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Abstract

It is proved that no non-quadratic Kasami bent is affine equivalent to Maiorana-

MacFarland type bent functions.

1 Introduction

The class of Kasami bent functions was characterized by Dillon and Dobbertin [7]. While
searching for non-normal bent functions Canteaut, Daum, Dobbertin and Leander [2]
pointed out that functions from this class are good candidates to be non-weakly nor-
mal bent functions. They found that there exists non-weakly normal bent functions on 14
variables within the class of Kasami bent functions. Dobbertin and Leander [9] provides a
survey of recent developments on bent functions including these results. The existence of
non-weakly normal bent functions imply that at least some of the Kasami type functions
are not affine equivalent to Maiorana-MacFarland (M) type bents, Partial-Spreads (PS)
type bents nor to N type bents constructed in [8]. However we have not found any general
proof dealing with this question. In this paper we prove that no non-quadratic Kasami
bent function is affine equivalent to Maiorana-MacFarland type bent functions. Our proof
depends on the techniques developed by Canteaut and Charpin in [1].

2 Preliminaries

Let F2 be the prime field of characteristic 2 and F2n be the extension field of degree n
over F2. The finite field F2n can be considered as an n dimensional vector space over F2.
The set containing all invertible elements of F2n is denoted by F

∗
2n . Any function from F2n

into F2 is called a Boolean function on n variables. The set of all Boolean functions on n
variables is denoted by Bn. For any set S the cardinality of S is denoted by |S|. For any
two functions f, g ∈ Bn, |{x : f(x) 6= g(x), x ∈ F2n}| is said to be the Hamming distance
between f and g and denoted by d(f, g). The trace function from F2n into F2 is defined by

Trn
1 (x) = x + x2 + x22

+ . . . + x2n−1
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for all x ∈ F2n . Given any x, y ∈ F2n , Trn
1 (xy) is an inner product of x and y. If n is fixed

then instead of Trn
1 we often write Tr. Any affine function on n variables can be written

as Trn
1 (λx) + ǫ for some λ ∈ F2n and ǫ ∈ F2. The function is said to be a linear function if

and only if ǫ = 0.
Suppose GL(n, F2) is the group of all invertible linear transformations on F2n . Two

Boolean functions f , g ∈ Bn are said to be affine equivalent if there exists a matrix
A ∈ GL(n, F2), b, λ ∈ F

n
2 and ǫ ∈ F2 such that g(x) = f(Ax + b) + Trn

1 (λx) + ǫ.

Definition 1 The Walsh transform f ∈ Bn at λ ∈ F2n is defined as follows:

Wf (λ) =
∑

x∈F2n

(−1)f(x)+Trn

1
(λx).

Next we define the nonlinearity of a Boolean function.

Definition 2 Nonlinearity of f ∈ Bn is defined as nl(f) = minl∈An
{d(f, l)}, where An is

the set of all affine functions on n variables.

The connection between Walsh spectrum and nonlinearity is given below

nl(f) = 2n−1 −
1

2
max
λ∈F2n

|Wf (λ)|.

Using Parseval’s identity ∑

λ∈F2n

Wf (λ)2 = 22n

it can be shown that |Wf (λ)| ≥ 2n/2 as a consequence nl(f) ≤ 2n−1 − 2
n

2
−1.

Definition 3 A Boolean function f ∈ Bn, where n is even is said to be bent if and only if
|Wf (λ)| = 2n/2 for all λ ∈ F2n.

For results on bent functions we refer to [1, 2, 3, 5, 6, 10, 11, 14]. For each even positive
integer n bent functions in Bn are the functions having the highest nonlinearity.

Dobbertin [8] introduced the notion of normality. We shall refer to t dimensional affine
subspace as t dimensional flat.

Definition 4 A bent function on n = 2m variables is said to be normal if there exists an
m dimensional flat over which it is constant.

Definition 5 A bent function on n = 2m variables is said to be weakly normal if there
exist an m dimensional flat over which it is affine.

The class of Kasami bent functions discovered by Dillon and Dobbertin [7] is important
since there exists bent functions within this class which are not weakly normal.

Definition 6 Suppose f(x) = Trn
1 (λxk) for all x ∈ F2n such that
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1. n is not divisible by 3.

2. k = 22d − 2d + 1 with gcd(n, d) = 1, 0 < d < n.

3. λ ∈ F
∗
2n does not belong to {x3 : x ∈ F2n}.

Then f is a bent function. Any bent function which can be written in this form is said
to be a Kasami bent function. If only condition (2) above holds then f is called Kasami
Boolean function.

A bent function f on F2m ×F2m , where m = n/2, is said to be a Maiorana-MacFarland
type bent function if and only if f can be written as f(x, y) = Trm

1 (xφ(y)) + g(y), where
φ is a permutation from F2m into F2m and g an arbitrary Boolean function on F2m . We
denote the class of all bent functions which are equivalent to Maiorana-MacFarland type
bent functions under affine transformations by M#, this class is also referred to as the
complete class of Maiorana-MacFarland type bent functions. The following proposition
stated in [2] clearly characterizes the class M#.

Proposition 1 A Boolean function f on F
n
2 is affine equivalent to a Maiorana-MacFarland

function if and only if there exists a subspace U of dimension m such that the function f
is affine on every coset of U .

We denote the set {0, 1, 2, . . . , n − 1} by Z/(n). Any positive integer z can be written
as z =

∑l
i=0 zi2

i, for some finite non-negative integer l. We shall refer to this as the
binary expansion of z. The Hamming weight of the binary expansion of z is denoted by
wt(z) =

∑l
i=0 zi, where the sum is over integers. We define a partial order “ � ” on the

set of positive integers as follows:
For any two integers z and z′, z � z′ if and only if zi ≤ z′i, for all i. If zi < z′i, for all i

then we write z ≺ z′.
For any integer x we define an integer [x]N ∈ {1, 2, 3, . . . , N − 1} such that,

[x]N ≡ x mod N.

In this paper, if nothing is mentioned [x] implies [x]2n−1. For an integer k we denote the
cyclotomic coset of k modulo (2n − 1) as C(k) which is defined as

C(k) = {k′ | k′ = [2jk], 0 ≤ j < n}.

The derivative of a function f ∈ Bn with respect to a ∈ F2n is defined as Daf(x) =
f(x + a) + f(x), for all x ∈ F2n . The second derivative at a, b ∈ F2n is DaDbf(x) =
f(x + a + b) + f(x + b) + f(x + a) + f(x) for all x ∈ F2n .

3 Main result

In this section we prove that non-quadratic Kasami bent functions are not affine equivalent
to Maiorana-MacFarland type bent functions. First we prove few lemmas and theorems
which lead to the main result.
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Lemma 1 For an integer d define the integer kd such that kd = [22d − 2d + 1]. For any
even positive integer n if 0 < d < n

2
then kn−d = 2rkd, for some integer r.

Proof : It is given that kd = [22d − 2d + 1]. Since 22d−1 + 22d−2 + 22d−3 + . . . + 2d is equal
to 22d − 2d, the kd can also be written as

kd = [22d−1 + 22d−2 + 22d−3 + . . . + 2d + 20].

Let us consider 0 < d < n
2
, i.e., 2d − 1 < n − 1. This implies

kd = 22d−1 + 22d−2 + 22d−3 + . . . + 2d + 20.

Then
kn−d = [22(n−d)−1 + 22(n−d)−2 + 22(n−d)−3 + . . . + 2n−d + 20].

Since

22(n−d)−1 + 22(n−d)−2 + . . . + 2n−d + 20 = (2n − 1)(2n−2d−1 + 2n−2d−2 + . . . + 20)

+ (2n−1 + 2n−2 + . . . + 2n−d + 2n−2d),

kn−d is given by

kn−d = 2n−1 + 2n−2 + . . . + 2n−d + 2n−2d

= 2n−2d(22d−1 + 22d−2 + . . . + 2d + 20)

= 2n−2dkd.

Hence Proved.

Lemma 2 Consider t, t′ ∈ Z/(2n) such that

t = 22d−1 + 22d−2 + 22d−3 + . . . + 2d + 20,

t′ = 22d−3 + 22d−4 + 22d−5 + . . . + 2d + 20,

where n is even and d is such that 3 < d < n
2
. Let us define

S = {x ∈ Z/(2n) | x ≺ t},

S ′ = {y ∈ Z/(2n) | y = [2jt′], 0 < j < n},

then S ∩ S ′ = φ.

Proof : We consider the following three cases:

Case I: 0 < j < d. We have:

[2jt′] = [22d−3+j + 22d−4+j + 22d−5+j + . . . + 2d+j + 2j].
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If (2d − 3 + j) ≤ n − 1, then

[2jt′] = 22d−3+j + 22d−4+j + 22d−5+j + . . . + 2d+j + 2j.

If (2d − 3 + j) > n − 1, then

22d−3+j + 22d−4+j + . . . + 2d+j + 2j = (2n − 1)(22d−n−3+j + 22d−n−4+j + . . . + 20)

+ 2n−1 + 2n−2 + . . . + 2d+j + 2j

+ 22d−n−3+j + 22d−n−4+j + . . . + 20.

Therefore

[2jt′] = 2n−1 + 2n−2 + 2n−3 + . . . + 2d+j + 2j + 22d−n−3+j + 22d−n−4+j + . . . + 20.

Since 2d − n − 3 < 0, we obtain (2d − n − 3 + j) < j.
Thus in the binary expansion of [2jt′] there exists at least one term 2i with 0 < i < d

having non-zero coefficient. This implies [2jt′] 6≺ t. Therefore for 0 < j < d there exists no
y ∈ S ′ which belongs to the set S.
Case II: d ≤ j ≤ n − d − 1. We have

[2jt′] = [22d−3+j + 22d−4+j + 22d−5+j + . . . + 2d+j + 2j].

Since d ≤ j ≤ n − d − 1, we obtain 2d ≤ d + j ≤ n − 1. Thus in the above expression
the term 2d+j corresponds to the exponent which is in the range [2d,n-1]. In this case the
elements of S ′ are greater than t therefore none of them belong to the set S.
Case III: n − d ≤ j < n. Let us first consider j = n − d. We have

2n+d−3 + 2n+d−4 + 2n+d−5 + . . . + 2n + 2n−d = (2n − 1)(2d−3 + 2d−4 + . . . + 20)

+ 2n−d + 2d−3 + 2d−4 + . . . + 20.

Therefore

[2n−dt′] = [2n+d−3 + 2n+d−4 + 2n+d−5 + . . . + 2n + 2n−d]

= 2n−d + 2d−3 + 2d−4 + . . . + 20.

Since 3 < d, we get 0 < d − 3 < d which implies [2n−dt′] 6≺ t. If n − d < j < n, suppose
that j = n − d + j′, where 0 < j′ < d, then

[2jt′] = [(2n−dt′)2j′ ]

= [2n−d+j′ + 2d−3+j′ + 2d−4+j′ + . . . + 2j′ ],

Proceeding in the same manner as case 1, it can be inferred that that the binary expansion
of [2jt′] contains at least one term 2i for 0 < i < d. Thus [2jt′] can not belong to the set
S.
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Lemma 3 Consider the element t′ ∈ Z/(2n) such that

t′ = 22d−3 + 22d−4 + 22d−5 + . . . + 2d + 20,

where n is even and d is such that 3 < d < n
2
. Then the cyclotomic coset containing t′ has

cardinality n.

Proof : Suppose if possible |C(t′)| < n, then there exists at least one 0 < j < n such that
[2jt′] = t′ i.e. t′ ∈ S ′. Moreover t′ ≺ t, in that case S ∩ S ′ 6= φ which is a contradiction by
Lemma 2. Therefore cardinality of C(t′) is exactly n.

The above three lemmas are used to prove the following:

Theorem 1 Let us consider the function in Bn of the form

f(x) = Tr(λxk),

where n is even and λ ∈ F
∗
2n. For k = 22d − 2d + 1, where 3 < d < n

2
, the function f is

such that there exists no non zero elements a, b, a 6= b in F2n such that DaDbf is constant
and equal to zero.

Proof : Let a 6= 0 and b 6= 0 in F2n be such that a 6= b. Then

DaDbf(x) = Tr[λ(xk + (x + a)k + (x + b)k + (x + a + b)k)]

=
∑

i≺k

Tr[λ(ak−i + bk−i + (a + b)k−i)xi].

When i = k − 2r, for some r, we have

ak−i + bk−i + (a + b)k−i = 0.

Then
DaDbf(x) =

∑

i∈I

Tr[λ(ak−i + bk−i + (a + b)k−i)xi],

where I = {i | i ≺ k, wt(k − i) 6= 1}. Let us denote

Q(x) =
∑

i∈I

Tr[λ(ak−i + bk−i + (a + b)k−i)xi].

Since Trace is a linear function, Q(x) can be expressed as

Q(x) = Tr(
∑

i∈I

qix
i), (1)

where qi = λ(ak−i + bk−i + (a + b)k−i). Let us take the partition of I such that each block
contain the elements of same cyclotomic coset. Then the expression of Q(x) can be written
as

Q(x) = Tr(
∑

j∈J

∑

i∈C′(j)

qix
i), (2)
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where J is the subset of I consists of the smallest elements of the cyclotomic cosets modulo
2n−1 of all i which appear as exponent of x in the function Q(x) in (1) and C ′(j) = I∩C(j),
C(j) is the cyclotomic coset of j modulo (2n − 1) . Since Tr(x) = Tr(x2r

) for any r, we
can expressed the polynomial Q(x) as:

Q(x) = Tr(
∑

j∈J

q′jx
j) =

∑

j∈J

Tr(q′jx
j), (3)

where q′j only depends on λ, a, b and C ′(j). Since j varies over the set containing the
smallest elements of cyclotomic cosets, Q(x) = 0 for all x, if and only if Tr(q′jx

j) = 0 for
all j ∈ J . It is to be noted that for any non zero j ∈ J such that the size of C(j) is equal
to n, the function Tr(q′jx

j) cannot be constant when q′j 6= 0. In order to prove required
result we have to show that there exists at least one q′j for j > 0 and |C(j)| = n, which
can not be equal to zero. It is given that k = 22d − 2d + 1, which can also be written as,

k = 22d−1 + 22d−2 + 22d−3 + . . . + 2d + 20.

If we choose l = 22d−3 + 22d−4 + 22d−5 + . . . + 2d + 20, we have clearly wt(l) = wt(k) − 2
(wt(k) > 3) and l ≺ k i.e. l ∈ J . Moreover from Lemma 2 and Lemma 3 it is obvious that
C ′(l) contains only single element l and the cardinality of C(l) is n, this implies

q′l = λ(ak−l + bk−l + (a + b)k−l)

= λ(a22d−1+22d−2

+ b22d−1+22d−2

+ (a + b)22d−1+22d−2

)

= λ(a22d−1

b22d−2

+ a22d−2

b22d−1

)

= λa22d−2

b22d−2

(a22d−2

+ b22d−2

)

= λa22d−2

b22d−2

(a + b)22d−2

.

For non zero value of λ, a and b, the right hand side of the above expression is zero if and
only if a = b. By hypothesis a 6= b, we conclude that q′l can not be zero. Hence proved.

For d = 3, k = 22d − 2d + 1 = 57, then we get the following result.

Theorem 2 Let us consider the function in Bn of the form

f(x) = Tr(λxk),

where λ ∈ F
∗
2n. For n ≥ 10, n even and k = 57 there exists no non zero elements a, b,

a 6= b in F2n such that DaDbf is equal to zero.

Proof : For n > 10 the theorem is direct consequence of [1, Lemma 3]. So we will consider
only the case n = 10. Let a 6= 0 and b 6= 0 in F2n be such that a 6= b. Then Proceeding in
the same manner as in theorem 1 we get

Q(x) = Tr(
∑

j∈J

∑

i∈C′(j)

qix
i),
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For n = 10 and k = 57 the set I is given by

I = {1, 8, 9, 16, 17, 24, 32, 33, 40, 48}.

Since Tr(x) = Tr(x2r

) for any r, we can expressed the polynomial Q(x) in this case as:
Q(x) = Tr[(q1 + q27

8 + q26

16 + q25

32)x] + Tr[q9x
9] + Tr[(q27

24 + q26

48)x
3] + Tr[q17x

17] + Tr[q33x
33] +

Tr[q27

40x
5].

Let there exists non zero elements a, b, a 6= b in F2n such that Q(x) = 0. This implies

q1 + q27

8 + q26

16 + q25

32 = 0 (4)

q9 = 0 (5)

q27

24 + q26

48 = 0 (6)

q17 = 0 (7)

q40 = 0. (8)

q33 may or may not be equal to zero because the cardinality of C(33) is not equal to
n = 10. In order to prove the required result we have to show that there exists at least
one coefficient which can not be equal to zero. Let us consider equation (12), we get

a48 + b48 + (a + b)48 = 0,

which is possible if and only if a = b i.e. for non zero a, b, a 6= b, q9 can not be zero.
Therefore Q(x) can not be equal to zero. Hence Proved.

Theorem 3 For n even and n ≥ 10 no non-quadratic Kasami Boolean function has second
derivative equal to zero.

Proof : From the definition given in [2], the function of the form

f(x) = Tr(λxk),

where k = 22d − 2d + 1 with gcd(n, d) = 1, 0 < d < n and λ ∈ F
∗
2n , is a Kasami Boolean

function. If d = 1 , the function f is quadratic, so we do not consider the case d = 1. For
d = 3 the result is direct consequence of Theorem 2 and when 3 < d < n

2
, the proof is

obvious by theorem 1. Therefore consider the case n
2

< d < n. It is given gcd(n, d) = 1,
this implies gcd(n, n − d) = 1 i.e. for each n

2
< d < n and gcd(n, d) = 1 there exists

n − d = d′ such that 0 < d′ < n
2
. Also from lemma 1

k = 22d − 2d + 1

= 2r(22d′ − 2d′ + 1)

= 2rk′ (say)
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Then

Tr(λxk) = Tr(λx2rk′

)

= Tr(λ′2r

x2rk′

), whereλ = λ′2r

∈ F
∗

2n

= Tr((λ′xk′

)2r

)

= Tr(λ′xk′

),

which is again the case of 0 < d < n
2
. Therefore in this case also f does not have any

second derivative equal to zero. Hence proved.

Corollary 1 There exists no non-quadratic Kasami bent function on n variables which is
affine equivalent to Maiorana-MacFarland type bent functions.

Proof : For n ≥ 10 it is obvious from Theorem 3 that for any non-quadratic Kasami bent
function f there exists no non zero elements a, b, a 6= b in F2n such that DaDbf is equal
to zero. For n = 8 the result can be obtained by direct computation. Then there does not
exist any 2-dimensional subspace hence n

2
-dimensional subspace U such that the function

f is affine on every coset of U . Therefore from Proposition 1 f does not belong to the
Maiorana-MacFarland class.
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