Multiple Secrets

We now extend protocol AWSS-Share and AWSS-Rec
to AWSS-MS-Share and AWSS-MS-Rec respectively 6.

5 Here MB stands for multiple bits.
6 Here MS stands for multiple secrets

Protocol AWSS-MS-Share allows D ∈ P to concurrently

share a secret S = (s1 . . . sℓ), containing ℓ elements. On

the other hand, protocol AWSS-MS-Rec allows the par-

ties in P to reconstruct either S or NULL.

The Intuition: The high level idea of protocol AWSS-
MS-Share is similar to AWSS-Share. For each sl, l =

1, . . . , ℓ, the dealer D selects a random symmetric bi-

variate polynomial F l(x, y) of degree-t in x and y, where

F l(0, 0) = sl and gives his IC-signature on f l
i (1), . . . , f

l
i (n)

to party Pi, for i = 1, . . . , n. However, instead of exe-

cuting ℓn2 instances of AICP (each dealing with a sin-

gle secret), D executes only n2 instances of AICP (each

dealing with ℓ secrets) and gives his IC-signature collec-

tively on (f1
i (j), f

2
i (j), . . . , f

ℓ
i (j)) to Pi. This step surely

saves communication over executing ℓn2 instances of

AICP each dealing with a single secret.

Next, every Pi, Pj exchange their IC signatures on

their common values. Notice that Pi, Pj have ℓ common

values, namely f1
i (j), . . . , f

ℓ
i (j). Instead of exchanging

IC signatures on individual common value, they ex-

change IC signatures collectively on (f1
i (j), . . . , f

ℓ
i (j))

and (f1
j (i), . . . , f

ℓ
j (i)). Next the parties check whether

f l
i (j) = f l

j(i) for all l = 1, . . . , ℓ and if so they A-cast OK
signal. After this, the remaining steps (like WCORE

construction, agreement on WCORE, etc) are same as

in AWSS-Share. The protocol is given in Fig. 9.

Fig. 9 Sharing Phase of AWSS Scheme for Sharing S
Containing ℓ ≥ 1 Secrets

AWSS-MS-Share(D,P, S = (s1 . . . sℓ), ²)

Distribution: Code for D – Only D executes this code.
1. For l = 1, . . . , ℓ, select a random, symmetric bivariate

polynomial F l(x, y) of degree-t in x and y such that
F l(0, 0) = sl. Let f l

i (x) = F l(x, i), for l = 1, . . . , ℓ.
2. For i = 1, . . . , n, give ICSig(D,Pi,P, (f1

i (j), . . . , f
ℓ
i (j))

for each j = 1, . . . , n to Pi. For this, D initiates n2 in-
stances of Gen, each with an error parameter of ²′ = ²

n2 .
Verification: Code for Pi – Every party including D executes

this code.
1. Wait to receive ICSig(D,Pi,P, (f1

i (j), . . . , f
ℓ
i (j))) for

j = 1, . . . , n from D.
2. Check if (f l

i (1), . . . , f
l
i (n)) defines degree-t poly-

nomial for l = 1, . . . , ℓ. If yes then give
ICSig(Pi, Pj ,P, (f1

i (j), . . . , f
ℓ
i (j))) to Pj for

j = 1, . . . , n.
3. If ICSig(Pj , Pi,P, (f1

j (i), . . . , f
ℓ
j (i))) is received from

Pj and if f l
j(i) = f l

i (j) for l = 1, . . . , ℓ, then A-cast
OK(Pi, Pj).

WCORE Construction : Code for D — This is same as in
protocol AWSS-Share.

WCORE Verification & Agreement on WCORE — This is
same as in protocol AWSS-Share.

19

Remark 5 (D’s AWSS-commitment) In AWSS-MS-
Share, we say thatD has AWSS-committed S = (s1, . . . ,

sℓ) ∈ Fℓ if for every l = 1, . . . , ℓ, there is a unique

degree-t polynomial f l(x) such that f l(0) = sl and ev-

ery honest Pi in WCORE receives f l(i) from D. Oth-

erwise, we say that D has AWSS-committed NULL.

An honest D always AWSS-commits S ∈ Fℓ, as in this

case f l(x) = f l
0(x) = F l(x, 0), where F l(x, y) is the

symmetric bivariate polynomial of degree-t chosen by

D. But AWSS-MS-Share can not ensure that a corrupted

D always AWSS-commits S ∈ Fℓ.
Protocol AWSS-MS-Rec is a straightforward exten-

sion of protocol AWSS-Rec and is given in Fig. 10.

Fig. 10 Reconstruction Phase of AWSS Scheme for Shar-
ing S Containing ℓ Secrets

AWSS-MS-Rec(D,P, S = (s1, . . . , sℓ), ²)

Signature Revelation: Code for Pi —

1. If Pi belongs to OKPj for some Pj ∈ WCORE,
then reveal ICSig(D,Pi,P, (f1

i (j), . . . , f
ℓ
i (j))) and

ICSig(Pj , Pi,P, (f1
j (i), . . . , f

ℓ
j (i))).

Local Computation: Code for Pi

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-

commitment, say (f1
j (0), . . . , f

ℓ
j (0)) as follows:

(a) Construct a set V alidPj = ∅.
(b) Add Pk ∈ OKPj to V alidPj if the following conditions

hold:
i. Revelation of ICSig(D,Pk,P, (f1

k (j), . . . , f
ℓ
k(j)))

and ICSig(Pj , Pk,P, (f1
j (k), . . . , f

ℓ
j (k))) are com-

pleted with Reveali = (f1
k (j), . . . , f

ℓ
k(j)) and Re-

veali = (f1
j (k), . . . , f

ℓ
j (k)) respectively; and

ii. f l
k(j) = f l

j(k), for l = 1, . . . , ℓ.
(c) Wait until ∣V alidPj ∣ = t + 1. For l = 1, . . . , ℓ, con-

struct a degree-t polynomial f l
j(x) passing through the

points (k, f l
j(k)) where Pk ∈ V alidPj . For l = 1, . . . , ℓ,

associate f l
j(0) with Pj ∈ WCORE.

2. Wait for f1
j (0), . . . , f

ℓ
j (0) to be reconstructed for every Pj

in WCORE.
3. For l = 1, . . . , ℓ, do the following:

(a) Check whether the points (j, f l
j(0)) for Pj ∈ WCORE

lie on a unique degree-t polynomial f l
0(x). If yes, then

set sl = f l
0(0), else set sl = NULL.

4. If sl = NULL for any l ∈ {1, . . . , ℓ}, then output
S = NULL and terminate AWSS-MS-Rec. Else output
S = (s1, . . . , sℓ) and terminate AWSS-MS-Rec.

Since technique wise, protocols (AWSS-MS-Share,
AWSS-MS-Rec) are very similar to protocols (AWSS-
Share, AWSS-Rec), we do not provide the proofs of the

properties of protocols (AWSS-MS-Share, AWSS-MS-Rec)
for the sake of avoiding repetition. In the following,

we state the communication complexity of our AWSS

acheme.

Theorem 8 (AWSS-MS-Communication Complex-

ity) Protocol AWSS-MS-Share incurs a private com-

munication of O((ℓn2 + n3) log 1
²) bits and A-cast of

O((ℓn2+n3) log 1
²) bits. Protocol AWSS-MS-Rec involves

A-cast of O((ℓn2 + n3) log 1
²) bits.

Proof: Follows from the fact that n2 instances of AICP,

each dealing with ℓ values and having error parameter

of ²′ = ²
n2 are executed. □

Notation 4 (AWSS Sharing of ℓ Polynomials) As

in Notation 3, we abuse the notion of ‘AWSS-sharing

of ℓ secrets’ and say that:

1. D AWSS-shares degree-t polynomials f1(x), . . . , f ℓ(x)

in AWSS-MS-Share by executing AWSS-MS-Share(D,P,

(f1(x), . . . , f ℓ(x)), ²). To do so, D will choose ℓ sym-

metric bivariate polynomial F l(x, y), for l = 1, . . . , ℓ,

each of degree-t in x and y, where F l(x, 0) = f l(x)

holds and will execute the steps of protocol AWSS-
MS-Share.

2. Parties execute AWSS-MS-Rec(D,P, (f1(x), . . . ,

f ℓ(x)), ²), which allows the (honest) parties to re-

construct either the AWSS-shared polynomials f1(x),

. . . , f ℓ(x) or NULL, except with probability ². □

7.2 AVSS Scheme for Sharing Multiple Secrets

We now extend protocol AVSS-Share and AVSS-Rec to

AVSS-MS-Share and AVSS-MS-Rec respectively. Proto-

col AVSS-MS-Share allows D ∈ P to concurrently share

a secret S = (s1 . . . sℓ), containing ℓ elements. More-

over, if D is corrupted then either S ∈ Fℓ, where each

element of S belongs to F or S = NULL (in a sense

explained in the sequel). Protocol AVSS-MS-Rec allows

the parties in P to reconstruct S.

The Intuition: The high level idea of AVSS-MS-Share
is similar to AVSS-Share. Specifically, for each sl ∈ S,

the dealer D selects a symmetric bivariate polynomial

F l(x, y) of degree-t in x and y, such that F l(0, 0) = sl

and sends f l
i (x) = F l(x, i) to party Pi. Then each

party Pi is asked to AWSS-share his received poly-

nomials f1
i (x), . . . , f

ℓ
i (x). However, instead of execut-

ing ℓ instances of AWSS-Share, one for sharing each

f l
i (x), party Pi executes a single instance of AWSS-MS-
Share to share f1

i (x), . . . , f
ℓ
i (x) simultaneously. It is this

step, which leads to the reduction in the communication

complexity of AVSS-MS-Share. The remaining steps like

V CORE construction, agreement on V CORE, etc are

similar to protocol AVSS-Share. Protocol AVSS-MS-Share
is formally presented in Fig. 11.

20

Fig. 11 Sharing Phase of AVSS Scheme for Sharing a
Secret S Containing ℓ Elements

AVSS-MS-Share(D,P, S = (s1, . . . , sℓ), ²)

Distribution: Code for D — Only D executes this code.

1. For l = 1, . . . , ℓ, select a random symmetric bivariate poly-
nomial F l(x, y) of degree-t in x and y such that F l(0, 0) =
sl and send f l

i (x) = F l(x, i) to party Pi, for i = 1, . . . , n.

AWSS Sharing of Polynomials: Code for Pi — Every party
in P, including D, executes this code.

1. Wait to obtain f1
i (x), . . . , f

ℓ
i (x) from D.

2. If f1
i (x), . . . , f

ℓ
i (x) are degree-t polynomi-

als then as a dealer, execute AWSS-MS-
Share(Pi,P, (f1

i (x), . . . , f
ℓ
i (x)), ²

′) by selecting symmetric
bivariate polynomials Q(Pi,1)(x, y), . . . , Q(Pi,ℓ)(x, y) of

degree-t in x and y, such that Q(Pi,l)(x, 0) = q
(Pi,l)
0 (x) =

f l
i (x), for l = 1, . . . , ℓ and ²′ = ²

n
. We call this instance of

AWSS-MS-Share initiated by Pi as AWSS-MS-SharePi .
3. As a part of the execution of AWSS-MS-SharePj , wait to

receive q
(Pj ,l)

i (x) = Q(Pj ,l)(x, i), for l = 1, . . . , ℓ from Pj .

Then check f l
i (j)

?
= q

Pj ,l

i (0). If the test passes for all
l = 1, . . . , ℓ then participate in AWSS-MS-SharePj and act
according to the remaining steps of AWSS-MS-SharePj .

VCORE Construction: Code for D – This is same as in
protocol AVSS-Share except that AWSS-Share is replaced by
AWSS-MS-Share everywhere.

VCORE Verification & Agreement on VCORE : Code for
Pi —This is same as in protocol AVSS-Share except that AWSS-
Share is replaced by AWSS-MS-Share everywhere.

Remark 6 (D’s AVSS-commitment) We say that D

has AVSS-committed S = (s1, . . . , sℓ) ∈ Fℓ in AVSS-
MS-Share if for every l = 1, . . . , ℓ there is a unique

degree-t symmetric bivariate polynomial F l(x, y) such

that F l(0, 0) = sl and every honest Pi in V CORE re-

ceives f l
i (x) = F l(x, i) from D. Otherwise, we say that

D has committed NULL and D’s AVSS-committed se-

crets are not meaningful.

If a corrupted D commits NULL, the f l
i (x) polynomi-

als of the honest parties in V CORE do not define a
symmetric bivariate polynomial of degree-t in x and y

for at least one l ∈ {1, . . . , ℓ}. This further implies that

there will be an honest pair (P° , P±) in V CORE such

that f l
°(±) ∕= f l

±(°).

Protocol AVSS-MS-Rec is a straightforward exten-

sion of protocol AVSS-Rec and is given in Fig. 12. The

properties of AVSS-MS-Share and AVSS-MS-Rec follows
from AVSS-Share and AVSS-Rec. For the sake of com-

pleteness, we state the communication complexity of

AVSS-MS-Share and AVSS-MS-Rec.

Theorem 9 (AVSS-MS-Communication Complex-

ity) Protocol AVSS-MS-Share incurs a private commu-

nication and A-cast of O((ℓn3 + n4) log 1
²) bits. Proto-

Fig. 12 Reconstruction Phase of AVSS Scheme for Shar-
ing Secret S Containing ℓ Elements

AVSS-MS-Rec(D,P, S = (s1, . . . , sℓ), ²)

Secret Reconstruction: Code for Pi — Every party in P
executes this code.

1. For every Pj ∈ V CORE, participate in AWSS-MS-
Rec(Pj ,P, (f1

j (x), . . . , f
ℓ
j (x)), ²

′). We call this instance of

AWSS-MS-Rec as AWSS-MS-RecPj .
2. Wait for termination of AWSS-MS-RecPj for every Pj ∈

V CORE with output either (f1
j (x), . . . , f

ℓ
j (x)) or NULL.

Add Pj to FINAL if AWSS-MS-RecPj gives non-NULL
output.

3. For l = 1, . . . , ℓ, do the following: for every pair (P° , P±) ∈
FINAL check f l

°(±)
?
= f l

±(°). If the test passes for ev-

ery pair of parties then recover F l(x, y) using f l
j(x)’s cor-

responding to each Pj ∈ FINAL and reconstruct sl =

F l(0, 0). Else reconstruct sl = NULL.

4. For l = 1, . . . , ℓ, if any sl = NULL then output S =
NULL, else output S = (s1, . . . , sℓ) and terminate.

col AVSS-MS-Rec involves A-cast of O((ℓn3+n4) log 1
²)

bits.

Proof: Follows from the fact that n instances of AWSS-
MS-Share and AWSS-MS-Rec are executed. □

Remark 7 In AVSS-MS-Share, we may assume that if

D’s AVSS-committed secret isNULL, thenD has AVSS-

committed some predefined S★ ∈ Fℓ known publicly. So

whenever NULL is reconstructed in AVSS-MS-Rec, ev-
ery honest party replaces NULL by the predefined S★.

Interpreting this way, we say that our AVSS allows D
to AVSS-commit secrets from F only.

7.3 An Incorrect Common Coin Protocol

Recall that in protocol Common-Coin (refer to section

4), each party invokes n instances of protocol AVSS-
Share each sharing a single secret. Simple thinking would

suggest that those n instances of AVSS-Share could be

replaced by more efficient, single instance of AVSS-MS-
Share, sharing n secrets simultaneously. This would nat-

urally lead to more efficient common coin protocol, which

would further imply more efficient ABA protocol. In the

following, we do the same in protocol Common-Coin-
Wrong. But as the name suggests, we then show that

this direct replacement of AVSS-Share by AVSS-MS-
Share without further modification will lead to an in-

correct common coin protocol. Protocol Common-Coin-
Wrong is given in Fig. 13.

We now show that protocol Common-Coin-Wrong
does not satisfy second part of Lemma 14. That is,

21

Fig. 13 An Incorrect Common Coin Protocol Obtained
by Replacing AVSS-Share and AVSS-Rec by AVSS-MS-Share
and AVSS-MS-Rec Respectively in Protocol Common-Coin

Protocol Common-Coin-Wrong(²)

Code for Pi: — Every party in P executes this code.

1. For j = 1, . . . , n, choose a random value xij and execute
AVSS-MS-Share(Pi,P, (xi1, . . . , xin), ²

′) where ²′ = ²
n
.

2. Participate in AVSS-MS-Share(Pj ,P, (xj1, . . . , xjn), ²
′)

for every j ∈ {1, . . . , n}. We denote AVSS-MS-
Share(Pj ,P, (xj1, . . . , xjn), ²

′) by AVSS-MS-Sharej .
3. Create a dynamic set Ti. Add party Pj to Ti if AVSS-MS-

Share(Pj ,P, (xj1, . . . , xjn), ²
′) has been completed. Wait

until ∣Ti∣ = t + 1. Then assign Ti = Ti and A-cast
“Attach Ti to Pi”. We say that the secrets {xji∣Pj ∈ Ti}
are the secrets attached to party Pi.

4. Create a dynamic set Ai. Add Pj to Ai if following holds:
(a) “Attach Tj to Pj” is received from A-cast of Pj ;
(b) Tj ⊆ Ti.
Wait until ∣Ai∣ = n − t. Then assign Ai = Ai and A-cast
“Pi Accepts Ai”.

5. Create a dynamic set Si. Add Pj to Si if following holds:
(a) “Pj Accepts Aj” is received from the A-cast of Pj and
(b) Aj ⊆ Ai.
Wait until ∣Si∣ = n − t. Then A-cast “Reconstruct
Enabled”. Let Hi be the current content of Ai.

6. Participate in AVSS-MS-Rec(Pk,P, (xk1, . . . , xkn), ²
′) for

every Pk ∈ Tj of every Pj ∈ Ai (Note that some
parties may be included in Ai after the A-cast of
“Reconstruct Enabled”. The corresponding AVSS-MS-
Rec are invoked immediately). We denote AVSS-MS-
Rec(Pk,P, (xk1, . . . , xkn), ²

′) by AVSS-MS-Reck.
7. Let u = ⌈0.87n⌉. Every party Pj ∈ Ai is associated

with a value, say Vj which is computed as follows: Vj =
(
∑

Pk∈Tj
xkj) mod u where xkj is reconstructed back

after executing AVSS-MS-Rec(Pk,P, (xk1, . . . , xkn), ²
′).

8. Wait until the values associated with all the parties in Hi

are computed. Now if there exits a party Pj ∈ Hi such that
Vj = 0, then output 0. Otherwise output 1.

the adversary can behave in such a way that unique

value Vi, associateed with an honest Pi may not be

distributed uniformly over [0, . . . , u]. More specifically,

At can decide Vi for up to t − 1 honest parties and

thus those Vi’s are no longer random and uniformly dis-

tributed over [0, . . . , u]. Consequently, At can enforce

some honest parties to always output 0, while other

honest parties may output ¾ ∈ {0, 1} with probabil-

ity at least 1
4 . This will strictly violate the property of

of common coin.

Let Pi be an honest party. We now describe a specific

behavior of At in Common-Coin-Wrong which would al-

low At to decide Vi to be 0 and thus make honest Pi

to output 0 (this can be extended for t− 1 honest Pis)

whereas the remaining honest parties output ¾ ∈ {0, 1}
with probability at least 1

4 . The specific behavior is

given in Fig. 14.

Fig. 14 Adversary Behavior in Common-Coin-Wrong

Possible Behavior of At in
Protocol Common-Coin-Wrong()
with respect to an honest Pi

1. Let Pj be a corrupted party. All corrupted parties partic-
ipate in Common-Coin-Wrong honestly. However, Pj does
not start AVSS-MS-Sharej .

2. Except for AVSS-MS-Sharei and corresponding AVSS-MS-
Reci, At (as a scheduler) stops all the messages sent to Pi

and sent by Pi in every other AVSS-MS-Sharek and cor-
responding AVSS-MS-Reck. This will prevent Pi to par-
ticipate in any AVSS-MS-Sharek and corresponding AVSS-
MS-Reck and hence to construct Ti. However, this will not
prevent Pi to be part of Tk for some Pk. At does so until
the following happen:
(a) n − t − 1 honest parties (except Pi) and t − 1 cor-

rupted parties (except Pj) carry out all the steps
of Common-Coin-Wrong honestly, construct respective
sets, A-cast “Reconstruct Enabled” and start invoking
corresponding AVSS-MS-Reck protocols. This way the
n secrets of each of n− t−1 honest parties (except Pi)
and t − 1 corrupted parties will be revealed. /* It is
to be noted that the corrupted parties can successfully
reconstruct secrets in each AVSS-MS-Reck by behaving
honestly, even if the honest Pi is unable to participate
in AVSS-MS-Reck’s.*/

(b) Now At computes a set Ti of size t + 1 containing
the corrupted Pj and any t honest Pk’s, whose AVSS-
MS-Reck’s have been terminated. Notice that now the
shared values (xk1, . . . , xkn), corresponding to each
honest Pk ∈ Ti are known to the adversary.

(c) NowAt selects xji, corresponding to Pj , such that Vi =
(
∑

Pk∈Ti
xki) mod u = 0. Now At asks the corrupted

Pj to invoke AVSS-MS-Sharej with xji as the secret
assigned to Pi.

3. At now schedules the messages to and from Pi correspond-
ing to every AVSS-MS-Sharek in such a way that Ti com-
puted by At (in step 2(b)) indeed becomes Ti for Pi and
Pi A-casts “Attach Ti to Pi” and eventually includes Pi

in Ai. So clearly Hi will contain Pi and hence Pi will out-
put 0 since Vi is 0.

The Reason for the Problem: The adversary behav-

ior specified in Fig. 14 is possible due to the fact that

a corrupted Pj is able to select his secret xji for an

honest Pi after knowing the secrets which other hon-

est parties has selected for Pi. This was not possible in

Common-Coin because every party Pk ∈ Ti shared their

secrets independently using different instance of AVSS-
Share and as per requirement, corresponding AVSS-Rec
was invoked to reconstruct the desired secret. However

in Common-Coin-Wrong, simultaneous sharing and re-

construction of n secrets is performed using AVSS-MS-
Share and AVSS-MS-Rec. So if a party Pl containing an

honest Pk in Tl A-cast “Reconstruct Enabled” early

and starts executing AVSS-MS-Reck, then it will dis-

close the desired secret xkl; but at the same time it

will disclose other n − 1 undesired secrets, selected by

22

Pk corresponding to other n− 1 parties. Now later the

adversary may always schedule messages such that Pi

includes such honest Pk’s in Ti and some other cor-

rupted parties who have seen the secrets shared by Pk

for Pi and then have shared their secrets for Pi. This

clearly shows that the adversary can completely con-

trol the final output of Pi by deciding the value to be

associated with Pi. This problem can be eliminated if

we can ensure that no corrupted party can ever share

any secret after any honest party starts reconstructing

secrets. This is what we have achieved in our new com-

mon coin protocol presented in the next section.

7.4 A New Common Coin Protocol for Multiple Bits

In this section, we show how to amend protocol Common-
Coin, so that it can handle the problem described in the

previous section and can still use protocols AVSS-MS-
Share and AVSS-MS-Rec as black-boxes. We first give

the following definition:

Definition 11 (Multi-Bit Common Coin) Let ¼

be an asynchronous protocol, where each party has lo-

cal random input and ℓ bit output, where ℓ ≥ 1. We

say that ¼ is a (1− ²)-terminating, t-resilient, multi-bit

common coin protocol if the following hold:

1. Termination: If all honest parties participate, then

with probability (1−²), all honest parties terminate.

2. Correctness: For l = 1, . . . , ℓ, all honest parties

output ¾l with probability at least 1
4 for every ¾l ∈

{0, 1}.
We now present a multi-bit common coin protocol, called

Common-Coin-MB, which goes almost in the same line

as Common-Coin-Wrong except that we add some more

steps and modify some of the steps due to which the

corrupted parties are forced to share their secrets much

before they can reconstruct anybody elses’ secrets. We

now discuss the high level idea of the protocol.

The Intuition: Each party shares n random secrets,

using a single instance of AVSS-MS-Share, where the

itℎ secret is associated with Pi. Now a party Pi adds a

party Pj to Ti, only when at least n−t parties have ter-

minated Pj ’s instance of AVSS-MS-Share. Recall that in
Common-Coin-Wrong, Pi adds Pj to Ti, when Pi him-

self has terminated Pj ’s instance of AVSS-MS-Share.
Now in our new common coin, a party Pi constructs

Ti, Ai and Si and A-cast Ti, Ai and “Reconstruct

Enabled” in the same way as performed in Common-
Coin-Wrong, except with the following difference: Pi en-

sures Ti to contain n− t parties (contrary to t+ 1 par-

ties in Common-Coin-Wrong). The reason for enforcing

∣Ti∣ = n− t is to obtain multiple bit output in protocol

Common-Coin-MB and will be clear in the sequel. Now

what follows is the most important step of Common-
Coin-MB. Party Pi starts participating in AVSS-MS-Rec
of the parties who are in his Ti only after receiving at

least n− t “Reconstruct Enabled” A-casts. Moreover

party Pi halts execution of all the instances of AVSS-
MS-Share corresponding to the parties not in Ti cur-

rently and later resume them only when they are in-

cluded in Ti. This step along with the step for construct-

ing Ti will ensure the desired property that in order to

be part of any honest party’s Ti, a corrupted party must

have to commit his secrets well before the first honest

party receives n − t “Reconstruct Enabled” A-casts
and starts reconstructing secrets. This ensures that a

corrupted party who is in Ti of any honest party had

no knowledge what so ever about the secrets committed

by other honest parties at the time he commits to his

own secrets.

Let us see, how our protocol steps achieve the above

task. Let Pi be the first honest party to receive n − t

“Reconstruct Enabled” A-casts and start invoking re-

construction process. Also let Pk be a corrupted party
who belongs to Tj of some honest party Pj . This means

that at least t+1 honest parties have already terminated

AVSS-MS-Share instance of Pk (this is because Pj has

added Pk in Tj only after confirming that n− t parties

have terminated Pk’s instance of AVSS-MS-Share). This
further means that there is at least one honest party, say

P®, who terminated Pk’s instance of AVSS-MS-Share
before A-casting “Reconstruct Enabled” (because if

it is not the case, then the honest party P® would

have halted the execution of Pk’s instance of AVSS-
MS-Share for ever and would never terminate it). This

indicates that Pk is already committed to his secrets be-

fore the first honest party receives n− t “Reconstruct

Enabled” A-casts and starts the reconstruction. A more

detailed proof is given in Lemma 27.

Another important feature of protocol Common-Coin-
MB is that it is a multi-bit common coin protocol. This

is attained by using the ability of Vandermonde matrix

[52,19] for extracting randomness. As a result, we could

associate n− 2t values with each Pi, namely Vi1, . . . ,

Vi(n−2t) in Common-Coin-MB, while a single value Vi

was associated with Pi in Common-Coin. This leads ev-
ery party to output ℓ = n−2t bits in protocol Common-
Coin-MB. We now briefly recall the properties of Van-

dermonde matrix and then present our protocol.

Vandermonde Matrix and Randomness Extrac-

tion [52,19]: Let ¯1, . . . , ¯c be distinct and publicly

known elements of F. We denote an (r × c) Vander-

monde matrix by V (r,c), where for i = 1, . . . , c, the itℎ

23

column of V (r,c) is (¯0
i , . . . , ¯

r−1
i)T . The idea behind

extracting randomness using V (r,c) is as follows: with-

out loss of generality, assume that r > c. Moreover, let

(x1, . . . , xr) be such that:

1. Any c elements of it are completely random and are

unknown to adversary At.

2. The remaining r − c elements are completely inde-

pendent of the c elements and also known to At .

Now if we compute (y1, . . . , yc) = (x1, . . . , xr)V , then

(y1, . . . , yc) is a random vector of length c unknown to

At [52,19]. This principle is used in protocol Common-
Coin-MB, which is given in Fig. 15. □

Let E be an event, defined as follows: All invoca-

tions of AVSS scheme in Common-Coin-MB have been

terminated properly, with correct outputs. It is easy

to see that event E occurs with probability at least

1− n²′ = 1− ². We now prove the properties of proto-

col Common-Coin-MB.

Lemma 26 All honest parties terminate Common-Coin-
MB in constant time.

Proof: We structure the proof in the following way.

We first show that assuming every honest party has

A-casted “Reconstruct Enabled”, every honest party

will terminate protocol Common-Coin-MB in constant

time. Then we show that there exists at least one honest

party who will A-cast “Reconstruct Enabled”. Con-

sequently, we prove that if one honest party A-casts
“Reconstruct Enabled”, then eventually every other

honest party will do the same.

So let us first prove the first statement. Assuming

every honest party has A-casted “Reconstruct Enabled”,

it will hold that eventually every honest party Pi will

receive n − t A-casts of “Reconstruct Enabled” from

n− t honest parties and will invoke AVSS-MS-Rec cor-

responding to every party in Ti. It clear that a party

Pk that is included in Ti of some honest Pi, will be

eventually included in Tj of every other Pj . Hence if

Pi participates in AVSS-MS-Reck, then eventually ev-

ery other honest party will do the same. Given event E,

all invocations of AVSS-MS-Rec terminate in constant

time. Also black box protocol for A-cast terminates in

constant time. This proves the first statement.

We next show that there is at least one honest party

who will A-cast “Reconstruct Enabled”. So assume

that Pi is the first honest party to A-cast “Reconstruct
Enabled”. We will show that this event will always take

place. First notice that till Pi A-casts “Reconstruct

Enabled”, no honest party would halt any AVSS-MS-
Sharej . By the termination property of AVSS-MS-Share,
every honest party will eventually terminate the in-

stance of AVSS-MS-Share of every other honest party.

Fig. 15 Multi-Bit Common Coin Protocol

Protocol Common-Coin-MB(²)

Code for Pi: — All parties execute this code

1. For j = 1, . . . , n, choose a random value xij and execute
AVSS-MS-Share(Pi,P, (xi1,...,xin), ²

′) where ²′ = ²
n
.

2. Participate in AVSS-MS-Share(Pj ,P, (xj1, . . . , xjn), ²
′)

for every j ∈ {1, . . . , n}. We denote AVSS-MS-
Share(Pj ,P, (xj1, . . . , xjn), ²

′) by AVSS-MS-Sharej .
3. Upon terminating AVSS-MS-Sharej , A-cast

“Pi terminated Pj”.
4. Create a dynamic set Ti. Add party Pj to Ti if

“Pk terminated Pj” is received from the A-cast of at least
n − t Pk’s. Wait until ∣Ti∣ = n − t. Then assign Ti = Ti
and A-cast “Attach Ti to Pi”. We say that the secrets
{xji∣Pj ∈ Ti} are the secrets attached to party Pi.

5. Create a dynamic set Ai. Add party Pj to Ai if
(a) “Attach Tj to Pj” is received from the A-cast of Pj

and
(b) Tj ⊆ Ti.
Wait until ∣Ai∣ = n − t. Then assign Ai = Ai and A-cast
“Pi Accepts Ai”.

6. Create a dynamic set Si. Add party Pj to Si if
(a) “Pj Accepts Aj” is received from the A-cast of Pj and
(b) Aj ⊆ Ai.
Wait until ∣Si∣ = n − t. Then A-cast “Reconstruct
Enabled”. Let Hi be the current content of Ai. Stop par-
ticipating in AVSS-MS-Sharej for all Pj who are not yet
included in current Ti. Later resume all such instances of
AVSS-MS-Sharej ’s if Pj is included in Ti.

7. Wait to receive “Reconstruct Enabled” from A-cast
of at least n − t parties. Participate in AVSS-MS-
Rec(Pk,P, (xk1, . . . , xkn), ²

′) for every Pk ∈ Ti. We denote
AVSS-MS-Rec(Pk,P, (xk1, . . . , xkn), ²

′) by AVSS-MS-Reck.
Notice that as on when new parties are added to Ti, Pi

participates in corresponding AVSS-MS-Rec.
8. Let u = ⌈0.87n⌉. Every party Pj ∈ Ai is associated with

n − 2t values, say Vj1, . . . , Vj(n−2t) in the following way.
Let xkj for every Pk ∈ Tj has been reconstructed. Let
Xj be the n − t length vector consisting of {xkj ∣ Pk ∈
Tj}. Then set (vj1, . . . , vj(n−2t)) = Xj ⋅V (n−t,n−2t), where

V (n−t,n−2t) is an (n− t)× (n− 2t) Vandermonde Matrix.
Now Vjl = vjl mod u for l = 1, . . . , n− 2t.

9. Wait until n− 2t values associated with all the parties in
Hi are computed. Now for every l = 1, . . . , n − 2t if there
exits a party Pj ∈ Hi such that Vjl = 0, then set 0 as the
ltℎ binary output; otherwise set 1 as the ltℎ binary output.
Finally output the n− 2t length binary vector.

Moreover, there are at least n−t honest parties. So from

the protocol steps, it is easy to see that for honest Pi, Ti
will eventually contain at least n− t parties and hence

Pi will eventually A-cast “Attach Ti to Pi”. Similarly,

every other honest Pj will be eventually included in Ai

and so Ai will eventually contain at least n− t parties

and hence Pi will A-cast “Pi Accepts Ai”. Similarly,

Si will eventually be of size n − t and hence Pi will

A-cast “Reconstruct Enabled”.

24

Now we show that every other honest party Pj will

also A-cast “Reconstruct Enabled” eventually. It is

easy to see that every party that is included in Ti will
also be included in Tj eventually. And hence, all the

conditions that are satisfied for honest Pi above will be

eventually satisfied for every other honest Pj . So Pj will

eventually A-cast “Reconstruct Enabled”. □

We now prove the following important lemma, which

is at the heart of Common-Coin-MB. The lemma shows

that the adversary behavior of Fig. 14 can not happen

in Common-Coin-MB.

Lemma 27 Let a corrupted party Pk is included in Tj
of an honest Pj in protocol Common-Coin-MB. Then the

values shared by Pk in AVSS-MS-Sharek are completely

independent of the values shared by the honest parties.

Proof: Let Pi be the first honest party who receives

A-cast of “Reconstruct Enabled” from at least n − t

parties and starts participating in AVSS-MS-Rec, cor-
responding to each party in Ti. To prove the lemma,

we first assert that a corrupted party Pk will never be

included in Tj of any honest Pj , if Pk invokes AVSS-MS-
Sharek only after Pi starts participating in AVSS-MS-
Rec corresponding to each party in Ti. We prove this

by contradiction. Let Pi has received “Reconstruct

Enabled” from the parties in ℬ1 with ∣ℬ1∣ ≥ n − t.

Moreover, assume Pk invokes AVSS-MS-Sharek only af-

ter Pi received “Reconstruct Enabled” from the par-

ties in ℬ1 and starts participating in AVSS-MS-Rec cor-
responding to each party in Ti. Furthermore, assume

that Pk is still in Tj of some honest Pj . Now Pk ∈ Tj im-

plies that Pj must have received “Pm terminated Pk”

from A-cast of at least n − t Pm’s, say ℬ2. Now ∣ℬ1 ∩
ℬ2∣ ≥ n − 2t and thus the intersection set contains at

least one honest party, say P®, as n = 3t + 1. This

implies that honest P® ∈ ℬ1 and must have termi-

nated AVSS-MS-Sharek before A-casting “Reconstruct

Enabled”. Otherwise P® would have halted the execu-

tion of AVSS-MS-Sharek and would never A-cast
“P® terminated Pk” (see step 6 in the protocol). This

further implies that Pk must have invoked AVSS-MS-
Sharek before Pi starts participating in AVSS-MS-Recs.
But this is a contradiction to our assumption.

Hence if the corrupted Pk is included in Tj of any

honest Pj then he must have invoked AVSS-MS-Sharek
before any AVSS-MS-Rec has been invoked by any hon-

est party. Thus Pk will have no knowledge of the secrets

shared by honest parties when he chooses his own se-
crets for AVSS-MS-Sharek. □

Lemma 28 In protocol Common-Coin-MB, once some

honest party Pj receives “Attach Ti to Pi” from the

A-cast of Pi and includes Pi in Aj, n−2t unique values

Vi1, . . . , Vi(n−2t) are fixed such that

1. Every honest party will associate Vi1, . . . , Vi(n−2t)

with Pi, except with probability ².

2. Each of Vi1, . . . , Vi(n−2t) is distributed uniformly over

[0, . . . , u] and independent of the values associated

with the other parties.

Proof: The values Vi1, . . . , Vi(n−2t) are defined in step

8 of the protocol. We now prove the first part of the

lemma. According to the lemma condition, Pi ∈ Aj .

This implies that Ti ⊆ Tj . So honest Pj will partici-

pate in AVSS-MS-Reck corresponding to each Pk ∈ Ti.

Moreover, eventually Ti ⊆ Tm and Pi ∈ Am will hold

for every other honest Pm. So, every other honest party

will also participate in AVSS-MS-Reck corresponding to

each Pk ∈ Ti. Now by the property of AVSS-MS-Rec,
each honest party will reconstruct xki at the comple-

tion of AVSS-MS-Reck, except with probability ²′. Thus,
with probability 1−(n−t)²′ ≈ 1−², every honest party

will associate Vi1, . . . , Vi(n−2t) with Pi.

We now prove second part of the lemma. By Lemma

27, when Ti is fixed, the values that are shared by cor-

rupted parties in Ti are completely independent of the

values shared by the honest parties in Ti. Now, each Ti

contains at least n − 2t honest parties and every hon-

est partys’ shared secrets are uniformly distributed and

mutually independent. Hence by the property of Van-

dermonde matrix the values vi1, . . . , vi(n−2t) are com-

pletely random and thus Vi1, . . . , Vi(n−2t) are uniformly

and independently distributed over [0, . . . , u]. □

Lemma 29 In protocol Common-Coin-MB, once an hon-

est party A-casts “Reconstruct Enabled”, there exists

a set M of size ∣M ∣ ≥ n
3 , such that:

1. For every party Pj ∈ M , some honest party has

received “Attach Tj to Pj” from the A-cast of Pj.

2. When any honest party Pj A-casts “Reconstruct

Enabled”, then it will hold that M ⊆ Hj.

Proof: Follows from the proof of Lemma 15 □

Lemma 30 Let ² ≤ 0.2 and assume that all honest

parties have terminated protocol Common-Coin-MB. Then
for every l ∈ {1, . . . , n−2t}, all honest parties output ¾l

with probability at least 1
4 for every value of ¾l ∈ {0, 1}.

Proof: Follows from Lemma 28 and similar arguments

as given in the proof of Lemma 16. □

Theorem 10 Common-Coin-MB is a (1−²)-terminating,

t-resilient multi-bit common coin protocol with t+1 bits

output for every 0 < ² ≤ 0.2.

Proof: Follows from Lemma 26, 27, 28, 29 and 30. □

25

Theorem 11 Protocol Common-Coin-MB privately com-

municates O(n5 log 1
²) bits and A-cast O(n5 log 1

²) bits

for (t+ 1) = £(n) bit output.

Proof: Easy, as n instances of AVSS-MS-Share and

AVSS-MS-Rec with ℓ = n secrets are executed. □

From Theorem 11, we get the following corollary.

Corollary 1 The amortized communication cost of gen-

erating a single bit output in Common-Coin-MB is O(n4

log 1
²) bits of private communication and O(n4 log 1

²)

bits of A-cast communication.

The above corollary shows that the amortized commu-

nication complexity of generating single bit output in

Common-Coin-MB is O(n2) times better than Common-
Coin. In the next section, we use Common-Coin-MB to

design an ABA protocol which allows the parties to

reach agreement on t+ 1 bits concurrently.

7.5 ABA Protocol for Agreement on t+ 1 Bits

We now design protocol ABA-MB, which attains agree-

ment on n − 2t = t + 1 bits concurrently. So initially
every party has a private input of n − 2t bits. Let the

n− 2t bit input of Pi be denoted by xi1, . . . , xi(n−2t).

The Intuition:The high level idea of ABA-MB is simi-

lar to ABA (given in Section 6). The ABA protocol pro-

ceeds in iterations where in each iteration every party

computes his ‘modified input’, consisting of n− 2t bits.

In the first iteration the ‘modified input’ of Pi is the

private input bits of Pi. In each iteration, every party

executes the following protocols sequentially:

1. n − 2t parallel instances of Vote protocol, one cor-

responding to each bit of the ‘modified input’;

2. A single instance of Common-Coin-MB.

Notice that the parties participate in Common-Coin-
MB, only after terminating all the n − 2t instances of

Vote protocol. Now the parties perform almost simi-

lar computation as in protocol ABA, corresponding to

each of the t+1 bits in parallel. However, instead of ex-

ecuting n− 2t instances of Common-Coin protocol, the

parties execute only a single instance of Common-Coin-
MB. The protocol is given in Fig. 16. We now prove the

properties of protocol ABA-MB.

Lemma 31 In protocol ABA-MB, if all the honest par-

ties have input ¾1, . . . , ¾n−2t, then all the honest parties

terminate and output ¾1, . . . , ¾n−2t.

Proof: Follows from the proof of Lemma 21 and pro-

tocol steps. □

Fig. 16 ABA Protocol for Agreement on t+ 1 Bits

Protocol ABA-MB(²)

Code for Pi: — Every party executes this code

1. Set r := 0. For l = 1, . . . , n− 2t, set v1l = xil.
2. Repeat until terminating.

(a) Set r := r + 1. Participate in n − 2t instances of Vote
protocol, with vrl as the input in the ltℎ instance of
Vote protocol, for l = 1, . . . , n − 2t. Set (yrl,mrl) as
the output of the ltℎ instance of Vote protocol.

(b) Wait to terminate all n − 2t instances of Vote. Then
invoke Common-Coin-MB(²

4
) and wait until its termi-

nation. Let cr1, . . . , cr(n−2t) be the output of Common-
Coin-MB.

(c) For every l ∈ {1, . . . , n − 2t} such that agreement on
ltℎ bit is not achieved, do the following in parallel:

i. If mrl = 2, then set v(r+1)l := yrl and A-
cast (“Terminate with v(r+1)l”, l). Participate in
only one more instance of Vote corresponding to
ltℎ bit with v(r+1)l as the input. Participate in
only one more instance of Common-Coin-MB if
(“Terminate with v(r+1)l”, l) is A-casted for all
l = 1, . . . , n− 2t.

ii. If mrl = 1, set v(r+1)l := yrl.
iii. Otherwise, set v(r+1)l := crl.

(d) Upon receiving (“Terminate with ¾l”, l) from the A-
cast of at least t+ 1 parties, for some value ¾l, output
¾l as the ltℎ bit and terminate all the computation
regarding ltℎ bit. In this case, we say that agreement
on ltℎ bit is achieved.

(e) Terminate ABA-MB when agreement is achieved on all
l bits, for l = 1, . . . , n− 2t.

Lemma 32 If some honest party terminates protocol

ABA-MB with output ¾1, . . . , ¾n−2t, then all honest par-

ties will eventually terminate ABA-MB with output ¾1,

. . . , ¾n−2t.

Proof: Follows from the proof of Lemma 22. □

Lemma 33 If all honest parties have initiated and com-

pleted some iteration k, then with probability at least 1
4 ,

all honest parties will have same value for ‘modified in-

put’ v(k+1)l, for every l = 1, . . . , n− 2t.

Proof: Follows from the proof of Lemma 23. □

We now recall event Ck and C from section 6. Let Ck

be the event that each honest party completes all the

iterations he initiated up to (and including) the ktℎ

iteration (that is, for each iteration 1 ≤ r ≤ k and for

each party P , if P initiated iteration r then he computes
v(r+1)l for every ltℎ bit). Let C denote the event that

Ck occurs for all k.

Lemma 34 Conditioned on event C, all honest parties

terminate protocol ABA-MB in constant expected time.

26

Proof: Let the first instance of A-cast of
(“Terminate with ¾l”, l) is initiated by some honest party

in iteration ¿l. Following Lemma 22, every other honest

party will A-cast (“Terminate with ¾l”, l) in iteration

¿l + 1. Now it is true that agreement on ltℎ bit will be

achieved within constant time after (¿l + 1)tℎ iteration

(this is because the A-casts can be completed in con-

stant time). Let m be such that ¿m is the maximum

among ¿1, . . . , ¿n−2t. We first show that all honest par-

ties will terminate protocol ABA-MB within constant

time after some honest party initiates the first instance

of A-cast (“Terminate with ¾m”,m). Since the first in-

stance of A-cast of (“Terminate with ¾m”,m) is initi-

ated by some honest party in iteration ¿m, all the par-

ties will participate in Vote and Common-Coin-MB in

iteration ¿m+1. Both the executions can be completed

in constant time. Moreover, by Lemma 22 every hon-

est party will A-cast (“Terminate with ¾m”,m) by the

end of iteration ¿m + 1. The A-casts can be completed

in constant time. Moreover, it is to be noted that for

all other bits l, agreement will be reached either before

reaching agreement on mtℎ bit or within constant time

of reaching agreement on mtℎ bit. Hence all honest par-

ties will terminate ABA-MB within constant time after

the first instance of A-cast of (“Terminate with ¾m”,m)

is initiated by some honest party in iteration ¿m.

Now conditioned on event C, all honest parties ter-

minate each iteration in constant time. So it is left to

show that E(¿m∣C) is constant. We have

Prob(¿m > k∣Ck) ≤ Prob(¿m ∕= 1∣Ck)×
. . . ×Prob(¿m ∕= k ∩ . . . ∩ ¿m ∕= 1∣Ck)

From the Lemma 33, it follows that each one of the k

multiplicands of the right hand side of the above equa-

tion is at most 3
4 . Thus we have Prob(¿m > k∣Ck) ≤

(34)
k. Now simple calculation gives E(¿m∣C) ≤ 16. □

Lemma 35 Prob(C) ≥ (1− ²).

Proof: Follows from the proof of Lemma 25. □

Summing up, we have the following theorem.

Theorem 12 (ABA for t + 1 Bits) Let n = 3t + 1.

Then for every 0 < ² ≤ 0.2, protocol ABA-MB is a t-

resilient, (², 0)-ABA protocol for n parties. Given the

parties terminate, they do so in constant expected time.

The protocol allows the parties to reach agreement on

t + 1 bits simultaneously and involves private commu-

nication and A-cast of O(n5 log 1
²) bits.

8 Conclusion and Open Problems

We have presented a novel, constant expected time, op-

timally resilient, (², 0)-ABA protocol whose communi-

cation complexity is significantly better than best known

existing ABA protocols of [15,1] (though the ABA pro-

tocol of [1] has a strong property of being almost surely

terminating) with optimal resilience. Here we summa-

rize the key factors that have contributed to the gain

in the communication complexity of our ABA protocol:

(a) A shorter route: ICP → AWSS → AVSS → ABA,

(b) Improving each of the building blocks by introduc-

ing new techniques and (c) By exploiting the advan-

tages of dealing with multiple secrets concurrently in

each of these blocks. It is to be mentioned that our

new AVSS scheme significantly outperforms the exist-

ing AVSS schemes in the same settings in terms of

communication complexity. An interesting open prob-

lem is to further improve the communication complex-

ity of ABA protocols. Also one can try to provide an

almost surely terminating, optimally resilient, constant

expected time ABA protocol whose communication com-

plexity is less than the ABA protocol of [1].

References

1. I. Abraham, D. Dolev, and J. Y. Halpern. An almost-surely
terminating polynomial protocol for asynchronous Byzan-
tine Agreement with optimal resilience. In R. A. Bazzi and
B. Patt-Shamir, editors, Proceedings of the Twenty-Seventh
Annual ACM Symposium on Principles of Distributed Com-
puting, PODC 2008, Toronto, Canada, August 18-21, 2008,
pages 405–414. ACM Press, 2008.

2. B. Altmann, M. Fitzi, and U. M. Maurer. Byzantine Agree-
ment secure against general adversaries in the dual fail-
ure model. In P. Jayanti, editor, Distributed Computing,
13th International Symposium, Bratislava, Slavak Republic,
September 27-29, 1999, Proceedings, volume 1693 of Lecture
Notes in Computer Science, pages 123–137. Springer Verlag,
1999.

3. Z. Beerliová-Trub́ıniová and M. Hirt. Simple and efficient
perfectly-secure asynchronous MPC. In K. Kurosawa, editor,
Advances in Cryptology - ASIACRYPT 2007, 13th Interna-
tional Conference on the Theory and Application of Cryp-
tology and Information Security, Kuching, Malaysia, Decem-
ber 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in
Computer Science, pages 376–392. Springer Verlag, 2007.

4. M. Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols. In Proceedings of the Sec-
ond Annual ACM SIGACT-SIGOPS Symposium on Prin-
ciles of Distributed Computing, August 17-19, 1983, Mon-
treal, Quebec, Canada, pages 27–30. ACM Press, 1983.

5. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed
computation (extended abstract). In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-
4, 1988, Chicago, Illinois, USA, pages 1–10. ACM Press,
1988.

6. M. BenOr, B. Kelmer, and T. Rabin. Asynchronous secure
computations with optimal resilience. In Proceedings of the
Thirteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, Los Angeles, California, USA, August
14-17, pages 183–192. ACM Press, 1994.

7. P. Berman and J. A. Garay. Asymptotically optimal dis-
tributed consensus (extended abstract). In G. Ausiello,

27

M. Dezani-Ciancaglini, and S. R. D. Rocca, editors, Au-
tomata, Languages and Programming, 16th International
Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Pro-
ceedings, volume 372 of Lecture Notes in Computer Science,
pages 80–94. Springer, 1989.

8. P. Berman and J. A. Garay. Cloture votes: n/4-resilient dis-
tributed consensus in t+1 rounds. Mathematical Systems
Theory, 26(1):3–19, 1993.

9. P. Berman, J. A. Garay, and K. J. Perry. Towards optimal
distributed consensus (extended abstract). In Proceedings of
30th Annual Symposium on Foundations of Computer Sci-
ence, Research Triangle Park, North Carolina, 30 October -
1 November 1989, pages 410–415. IEEE Computer Society,
1989.

10. G. Bracha. An asynchronous ⌊(n− 1)/3⌋-resilient consensus
protocol. In Proceedings of the Third Annual ACM Sym-
posium on Princiles of Distributed Computing, Vancouver,
B. C., Canada, August 27-29, 1984, pages 154 – 162. ACM
Press, 1984.

11. G. Bracha. Asynchronous Byzantine Agreement protocols.
Inf and Computation, 75(2):130–143, 1987.

12. G. Bracha. An O(logn) expected rounds randomized Byzan-
tine generals protocol. J. ACM, 34(4):910–920, 1987.

13. G. Bracha and S. Toueg. Asynchronous consensus and broad-
cast protocols. J. ACM, 32(4):824–840, 1985.

14. R. Canetti. Studies in Secure Multiparty Computation and
Applications. PhD thesis, Weizmann Institute, Israel, 1995.

15. R. Canetti and T. Rabin. Fast asynchronous Byzantine
Agreement with optimal resilience. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Com-
puting, pages 42–51. ACM Press, 1993.

16. B. A. Coan and J. L. Welch. Modular construction of
a Byzantine Agreement protocol with optimal message bit
complexity. Information and Computation, 97(1):61–85,
1992.

17. R. Cramer and I. Damg̊ard. Multiparty Computation, an
Introduction. Contemporary Cryptography. Birkhuser Basel,
2005.

18. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Ra-
bin. Efficient multiparty computations secure against an
adaptive adversary. In J. Stern, editor, Advances in Cryp-
tology - EUROCRYPT ’99, International Conference on
the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding, volume
1592 of Lecture Notes in Computer Science, pages 311–326.
Springer Verlag, 1999.

19. I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally
secure multiparty computation. In A. Menezes, editor, Ad-
vances in Cryptology - CRYPTO 2007, 27th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2007, Proceedings, volume 4622 of Lecture
Notes in Computer Science, pages 572–590. Springer Verlag,
2007.

20. D. Dolev. The Byzantine generals strike again. Journal of
Algorithms, 3(1):14–30, 1982.

21. D. Dolev, M. J. Fischer, R. J. Fowler, N. A. Lynch, and
H. R. Strong. An efficient algorithm for Byzantine Agreement
without authentication. Information and Control, 52(3):257–
274, 1982.

22. D. Dolev and R. Reischuk. Bounds on information exchange
for Byzantine Agreement. Journal of ACM, 32(1):191–204,
1985.

23. D. Dolev, R. Reischuk, and H. R. Strong. Early stopping
in Byzantine Agreement. Journal of ACM, 37(4):720–741,
1990.

24. D. Dolev and H. R. Strong. Polynomial algorithms for multi-
ple processor agreement. In Proceedings of the 14th Annual

ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, pages 401–407. ACM Press,
1982.

25. D. Dolev and H. R. Strong. Authenticated algorithms
for Byzantine Agreement. SIAM Journal of Computing,
12(4):656–666, 1983.

26. P. Feldman and S. Micali. Byzantine Agreement in constant
expected time (and trusting no one). In Proceedings of 26th
Annual Symposium on Foundations of Computer Science,
Portland, Oregon, 21-23 October 1985, pages 267–276. IEEE
Computer Society, 1985.

27. P. Feldman and S. Micali. An optimal algorithm for syn-
chronous Byzantine Agreemet. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-
4, 1988, Chicago, Illinois, USA, pages 639–648. ACM Press,
1988.

28. P. Feldman and S. Micali. An optimal probabilistic proto-
col for synchronous Byzantine Agreement. SIAM Journal of
Computing, 26(4):873–933, 1997.

29. M. J. Fischer. The consensus problem in unreliable dis-
tributed systems (a brief survey). In FCT, pages 127–140,
1983.

30. M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impos-
sibility proofs for distributed consensus problems. In Fault-
Tolerant Distributed Computing, pages 147–170, 1986.

31. M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility
of distributed consensus with one faulty process. JACM,
32(2):374–382, 1985.

32. M. Fitzi. Generalized Communication and Security Models
in Byzantine Agreement. PhD thesis, ETH Zurich, 2002.

33. M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and
K. Srinathan. Round-optimal and efficient verifiable secret
sharing. In S. Halevi and T. Rabin, editors, Theory of Cryp-
tography, Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006, Proceedings,
volume 3876 of Lecture Notes in Computer Science, pages
329–342. Springer Verlag, 2006.

34. M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and
A. Smith. Detectable Byzantine Agreement secure against
faulty majorities. In PODC 2002, Proceedings of the Twenty-
First Annual ACM Symposium on Principles of Distributed
Computing, July 21-24, 2002 Monterey, California, USA,
pages 118–126. ACM Press, 2002.

35. M. Fitzi and M. Hirt. Optimally efficient multi-valued Byzan-
tine Agreement. In Ruppert E and Malkhi D, editors, Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on
Principles of Distributed Computing, PODC 2006, Denver,
CO, USA, July 23-26, 2006, pages 163–168, 2006.

36. M. Fitzi and U. M. Maurer. From partial consistency to
global broadcast. In Proceedings of the Thirty-Second An-
nual ACM Symposium on Theory of Computing, May 21-23,
2000, Portland, OR, USA, pages 494–503. ACM Press, 2000.

37. Z. Galil, A. J. Mayer, and M. Yung. Resolving message com-
plexity of Byzantine Agreement and beyond. In Proceed-
ings of 36th Annual Symposium on Foundations of Com-
puter Science, Milwaukee, Wisconsin, 23-25 October 1995,
pages 724–733. IEEE Computer Society, 1995.

38. J. A. Garay and K. J. Perry. A continuum of failure models
for distributed computing. In A. Segall and S. Zaks, ed-
itors, Distributed Algorithms, 6th International Workshop,
WDAG ’92, Haifa, Israel, November 2-4, 1992, Proceedings,
volume 647 of Lecture Notes in Computer Science, pages
153–165. Springer Verlag, 1992.

39. J. Katz, C. Koo, and R. Kumaresan. Improving the
round complexity of VSS in point-to-point networks. In
L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson,

28

A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata, Lan-
guages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceed-
ings, Part II - Track B: Logic, Semantics, and Theory of
Programming & Track C: Security and Cryptography Foun-
dations, volume 5126 of Lecture Notes in Computer Science,
pages 499–510. Springer Verlag, 2008.

40. J. Katz and C. Y. Koo. On expected constant-round pro-
tocols for Byzantine Agreement. In C. Dwork, editor, Ad-
vances in Cryptology - CRYPTO 2006, 26th Annual Inter-
national Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, Lecture Notes in
Computer Science, pages 445–462. Springer Verlag, 2006.

41. L. Lamport. The weak Byzantine generals problem. Journal
of ACM, 30(3):668–676, 1983.

42. Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composi-
tion of authenticated Byzantine Agreement. In Proceedings
on 34th Annual ACM Symposium on Theory of Computing,
May 19-21, 2002, Montral, Qubec, Canada, pages 514–523.
ACM Press, 2002.

43. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

44. A. Patra, A. Choudhary, T. Rabin, and C. Pandu Rangan.
The round complexity of verifiable secret sharing revisited. In
S. Halevi, editor, Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2009. Proceedings, vol-
ume 5677 of Lecture Notes in Computer Science, pages 487–
504. Springer Verlag, 2009.

45. A. Patra, A. Choudhary, and C. Pandu Rangan. Effi-
cient asynchronous multiparty computation with optimal re-
silience. Cryptology ePrint Archive, Report 2008/425, 2008.

46. A. Patra, A. Choudhary, and C. Pandu Rangan. Simple and
efficient asynchronous Byzantine Agreement with optimal re-
silience. In S. Tirthapura and L. Alvisi, editors, Proceedings
of the 28th Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2009, Calgary, Alberta, Canada,
August 10-12, 2009, pages 92–101. ACM Press, 2009.

47. M. Pease, R. E. Shostak, and L. Lamport. Reaching agree-
ment in the presence of faults. JACM, 27(2):228–234, 1980.

48. B. Pfitzmann and M. Waidner. Unconditional Byzantine
Agreement for any number of faulty processors. In A. Finkel
and M. Jantzen, editors, STACS 92, 9th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Cachan,
France, February 13-15, 1992, Proceedings, volume 577 of
Lecture Notes in Computer Science, pages 339–350. Springer
Verlag, 1992.

49. M. O. Rabin. Randomized Byzantine generals. In 34th An-
nual Symposium on Foundations of Computer Science, Palo
Alto California, 3-5 November 1993, pages 403–409. IEEE
Computer Society, 1983.

50. T. Rabin and M. Ben-Or. Verifiable secret sharing and multi-
party protocols with honest majority (extended abstract). In
Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, May 14-17, 1989, Seattle, Washigton, USA,
pages 73–85. ACM Press, 1989.

51. A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

52. K. Srinathan, A. Narayanan, and C. Pandu Rangan. Optimal
perfectly secure message transmission. In M. K. Franklin,
editor, Advances in Cryptology - CRYPTO 2004, 24th An-
nual International CryptologyConference, Santa Barbara,
California, USA, August 15-19, 2004, Proceedings, volume
3152 of Lecture Notes in Computer Science, pages 545–561.
Springer Verlag, 2004.

53. S. Toueg. Randomized Byzantine Agreements. In Proceed-
ings of the Third Annual ACM Symposium on Princiles of

Distributed Computing, Vancouver, B. C., Canada, August
27-29, 1984, pages 163–178. ACM Press, 1984.

54. S. Toueg, K. J. Perry, and T. K. Srikanth. Fast distributed
agreement. SIAM Journal of Computing, 16(3):445–457,
1987.

55. R. Turpin and B. A. Coan. Extending binary Byzantine
Agreement to multivalued Byzantine Agreement. Informa-
tion Processing Letters, 18(2):73–76, 1984.

APPENDIX A: Analysis of the Communication

Complexity of the AVSS, ABA Scheme of [15]

The communication complexity analysis of the AVSS

and ABA protocol of [15] was not reported anywhere so

far. So we have carried out the same at this juncture. To

do so, we have considered the detailed description of the

AVSS protocol of [15] given in Canetti’s Thesis [14]. To

bound the error probability by ², all the communication

and computation in the protocol of [15] is done over a

finite field F, where ∣F∣ = GF (2·) and ² = 2−(·). Thus

each field element can be represented by · = O(log 1
²)

bits.

To begin with, in the ICP protocol of [15], D gives

O(·) field elements to INT and O(·) field elements to

verifier R. Though the ICP protocol of [14] is presented
with a single verifier, it is executed with n verifiers in

protocol A-RS. In order to execute ICP with n verifiers,

D gives O(n·) field elements to INT and O(·) field el-

ements to each of the n verifiers. So the communication

complexity of ICP of [14] when executed with n verifiers

is O(n·) field elements and hence O(n·2) bits.

Now by incorporating their ICP protocol with n ver-

ifiers in Shamir secret sharing [51], the authors in [15]

designed an asynchronous primitive called A-RS, which
consists of two sub-protocols, namely A-RS-Share and

A-RS-Rec. In the A-RS-Share protocol, D generates n

shares (Shamir shares) of a secret s and for each of

the n shares, D executes an instance of ICP protocol

with n verifiers. So the A-RS-Share protocol of [15] in-

volves a private communication of O(n2·2) bits. In ad-

dition to this, the A-RS-Share protocol also involves

an A-cast of O(log(n)) bits. In the A-RS-Rec proto-

col, the IC signatures given by D in A-RS-Share are

revealed, which involves a private communication of

O(n2·2) bits. In addition, the A-RS-Rec protocol in-

volves A-cast of O(n2 log(n)) bits.

Proceeding further, the authors in [15] designed an

AWSS scheme using their A-RS protocol. The AWSS

protocol consists of two sub-protocols, namely AWSS-
Share and AWSS-Rec. In the AWSS-Share protocol, D

generates n shares (Shamir shares [51]) of the secret and

instantiate n instances of the ICP protocol for each of

the n shares. Now each individual party A-RS-Share all

the values that it has received in the n instances of the

29

ICP protocol. Since each individual party receives a to-

tal of O(n·) field elements in the n instances of ICP, the
above step incurs a private communication of O(n4·3)

bits and A-cast of O(n2· log(n)) bits. In the AWSS-Rec
protocol, each party Pi tries to reconstruct the values

which are A-RS-Shared by each party Pj in a set ℰi.
Here ℰi is a set which is defined in the AWSS-Share
protocol. In the worst case, the size of each ℰi is O(n).

So in the worst case, the AWSS-Rec protocol privately

communicates O(n5·3) bits and A-cast O(n5· log(n))

bits.

The authors in [15] then further extended their AWSS-
Share protocol to Two&Sum AWSS-Share protocol, where
each party Pi has to A-RS-Share O(n·2) field elements.

So the communication complexity of Two&Sum AWSS-
Share is O(n4·4) bits and A-cast of O(n2·2 log(n)) bits.

Finally using their Two&Sum AWSS-Share and AWSS-
Rec protocol, the authors in [15] have deigned their

AVSS scheme, which consists of two sub-protocols, namely

AVSS-Share and AVSS-Rec. In the AVSS-Share proto-

col, the most communication expensive step is the one

where each party has to AWSS-Rec O(n3·) field ele-

ments. So in total, the AVSS-Share protocol of [15] in-

volves a communication complexity of O(n9·4) bits and

A-cast O(n9·2 log(n)) bits. The AVSS-Rec protocol in-

volves n instances of AWSS-Rec, resulting in a com-

munication complexity of O(n6·3) bits and A-cast of

O(n6· log(n)) bits.

Now in the common coin protocol, each party in

P acts as a dealer and invokes n instances of AVSS-
Share to share n secrets. So the communication com-

plexity of the common protocol of [15] is O(n11·4) bits

of private communication and O(n11·2 log(n)) bits of

A-cast. Now in the ABA protocol of [15], AVSS-Share
protocol is called for C = O(1) expected time. Hence

the ABA protocol of [15] involves a private communi-

cation of O(n11·4) bits and A-cast of O(n11·2 log(n))

bits. As mentioned earlier, · = O(log 1
²). Thus the ABA

protocol of [15] involves a private communication of

O(n11 log(1²)
4) bits and A-cast of O(n11 log(1²)

2 log(n))

bits.

APPENDIX B: Proofs for Protocol Common-
Coin

Lemma 13 [14] All honest parties terminate Protocol

Common-Coin in constant time.

Proof: First we show that every honest party Pi will A-
cast “Reconstruct Enabled”. By the termination prop-

erty of our AVSS scheme, every honest party will even-

tually terminate all the n instances of AVSS-Share of

every other honest party. As there are at least 2t + 1

honest parties, it implies that Ti of every honest Pi will

eventually contain at least 2t + 1 honest parties. Also

from termination property of AVSS protocol, eventu-

ally Tj ⊆ Ti will hold good for every honest Pj , Pi. So

for every honest Pi, Ai will eventually be of size 2t+ 1

and similarly Si will eventually be of size 2t + 1 and

hence Pi will A-cast “Reconstruct Enabled”.

Now it remains to show that AVSS-Rec protocols

invoked by any honest party will be terminated even-

tually. Once this is proved, every honest party will ter-

minate protocol Common-Coin after executing the re-

maining steps of Common-Coin such as computing Vi

etc. By the properties of our AVSS scheme, if an hon-

est party Pi receives “Attach Tj to Pj” from Pj and

includes Pj in Ai, then eventually every other honest

party will do the same. Hence if Pi invokes AVSS-Reckj
for Pj ∈ Ai and Pk ∈ Tj , then eventually every other

honest party will also do the same. Now by the ter-

mination property of AVSS protocol, every AVSS-Reckj
protocols will be terminated by every honest party.

Given event E, all invocations of AVSS-Share and

AVSS-Rec terminate in constant time. The black box

protocol for A-cast terminates in constant time. Thus
protocol Common-Coin terminates in constant time. □

Lemma 14 [14] In Common-Coin, once some honest

Pj receives “Attach Ti to Pi” from A-cast of Pi and

includes Pi in Aj, a unique value Vi is fixed such that

1. Every honest party will associate Vi with Pi, ex-

cept with probability 1− ²
n .

2. Vi is distributed uniformly over [0, . . . , u] and inde-

pendent of values associated with other parties.

Proof: Once some honest Pj receives “Attach Ti

to Pi” from A-cast of Pi and includes Pi in Aj , a

unique value Vi is fixed. Here Vi = (
∑

Pk∈Ti
xki) mod u,

where xki is shared by Pk as a dealer during AVSS-
Shareki. According to the protocol steps eventually all

honest parties will invoke AVSS-Recki corresponding to

each Pk ∈ Ti and consequently each honest party will

reconstruct xki at the completion of AVSS-Recki, ex-
cept with probability ²′. Now since ∣Ti∣ = t + 1, every

honest party will associate Vi with Pi with probability

at least 1− (t+ 1)²′ ≈ 1− ²
n .

An honest party starts invoking AVSS-Recki for ev-
ery Pk ∈ Ti only after it receives “Attach Ti to Pi”

from A-cast of Pi. So the set Ti is fixed before any hon-

est party invokes AVSS-Recki for some k. The secrecy

property of AVSS-Share ensures that corrupted parties

will have no information about the value shared by any

honest party until the value is reconstructed after exe-

cuting corresponding AVSS-Rec. Thus when Ti is fixed,

30

the values that are shared by corrupted parties corre-

sponding to Pi are completely independent of the values

shared by the honest parties corresponding to Pi. Now,

each Ti contains at least one honest party and every

honest party’s shared secrets are uniformly distributed

and mutually independent. Hence the sum Vi is uni-

formly and independently distributed over [0, . . . , u]. □

Lemma 15 [14] Once an honest party A-cast
“Reconstruct Enabled”, there exists a set M such that:

1. For every party Pj ∈ M , some honest party has

received “Attach Tj to Pj” from the A-cast of Pj.

2. When any honest party Pj A-casts “Reconstruct

Enabled”, then it will hold that M ⊆ Hj.

3. ∣M ∣ ≥ n
3 .

Proof: Let Pi be the first honest party to A-cast
“Reconstruct Enabled”. Then let M = {Pk ∣ Pk

belongs to A′
ls of at least t+1 P ′

l s who belongs to Si

when Pi A-casted Reconstruct Enabled }. It is clear

that M ⊆ Hi. Thus party Pi has received “Attach Tj

to Pj” from the A-cast of every Pj ∈ M . So this

proves the first part of the lemma.

An honest Pj A-casts “Reconstruct Enabled” only

when Sj contains 2t+1 parties. Now note that Pk ∈ M

implies that Pk belongs to Al’s of at least t + 1 Pl’s

who belong to Si. This ensures that there is at least

one such Pl who belongs to Sj , as well as Si. Now

Pl ∈ Sj implies that Pj had ensured that Al ⊆ Aj .
This implies that Pk ∈ M belongs to Aj before party Pj

A-casted “Reconstruct Enabled”. Since Hj is the in-

stance of Aj at the time when Pj A-casts “Reconstruct
Enabled”, it is obvious that Pk ∈ M belongs to Hj

also. Using similar argument, it can be shown that ev-

ery Pk ∈ M also belong to Hj , thus proving second part

of the lemma.

To prove the third part of the lemma, we use count-

ing argument. Let m = ∣Si∣ at the time Pi A-casted
“Reconstruct Enabled”. So we have m ≥ 2t+1. Now

consider an n×n table ¤i (relative to party Pi), whose

ltℎ row and ktℎ column contains 1 for k, l ∈ {1, . . . , n} iff
the following hold: (a) Pi has received “Pl Accepts Al”

from A-cast of Pl and included Pl in Si before A-casting
“Reconstruct Enabled” AND (b)Pk ∈ Al. The re-

maining entries (if any) of ¤i are left blank. Then M

is the set of parties Pk such that ktℎ column in ¤i con-

tains 1 at least at t+1 positions. Notice that each row

of ¤i contains 1 at n−t positions. Thus ¤i contains 1 at

m(n− t) positions. Let q denote the minimum number

of columns in ¤i that contain 1 at least at t + 1 posi-

tions. We will show that q ≥ n
3 . The worst distribution

of 1 entries in ¤i is letting q columns to contain all 1

entries and letting each of the remaining n− q columns

to contain 1 at t locations. This distribution requires

¤i to contain 1 at no more than qm + (n − q)t posi-

tions. But we have already shown that ¤i contains 1 at

m(n− t) positions. So we have

qm+ (n− q)t ≥ m(n− t).

This gives q ≥ m(n−t)−nt
m−t . Since m ≥ n − t and n ≥

3t+ 1, we have

q ≥ m(n− t)− nt

m− t
≥ (n− t)2 − nt

n− 2t

≥ (n− 2t)2 + nt− 3t2

n− 2t
≥ n− 2t+

nt− 3t2

n− 2t

≥ n− 2t+
t

n− 2t
≥ n

3

This shows that ∣M ∣ = q ≥ n
3 □

Lemma 16[14] Let ² ≤ 0.2 and assume that all the
honest parties have terminated protocol Common-Coin.
Then for every value ¾ ∈ {0, 1}, with probability at least
1
4 , all the honest parties output ¾.

Proof: By Lemma 14, for every Pi that is included in

Aj of some honest Pj , there exists some fixed (yet un-

known) value Vi that is distributed uniformly and inde-

pendently over [0, . . . , u] and with probability 1− ²
n all

honest parties will associate Vi with Pi. Consequently,

with probability at least (1− ²), all honest parties will

agree on the value associated with every party. Now we

consider two cases:

– We now show that the probability of outputting ¾ =
0 by all honest parties is at least 1

4 . Let M be the set

of parties discussed in Lemma 15. Clearly if Vj = 0

for some Pj ∈ M and all honest parties associate

Vj with Pj , then all the honest parties will output

0. The probability that for at least one party Pj ∈
M , Vj = 0 is 1 − (1 − 1

u)
∣M ∣. Now u = ⌈0.87n⌉.

Also ∣M ∣ ≥ n
3 . Therefore for all n > 4, we have

1 − (1 − 1
u)

∣M ∣ ≥ 0.316. So, Prob(all honest parties

output 0) ≥ 0.316× (1− ²) ≥ 0.25 = 1
4 .

– We now show that the probability of outputting ¾ =

1 by all honest parties is at least 1
4 . It is obvious that

if no party Pj has Vj = 0 and all honest parties

associate Vj with Pj , then all honest parties will

output 1. The probability of the first event is at

least (1− 1
u)

n ≥ e−1.15. Thus Prob(all honest parties

output 1) ≥ e−1.15 × (1− ²) ≥ 0.25 = 1
4 . □

APPENDIX C: Proofs for Protocol Vote

Lemma 17 [14] All honest parties terminate Vote in

constant time.

31

Proof (sketch): Every honest party Pi will A-cast
his input xi. As there are at least n− t honest parties,

from the properties of A-cast, every honest Pi will even-

tually have ∣Ai∣ = n − t and then will eventually have

∣ℬi∣ = n−t and finally will eventually have ∣Ci∣ = n−t.

Consequently, every honest Pi will terminate the pro-

tocol in constant time. □

Lemma 18 [14] If all honest parties have same input

¾, then all honest parties will output (¾, 2).

Proof: Consider an honest party Pi. If all honest par-

ties have same input ¾, then at most t (corrupted) par-

ties may A-cast ¾ as their input. Therefore, it is easy

to see that every Pk ∈ ℬi must have A-casted his vote

bk = ¾. Hence honest Pi will output (¾, 2). □

Lemma 19 [14] If some honest party outputs (¾, 2),

then every other honest party will eventually output ei-

ther (¾, 2) or (¾, 1) in protocol Vote.

Proof: Let an honest Pi outputs (¾, 2). This implies

that every Pj ∈ Bi had A-casted vote aj = ¾. As

∣Bi∣ = 2t + 1, it implies that for every other honest

Pj , it holds that ∣Bi ∩Bj ∣ ≥ t+ 1. So every other hon-

est Pj is bound to A-cast re-vote bi as ¾ and hence will

eventually output either (¾, 2) or (¾, 1). □

Lemma 20 [14] If some honest party outputs (¾, 1) and
no honest party outputs (¾, 2) then every other honest

party will eventually output either (¾, 1) or (¤, 0).

Proof: Assume that some honest party Pi outputs

(¾, 1). This implies that all the parties Pj ∈ Ci had

A-casted the same re-vote bj = ¾. Since ∣Ci∣ ≥ n − t,

in the worst case there are at most t parties (outside

Ci) who may A-cast re-vote ¾. Thus it is clear that no

honest party will output (¾, 1). Now since the honest

parties in Ci had re-vote as ¾, there must be at least

t + 1 parties who have A-casted their vote as ¾. Thus

no honest party can output (¾, 2) for which at least

n− t = 2t+ 1 parties are required to A-cast their vote
as ¾. So we have proved that no honest party will out-

put from {(¾, 2), (¾, 1)}. Therefore the honest parties

will output either (¾, 1) or (¤, 0). □

APPENDIX D: Proofs for Protocol ABA

Lemma 21 [14] In protocol ABA if all honest parties

have input ¾, then all honest parties terminate and out-

put ¾.

Proof: The proof follows from the fact that if all hon-

est parties have input ¾, then by Lemma 18 every hon-

est party will output (y1,m1) = (¾, 2) upon termination

of Vote and consequently A-cast (Terminate with ¾) in

the first iteration. □

Lemma 22 [14] In protocol ABA, if an honest party

terminates with output ¾, then all honest parties will

eventually terminate with output ¾.

Proof: We show that if an honest party A-casts
(Terminate with ¾), then eventually every other honest

party will A-cast the same. Let k be the first iteration

when an honest party Pi A-casts (Terminate with ¾).

Then we prove that every other honest party will A-
cast the same either in ktℎ iteration or in (k+1)tℎ iter-

ation. Since honest Pi has A-casted (Terminate with ¾),

it implies that yk = ¾ andmk = 2 and Pi has outputted

(¾, 2) in the Vote protocol invoked in ktℎ iteration. By

Lemma 19, every other honest party Pj will output ei-

ther (¾, 2) or (¾, 1) in the Vote protocol invoked in ktℎ

iteration. In case Pj outputs (¾, 2), the it will A-cast
(Terminate with ¾) in ktℎ iteration itself. Furthermore

every honest Pj will execute Vote with input vk+1 = ¾

in the (k+1)tℎ iteration. So clearly, in (k+1)tℎ iteration

every honest party will have same input ¾. Therefore

by Lemma 18, every honest party will output (¾, 2) in

Vote protocol invoked in (k + 1)tℎ iteration. Hence all

the honest parties will A-cast (Terminate with ¾) either

in iteration k or iteration k + 1. As all honest parties

will eventually A-cast (Terminate with ¾), every honest

party will receive n − t A-casts of (Terminate with ¾)

and will eventually output ¾. □

Lemma 23 [14] If all honest parties have initiated and

completed iteration k, then with probability at least 1
4

all honest parties have same value for vk+1.

Proof: We have two cases here:

1. If all honest parties execute step 4(c) in iteration

k, then they have set their vk+1 as the output of

Common-Coin. So by the property of Common-Coin,
all the honest party have same vk+1 with probability

at least 1
4 .

2. If some honest party has set vk+1 = ¾ for some

¾ ∈ {0, 1}, either in step 4(a) or step 4(b) of it-

eration k, then by Lemma 20 no honest party will

set vk+1 = ¾ in step 4(a) or step 4(b). Moreover,

all the honest honest parties will output ¾ from

Common-Coin with probability at least 1
4 . Now the

parties starts executing Common-Coin, only after

the termination of Vote. Hence the outcome of Vote
is fixed before Common-Coin is invoked. Thus cor-

32

rupted parties can not decide the output of Vote to

prevent agreement. Hence with probability at least
1
4 , all the honest parties will set vk+1 = ¾. □

Lemma 24 [14] Conditioned on the event C, all honest

parties terminate ABA in constant expected time.

Proof: We first show that all the honest parties termi-

nate protocol ABA within constant time after the first

instance of A-cast of (Terminate with ¾) is initiated by

some honest party. Let the first instance of A-cast of

(Terminate with ¾) is initiated by some honest party

in iteration k. Then all the parties will participate in

Vote and Common-Coin protocols of all iterations up to

iteration k+1. Both the executions can be completed in

constant time. Moreover, by the proof of Lemma 22 ev-

ery honest party will A-cast (Terminate with ¾) by the

end of iteration k + 1. These A-casts can be completed

in constant time. Since an honest party terminates ABA
after completing t+1 such A-casts, all the honest parties
will terminate ABA within constant time after the first

instance of A-cast of (Terminate with ¾) is initiated by

some honest party.

Now let the random variable ¿ be the count of num-

ber of iterations until the first instance of A-cast of

(Terminate with ¾) is initiated by some honest party.

Obviously if no honest party ever A-casts (Terminate with

¾) then ¿ = ∞. Now conditioned on event C, all the

honest parties terminate each iteration in constant time.

So it is left to show that E(¿ ∣C) is constant. We have

Prob(¿ > k∣Ck) ≤ Prob(¿ ∕= 1∣Ck)× . . .

× Prob(¿ ∕= k ∩ . . . ∩ ¿ ∕= 1∣Ck)

From Lemma 23, it follows that each one of the k

multiplicands of the right hand side of the above equa-

tion is at most 3
4 . Thus we have Prob(¿ > k∣Ck) ≤ (34)

k.

Now simple calculation shows that E(¿ ∣C) ≤ 16. □

Lemma 25 [14] Prob(C) ≥ (1− ²).

Proof: We have

Prob(C) ≤
∑

k≥1

Prob(¿ > k ∩ Ck+1∣Ck)

≤
∑

k≥1

Prob(¿ > k∣Ck) ⋅ Prob(Ck+1∣Ck ∩ ¿ > k)

From the proof of Lemma 23, we have Prob(¿ >

k∣Ck) ≤ (34)
k. We will now bound Prob(Ck+1∣Ck ∩ ¿ ≥

k). If all the honest parties execute the ktℎ iteration

and complete the ktℎ invocation of Common-Coin, then
all the honest parties complete ktℎ iteration. Protocol

Common-Coin is invoked with termination parameter ²
4 .

Thus with probability 1− ²
4 , all the honest parties com-

plete the ktℎ invocation of Common-Coin. Therefore, for
each k, Prob(Ck+1∣Ck ∩ ¿ ≥ k) ≤ ²

4 . So we get

Prob(C) ≤
∑

k≥1

²

4
(
3

4
)k = ² □

