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Abstract

In this paper, we propose a new asynchronous multiparty computation (AMPC) protocol that
achieves information theoretic security with optimal fault tolerance; i.e., with n = 3t + 1, where n
is the total number of players and t is the number of players which can be under the control of an
adversary At with unbounded computing power in Byzantine (active) fashion. Our AMPC protocol
provides information theoretic security with negligible error probability of 2−O(κ), where κ is the
error parameter. Our AMPC protocol communicates O(n5κ) bits per multiplication. As far as our
knowledge is concerned, the only known AMPC protocol with n = 3t + 1 providing information
theoretic security with negligible error probability is due to [8], which communicates Ω(n11κ4)
bits per multiplication. 1. Thus our AMPC protocol significantly improves the communication
complexity of the AMPC protocol of [8]. For designing our AMPC protocol, we introduce a new
asynchronous primitive called Asynchronous Ultimate Verifiable Secret Sharing (AUVSS) 2 which
is first of its kind and is of independent interest.

1The exact communication complexity analysis of the AMPC protocol of [8] was not done earlier and we have carried
out the same. The details will be presented in the full version of the paper.

2The outcome of AUVSS is different from the outcome of Ultimate VSS (UVSS) introduced in [8]; the difference is
clearly pointed out later in section 4 of this paper.
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1 Introduction

Secure Multiparty Computation: Secure multiparty computation (MPC) [26] allows a set of n
players to securely compute an agreed function, even if up to t players are under the control of a
centralized adversary, having unbounded computing power. More specifically, assume that the desired
functionality can be specified by a function f : ({0, 1}∗)n → ({0, 1}∗)n and player Pi has input xi ∈
{0, 1}∗. At the end of the computation of f , Pi gets yi ∈ {0, 1}∗, where (y1, . . . , yn) = f(x1, . . . , xn).
The function f has to be computed securely using a MPC protocol where at the end of the protocol all
(honest) players receive correct outputs and the messages seen by the adversary during the protocol
contain no additional information about the inputs and outputs of the honest players, other than what
can be computed from the inputs and outputs of the corrupted players. The MPC problem has been
studied extensively in the past two decades in synchronous networks (see [7, 12, 25, 2, 19, 22, 5, 20, 15,
14, 3, 5] and their references), which assumes that there is a global clock and the delay of any message
in the network is bounded by a constant. However, though theoretically impressive, such networks do
not model adequately real life networks like the internet.

Asynchronous Networks: In asynchronous networks, messages are delayed arbitrarily. As a worst
case assumption, the adversary is given the power to schedule the delivery of messages. Such networks
models real life networks like the Internet much better than their synchronous counterpart. However,
protocols for asynchronous networks are much more involved than their synchronous counterparts.
This is so because if a player does not receive an expected message then he cannot decide whether the
sender is corrupted (and did not send the message at all) or the message is just delayed in the network.
Thus in a fully asynchronous settings, it is impossible to consider the inputs of all uncorrupted players.
So input of up to t (potentially honest) players have to be ignored because waiting for them could turn
out to be endless. Also, the existing protocols and techniques used in synchronous settings cannot
be trivially extended in asynchronous settings. For a comprehensive introduction to asynchronous
protocols, the readers may refer to [10].

Asynchronous Multiparty Computation: Though MPC protocols in synchronous settings has
been studied extensively, asynchronous multiparty computation (AMPC) has got comparatively very
less attention due to its complexity. It is known that AMPC protocol with information theoretic
security and zero error (i.e., perfectly secure AMPC) is possible iff n ≥ 4t + 1 [6]. On the other
hand, AMPC protocol with information theoretic security and negligible error probability is possible iff
n ≥ 3t+1 [8]. Currently the best known communication efficient perfectly secure AMPC protocol with
n = 4t+1 is due to [4], which communicates O(n3) field elements per multiplication. However, the only
known AMPC protocol that achieves information theoretic security with negligible error probability
and optimal fault tolerance (i.e., with n = 3t + 1) is due to [8], which communicates Ω(n11κ4) bits
and A-Casts Ω(n11κ2 log(n)) bits per multiplication and has an error probability of 2−O(κ), where κ
is the error parameter. Here A-Cast is an asynchronous broadcast primitive, which allows a player
to send the same information to all the other players. In [24], the authors have presented an AMPC
protocol that achieves information theoretic security with negligible error probability with n = 4t + 1
(i.e with non-optimal resilience), whose communication complexity is significantly less than that of
[8]. Thus as far our knowledge is concerned, the only known AMPC protocol with n = 3t + 1, is due
to [8]. Though the communication complexity of the AMPC protocol of [8] is polynomial, it is too
high. This motivates us to design communication efficient AMPC protocol with n = 3t + 1.

Approach Used in the AMPC Protocol of [8]: We now briefly explain the approach used by [8]
to design their AMPC protocol. The current description is taken from [8]. The protocol consists of
three stages. In the first stage, each player Pi commits his input value(s) xi to all other players. In
the second stage, the players agree on a common subset CompSet of at least n− t players who have
properly committed their inputs. Finally, in the last stage, the players will compute the function
f(x1, x2, . . . , xn), where xi is the input value committed by each Pi ∈ CompSet and xi = 0 otherwise.

To implement the first stage, each Pi commits his input xi by using an asynchronous primitive
called Ultimate (Asynchronous) Verifiable Secret Sharing (UVSS) [8]. Let us first recall the definition
of Asynchronous Verifiable Secret Sharing (AVSS) [11]. Roughly speaking, AVSS allows a dealer (pos-
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sibly corrupted) to share a secret among the players that can be reconstructed by the players at a later
stage. AVSS forces a faulty dealer to commit a specific value that is guaranteed to be reconstructed
later. In [11], the authors have designed an AVSS scheme with n = 3t+1, which has a negligible error
probability and a negligible probability of non-termination. But as explained in [8], the AVSS scheme
of [11] cannot be directly used for committing the input values in AMPC protocol. This is because
the AVSS scheme of [11] with n = 3t+1 has the property that in the worst case, at most n− t = 2t+1
players can only obtain the shares of the committed secret and it may happen that these 2t+1 players
contain only t + 1 honest players. But to implement AMPC with n = 3t + 1, we require that all
the honest players should obtain the shares of the D’s committed secret. For this, the authors in [8]
have extended the AVSS protocol of [11] to introduce a new asynchronous primitive called Ultimate
(Asynchronous) Verifiable Secret Sharing (UVSS), which makes sure that all the honest players will
eventually obtain their share of the committed secret. So now in the AMPC protocol each player
commits his input using the UVSS protocol. In the second stage, the players agree on a common
subset CompSet of at least n − t players who have properly committed their inputs. Once this is
done, the players compute the function f(x1, x2, . . . , xn) using the general method of [7]. Thus the
players simulate an arithmetic circuit for f , gate by gate, in such a way that the intermediate results
are always kept as secrets, distributed among the players.

Our Contribution: In this paper, we design a new AMPC protocol with n = 3t + 1, which achieves
information theoretic security with a negligible error probability of 2−O(κ), where κ is the error param-
eter. Our AMPC protocol communicates O(n5κ) bits per multiplication. This is a significant improve-
ment over the AMPC protocol of [8] which communicates Ω(n11κ4) bits and A-Casts Ω(n11κ2 log(n))
bits per multiplication. For designing our AMPC protocol, we introduce a new asynchronous primitive
called Asynchronous Ultimate VSS (AUVSS) (the outcome of AUVSS is different from the outcome
of UVSS of [8]; the difference is clearly pointed out later in section 4) which is first of its kind and is
of independent interest. Also we adapt few existing techniques from synchronous MPC protocols of
[14, 15]into asynchronous settings for designing our AMPC protocol.

2 Preliminaries

2.1 Model

We consider a set of n players denoted by P = {P1, . . . , Pn}, who are pairwise connected by secure
asynchronous channels. An adversary At with unbounded computing power can control at most t < n
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players in Byzantine fashion. By Byzantine corruption we mean that the adversary can make the
corrupted players to deviate from the protocol in any arbitrary manner. Moreover the adversary is
active, adaptive and rushing [14]. As a worst case assumption, we assume that At can schedule the
transmission of messages along the channels. Thus he can arbitrarily delay any message. However
every sent message will be eventually delivered. Notice that At can only delay the transmission of the
messages sent by honest players, without having any access to them.

The function to be computed is specified by an arithmetic circuit over F, consisting of input, linear
(e.g. addition), multiplication, random and output gates. We denote the number of gates of each
type by cI , cL, cM , cR and cO respectively. Our AMPC protocol evaluates the circuit gate by gate
and provides information theoretic security with negligible error probability of 2−O(κ), where κ is the
error parameter. To bound the error probability by 2−O(κ), all our computations are performed over
a finite field F, where F = GF (2κ). Thus each field element can be represented by κ bits. Moreover,
we assume that n is also polynomial in κ.

We also assume that our protocols are executed in steps. Each step begins by the scheduler
choosing one message (out of the queue) to be delivered to its designated recipient. The recipient is
activated by receiving the message, after which he performs some local computation and possibly send
messages on his outgoing channel. If the received message refers to a sub-protocol which is not yet
”in execution”, then the player keeps the message until the relevant sub-protocol is invoked.
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2.2 A-cast, Agreement on a Core Set (ACS) and AVSS

A-Cast[11]: It is an asynchronous broadcast primitive, which was introduced and elegantly imple-
mented by Bracha [9] with n = 3t+1. Let Π be an asynchronous protocol initiated by a special player
(called the sender), having input m (the message to be broadcast). We say that Π is a t-resilient A-cast
protocol if the following holds, for every possible At and input:
• Termination:

1. If the sender is honest and all the honest players participate in the protocol, then each honest player will eventually
complete the protocol.

2. Irrespective of the behavior of the sender, if any honest player completes the protocol then each honest player will

eventually complete the protocol.

• Correctness: If the honest players complete the protocol then they have a common output m∗.
Furthermore, if the sender is honest then m∗ = m.

Agreement on Core Set (ACS)[4]: It is a primitive presented in [6, 8]. We use it to determine a set of
n− t players that correctly shared their values. More concretely, every player starts the ACS protocol
with an accumulative set of players who from his view point correctly shared one or more values (the
share sub-protocols in which they acted as dealers terminated properly). The output of the protocol
is a set of at least n− t players, who correctly shared their values.

Asynchronous Verifiable Secret Sharing (AVSS) [11]: Let (Sh, Rec) be a pair of protocols in which a
dealer D ∈ P shares a secret S containing ` ≥ 1 field elements. We say that (Sh, Rec) is a t-resilient,
(1− 2−O(κ)) terminating AVSS scheme for n players if the following hold for every possible At.

• Termination: With probability at least 1− 2−O(κ), the following requirements hold:

1. If D is honest then each honest player will eventually terminate protocol Sh.

2. If some honest player has completed protocol Sh, then irrespective of the behavior of D, each honest player will
eventually terminate Sh.

3. If an honest player has completed Sh and all the honest players invoke protocol Rec, then each honest player will

terminate Rec.

• Correctness:

1. If D is honest then with probability at least 1−2−O(κ), each honest player upon completing protocol Rec, outputs
the shared secret.

2. Once the first honest player completes protocol Sh, then there exists an r ∈ F`, such that with probability at least

1− 2−O(κ), each honest player upon completing Rec, will output r.

• Secrecy: If D is honest and no honest player has begun executing protocol Rec, then the corrupted
players have no information about the shared secret.

2.3 Random Value Generation

We now design a simple asynchronous protocol called RandomGenerator, which allows the players to
jointly generate a random number r ∈ F. The idea behind RandomGenerator is very simple: Each
player Pi ∈ P with input xi ∈R F participates in an instance of asynchronous multiparty computation
(AMPC) protocol described in [8], where the function to be computed is (y1, . . . , yn) = f(x1, . . . , xn)
and each yi = (x1 +x2 + . . .+xn). Now r is nothing but (x1 +x2 + . . .+xn). Thus at the termination
of the AMPC instance, every player in P will have a value r which is completely random.

3 AMPC Protocol Overview
Our AMPC protocol proceeds in three phases: preparation phase, input phase and computation phase.
Every honest player will eventually complete every phase with very high probability. We call a triple
(a, b, c) as a random multiplication triple if a, b are random and c = ab. In the preparation phase,
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sharings of cM + cR random multiplication triples will be generated in parallel. Each multiplication
and random gates of the circuit (representing the function f to be jointly computed by the n players)
will be associated with a multiplication triple. Actually a random gate uses only the first component
of the associated triple (a, b, c), namely a. In the input phase the players share (commit) their inputs
and agree on a core set of n − t players who correctly shared their inputs (every honest player will
eventually get a share of the inputs of the players in the core set). In the computation phase, the
actual circuit will be computed gate by gate, based on the inputs of the players in core set. Due to the
linearity of the used secret-sharing, the linear gates can be computed locally without communication.
Each multiplication gate will be evaluated using the circuit randomization technique of Beaver [1] with
the help of a multiplication triple (generated in preparation phase) associated with it.

4 Generating t-1D-Sharing

In this section, we present a novel protocol that allows a dealer D (possibly corrupted) to generate
correct t-1D-sharing of D’s secrets in an asynchronous settings. The t-1D-sharing of a single secret s
is defined as follows:

Definition 1 t-1D-Sharing: We say that a value s is correctly t-1D-shared among the players in P
if every honest player Pi ∈ P is holding a share si of s, such that there exists a degree t polynomial
f(x) over F with f(0) = s and f(j) = sj for every Pj ∈ P. The vector (s1, s2, . . . , sn) of shares is
called a t-1D-sharing of s and is denoted by [s]t. We may skip the subscript t when it is clear from
the context. A set of shares (possibly incomplete) is called t-consistent if these shares lie on a t degree
polynomial.

In synchronous world, verifiable secret sharing (VSS) is employed to achieve correct t-1D-sharing.
Hence lot of research work has been carried out to design VSS [7, 25, 18, 17, 21] in synchronous
settings. A very important property that can be easily achieved by synchronous VSS but not by
asynchronous VSS (AVSS) with n = 3t + 1 players is the following: Every honest player in P will
have the share of the D’s committed secret at the end of sharing phase. We call this property as
Ultimate-Property. In literature the first ever AVSS with n = 3t + 1 players is proposed by [11] which
lacks Ultimate-Property. Thus the AVSS protocol of [11] is unable to generate t-1D-sharing. This
very reason motivated the authors of [8] to enhance the definition of AVSS to accommodate Ultimate-
Property along with the remaining properties of AVSS and thus the definition of Ultimate VSS (UVSS)
had emerged. Also the inherent difficulty in using an AVSS protocol without Ultimate-Property (such
as AVSS protocol of [11]) in AMPC is nicely pointed out in the introduction section of [8]. Then [8]
has designed an UVSS protocol using AVSS protocol of [11] and some zero knowledge technique from
[12].

With the almost same incentive in mind, in this paper we now introduce a new concept (asyn-
chronous primitive) called AUVSS which is defined as follows:

Definition 2 Asynchronous Ultimate Verifiable Secret Sharing (AUVSS): Let (Sh, Rec) be a pair of
protocols in which a dealer D ∈ P shares a secret S containing ` field elements. We say that (Sh,
Rec) is a t-resilient (1 − 2−O(κ)) terminating AUVSS scheme for n players if for every possible At

and input, the protocols satisfy the termination, correctness and secrecy property of AVSS, along with
Ultimate-Property.

According to our definition, the outcome of a correct AUVSS Sh protocol is that every honest player
will eventually hold the correct sharing of D’s committed secret. Here is the discernable difference
between the outcome of UVSS share protocol of [8] and our AUVSS share protocol: The UVSS share
protocol of [8] allows D to commit the individual shares of the committed secret using AVSS protocol of
[11] and then employ zero knowledge from [12] to ensure the committed shares indeed define a t degree
polynomial. After this they leave the shares in the committed fashion (and does not reconstruct them
towards respective players) and perform the MPC. But our AUVSS share protocol end with correct
t-1D-sharing of the committed secret.
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To design our AUVSS protocol, we almost follow the same track of [8] except that we go one step
ahead to reconstruct the shares towards respective players and end with t-1D-sharing of the commit-
ted secret. In addition to this difference, our AUVSS is strikingly better than the UVSS of [8] in
terms of communication complexity. While our AUVSS share communicates O(`n4κ)+poly(n, κ) bits
and A-casts n5 log(n) bits, the UVSS share protocol of [8] communicates O(n10κ4) bits and A-casts
O(n10κ2 log(n)) bits. To design our AUVSS, we borrow the AVSS-Weak and AVSS-Weak-Share-MultiSet
protocol of [23]. In the sequel we briefly recall the properties of these two protocols.

Protocol AVSS-Weak: This protocol consists of three sub-protocols: AVSS-Weak-Share, AVSS-Weak-
Rec-Private and AVSS-Weak-Rec-Public. Protocol AVSS-Weak-Share is an AVSS protocol with the
weaker property that (corrupted) D’s committed secret S can be NULL. Thus AVSS-Weak-Share
satisfies all the properties of AVSS (share) except that it does not force D to commit a secret which is
not NULL. Hence S ∈ F`∪NULL. AVSS-Weak-Share communicates O((`n3 +n4κ)κ) bits for sharing
` secrets. While AVSS-Weak-Rec-Private performs private reconstruction of the secret S to a specific
player Pα, AVSS-Weak-Rec-Public allows reconstruction of the secret S towards every player in P. We
recall the following lemma from [23].

Lemma 1 Protocol AVSS-Weak-Share communicates O((`n3 + n4κ)κ) bits and A-casts O(n4 log(n))
bits. Protocol AVSS-Weak-Rec-Private and AVSS-Weak-Rec-Public communicates O((`n3 + n4κ)κ) and
O((`n4 + n5κ)κ) bits, respectively.

In protocol AVSS-Weak, the above sub-protocols are invoked in the following way: AVSS-Weak(D,P, S),
AVSS-Weak-Rec-Private(D,P, S, Pα) and AVSS-Weak-Rec-Public(D,P, S,P).

Protocol AVSS-Weak-Share-MultiSet: This protocol is the extension of AVSS-Weak-Share. Pre-
cisely, the goal of AVSS-Weak-Share-MultiSet is to share M sets of ` secrets at once such that later
any linear combination of the M sets can be reconstructed. More clearly, AVSS-Weak-Share-MultiSet
can share Sm = (s(m,1), . . . , s(m,`)) for m = 1, . . . ,M at once such that later S∗ =

∑M
m=1 rmSm =

(
∑M

m=1 rms(m,1), . . . ,
∑M

m=1 rms(m,`)) can be reconstructed using Protocol AVSS-Weak-Rec-Private or
AWSS-Weak-Rec-Public for some (r1, . . . , rM) ∈ FM. Now here is a very important observation: Let r
be a random number generated with the help of all (honest) players after the execution of AVSS-Weak-
Share-MultiSet. Now if we reconstruct the linear combination S∗ =

∑M
m=1 rm−1Sm then with very high

probability it will be NULL if one of the set Sm shared by D was NULL. The reason for this follows
the same line of the argument given in section 4.4 of [15] and is explained in full details in [23]. Thus
with very high probability, we can detect a corrupted D who did not share all the sets meaningfully.
Also by the reconstruction the information theoretic security on S1 will be lost. But the remaining
set S2, . . . , SM remains secure. To avoid this, we can make AVSS-Weak-Share-MultiSet to share M+1
sets where the first set S0 can be used for padding the remaining sets of secrets, namely S1, . . . , SM.
This provides a good clue of how AVSS-Weak-Share-MultiSet can be used to ensure that D’s committed
secrets are all meaningful. We implement the above idea in our protocol AUVSS-Share which will be
given in the sequel. AVSS-Weak-Share-MultiSet retains all the properties of AVSS-Weak-Share. We
now recall the following lemma on the communication complexity of AVSS-Weak-Share-MultiSet

Lemma 2 ([23]) AVSS-Weak-Share-MultiSet communicates O((`n3+n4κ)Mκ) bits and A-casts n4 log(n)
bits.

AVSS-Weak-Share-MultiSet is invoked as AVSS-Weak-Share-MultiSet(D,P, S1, . . . , SM)
Here we stress that AVSS-Weak-Share-MultiSet, satisfying weaker property of allowing the commit-

ted secret to be NULL is enough for our implementation of AUVSS protocol. The reason is that in our
AUVSS protocol we use verification mechanism which ensures both the following: (a) the committed
secrets in AVSS-Weak-Share-MultiSet is non-NULL or meaningful, (b) the sharing done by D is indeed
t-1D-sharing. We would like to mention that our verification is simpler and much efficient than the
one used in [8] to upgrade AVSS scheme of [11] into UVSS scheme (they called the verification as zero
knowledge proof in [8]).

We are now ready to present our AUVSS protocol called AUVSS which share ` secrets. The high
level idea of the share protocol of AUVSS is as follows: D divides the ` secrets into n sets S1, . . . , Sn,

5



where set Sm contains the secrets s(m,1), . . . , s(m,L), where L = d `
ne. Thus each set contains L secrets.

In addition, D puts another L random numbers in a set S0. Now to share the secrets in set Sm, D
selects degree-t univariate polynomials f (m,1)(x), . . . , f (m,L)(x). Let the ith shares of these polynomials
be denoted by P (i,m) = (f (m,1)(i), . . . , f (m,L)(i)). Now D shares P (i,0), P (i,1), . . . , P (i,n) together using
the AVSS-Weak-Share-Multiset protocol. Now as explained earlier, if D is corrupted, then protocol
AVSS-Weak-Share-Multiset protocol does not ensure whether D is sharing non-NULL (or meaningful
values). To check whether D has AVSS shared values from F and not NULL, the players in P do
the following: once D has completed AVSS-Weak-Share-Multiset, the players in P jointly generate a
random number r. Now the players locally compute the sharing of P (i,∗) = P (i,0) + rP (i,1) + . . . +
rnP (i,n) and then P (i,∗) is publicly reconstructed toward each player. Notice that P (i,∗) is an L tuple,
where the lth component of P (i,∗) is f (0,l)(i) + rf (1,l)(i) + . . . + rnf (n,l)(i). Now from Theorem 2 of
[23], if each component of reconstructed P (i,∗) is non-NULL, then with very high probability each
individual element of shared (using AVSS-Weak-Share-Multiset) P (i,0), P (i,1), . . . , P (i,n) was non-NULL.
Notice that by publicly reconstructing P (i,∗), information theoretic security on P (i,1), . . . , P (i,n) is still
maintained.

However, even though each component of each reconstructed P (i,∗) is non-NULL, it does not
imply that the values shared by (corrupted) D using different instances of AVSS-Weak-Share-Multiset
are points on a t degree polynomial. For this the players perform an additional check. Notice that
the lth component of each P (i,∗) together defines the polynomial f (∗,l)(x) = f (0,l)(x) + rf (1,l)(x) +
. . . + rnf (n,l)(x). Ideally, if D is honest, then each of the polynomials f (0,l)(x), f (1,l)(x), . . . , f (n,l)(x)
would be of degree t and hence the resultant polynomial f (∗,l)(x) would also be of degree t. However,
even if one of the (n + 1) polynomials is of degree more than t, then with very high probability, the
resultant polynomial f (∗,l)(x) will be also of degree more that t. The argument for this is same as
given in section 4.4 of [15]. Thus, once each P (i,∗) is publicly reconstructed, the players check whether
the lth component of each P (i,∗), together defines a t degree polynomial. If not, then (corrupted) D
has selected some more than degree t polynomial to share at least one value in the sets S0, S1, . . . , Sn.

Thus the above two verifications ensure that with very high probability, D has shared non-
NULL values and each value are points on t degree polynomials. If both the verifications pass then
P (i,1), P (i,2), . . . , P (i,n) are privately reconstructed towards player Pi, who will thus obtain the ith share
of each of the ` secrets. The reconstruction of AUVSS protocol can be achieved using On-line Error
Correcting Technique explained in [6, 10]. It is easy to see that our protocol AUVSS satisfies termi-
nation, correctness for honest D, secrecy, and Ultimate-Property given that AVSS-Weak-Share-MultiSet
satisfies termination, correctness and secrecy properties and RandomGenerator satisfies termination
and correctness properties. So we prove the correctness of AUVSS when D is corrupted.

Lemma 3 Protocol AUVSS satisfies correctness property even if D is corrupted.

Proof: Correctness 2: Here we prove that if every value in P (i,∗) for i = 1, . . . , n is some value from
F (i.e. non-NULL) and lth value from all sets P (i,∗) together define a degree-t univariate polynomial,
then with very high probability, all the secrets are non-NULL and shared using degree-t univariate
polynomials. First, by Theorem 2 of [23], our verification ensures that none of the values in sets
P (i,m) for all i ∈ {1, . . . , n} and m ∈ {0, . . . , n} are NULL with very high probability if every value
in P (i,∗) for i = 1, . . . , n is some value from F (i.e. non-NULL). So now assuming the values in sets
P (i,m) for all i ∈ {1, . . . , n} and m ∈ {0, . . . , n} are values from F, we prove that the sharing for the
secrets are done using degree-t polynomials. Recall that f (m,1)(x), . . . , f (m,L)(x) are the polynomials
corresponding to the L secrets in Sm. Essentially in the protocol, we check whether every polynomial
f (∗,l)(x) =

∑n
m=0 rmf (m,l)(x) for l = 1, . . . , L is a degree-t polynomial or not. Following the argument

given in [15], it can be easily proved that f (∗,l)(x) will be of degree more than t with very high
probability, if one of the polynomials f (0,l)(x), . . . , f (n,l)(x) is of degree more than t and r is a random
number generated after the completion of AVSS-Weak-Share-MultiSet’s. Hence if a corrupted D share
some secret using polynomial of degree more than t, he will be caught with very high probability. So if
D is not caught and if the AUVSS-Share protocol terminates, then from the properties of on line error
correction [10], same degree-t polynomials (as committed by D in AUVSS-Share) will be reconstructed
in AUVSS-Rec-Private and AUVSS-Rec-Public. 2
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AUVSS(D,P, S)

AUVSS-Share(D,P, S):

Sharing by D:

1. D first divides ` secrets equally into n sets, namely S1, . . . , Sn. So every set Sm contains d `
n
e secrets. If n

does not divide `, then add random numbers in the last set so that it contains d `
n
e secrets. D also selects d `

n
e

random numbers from F to put in a set S0.

2. For every set Sm, D selects L = d `
n
e degree-t univariate polynomials f (m,1)(x), . . . , f (m,L)(x) such that

f (m,l)(0) = s(m,l) for l = 1, . . . , L. Let P (i,m) is the set containing the values of the polynomials
f (m,1)(x), . . . , f (m,L)(x) evaluated at i. Thus P (i,m) = (f (m,1)(i), . . . , f (m,L)(i)) for every i ∈ {1, . . . , n} and
m ∈ {0, 1, . . . , n}.

3. D executes AVSS-Weak-Share-MultiSet(D,P, P (i,0), P (i,1), . . . , P (i,n)) for i = 1, . . . , n. We denote the ith in-
stance as AVSS-Weak-Share-MultiSeti.

Verification Step: Code for Pj

1. Upon completion of AVSS-Weak-Share-MultiSet(D,P, P (i,0), P (i,1), . . . , P (i,n)) for all i = 1 . . . , n, player Pj

participates in protocol RandomGenerator to generate a random number r.

2. Once r is generated player Pj locally computes the sharings of P (i,∗) =
∑n

m=0 rmP (i,m).

3. Pj participates in AVSS-Weak-Rec-Public(D,P, P (i,∗),P) to reconstruct P (i,∗) towards every player in P.
Carefully notice that for an honest D, the lth value from all sets P (i,∗) together will define f (∗,l)(x) =∑n

m=0 rmf (m,l)(x) which is a degree-t univariate polynomial.

4. Pj waits for the completion of all instances of AVSS-Weak-Rec-Public and checks if all the L values in P (i,∗) for
i = 1, . . . , n belongs to F and lth value from all sets P (i,∗) together defines a degree-t univariate polynomial.
If yes then Pj sets Happyj = 1. Otherwise Pj sets Happyj = 0.

Generation of t-1D-Sharing: Code for Pj:

1. If Happyj = 1, Pj participates in AVSS-Weak-Rec-Private(D,P, P (i,m), Pi) for m = 1, . . . , n to give the ith

share of all the secrets to Pi.

2. Pj waits for the termination AVSS-Weak-Rec-Private(D,P, P (j,m), Pj) for m = 1, . . . , n and then terminates.
Now eventually all the (honest) players will have shares of all the secrets in S.

AUVSS-Rec-Private(P, S, Pα): Private Reconstruction towards Pα:

1. A single secret s ∈ S is recovered by Pα in the following way: Code for Pj: Player Pj sends the jth share of s to
Pα. Upon receiving at least 2t + 1 t-consistent shares Pα interpolates a degree-t polynomial and takes the constant
term of it as the secret s. This method of reconstruction is called On-line error correction [6, 10].

AUVSS-Rec-Public(P, S,P): Public Reconstruction towards P:

1. Run AUVSS-Rec-Private(D,P, S, Pα) for every Pα ∈ P parallely.

Theorem 1 AUVSS-Share communicates O((`n4κ) + poly(n, κ)) bits and A-casts O(n5 log(n)) bits.
AUVSS-Rec-Private and AUVSS-Rec-Public communicate O(`nκ) and O(`n2κ) bits respectively.

Proof: Protocol AUVSS-Share calls n instances of AVSS-Weak-Share-MultiSet with n + 1 sets, each
containing d `

ne values. Hence by Lemma 2, it incurs a communication cost O(`n4κ) + poly(n, κ)
bits and A-casts of n5 log(n) bits. Generation of random number requires communication complexity
independent of secret size `. Again AUVSS-Share calls n instances of AVSS-Weak-Rec-Public with
P (i,∗) containing d `

ne values. This requires O(`n4κ) + poly(n, κ) bits of communication complexity.
Finally AUVSS-Share calls n2 instances of AVSS-Weak-Rec-Private each with d `

ne values. This requires
O(`n4κ) + poly(n, κ) bits of communication. 2

5 Generating t-2D-Sharing

In this section, we present a novel protocol that allows a dealer D (possibly corrupted) to generate
correct t-2D-sharing of D’s secrets in an asynchronous settings. The t-2D-sharing of a single secret s
is defined as follows:

Definition 3 (t-2D-sharing [3]) : We say that a value s is correctly t-2D-shared among the players
in P if there exists t degree polynomials f, f1, f2 . . . , fn with f(0) = s and for i = 1, . . . , n, f i(0) = f(i).

7



Moreover, every (honest) player Pi ∈ P holds a share si = f(i) of s, the polynomial f i(x) for sharing
si and a share-share sji = f j(i) of the share sj of every player Pj ∈ P. We denote t-2D-sharing of s
as [[s]]t.

If a secret s is t-2D-shared by a dealer D ∈ P (any player from P may perform the role of a dealer),
then we denote the sharing by [[s]]Dt . Notice that when a secret s is t-2D-shared, then s is t-1D-Shared
and it’s shares are also individually t-1D-shared. Now we present a protocol t-2D-Share which allows
D to generate t-2D-sharing of ` secrets. Protocol t-2D-Share works in the following way: Let the `
secrets of D is denoted by s1, . . . , s`. In addition to this, D selects a random value s0 ∈ F. Now D
selects (` + 1) degree-t univariate polynomials f0(x), . . . , f `(x) such that f l(0) = sl for l = 0, . . . , `.
D then t-1D-shares S0 = (f0(0), . . . , f `(0)) = (s0, . . . , s`) using AUVSS-Share protocol. In addition to
this, D also t-1D-shares S1, . . . , Sn, where Si = (f0(i), . . . , f `(i)) using AUVSS-Share. If D is honest
then the problem is solved because he will correctly t-1D-share each Si. However, a corrupted D
may share Si 6= Si. Now to check whether D has t-1D-shared Si and not Si(6= Si), the players
do the following. Once D has finished all the (n + 1) instance of AUVSS-Share, the players in P
jointly generate a random r. Then each player Pj locally compute the jth share s∗j of secret s∗ (where
s∗ = f∗(0) = f0(0) + rf1(0) + . . . + r`f `(0) = s0 + rs1 + . . . + r`s`) from the jth shares of s0, . . . , s`

(which he has already got from the instance of AUVSS-Share, used to t-1D-share S0 = (s0, . . . , s`)).
He also locally computes the jth share of s∗i , namely s∗ij from the jth shares of s0

i , . . . , s
`
i (which he has

already got from the instance of AUVSS-Share, used to t-1D-share Si = (s0
i , . . . , s

`
i)) for all i = 1, . . . , n.

Let s∗ji be the ith share of polynomial f∗j (x). Now ideally, if D is honest, then f∗(j) = f∗j (0) should
hold. So once the players locally compute all the required shares, they publicly reconstruct f∗(x) and
each polynomial f∗j (x). Once this is done, the players check whether f∗(j) = f∗j (0) holds for each j.
If so, then with very high probability, D has indeed t-1D-shared S0, S1, . . . , Sn. Now to complete the
t-2D-sharing of the secrets, every player Pi must know the polynomials used by D to t-1D-share the
shares of the secrets. For that the polynomials used by D for sharing ith shares of all the ` secrets are
reconstructed towards only player Pi.

t-2D-Share(D,P, S)

Sharing by D:

1. D first chooses ` + 1 degree-t random polynomials f0(x), f1(x), . . . , f `(x) such that f l(0) = sl for l = 0, . . . , `
and s0 ∈ F is a random value chosen by D. Let Si = (f0(i), . . . , f `(i)) = (s0

i , . . . , s
`
i) for i = 0, 1, . . . , n.

2. D now invokes AUVSS-Share(D,P, Si) for i = 0, . . . , n to generate t-1D-sharing of the secrets S0 and their
shares Si for i = 1, . . . , n. We call ith instance of AUVSS-Share as AUVSS-Sharei

Verification: Code for Pj

1. Upon completion of AUVSS-Sharei for all i = 0, . . . , n, player Pj participates in protocol RandomGenerator to
generate a random value r ∈ F. Notice that once player Pj completes all AUVSS-Sharei’s, he has already got
jth shares of the secrets in S0 which is Sj (for an honest D, Sj = Sj) and also jth share-shares of the shares
in Si for i = 1, . . . , n.

2. Once r is generated Pj locally computes jth shares of s∗i =
∑`

l=0 rlsl
i for i = 1, . . . , n and s∗ =

∑`
l=0 rlsl. Thus

Pj computes s∗ij =
∑`

l=0 rlsl
ij for i = 1, . . . , n and s∗j =

∑`
l=0 rlsl

j where sl
ij denotes the jth share-share of sl

i .

3. Pj participates in AUVSS-Rec-Public(D,P, s∗,P) and AUVSS-Rec-Public(D,P, s∗i ,P) for i = 1, . . . , n to recon-
struct s∗, s∗1, . . . , s

∗
n towards every player in P. Upon completion of all the instances of AUVSS-Rec-Public,

player Pj obtains reconstruction polynomials f∗(x) and f∗1 (x), . . . , f∗n(x) with f∗(0) = s∗ and f∗i (0) = s∗i .

Now he checks whether f∗(i)
?
= f∗i (0) = s∗i for i = 1, . . . , n. If this is not true, then D has not done proper

t-1D-sharing and hence Pj sets Verj = 0. Otherwise Pj sets Verj = 1.

Reconstruction of polynomials used for sharing ith shares of secrets towards Pi: Code for Pj:

1. If Verj = 1, then Pj participates in AUVSS-Rec-Private(D,P, sl
i, Pi) for l = 1, . . . , `. This ensures that upon

completion of AUVSS-Rec-Private(D,P, sl
i, Pi), player Pi will have f (i,l)(x) which was used by D to t-1D-share

sl
i, the ith share of secret sl.

2. Pj waits for the completion of AUVSS-Rec-Private(D,P, sl
j , Pj) for l = 1, . . . , `. As a part of AUVSS-Rec-

Private, Pj gets f (j,l)(x) which was used by D to t-1D-share sl
j , the jth share of secret sl and terminates.

Lemma 4 Protocol t-2D-Share generates correct t-2D-sharings of ` secrets.
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Proof: The termination of protocols AUVSS-Share(D,P, Si) for i = 0, . . . , n ensures proper genera-
tion of t-1D-sharing of the secrets S0 and supposedly their shares Si for i = 1, . . . , n. Let due to the
execution of AUVSS-Share(D,P, S0), player Pj has got Sj , the jth shares on S0. We have to ensure
that D has indeed done t-1D-sharing of shares Sj in the instance AUVSS-Sharej for all honest Pj . Let
D has done t-1D-sharing of shares Sj in protocol AUVSS-Sharej with Sj 6= Sj for an honest Pj . Then
with very high probability, f∗(j) 6= f∗j (0). The reason is that f∗(j) = s∗j =

∑`
l=0 rlsl

j will be different

from s∗j =
∑`

l=0 rlsl
j with probability of at least 1 − `

2κ ≈ 1 − 2−O(κ). In that case Veri will be 0 for
every honest Pi ∈ P. Hence if Veri = 1 for every honest Pi, then with very high probability D has
indeed done t-1D-sharing of shares Sj in the instance AUVSS-Sharej for all honest Pj . 2

Theorem 2 t-2D-Share communicates O(`n5κ) + poly(n, κ) bits and A-casts O(n6 log(n)) bits.

Proof: Protocol t-2D-Share calls n + 1 instances of AUVSS-Share with ` + 1 secrets each. Hence by
Theorem 1, it incurs a communication cost of O(`n5κ) + poly(n, κ) bits and A-cast of O(n6 log(n))
bits. The execution of RandomGenerator requires communication complexity independent of `. The
n + 1 instances of AUVSS-Rec-Public requires O(n3κ) bits of communication. Finally, `n instances of
AUVSS-Rec-Private requires O(`n2κ) bits of communication. 2

6 Preparation Phase

The goal of the preparation phase is to generate correct t-1D-sharings of cM +cR secret random triples
(ak, bk, ck), such that ck = akbk for k = 1, . . . , cM +cR. For this we first generate t-2D-sharing of secret
random doubles (ak, bk) for k = 1, . . . , cM + cR. Then we generate ck (i.e [ck]t) given ([[ak]]t, [[bk]]t).

6.1 Generating Secret Random t-2D-Sharing

In section 5, we have presented a protocol called t-2D-Share which allows a D to generate t-2D-sharing
of ` secrets. Here we present a protocol called Random-t-2D-Share which generates random t-2D-
sharing of ` secrets. The idea of the protocol is taken from [4]. Random-t-2D-Share asks individual
player to act as dealer and to t-2D-Share `

n−2t random secrets. Then we run ACS protocol to agree on
a core set of n−t players who have correctly t-2D-shared `

n−2t random secrets. Among the n−t players
in core-set at most t can be corrupted and hence the corresponding shared secrets are known to the
adversary and (possibly) non-random. But the remaining `

n−2t random secrets for each of the n− 2t
honest players are unknown to the adversary and completely random. Hence we use a Vandermonde
Matrix to extract `

n−2t ∗ (n − 2t) = ` t-2D-sharings out of `
n−2t ∗ (n − t) t-2D-sharings (done by the

players in core set). Next, we briefly recall Vandermonde Matrix and it’s ability to extract randomness.

Vandermonde Matrix and Randomness Extraction [15]: We express a matrix M ∈ F (r,c) with
r rows and c columns as M = {mi,j}j=1,...,c

i=1,...,r . We use MT to denote the transpose of M . For distinct
elements β1, . . . , βr from F, we use V (r,c) to denote the Vandermonde Matrix V (r,c) = {βj

i }j=0,...,c−1
i=1...,r .

Now we can use V (r,c) for randomness extraction. Let U = V (r,c)T
be the transpose of V (r,c) with r > c.

Now assume that (x1, . . . , xr) is generated by picking up c elements from F uniformly at random and
then picking the remaining r − c elements from F with an arbitrary distribution independent of the
first c elements. Now we compute (y1, . . . , yc) = U(x1, . . . , xr). (y1, . . . , yc) is an uniformly random
vector of length c extracted from (x1, . . . , xr). We now present our protocol Random-t-2D-Share.

Lemma 5 Protocol Random-t-2D-Share (eventually) terminates with very high probability for every
honest player. It outputs ` t-2D-sharings of random secret values. It communicates O(`n5κ) +
poly(n, κ) bits, A-Cast O(n7 log(n)) bits and requires one invocation to ACS.

6.2 Proving c = ab

Consider the following problem: let D∈ P holds ` pairs of values (a1, b1), . . . , (a`, b`) such that all
of them are correctly t-1D-shared among the players in P. Now D wants to correctly t-1D-share
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Random-t-2D-Share(P, `)

Code for Pi

1. Pi as a dealer invokes t-2D-Share(Pi,P, Si) to generate t-2D-sharing of L = `
n−2t

secrets in Si =

(s(i,1), . . . , s(i,L)).

2. For j = 1, . . . , n, Pi takes part in t-2D-Share(Pj ,P, Sj).

Agreement on a Core-Set: Code for Pi

1. Pi creates an accumulative set Ci = ∅.
2. Upon completing t-2D-Share(Pj ,P, Sj) with dealer Pj , Pi includes Pj in Ci.

3. Pi takes part in ACS with the accumulative set Ci as input.

Generation of Random t-2D-sharing: Code for Pi:

1. Pi waits until ACS completes with output C. For simple notation, assume that {P1, . . . , Pn−t} ∈ C.

2. For every k ∈ {1, . . . , L}, the t + 1 random values, unknown to the adversary, are defined as
r(1,k), . . . , r(n−2t,k) = U(s(1,k), . . . , s(n−t,k)), where U denotes a (n − 2t) × (n − t) transpose of a Van-
dermonde Matrix. So Pi locally computes shares of r(1,k), . . . , r(n−2t,k) for every k ∈ {1, . . . , L} by

computing (r
(1,k)
i , . . . , r

(n−2t,k)
i ) = U(s

(1,k)
i , . . . , s

(n−t,k)
i ) where (s

(1,k)
i , . . . , s

(n−t,k)
i ) denotes ith shares of

(s(1,k), . . . , s(n−t,k)). Now to generate t-2D-sharing of r(1,k), . . . , r(n−2t,k), players must compute t-1D-

sharing of (r
(1,k)
j , . . . , r

(n−2t,k)
j ) from the t-1D-sharing of (s

(1,k)
j , . . . , s

(n−t,k)
j ). Pi computes ith shares of

(r
(1,k)
j , . . . , r

(n−2t,k)
j ) by computing (r

(1,k)
ji , . . . , r

(n−2t,k)
ji ) = U(s

(1,k)
ji , . . . , s

(n−t,k)
ji ) where (s

(1,k)
ji , . . . , s

(n−t,k)
ji )

denotes ith shares of (s
(1,k)
j , . . . , s

(n−t,k)
j ).

c1, . . . , c` without leaking any additional information about al, bl and cl, such that every (honest)
player in P knows that cl = albl for l = 1, . . . , `. We propose a protocol ProveCeqAB to achieve
this task. The idea of the protocol is inspired from [14] which is as follows. We try to explain the
idea of the protocol with a single pair (a, b). Thus D has two values a and b such that they are
already t-1D-shared. Now he wants to generate t-1D-sharing of c, where c = ab, without leaking
any additional information about a, b and c. For this, he first selects a random non-zero β ∈ F and
generates t-1D-sharing of c, β and βb. All the players in P then jointly generate a random value r.
Then everybody computes the sharing of p = ra + β locally and then p is reconstructed towards
every player by public reconstruction (AUVSS-Rec-Public). Then again every player locally computes
the sharing of q = pb − bβ − rc = (ra + β)b − bβ − rc ([q]t = p[b]t − [bβ]t − r[c]t) and then q is
reconstructed towards every player by public reconstruction (AUVSS-Rec-Public). Player Pi believes
that c is correctly t-1D-shared by D with c = ab if q = 0.

The error probability of the protocol is negligible because of the random r which is jointly generated
by all the players after c, β and bβ is t-1D-shared. Specifically, a corrupted D might have shared
βb 6= βb or c 6= c but still q can be zero and this will happen iff βb + rc = βb + rc. However this
equation is satisfied by only one value of r. Since r is randomly generated, independent of D, the
probability that the equality will hold is 1

|F| which is negligibly small. The secrecy follows from the
fact that p and q are independent of a, b and c. Now we can extend the above idea parallely for each
of the ` pairs (a(l), b(l)).

Lemma 6 Protocol ProveCeqAB communicates O((`n4κ) + poly(n, κ)) bits. Protocol ProveCeqAB
terminates for an honest D with very high probability.

6.3 Generating Secret Random Triples; The Preparation Phase Main Protocol

We now present protocol PreparationPhase which generates cM + cR secret random triples (ak, bk, ck).
The protocol works as follows: First protocol Random-t-2D-Share is invoked to generate (ak, bk) for
k = 1, . . . , cM + cR. Then a player locally multiplies the shares of (ak and bk) and then t-1D-shares
the multiplied value with the proof that he indeed shared the correct value. To accomplish this, the
player invokes ProveCeqAB. Finally, an instance of ACS protocol will be executed to agree on a core set
of n − t players whose ProveCeqAB has terminated. Then we apply Lagranges interpolation formula
on the sharing done by the players in core set to obtain t-1D-sharings of ck. We explain the idea
with a single pair, say (a, b). Given that a and b are correctly t-2D-shared among the players in P,
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ProveCeqAB(D,P, [a1]t, . . . , [a
`]t, [b

1]t, . . . , [b
`]t)

Sharing by D

1. Code for D: D randomly selects ` non-zero random values B = (β1, . . . , β`) ∈ F`. Let C = (a1b1, . . . , a`b`) =
(c1, . . . , c`) and Λ = (b1β1, . . . , b`β`) = (d1, . . . , d`). D invokes AUVSS-Share(D,P,B), AUVSS-Share(D,P, C)
and AUVSS-Share(D,P, Λ) to generate t-1D-sharing of the values in B, C and Λ.

2. Code for Pi: Pi participates in the AUVSS-Share protocols initiated by D.

Verifying whether c = ab: Code for Pi

1. Pi waits for the termination of the three instances of AUVSS-Share (initiated by D).

2. Pi participates in protocol RandomGenerator to generate a random value r ∈ F.
3. Pi locally computes the shares of pl = ral+βl for l = 1, . . . , `. That is Pi computes pl

i = ral
i+βl

i for l = 1, . . . , `,
where al

i and βl
i are the ith shares of al and βl, respectively.

4. Pi participates in AUVSS-Rec-Public(D,P, (p1, . . . , p`),P) to reconstruct pl for l = 1, . . . , `. Notice that pl

does not leak any information on al.

5. Upon reconstruction of pl’s, Pi locally computes the shares of ql = plbl − dl − rcl for l = 1, . . . , `. That is Pi

computes ql
i = plbl

i − dl
i − rcl

i for l = 1, . . . , `.

6. Pi participates in AUVSS-Rec-Public(D,P, (q1, . . . , q`),P) to reconstruct ql for l = 1, . . . , `.

7. Upon reconstruction of ql’s, Pi locally checks whether ql ?
= 0 for l = 1, . . . , `. If yes then Pi terminates.

PreparationPhase(P)

Code for Pi

1. Pi participates in two instances of Random-t-2D-Share(P, cM +cR) to generate t-2D-sharings of a1, . . . , acM +cR

and b1, . . . , bcM +cR .

2. Upon termination of both the instances of Random-t-2D-Share, Pi as a dealer invokes
ProveCeqAB(Pi,P, [a1

i ]t, . . . , [a
cM +cR
i ]t, [b

1
i ]t, . . . , [b

cM+cR
i ]t) to generate t-1D-sharing of c1

i , . . . , c
cM +cR
i

where a1
i , . . . , a

cM +cR
i and b1

i , . . . , b
cM +cR
i denotes ith of a1, . . . , acM +cR and b1, . . . , bcM +cR

i respectively and
ck

i = ak
i bk

i is the ith share of ck.

3. Pi participates in ProveCeqAB(Pj ,P, [a1
j ]t, . . . , [a

cM+cR
j ]t, [b

1
j ]t, . . . , [b

cM +cR
j ]t) for j = 1, . . . , n.

Agreement on a Core-Set: Code for Pi

1. Pi creates an accumulative set Ci = ∅.
2. Upon completing ProveCeqAB(Pj ,P, [a1

j ]t, . . . , [a
cM +cR
j ]t, [b

1
j ]t, . . . , [b

cM+cR
j ]t) with dealer Pj , Pi includes Pj in

Ci.

3. Pi takes part in ACS with the accumulative set Ci as input.

Generation of t-1D-sharing of c1, . . . , ccM +cR : Code for Pi

1. Pi waits until ACS completes with output C. For simple notation, assume that {P1, . . . , Pn−t} ∈ C.

2. Pi locally computes share of [ck]t =
∑n−t

j=1 rj [c
k
j ]t, where (r1, . . . , rn−t) represents the recombination vector.

it implies that implicitly Pi holds ai and bi where ai and bi are the ith share of a and b respectively.
Now multiplying ai and bi, Pi obtains ith share ei = aibi of c where (e1, . . . , en) is 2t-1D-sharing of
c. This is not what we desire. We want Pi to hold ci such that ci is the ith share of t-1D-sharing
of c. For this, each player Pi t-1D-shares the value ei = aibi with the proof that ei is indeed the
multiplication of ai and bi (he invokes ProveCeqAB to accomplish this task). Now an instance of ACS
will be executed to agree on a core set of n− t players whose ProveCeqAB has been terminated. For
simplicity let P1, . . . , Pn−t are in core set. Then, all the players jointly hold [e1]t, . . . , [en−t]t. Since
e1, . . . , en−t are n−t points on a 2t degree polynomial, say C(x) whose constant term is c, by Lagrange
interpolation formula [13], c can be computed as c =

∑n−t
i=1 riei where ri =

∏n−t
j=1,j 6=i

x−j
i−j . The vector

(r1, . . . , rn−t) is called recombination vector [13] which is public and known to every player. So for
shorthand notation, we write c = Lagrange(e1, . . . , en−t) =

∑n−t
i=1 riei. Now all players compute

[c]t = Lagrange([e1]t, . . . , [en−t]t), to obtain the desired output. Notice that c is the constant term of
a 2t degree polynomial C(x). So n− t ≥ 2t + 1 t-1D-shared values [e1]t, . . . , [en−t]t) are enough to do
the computation.

Lemma 7 Protocol PreparationPhase (eventually) terminates with very high probability for every hon-
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InputPhase(P)

Secret Sharing: Code for Pi

1. Pi invokes AUVSS-Share(Pi,P, xi) to generate t-1D-sharings of his input xi.

2. For every j = 1, . . . , n, Pi takes part in AUVSS-Share(Pj ,P, xj) where Pj is dealer.

Agreement on a Core-Set: Code for Pi

1. Pi creates an accumulative set Ci = ∅.
2. Upon completing AUVSS-Share(Pj ,P, xj) with dealer Pj , Pi includes Pj in Ci.

3. Pi takes part in ACS with the accumulative set Ci as input.

4. Pi outputs the agreed core-set C and local shares of all inputs corresponding to players in C.

est player. It outputs t-1D-sharings of cM + cR random triples. It communicates O((cM + cR)n5κ) +
poly(n, κ) bits, A-Cast O(n7 log(n)) bits and requires three invocations to ACS.

7 Input Phase

In the InputPhase protocol every player Pi acts as a dealer in one AUVSS-Share protocol in order to
share his input xi. However the asynchrony of the network does not allow the players to wait for more
than n− t AUVSS-Share protocols to be completed. In order to agree on the players whose inputs will
be taken into to computation (of the circuit), one ACS protocol is run.

Lemma 8 Protocol InputPhase (eventually) terminates for every honest player. It outputs t-1D-
sharings of inputs of the players in agreed core set C. It communicates O(cIn

4κ) + poly(n, κ) bits,
A-Cast O(n6 log(n)) bits and requires one invocation to ACS.

8 Computation Phase

In the computation phase, the circuit is evaluated gate by gate, where all inputs and intermediate
values are shared among the players. As soon as a player holds his shares of the input values of a
gate, he joins the computation of the gate.

Due to the linearity of the secret-sharing scheme, linear gates can be computed locally simply by
applying the linear function to the shares, i.e. for any linear function f(, ), a sharing [c]t = [f(a, b)]t
is computed by letting every player Pi compute ci = f(ai, bi). With every random gate, one random
triple (from the preparation phase) is associated, whose first component is directly used as outcome
of the random gate. With every multiplication gate, one random triple (from the preparation phase)
is associated, which is used to compute a sharing of the product following the circuit randomization
technique of Beaver [1]. So the Circuit Randomization [1] allows to evaluate a multiplication gate at
the cost of two public reconstructions, given a preprocessed random triple. The trick is as follows: Let
z = xy. Now z can be expressed as z = ((x− a) + a)((y − b) + b) = (α + a)(β + b), where (a, b, c) is
a multiplication triple. So given ([a]t, [b]t, [c]t), [z]t can be computed as [z]t = αβ + α[b]t + β[a]t + [c]t
after reconstructing α and β publicly. The security follows from the fact that α and β are random
and independent of x and y for a random triple (a, b, c).

Lemma 9 Protocol ComputationPhase (eventually) terminates with very high probability for every
honest player. Given t-1D-sharing of cM + cR random triples, unknown to the adversary, it computes
the outputs of the circuit correctly and privately, while communicating O(n2(cM + cO)κ) bits (where
cM , and cO denote the number of multiplication and output gates in the circuit, respectively).

9 The New AMPC Protocol

Now our new AMPC protocol AMPC for evaluating function f which is represented by a circuit
containing cI , cL, cM , cR and cO input, linear, multiplication, random and output gates, is: (1). Invoke
PreparationPhase (2). Invoke InputPhase (3). Invoke ComputationPhase.
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ComputationPhase(P)

For every gate in the circuit, Code for Pi

1. Pi waits until he has shares of each of the inputs of the gate

2. Depending on the type of the gate, Pi proceeds as follows:

(a) Input Gate: [s]t = IGate([s]t): There is nothing to be done here.

(b) Linear Gate: [z]t = LGate([x]t, [y]t, . . .): Pi computes his share of z as zi = LGate(xi, yi, . . .).

(c) Multiplication Gate: [z]t = MGate([x]t, [y]t, ([a
k]t, [b

k]t, [c
k]t)): Let ([ak]t, [b

k]t, [c
k]t) be the triple

associated with the multiplication gate. Then Pi computes his share of α and β as αi = xi − ai

and βi = yi − bi respectively. Pi then participates in AUVSS-Rec-Public(P, α,P) and AUVSS-Rec-
Public(P, β,P) to reconstruct α and β towards every player. Upon completion of both the instances of
AUVSS-Rec-Public, Pi computes his share of z as zi = αβ + αbi + βai + ci.

(d) Random Gate: [r]t = RGate([ak]t, [b
k]t, [c

k]t): Let ([ak]t, [b
k]t, [c

k]t) be the triple associated with the
random gate. Pi computes his share of r as ri = ak

i .

(e) Output Gate: x = OGate([x]t): Pi participates in AUVSS-Rec-Public(P, x,P) and reconstructs x at
the termination of the protocol.

Theorem 3 For every coalition of up to t < n/3 bad players, the protocol AMPC securely computes
the circuit representing function f and terminates with very high probability for all the honest players.
AMPC communicates O(cIn

4 + cMn5 + cRn5 + cOn2)κ + poly(n, κ) bits, A-Cast O(n7 log(n)) bits and
requires 4 invocations to ACS.

10 Conclusion

In this paper, we have designed an AMPC protocol which provides information theoretic security
with negligible error probability of 2−O(κ), where κ is the error parameter. Our AMPC protocol
communicates O(n5κ) bits per multiplication. The only known AMPC protocol with n = 3t + 1
providing information theoretic security with negligible error probability is due to [8], which commu-
nicates Ω(n11κ4) bits and A-Casts Ω(n11κ2 log(n)) bits per multiplication. Thus our AMPC protocol
significantly improves the communication complexity of the AMPC protocol of [8]. For designing
our AMPC protocol, we introduce a new asynchronous primitive called AUVSS which is first of its
kind and is of independent interest. Recently in [16], the authors have designed an MPC protocol.
However, they have not considered fully asynchronous network. More specifically, they assume that
the network is synchronous up to some point in the protocol. After that, the protocol is continued
in a fully asynchronous setting. Under such an assumption, the authors in [16] have designed a MPC
protocol which communicates O(n2) field elements per multiplication. However, our MPC protocol
works in a network which is fully asynchronous from the beginning. It would be interesting to see
whether it is possible to reduce the communication complexity of the MPC protocol of [16] using the
techniques proposed in this paper.
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