
Delegatable Anonymous Credentials

Mira Belenkiy1, Jan Camenisch2, Melissa Chase3, Markulf Kohlweiss4,
Anna Lysyanskaya5, and Hovav Shacham6

1 Microsoft, mibelenk@microsoft.com
2 IBM Zurich Research Laboratory, jca@zurich.ibm.com

3 Microsoft Research, melissac@microsoft.com
4 K.U. Leuven, mkohlwei@esat.kuleuven.be

5 Brown University, anna@cs.brown.edu
6 UC San Diego, hovav@cs.ucsd.edu

Abstract. We construct an efficient delegatable anonymous credential system. Users can anonymously and
unlinkably obtain credentials from any authority, delegate their credentials to other users, and prove possession
of a credential L levels away from the given authority. The size of the proof (and time to compute it) is O(Lk),
where k is the security parameter. The only other construction of delegatable anonymous credentials (Chase
and Lysyanskaya, Crypto 2006) relies on general non-interactive proofs for NP-complete languages of size
kΩ(2L).
We revise the entire approach to constructing anonymous credentials and identify randomizable zero-knowledge
proof of knowledge systems as the key building block. We formally define the notion of randomizable non-
interactive zero-knowledge proofs, and give the first construction by showing how to appropriately rerandomize
Groth and Sahai (Eurocrypt 2008) proofs. We show that such proof systems, in combination with an appropriate
authentication scheme and a few other protocols, allow us to construct delegatable anonymous credentials.
Finally, we instantiate these building blocks under appropriate assumptions about groups with bilinear maps.

1 Introduction

Access control is one of the most common problems in security. We frequently need to answer the
question: does the person requesting access to a resource possess the required credentials? A credential
typically consists of a certification chain rooted at some authority responsible for managing access to the
resource and ending at the public key of a user in question. The user presents the credential and demon-
strates that he knows the corresponding secret key. Sometimes, the trusted authority issues certificates
directly to each user (so the length of each certification chain is 1). More often, the authority delegates
responsibility. A system administrator allows several webmasters to use his server. A webmaster can
create several forums, with different moderators for each forum. Moderators approve some messages,
reject others, and even give favored users unlimited posting privileges. Imagine a world where a single
system administrator has to approve every single message posted on every single forum!

We want cryptographic credentials to follow the same delegation model as access control follows
in the real world. Our system administrator issues credentials of length 1 to his trusted webmasters.
Each webmaster can extend the credential chain by delegating a credential of length 2 to a moderator. In
general, a user with a credential of length L can issue a credential of length L+ 1.

A conventional signature scheme immediately allows for (non-anonymous) delegatable credentials:
Alice, who has a public signing key pkA and a certification chain of length L, can sign Bob’s public key
pkB , giving Bob a certification chain of length L+ 1.

The design of an anonymous delegatable credential scheme in which participants can obtain, dele-
gate and demonstrate possession of credential chains without revealing any additional information about
themselves, is a natural and desirable goal. The solution has, until now, proven elusive. Our main con-
tribution is the first fully delegatable anonymous credential scheme. The only known construction of
delegatable anonymous credentials, due to Chase and Lysyanskaya [CL06], needs kΩ(L) space to store a

certification chain of length L (for security parameter k), and therefore could not tolerate non-constant
L. Our solution is practical: all operations on chains of length L need Θ(kL) time and space.7

Why this is a challenging problem. There is no straightforward transformation of anonymous creden-
tial schemes without delegation [Cha85,Dam90,Bra99,LRSW99,CL01,CL04,BCKL08] into delegatable
schemes. Prior work on anonymous credentials [Lys02,CL02,CL04,BCKL08] used signature schemes
that lend themselves to the design of efficient protocols for (1) obtaining a signature on a committed
value; and (2) proving that a committed value has been signed. Suppose Oliver wants to issue a creden-
tial to Alice. They would run protocol (1) so that Alice obtained a signature on her secret key. Whenever
Alice wants to show her credential, she would give the verifier a fresh commitment to her secret key and
use protocol (2) to prove that the committed key has been signed.

The problem with this approach is that Alice gets Oliver’s signature, and the signature might reveal
his identity. Generalizing to credential chains, Alice would learn the identity of all intermediate signers.
Thus, the old approach does not yield itself to delegation and we must try something very different.

Our approach. Our insight is that instead of giving Alice his signature, Oliver gives Alice a non-
interactive proof-of-knowledge of the signature. The trick is to find a proof-system that would then let
Alice (1) delegate the credential by extending the proof and (2) rerandomize the proof every time she
shows (or extends it) to preserve her anonymity.

Let’s say Oliver is a credential authority with public key pkO and secret key skO; and let’s say Alice is
a user with secret key skA. Alice wants to obtain the credential directly from Oliver (so her certification
chain will be of length 1). Under the old approach, they would run a secure two-party protocol as a
result of which Alice obtains a signature σpkO

(skA) on skA, while Oliver gets no output. Under the new
approach, Alice’s output is (CA, πA), where CA is a commitment to her secret key skA, and πA is a
proof of knowledge of Oliver authenticating the contents of CA. Note that a symmetric authentication
scheme is sufficient because no one ever sees the authenticator; all verification is done on the proof of
knowledge. The symmetric key skO remains secret to Oliver; we create a “public” key CO that is simply
a commitment to skO.

How can Alice use this credential anonymously? If the underlying proof system is malleable in just
the right way, then given (CA, πA) and the opening to CA, Alice can compute (C ′A, π

′
A) such that C ′A

is another commitment to her skA that she can successfully open, while π′A is a proof of knowledge of
Oliver authenticating the contents of C ′A. Malleability is usually considered a bug rather than a feature.
But in combination with the correct extraction properties, we still manage to guarantee that these ran-
domizable proofs give us a useful building block for the construction. The bottom line is that (C ′A, π

′
A)

should not be linkable to (CA, πA), and also it should not be possible to obtain such a tuple without
Oliver’s assistance.

How does Alice delegate her credential to Bob? Alice and Bob can run a secure protocol as a result
of which Bob obtains (CB, πB) where CB is a commitment to Bob’s secret key skB and πB is a proof
of knowledge of an authenticator issued by the owner of C ′A on the contents of CB . Now, essentially,
the set of values (C ′A,CB, π

′
A, πB) together indicate that the owner of C ′A got a credential from Oliver

and delegated to the owner of CB , and so it constitutes a proof of possession of a certification chain.
Moreover, it hides the identity of the delegator Alice! Now Bob can, in turn, use the randomization
properties of the underlying proof system to randomize this set of values so that it becomes unlinkable
to his original pseudonym CB; he can also, in turn, delegate to Carol.

It may be somewhat counter-intuitive that adversaries cannot take advantage of the malleable proofs
to forge proofs of possessing the certification chain. The explanation is that we use a perfectly extractable
proof system. This lets us extract a certification chain from any proof, no matter how randomized. As

7 Barak [Bar01] introduced a somewhat related notion of delegatable signatures which allows delegation without an exponen-
tial growth. However, his construction relies on general NIZK and CS proofs, and thus is purely theoretical, and it is not
clear how to use such signatures to build a delegatable credential system that would satisfy our definitions.

a result, we can use an adversary that fakes a proof to attack the unforgeability properties of the un-
derlying authentication scheme. Our solution also addresses some important details such as (1) how to
make it impossible for adversarial users to mix and match pieces of different certification chains to create
unauthorized certification chains; (2) how to define and construct an authentication scheme that remains
secure even when an adversary can ask an honest user to authenticate chosen messages and obtain au-
thentication tokens on the user’s secret key. (i.e. the adversary gets a signature on the user’s secret key,
but does not learn the secret key itself).

Attributes. In many contexts, we want the ability to express why a credential has been delegated. For
example, our system administrator may want to give each webmaster access only to his own website.
Webmasters may want to give some moderators the right to add new users to the forum, while other
moderators would only have the right to approve/reject messages.

Why anonymity? The system administrator clearly needs to hold webmasters accountable if they
crash the server. However, moderators and forum users may want to be able to act anonymously in order
to foster a free and lively exchange of ideas.

Our delegatable anonymous credential system lets users add human-readable attributes to each cre-
dential. Oliver can give Alice a level 1 credential with attribute “webmaster of Crypto Forum.” Alice
can then delegate her credential to Bob with attribute “moderator of Crypto Forum.” As a result, Bob
can log on to the server anonymously and prove that the “webmaster of the Crypto Forum” made him
the “moderator of the Crypto Forum.” Our construction lets users add as many attributes as they want to
each credential, allowing for the flexibility and expressibility that we see in modern (non-anonymous)
access control systems. In some cases, the issuer may want to explicitly add the user’s identity to the
attribute to create accountability. Or, he might want to include an expiration date for the credential, or
other conditions controlling it’s use.

Our contribution. We (1) define and construct extractable and randomizable proofs of knowledge of a
witness to a certain class of relations based on the recent proof system for pairing product equations
due to Groth and Sahai [GS08]; and (2) define and construct a delegatable anonymous credential system
based on this and other building blocks. Our construction is efficient whenever the building blocks can be
realized efficiently, and we give efficient instantiations of the building blocks under appropriate assump-
tions about bilinear groups. (We introduce two new assumptions, but we also justify these assumptions
by providing proofs in the generic group model.)

Organization. In Section 2 we define a delegatable anonymous credential system. In Section 3 we define
an appropriate authentication system and the appropriate zero-knowledge proof of knowledge system.
We show how these building blocks can be instantiated under appropriate assumptions about groups
with bilinear maps. In Section 4 we give a construction of anonymous delegatable credentials based on
these building blocks.

2 Definition of Delegatable Credentials

An anonymous delegatable credential system has only one type of participant: users. Any user O can
become an originator of a credential; all he needs to do is publish one of his pseudonyms NymO as its
public key to act as a credential authority.8 Each user will have one secret key, but many different pseudo-
nyms corresponding to that secret key. Thus a userA with secret key skA can be known to authorityO as
Nym(O)

A and to userB as Nym(B)
A . If authorityO issues userA a credential for Nym(O)

A , then userA can
prove to user B that Nym(B)

A has a credential from authority O. We say that credentials received directly
from the authority are level 1 credentials or basic credentials, credentials that have been delegated once
are level 2 credentials, and so on. Thus user A can also delegate its credential to user B, and user B can

8 We assume some kind of PKI for storing the authorities’ public keys, but this is outside the scope of this paper.

then prove that he has a level 2 credential from authority O. A delegatable credential system consists of
the following algorithms:

Setup(1k) outputs the trusted public parameters of the system, paramsDC .
Keygen(paramsDC) creates the secret key of a party in the system.
Nymgen(paramsDC , sk). On each run, the algorithm outputs a new pseudonym Nym and auxiliary info

aux (Nym) for secret key sk .9

Issue(paramsDC ,NymO, sk I ,NymI , aux (NymI), cred ,NymU , L)
↔ Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU),NymI , L) are the interactive algorithms
that let a user I issue a level L credential to a user U . The pseudonym NymO is the authority’s
public key, sk I is the issuers’s secret key, NymI is the issuer’s pseudonym with auxiliary information
aux (NymI), cred is the issuer’s level L credential rooted at NymO, skU is the user’s secret key, and
NymU is the user’s pseudonym with auxiliary information aux (NymU). If NymI = NymO, then
the issuer is the authority responsible for this credential, so L = 0 and cred = ε. The issuer runs
Issue with these inputs and gets no output, and he user runs Obtain and gets a credential credU .

CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L). Takes as input a level L credential cred
from authority NymO, outputs a value credproof .

CredVerify(paramsDC ,NymO, credproof ,Nym, L). Outputs accept if credproof is a valid proof that
the owner of pseudonym Nym possesses a level L credential with root NymO and reject otherwise.

We say that a function ν : Z→ R is negligible if, for all integers c, there exists an integerK such that
∀k > K, |ν(k)| < 1/kc. We use the standard GMR [GMR88] notation to describe probability spaces.

We formally define a secure delegatable credential system in the full version.Intuitively, the algo-
rithms Setup,Keygen,Nymgen,NymProve,NymVerify,VerifyAux, Issue,Obtain,CredProve, and CredVerify
constitute a secure anonymous delegatable credential scheme if the following properties hold:

Correctness. We say that a credential cred is a proper credential, if for all of the user’s pseudonyms,
CredProve always creates a proof that CredVerify accepts.The delegatable credential system is correct if
an honest user and an honest issuer can run Obtain↔ Issue and the honest user gets a proper credential.
(The correctness property requires that Issue and CredProve check that their inputs are valid and that the
credentials they delegate or prove are proper. This is necessary to avoid selective failure attacks in which
users are given credentials that work for some identities/pseudonyms, but not all.)

Anonymity Intuitively, anonymity requires that the adversary’s interactions with the honest parties in
the real game should be indistinguishable from some ideal game in which pseudonyms, credentials and
proofs are truly anonymous.

Specifically, there has to exists a simulator (SimSetup, SimProve, SimObtain, SimIssue) such that
SimSetup produces parameters indistinguishable from those output by Setup, along with some simula-
tion trapdoor sim . Under these parameters we require that the following properties hold when SimProve,
SimObtain, SimIssue and even the distinguishers are given sim:

– When generated using the parameters output by SimSetup, Nym is distributed independently of sk .
– No distinguisher can tell if it is interacting with Issue run by an honest party with a valid credential, or

with SimIssue which is not given the credential and the issuer’s secret key, but only told the authority,
length of the credential chain, and the pseudonyms of the issuer and user.

– No distinguisher can tell if it is interacting with Obtain run by an honest party with secret sk , or with
SimObtain that is only given the authority, length of the credential chain, and the pseudonyms of the
issuer and user (but not sk).

9 We assume the existence of a predicate VerifyAux that accepts iff Nym is a valid pseudonym for (sk , aux (Nym))
and of a protocol NymProve ↔ NymVerify that is a zero-knowledge proof of knowledge of sk , aux (Nym) such that
VerifyAux(paramsDC ,Nym, sk , aux (Nym)) = accept.

– The simulator SimProve can output a fake credential proof credproof that cannot be distinguished
from a real credential proof, even when SimProve is only told the authority, length of the credential
chain, and the pseudonym of the user (it is not given the user’s secret key, or his private credentials).

Remark 1. Our definition, somewhat in the spirit of the composable zero-knowledge definition given in
[GS08], requires that each individual protocol (SimIssue,SimObtain,SimProve), when run on a single
adversarially chosen input produces output indistinguishable from the corresponding real protocol, even
when the adversary is given the simulation trapdoor. A simple hybrid argument shows that this implies
the more complex but weaker definition in which the adversary only controls the public inputs to the
algorithm. This stronger definition is much easier to work with as we need only consider one protocol at
a time, and only a single execution of each protocol.

Unforgeability. To define unforgeability we will have all of the honest parties controlled by a single
oracle, and we will keep track of all honestly issued credentials. Then we will require that an adversary
given access to this oracle should have only negligible probability of outputting a forged credential.

For unforgeability of credentials to make sense, we have to define it in a setting where pseudonyms
are completely binding, i.e. for each pseudonym there is exactly one valid corresponding secret key.
Thus, there must exist some (potentially exponential-time) extraction algorithm which takes as input a
pseudonym and outputs the corresponding secret key. A forgery of a level L credential occurs when the
adversary can “prove” that Nym has a level L credential when such a credential was never issued to any
pseudonym owned by skL = Extract(Nym). Our definition is slightly stronger, in that we require an
efficient algorithm Extract that produces F (skL) for some bijection F , and so we get F -extraction.

Suppose we can extract an entire chain of secret keys from the credential proof. Then we can say a
forgery occurs when the adversary produces a proof of a level L credential with authority O from which
we extract sk1, . . . , skL−1, skL such that a level L credential rooted at O was never delegated by skL−1

to skL. Thus, we are not concerned with exactly which set sk2, . . . , skL−2 are extracted. In practical
terms, this means that once skL−1 has delegated a level L credential from authority O to skL, we don’t
care if the adversary can forge credentials with different credential chains as long as they have the same
level, are from the same authority, and are for the same skL. (Obviously, we can also consider functions
of the secret keys F (ski) in this discussion).

Of course, this only makes sense if skL−1 belongs to an honest user; otherwise we have no way
of knowing what credentials he issued. But what if the owner of skL−1 is adversarial and the owner
skL−2 is honest? Then the owner of skL should be able to prove possession of a credential if and only if
skL−2 delegated a level L− 1 credential rooted at authority O to user skL−1. Generalizing this idea, our
definition says a forgery is successful if we extract sk0, . . . , skL such that there is a prefix skO, . . . , sk i
where sk i−1 is honest, but sk i−1 never issued a level i credential from root O to sk i.

Let F be an efficiently computable bijection and a one-way function. There exists a PPT ExtSetup,
and a deterministic Extract with five properties:

– The parameters output by ExtSetup are distributed identically to those output by Setup.
– Under these parameters, pseudonyms are perfectly binding, i.e. for any Nym , there exists at most

one sk for which there exists aux (Nym) such that VerifyAux accepts.
– Given an honestly generated level L credential proof, Extract can always extract the correct chain of
L identities. I.e. if the credential is formed by using sk0 to delegate to sk1 which delegates to sk2

and so on until skL, Extract will produce (f0, . . . , fL) = (F (sk0), . . . , F (skL)). Note that this must
hold for level 0 as well: for any valid pseudonym NymO, Extract will produce f0 = F (skO) where
skO corresponds to NymO.

– Given an adversarially generated level L credential proof credproof from authority NymO for the
pseudonym Nym , Extract will always produce either the special symbol ⊥ or f0, . . . fL such that
NymO is a pseudonym for F−1(f0) and Nym is a pseudonym for F−1(fL).

– No adversary can output a valid credential proof from which an unauthorized chain of identities is
extracted:

Pr[(paramsDC , td)← ExtSetup(1k);

(credproof ,Nym,NymO, L),← AO(paramsDC ,·,·)(paramsDC , td);
(f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO, L) :
CredVerify(paramsDC ,NymO, credproof ,Nym, L) = accept ∧
(∃i such that (f0, i, fi−1, fi) 6∈ ValidCredentialChains ∧ fi−1 ∈ HonestUsers)] ≤ ν(k)

where O(paramsDC , command , input) describes all possible ways for the adversary A to interact with
the delegatable credentials system: A can ask the oracle to add new honest users; the oracle generates
sk ← Keygen(paramsDC), stores it in the list HonestUsers, and returns F (sk) as the handle.10 A can ask
for new pseudonyms for existing honest users, referenced by F (sk), and he can provide a credential and
ask an honest user to generate the corresponding proof. Finally, he can run the Issue↔ Obtain protocols
on credentials of its choice, either between themselves, or with an adversarial issuer or obtainer. In this
case, we need to keep track of which credentials are being issued, so that we will be able to identify a
forgery. To do this, we use the Extract algorithm to extract and store the chain of identities behind each
credential being issued on the list ValidCredentialChains. For details, see the full version.

Remark 2. We let the adversary track honest users’ credentials and pseudonyms (but, of course, not their
secret keys). Our definition is strictly stronger than one that uses a general oracle that does not reveal the
credentials of honest users to the adversary. This approach results in simpler definition and analysis.

3 Building Blocks

In sections 3.1 and 3.3 we define two new concepts: certification-secure authentication schemes and ran-
domizable proofs. In Sections 3.2 and 3.4 we recap existing work about non-interactive proofs and define
important notation. Finally, in section 3.5, we give new efficient protocols for randomizable proofs of an
authenticator. As part of one of these protocols, we give an efficient two party protocol for generating a
Boneh-Boyen signature[BB04] on a committed message, which may be of independent interest.

Bilinear Maps and Assumptions We use standard notation for groups with a computable bilinear map
e : G1 × G2 → GT . See, e.g., [BLS04,GPS06]. The security of our scheme is based on strengthened
versions of the SDH [BB04] and CDH assumptions. See full version for a more detailed discussion.

Definition 1 (HSDH [BW07]). On input g, gx, u ∈ G1, h, hx ∈ G2 and {g1/(x+c`), hc` , uc`}`=1...q, it is
computationally infeasible to output a new tuple (g1/(x+c), hc, uc).

Definition 2 (BB-HSDH). Let c1 . . . cq ← Zp. On input g, gx, u ∈ G1, h, hx ∈ G2 and the tuple
{g1/(x+c`), c`}`=1...q, it is computationally infeasible to output a new tuple (g1/(x+c), hc, uc).

Definition 3 (BB-CDH). On input g, gx, gy ∈ G1, h, hx ∈ G2, c1, . . . , cq ← Zq and g
1

x+c1 , . . . , g
1

x+cq ,
it is computationally infeasible to output a gxy.

We give a generic group proof for BB-HSDH in the full version.It is easy to see that the BB-HSDH
implies HSDH, thus our proof also establishes generic group security for HSDH. We show that SDH
implies BB-CDH (see full version). Since SDH is secure in the generic group model, so is BB-CDH.

Groth-Sahai proofs use either the DLIN or SXDH assumption [GS08]. (See full version.)
10 Since we are assuming that the adversary is given the extraction trapdoor td , he will be able to extract F (sk) from any

pseudonym for this user. Note that F (sk) must not reveal sk .

3.1 F -Unforgeable Certification Secure Message Authentication Scheme

A message authentication scheme is similar to a signature scheme. However, there is no public-key, and a
user uses the secret key to verify that a message has been authenticated. We need an authentication scheme
for a vector of messages m. This is reminiscent of signatures on blocks of messages [CL02]. In the
common parameters model such a scheme consists of four protocols: AuthSetup(1k) outputs common
parameters paramsA. AuthKg(paramsA) outputs a secret key sk . Auth(paramsA, sk ,m) outputs an
authentication tag auth that authenticates a vector of messages m. VerifyAuth(paramsA, sk ,m, auth)
accepts if auth is a proper authenticator for m under key sk .

Security. Just like a signature scheme, an authentication scheme must be complete and unforgeable.
However, we need to strengthen the unforgeability property to fit our application: F -Unforgeability in-
troduced by Belenkiy et al. [BCKL08] requires that for some well defined bijection F , no adversary can
output (F (m), auth) without first getting an authenticator on m. We need this stronger definition be-
cause in our construction of delegatable credentials, we are only able to extract a function of the message.
We write F (m) = F (m1, . . . ,mn) to denote (F (m1), . . . , F (mn)). In addition, we require the authen-
tication scheme to be unforgeable even if the adversary learns a signature on the challenge secret-key.
This is because an adversary in a delegatable credentials system might give a user a credential – i.e., sign
the user’s secret-key. We call this certification security.

An authentication scheme is F -unforgeable and certification secure if for all ppt. adversaries A:

Pr[paramsA ← AuthSetup(1k); sk ← AuthKg(paramsA);

(y, auth)← AOAuth(paramsA,sk ,.),OCertify(paramsA,.,(sk ,.,...))(paramsA, F (sk)) :

VerifyAuth(paramsA, sk , F
−1(y), auth) = 1 ∧ F−1(y) /∈ QAuth] ≤ ν(k) ,

where the oracle OAuth(paramsA, sk ,m) outputs Auth(paramsA, sk ,m) and stores m on QAuth, and
oracle OCertify(paramsA, sk

∗, (sk ,m2, . . . ,mn)) outputs Auth(paramsA, sk
∗, (sk ,m2, . . . ,mn).

Construction. Our authentication scheme is similar to the Boneh-Boyen weak signature scheme [BB04],
where Signsk (m) = g1/(sk+m). Belenkiy et al. showed that the Boneh-Boyen signature scheme is F -
unforgeable for the bijection F (m) = (gm, um), and that the Groth-Sahai proof system can be used to
prove knowledge of such a signature. However, in the Boneh-Boyen construction certification-security
does not hold because Signsk (m) = Signm(sk). In addition, we also need to sign a vector of messages.

We use the Boneh-Boyen signature scheme as a building block. For example, to sign message
(m1,m2), we choose random keys K∗,K1,K2 and compute (Signsk (K∗),SignK∗(K1),SignK∗(K2),
SignK1

(m1),SignK2
(m2), F (K∗), F (K1), F (K2)). At a high level, this complex structure eliminates

any symmetries between Authsk (m) and Authm(sk). More formally:

AuthSetup(1k) generates groups G1, G2, GT of prime order p (where |p| is proportional to k), bilinear
map e : G1 × G2 → GT , and group elements g, u, u∗, u1, . . . , un ∈ G1 and h ∈ G2. It outputs
paramsA = (G1, G2, GT , e, p, g, u, u

∗, u1, . . . , un, h). Note that the element u is only needed to
define F ; it is not used in creating the authenticator.

AuthKg(paramsA) outputs a random sk ← Zp.
Auth(paramsA, sk , (m1, . . .mn)) chooses random K∗,K1, . . .Kn ← Zp. It outputs

auth = (g
1

sk+K∗ , hK
∗
, u∗K

∗
, {g

1
K∗+Ki , hKi , uKi

i , g
1

Ki+mi }1≤i≤n) .
VerifyAuth(paramsA, sk , (m1, . . . ,mn), auth). Parse auth = (A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n).

Verify that e(A∗, hskB∗) = e(g, h), and that e(u∗, B∗) = e(C∗, h). For 1 ≤ i ≤ n verify that
e(Ai, B∗Bi) = e(g, h), that e(ui, Bi) = e(Ci, h), and that e(Di, Bih

mi) = e(g, h). Accept if and
only if all verifications succeed.

Theorem 1. The message authentication scheme above is F -unforgeable and certification secure for
F (mi) = (hmi , umi) under the BB-HSDH and BB-CDH assumptions.
See full version for proof. The signature scheme obtained by setting pk = hsk may be of independent
interest.

3.2 Composable Non-Interactive Proofs

We review composable non-interactive proof systems. Let R(·, ·) be any polynomial-time computable
relation. A non-interactive proof system for a NP language allows a prover to convince a verifier about
the truth of the statement ∃x : R(s, x) using witness x. Non-interactive proof systems use a common ref-
erence string params as output by Setup(1k) that is common input to both the π ← Prove(params, s, x)
and accept/reject ← VerifyProof(params, x, π) algorithms. This notion can be generalized for a rela-
tions R(params, s, x) parameterized by params .

Informally, zero-knowledge captures the notion that a verifier learns nothing from the proof but the
truth of the statement. Witness indistinguishability is a weaker notion that guarantees that the verifier
learns nothing about which witness was used in the proof.

In a composable (under the definition of Groth and Sahai [GS08]) non-interactive witness indistin-
guishable proof system there exists an algorithm SimSetup that outputs params together with a trapdoor
sim , such that (1) params output by SimSetup is indistinguishable from those output by Setup; (2) the
output of Prove using these parameters is perfectly witness-indistinguishable (in other words, even if
there are two witnesses to a statement, they induce identical distributions on the proofs). Composable
non-interactive zero-knowledge further means that there exists an algorithm SimProve that outputs a
simulated proof using sim and the

output of SimProve is distributed identically to that of Prove when given the simulated parameters.
The big advantage of a composable definition is that it is fairly simple and easy to work with, and yet it
still implies the standard multi-theorem definitions.

Composable proofs about commitments. The prover and verifier frequently get some set of commitments
(C1, . . . , Cn) as common input. The prover wants to show that a statement s = (C1, . . . , Cn,Condition)
holds. The witness to the statement is (x1, open1, . . . , xn, openn, y), where (xi, openi) is the opening
of commitment Ci, while y is some value that has nothing to do with the commitments. The relation is
R = {(params, s, x)|C1 = Commit(params, x1, open1) ∧ . . . ∧ Cn = Commit(params, xn, openn)
∧ Condition(params, x1, . . . , xn, y)}.

We can make two transformations on composeable proofs about commitments. The concatentation
of two proofs π and π′ is a proof π◦π′ that combines all the commitments and proves the AND of the two
conditions. If a proof π proves a condition about a set of commitments C, a projection π′ = π ◦ S proves
a condition about the contents of the subset C \ S of commitments. A projected proof π′ is obtained by
removing the commitments in S from the statement and appending them to the proof.

3.3 Randomizable non-interactive proofs.

We say that a proof system about commitments is randomizable if there exists an efficient algorithm
RandProof that on input (C1, . . . , Cn), (open ′1, . . . , open

′
n) and π outputs a randomized proof π′ and

commitments (C ′1, . . . , C
′
n) such that, informally, the randomized proof π′ is indistinguishable from a

freshly generated proof with fresh commitments.
More formally, let Commit(paramsPK , ·, ·) : X × Y 7→ {0, 1}∗ be a non-interactive commitment

scheme. X denotes the input domain of the commitment, and Y denotes the domain for the randomness
(both may depend on params). We require that Y is an efficiently samplable group with efficiently com-
putable ’0’ element and ’+’ and ’-’ operations. Let Setup, Prove, VerifyProof constitute a composable
witness indistinguishable (or zero-knowledge) proof system as defined above.

We consider two experiments. In both experiments we are given params chosen by SimSetup(1k),
and also (x1, . . . , xn), y, (open1, . . . , openn), (open ′1, . . . , open

′
n), Condition, and π such that (a) the

Condition(params, x1, . . . , xn, y) accepts, and (b) π is a valid proof (accepted by VerifyProof) for the
statement (C1, . . . , Cn,Condition). Let Ci = Commit(params, xi, openi) and C ′i = Commit(params,
xi, openi + open ′i).

1. Experiment: Proof π′1 is computed by Prove on input the commitments {C ′i}, their openings openi+
open ′i, and the values (x1, . . . , xn, y).

2. Experiment: Proof π′2 is created by RandProof(params, (C1, . . . , Cn), (open ′1, . . . , open
′
n), π).

We say that a proof system is randomizable, if with all but negligible probability over the choice of
params , for all π, (x1, . . . , xn), y, (open1, . . . , openn), (open ′1, . . . , open

′
n), and Condition that satisfy

(a) and (b) above, π′1 is distributed identically to π′2 even given π, (x1, . . . , xn), y, (open1, . . . , openn),
(open ′1, . . . , open

′
n).

We say that RandProof is a correct rerandomization algorithm if given parameters params chosen
by the real Setup, whenever a proof π passes the verification algorithm, then it’s rerandomization will
pass the verification algorithm. Note that this must hold with high probability by the indistinguishability
of the two setups and the above property. However, here we require this to hold with probability 1.

Summary of Groth-Sahai proofs. Groth and Sahai [GS08] give a composeable witness-indistinguishable
proof system system that lets us efficiently prove statements in the context of groups with bilinear maps.
Let paramsBM = (p,G1, G2, GT , e, g, h) be the setup for pairing groups of prime order p.

In a Groth-Sahai proof, the prover and the verifier both know values {aq}q=1...Q ∈ G1, {bq}q=1...Q ∈
G2, t ∈ GT , and {αq,m}q=1...Q,m=1...M , {βq,n}q=1...Q,n=1...N ∈ Zp. In addition, they both know com-
mitments {Cm}m=1...M and {Dn}n=1...N to values in G1 and G2 respectively. For each commitment
Cm and Dn the prover knows the opening information and the committed value xm ∈ G1 or yn ∈ G2

respectively (m = 1...M , n = 1...N).
Groth-Sahai proofs prove that the values in these commitments fulfill the pairing product equation∏Q

q=1 e(aq
∏M
m=1 x

αq,m
m , bq

∏N
n=1 y

βq,n
n) = t.

Let M1, M2, and MT be R-modules for some ring R, and let E : M1 ×M2 → MT be a bilinear
map. Also let µ1, µ2, µT be efficiently computable embeddings that map elements of G1, G2, GT into
M1,M2,MT , respectively.11 The public parameter paramsPK contain a common reference string with
elements u1, . . . , uI ∈ M1, v1, . . . , vJ ∈ M2 and values ηh,i,j , 1 ≤ i ≤ I , 1 ≤ j ≤ J , and 1 ≤ h ≤ H
as defined by Groth and Sahai [GS08, Section 5].

To commit to an element x ∈ G1, choose random opening open = (r1, . . . , rI)← RI , and compute
C = µ1(x)·

∏I
i=1 u

ri
i . Elements y ∈ G2 are committed to in the same way using µ2 and v1, . . . , vJ ∈M2,

and an opening vector open ∈ RJ . For simplicity we assume that GSCommit(paramsPK ,m, open) first
determines whether m ∈ G1 or m ∈ G2 and then follows the appropriate instructions.

Groth and Sahai [GS08, Section 5] show how to efficiently compute proofs {πi}Ii=1, {ψj}Jj=1 that
prove that the openings of the Cm and Dn satisfy a pairing product equation. To verify such a proof the
verifier computes, for all 1 ≤ q ≤ Q, Cq ← µ1(aq) ·

∏M
m=1C

αq,m
m and Dq ← µ2(bq) ·

∏N
n=1D

βq,n
n .

Then the verifier checks that
∏Q
q=1E(Cq, Dq) = µT (t) ·

∏I
i=1E(ui, πi) ·

∏J
j=1E(ψj , vj).

GS proofs are randomizable. RandProof gets as input commitments (Ĉ1, . . . , Ĉn̂), (open ′1, . . . , open
′
n̂),

and the proof [(π1, . . . , πI , ψ1, . . . , ψJ), Π]. Π contains the internal commitments C1, . . . , CM and

11 In our applications, R = Zq . However, the randomization techniques also work for Groth-Sahai proofs in composite order
groups.

D1, . . . , DN . An internal commitment Cm or Dn may or may not correspond to an explicit commit-
ments Ĉi.12 The opening increments open ′i correspond to some (sm,1, . . . , sm,I) or (zn,1, . . . , zn,J).

First it appropriately rerandomizes the commitments Cm and Dn to C ′m = Cm ·
∏I
i=1 u

sm,i

i and
D′n = Cn ·

∏J
j=1 v

zn,j

j , and stores the sm,i and zn,j it used. If an explicit commitment Ĉm̂ exists it uses
openm̂; otherwise it assignes fresh random values. Then it computes ŝq,i =

∑M
m=1 sm,i · αq,m, ẑq,j =∑N

n=1 zm,j · βq,m, and D′q ← µ2(bq) ·
∏N
n=1D

′βq,n
n . Next, the prover sets π′i ← πi ·

∏Q
q=1(D

′
q)
ŝq,i and

ψ′j ← ψj ·
∏Q
q=1(Cq)

ẑq,j . These π′i and ψ′j will satisfy the verification equation for the new commitments.
Now the prover must make a certain technical step to fully randomize the proof. Intuitively, for every

set of commitments, there are many proofs (π1, . . . , πI , ψ1, . . . , ψJ) that can satisfy the verification
equation. Given one such proof, we can randomly choose another: The prover chooses ti,j , th ← R, and

multiplies each πi := πi ·
∏J
j=1 v

ti,j
j and each ψj := ψj ·

∏I
i=1 u

PH
h=1 thηh,i,j

i

∏I
i=1 u

ti,j
i . See [GS08,

Section 5, Equation 1] for a detailed explanation of this operation.
The algorithm outputs the new proof [(π′1, . . . , π

′
I , ψ

′
1, . . . , ψ

′
J), Π

′] where Π ′ contains the internal
commitments C ′1, . . . , C

′
M and D′1, . . . , D

′
N .

3.4 Non-interactive Proofs of Knowledge

A NIPK system is a non-interactive proof system with algorithms PKSetup, PKProve, and PKVerify
that correspond to the Setup, Prove, and VerifyProof we saw in Section 3.2 of a non-interactive proof
system. In addition, such a system must be extractable.

We recall the notion of f-extractability defined by Belenkiy et al. [BCKL08], which is an extension
of the original extractability (as defined by De Santis et al [SCP00]). In an extractable proofs system
there exists a polynomial-time extractor (PKExtractSetup,PKExtract). PKExtractSetup(1k) outputs
(td , paramsPK) where paramsPK is distributed identically to the output of PKSetup(1k). For all PPT
adversariesA, the probability thatA(1k, paramsPK) outputs (s, π) such that PKVerify(paramsPK , s, π)
= accept and PKExtract(td , s, π) fails to extract a witness x such that R(paramsPK , s, x) = accept
is negligible in k. We have perfect extractability if this probability is 0. f -Extractability means that
the extractor PKExtract only has to output a y such that ∃x : R(paramsPK , s, x) = accept ∧ y =
f(paramsPK , x). If f(paramsPK , ·) is the identity function, we get the usual notion of extractability.

NIPK notation We are interested in NIPK about commitments. Let Commit(paramsPK , ·, ·) be an un-
conditionally binding non-interactive commitment scheme (possibly parameterized by paramsPK) over
input domainX that, on input x ∈ X and a random value open , outputs a commitmentC. By ‘x inC’ we
denote that there exists open such thatC = Commit(x, open). Following Camenisch and Stadler [CS97]
and Belenkiy et al. [BCKL08], we use the following notation to express an f -extractable NIPK of state-
ment (C1, . . . , Cn,Condition) with witness (x1, open1, . . . , xn, openn, y):

π ← NIPK[x1 inC1, . . . , xn inCn]{(f(paramsPK , (x1, open1, . . . , xn, openn, y))) :
Condition(paramsPK , x1, . . . , xn, y)}.

The f -extractability of a NIPK ensures that, with overwhelming probability over the choice of
paramsPK , if PKVerify accepts then we can extract f(paramsPK , (x1, open1, . . . , xn, openn, y)) from
π, such that xi is the content of the commitment Ci, and Condition(paramsPK , x1, . . . , xn, y) is satis-
fied.13

12 The GS proof system creates internal commitments while generating the proof; the only difference between explicit and
internal commitments is that explicit commitments have names. Verification and randomization treats these commitments
identically.

13 In out construction we will use proofs based on extractable commitments. These proofs let us extract a function F (xi)
of the committed value xi, but not the opening openi. In this case f(paramsPK , (x1, open1, . . . , xn, openn, y)) =
(F (x1), . . . , F (xn), y).

In our notation, π ∈ NIPK[. . . }means that PKVerify accepts the proof π for statement (C1, . . . , Cn,
Condition). To further abbreviate notation, we omit paramsPK and assume that Condition is clear from
the context, and so the sole inputs to PKVerify are (C1, . . . , Cn) and π. If the proof is zero-knowledge
instead of merely witness indistinguishable, we will write NIZKPK.

Groth-Sahai proofs are f -extractable. The Groth-Sahai proof system generates NIPK proofs of the form

NIPKGS[
{
xm inCm

}M
m=1

,
{
yn inDn

}N
n=1

]{(x1, . . . , xM , y1, . . . , yN) :
Q∏
q=1

e(aq
M∏
m=1

x
αq,m
m , bq

N∏
n=1

y
βq,n
n) = t}.

3.5 Some additional protocols

We describe three additional protocols which we will need in our construction. First, we introduce a
commitment scheme with which we can commit to messages m in the secret key space of the authenti-
cation scheme. We show that given an extraction trapdoor, we will be able to extract F (m) (as defined
in Section 3.1) from such a commitment.

Next, we describe a protocol for proving knowledge of an authenticator. It is possible that an au-
thenticator may leak information about a user’s secret key, which would compromise anonymity. Thus,
rather than present an authenticator as part of a credential, the users in our system will generate a zero
knowledge proof of knowledge of such an authenticator. We can use the Groth-Sahai composable witness
indistinguishable proof system to form this proof.

Finally, we provide a secure two party protocol for jointly computing a proof of knowledge of an
authenticator. If Bob wants to prove he has a credential from Alice, he needs to show that he has an
authenticator under her secret key on his secret key. However, neither user has enough information to
form this authenticator, let alone the corresponding proof. Thus, we also provide a secure two party
protocol for jointly computing a proof of knowledge of an authenticator.

Commitment scheme. A commitment Cx = Commit(x, openx) to an exponent x consists of two GS
commitments to group elements such that Commit(x, (o1, o2)) = (C(1), C(2)) = (GSCommit(hx, o1),
GSCommit(ux, o2)) and a NIPKGS proof that these commitments are correctly related. This allows us
to extract F (x) = (hx, ux).

Proof of knowledge of an authenticator. We need a zero-knowledge proof of knowledge of an unforge-
able authenticator for messages m = (m1,m2), where the first value is hidden in commitment Cm1 and
the second values m2 is publicly known. In our notation, this is:

NIZKPK[sk inCsk ;m1 inCm1]{(F (sk), F (m1), auth) : VerifyAuth(paramsA, sk , (m1,m2), auth) = 1}.

We use Groth-Sahai witness indistinguishable proofs as a building block. We create a concatenation of
three proofs: π = πauth ◦ πsk ◦ πm1 :

πauth ← NIPKGS [hsk inC ′(1)
sk ;usk inC ′(2)

sk ;hm1 inC ′(1)
m1

;um1 inC ′(2)
m1

]

{F (sk), F (m1), A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤2) : e(u, hsk) = e(usk , h)∧
e(A∗, hskB∗) = e(g, h) ∧ e(u∗, B∗) = e(C∗, h) ∧ e(u, hm1) = e(um1 , h,)∧
{e(Ai, B∗Bi) = e(g, h) ∧ e(ui, Bi,) = e(Ci, h) ∧ e(Di, Bih

mi) = e(g, h)}1≤i≤2 }.

Proofs πsk , πm1 are proofs that two commitments contain the same value. Let x = sk ,m1, respectively.
Then the two proofs are of the form πx ← NIPKGS [x inC (1)

x ;x′ inC ′(1)
x]{(x, x′, hθ) : e(x/x′, hθ) =

1 ∧ e(g, hθ) = e(g, h)}.
Groth and Sahai [GS08] show that witness indistinguishable proofs like πsk and πm1 are also zero

knowledge. A simulator that knows the simulation trapdoor sim for the GS proof system can simulate

the two conditions by setting θ to 0 and 1 respectively. In this way he can fake the proofs for arbitrary
commitments.

Note that if πsk , πm1 are zero-knowledge, then the composite proof π will be zero knowledge: The
simulator first picks sk ′ and m1 at random and uses them to generate an authentication tag. It uses the
authentication tag as a witness for the witness indistinguishable proof πauth and then fakes the proofs
that the commitments C ′sk , and C ′m1

are to the same values as the original commitments Csk and Cm1 .

Two-party protocol for creating a proof of knowledge of an authenticator. The issuer chooses random

K∗,K1, . . .K2 ← Zp. He computes a partial authentication tag auth ′ = (g
1

sk+K∗ , hK
∗
, u∗K

∗
, {g

1
K∗+K1 ,

hKi , uKi
i }1≤i≤2, g

1
K2+m2). Then the issuer creates πsk and a NIZKGS proof π′auth for this partial authen-

ticator auth ′.
Let Keygen,Enc,Dec be an additively homomorphic semantically secure encryption scheme, let

“⊕” denote the homomorphic operation on ciphertexts; for e a ciphertext and r an integer, e⊗ r denotes
“adding” e to itself r times. (For a specific efficient instantiation using the Paillier encryption scheme, see
full version). Recall that p is the order of the bilinear groups. The user and the issuer run the following
protocol:

1. The issuer generates (skhom , pkhom)← Keygen(1k) in such a way that the message space is of size
at least 2kp2. He then computes e1 = Enc(pkhom ,K1) and sends e1, pkhom to the user and engages
with her in an interactive zero knowledge proof that e1 encrypts to a message in [0, p].

2. The user chooses r1 ← Zp and r2 ← {0, . . . 2kp}, then computes e2 = ((e1 ⊕ Enc(pkhom ,m1)) ⊗
r1)⊕ Enc(pkhom , r2p) and sends e2 to the user.

3. The issuer and the user perform an interactive zero knowledge proof in which the user shows that e2
has been computed correctly using the message in Cm1 , and that r1, r2 are in the appropriate ranges.

4. The issuer decrypts x = Dec(skhom , e2), computes σ∗ = g1/x and sends it to the user.
5. The user computes σ = σ∗r1 and verifies that it is a correct weak BB signature on m1. The issuer

obtains no information about m1.

Based on g
1

K1+m1 the user computes a proof π′′auth to extend the proof of the partial authenticator to a
proof of a full authenticator and the proof πm1 . Finally the user computes π = π′auth ◦ π′′auth ◦ πsk ◦ πm1

and randomizes the combined proof.

4 Construction of Delegatable Credentials

We construct delegatable credentials using the tools defined in Section 3. The parameters of the system
combine the parameters paramsA from the authentication scheme and paramsPK from the compos-
able and randomizable NIZKPK proof system and its associated commitment scheme Commit. The
keyspace of the authenticator must be a subset of the input space of the commitment scheme. Each user
U has a secret key skU ← AuthKg(paramsA), and forms his pseudonyms using Commit: NymU =
Commit(skU , openU). U can create arbitrarily many different pseudonyms by choosing new random
values openU . A user can act as an authority (originator) for some type of a credential by making his
pseudonym NymO publicly available.

How the proof system fits with the construction. Let sk0 be the secret key of a credential authority A
whose public key is NymO = Commit(sk0, open0); and let sk1 be the secret key of a user U whose
pseudonym is NymU = Commit(sk1, open1). Let VerifyAuth be as defined in Section 3.1; let F be a
function such that the message authentication scheme is F -unforgeable. Then a level 1 credential from
A to U will be

π1 ← NIZKPK[sk0 inNymO, sk1 inNymU]{(F (sk0), F (sk1), auth) :
VerifyAuth(paramsA, sk0, (sk1, r1), auth)},

where the values r1 will be defined later. Note that A and U will have to compute π1 jointly using the
protocol defined in section 3.5. While neither can compute auth independently, they jointly have the
information to compute auth , and therefore, they jointly have the information to compute a proof of
knowledge of auth .

A level L credential from A to UL (whose pseudonym is NymL) will be

πL ← NIZKPK[sk0 inNymO, skL inNymL]{(F (sk0), F (sk1), . . . , F (skL), auth1, . . . , authL) :
VerifyAuth(paramsA, sk0, (sk1, r1), auth) ∧ . . . ∧ VerifyAuth(paramsA, skL−1, (skL, rL)}.

The extractor can extract F (sk i) from the credential πL, where sk i is the secret key of any intermediate
delegator Ui, 1 ≤ i < L.

The value πL+1 needs to be computable by UL and UL+1, without contacting anyone else. This is
tricky because, in fact, neither of them know any of the values (sk0, . . . , skL−1) and (auth1, . . . , authL)!
So how can they possibly compute a proof of knowledge of these values?

Our first observation is that, although they do not know any of the secret keys and authentication
tags, UL already has πL which is distributed correctly. So, in fact, if UL and UL+1 can jointly compute

π′L+1 ← NIZKPK[skL inNymL, skL+1 inNymL+1]{(F (skL), F (skL+1), authL+1) :
VerifyAuth(paramsA, skL, (skL+1, rL+1), authL+1)}

and then compute the concatenated proof πL+1 = πL ◦π′L+1, they will in fact arrive at πL+1 from which
all the right values can be extracted, and whose zero-knowledge properties are preserved as well.

However, this method of computing πL+1 is inadequate for our purposes, because πL+1 can be linked
to πL, and, as a result, violates the anonymity requirements. This is why it is crucial that the underlying
proof system be randomizable.

Full construction. We denote a user’s private credential as cred . To show or delegate the credential, the
user randomizes cred to form credproof . In our construction, cred is in fact an NIZKPK of a statement
about U ’s specific secret pseudonym SU = Commit(skU , 0) (this specific pseudonym does not in fact
hide skU since it is formed as a deterministic function of skU) while credproof is a statement about a
proper pseudonym, NymU = Commit(skU , open) for a randomly chosen open . So U randomizes cred
to obtain credproof using the RandProof algorithm described in Section 3.

Suppose a user with secret key skU has a level L credential from some authorityA, and let (skO, sk1,
. . . , skL−1, skU) be the keys such that the owner of sk i delegated the credential to sk i+1 (we let sk0 =
skO and skL = skU). A certification chain is a list of authenticators auth1, . . . , authL, such that sk i
generated authenticator authi+1 on sk i+1.

To make sure that pieces of different certification chains cannot be mixed and matched, we add a
label ri to each authenticator. The labels have to be unique for each authority and delegation level. LetH
be a collision resistant hash function with an appropriate range. For a credential chain rooted at NymO,
we set ri = H(NymO, i). Each authi is an output of Auth(paramsA, sk i−1, (sk i, ri)). The user U ’s
level L private credential cred is therefore a proof

cred ∈ NIZKPK[sk0 inNymO; skL inSU]{(F (sk0), . . . , F (skL), auth1, . . . , authL) :
VerifyAuth(paramsA,sk0, (sk1, r1), auth1) ∧ . . .∧
VerifyAuth(paramsA,skL−1, (skL, rL), authL)} .

where, F is a bijection such that the authentication scheme is F -unforgeable.
We now give the full construction. Let PKSetup,PKProve,PKVerify be a proof system and let

AuthSetup,AuthKg,Auth,VerifyAuth be an authentication scheme, and let H : {0, 1}∗ → Zp be a
hash function.

Setup(1k).Use AuthSetup(1k) to generate paramsA and PKSetup(1k) to generate paramsPK ; choose
the hash function H (as explained above); and output paramsDC = (paramsA, paramsPK , H).

Keygen(paramsDC).Run AuthKg(paramsA) and output the secret key sk .
Nymgen(paramsDC , sk).Choose a random open ∈ Y (where Y is the domain of openings of the com-

mitment scheme Commit associated with paramsPK , as explained in Section 3). Compute Nym =
Commit(paramsPK , sk , open) and output pseudonym Nym and auxiliary information open .

CredProve(paramsDC ,NymO, cred , skU ,NymU , openU , L).Recall that cred should be an NIZKPK of
a certification chain (above, we already gave the NIZKPK formula for it with the correct Condition
and extraction function f). If PKVerify(paramsPK , (NymO,Commit(skU , 0)), cred) rejects, or if
NymU 6= Commit(skU , openU), abort. Otherwise, set credproof ← RandProof((NymO,NymU),
(0, openU), cred). Note that, by the randomization properties of the proof system,

credproof ∈ NIZKPK[sk0 inNymO; skL inNymU]{(F (sk0), . . . , F (skL), auth1, . . . , authL) :
VerifyAuth(paramsA,sk0, (sk1, r1), auth1) ∧ . . .∧
VerifyAuth(paramsA,skL−1, (skL, rL), authL)} .

CredVerify(paramsDC ,NymO, credproof ,NymU , L) runs PKVerify to verify the above.
Issue(paramsDC ,NymO, sk I ,NymI , openI , cred ,NymU , L)
↔ Obtain(paramsDC ,NymO, skU ,NymU , openU ,NymI , L). If L = 0 and NymO 6= NymI , then
this protocol is aborted. The issuer verifies his cred using CredVerify and if it does not verify or if
NymI 6= Commit(sk I , openI) or NymU is not a valid pseudonym, the issuer aborts.
Else, the issuer and the user both compute rL+1 = H(NymO, L+1). The issuer and the user run a two-
party protocol with the following specifications: the public input is (NymI ,NymU , rL+1); the issuer’s
private input is (sk I , openI) and the user’s private input is (skU , openU). The output of the protocol
is as follows: if (sk I , openI) and (skU , openU) do not appropriately correspond to NymI ,NymU , the
protocol aborts; otherwise, the issuer receives no output while the user receives as output the value π
computed as:
π ← NIZKPK[sk I inNymI ; skU in Commit(skU , 0)]{(F (sk I), F (skU), auth) :

VerifyAuth(paramsA, sk I , (skU , rL+1), auth)} .

We need the 2PC protocol to remain secure even if the adversary is given some trapdoor about
paramsDC . (See full version for formal statement.) In Section 3.5 we gave an efficient instantiation
of such a 2PC protocol for the specific authentication and NIZKPK schemes we use.
If L = 0, then the user outputs credU = π. On the other hand, if L > 0, the issuer obtains
credproof I ← CredProve(paramsDC ,NymO, cred , sk I ,NymI , openI , L) and sends it to the user.
Let SU = Commit(skU , 0). Intuitively, credproof I is proof that the owner of NymI has a level L
credential under public key NymO, while π is proof that the owner of NymI delegated to the owner
of SU . The user concatenates credproof I and π to obtain credproof I ◦ π To get credU , U now needs
to project credproof I ◦ π so it becomes a proof about (NymO, SU) and not about NymI .

Theorem 2. If AuthSetup,AuthKg,Auth,VerifyAuth is an F-unforgeable certification-secure authen-
tication scheme, and if H is a collision resistant hash function, and if PKSetup,PKProve,PKVerify is
a randomizable, perfectly extractable, composable zero knowledge non-interactive proof of knowledge
system with simulation setup SimSetup and extraction setup ExtSetup, and if the two party protocol
is trapdoor secure for the simulation trapdoors generated by SimSetup and ExtSetup, then the above
construction constitutes a secure anonymous delegatable credential scheme. (See full versionfor proof.)

Remark 3. We can easily extend our construction to attach public attributes to each level of the credential.
The main modification is that we now compute r` = H(skO, `, attr1, . . . , attr`), where attri is the set
of attributes added by the ith delegator in the delegation chain. When the user shows or delegates a
credential, he must then display the all the attributes associated with each level.

References

[Bar01] Boaz Barak. Delegatable signatures. Technical report, Weizmann Institute of Science, 2001.
[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EUROCRYPT 2004, volume 3027 of

LNCS, pages 54–73, 2004.
[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures using strong diffie hellman. In CRYPTO

2004, LNCS. Springer Verlag, 2004.
[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and noninteractive anony-

mous credentials. In Theory of Cryptography Conference, LNCS, pages 356–374. Springer Verlaag, 2008.
[BCM05] Endre Bangerter, Jan Camenisch, and Ueli M. Maurer. Efficient proofs of knowledge of discrete logarithms and

representations in groups with hidden order. In Serge Vaudenay, editor, Public Key Cryptography, volume 3386 of
LNCS, pages 154–171. Springer, 2005.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano. Non-interactive zero-knowledge. SIAM
Journal of Computing, 20(6):1084–1118, 1991.

[BGdMM] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-Resistant Storage.
Johns Hopkins University, CS Technical Report # TR-SP-BGMM-050705. http://spar.isi.jhu.edu/
˜mgreen/correlation.pdf, 2005.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. J. Cryptology, 17(4):297–319,
September 2004. Extended abstract in Proceedings of Asiacrypt 2001.

[Bra99] Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates— Building in Privacy. PhD thesis,
Eindhoven Inst. of Tech. The Netherlands, 1999.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures. In Public Key
Cryptography, pages 1–15, 2007.

[Cha85] David Chaum. Security without identification: Transaction systems to make big brother obsolete. Communications
of the ACM, 28(10):1030–1044, October 1985.

[CL01] Jan Camenisch and Anna Lysyanskaya. Efficient non-transferable anonymous multi-show credential system with
optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
93–118. Springer Verlag, 2001.

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In SCN 2002, volume 2576 of
LNCS, pages 268–289, 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In
CRYPTO 2004, volume 3152 of LNCS, pages 56–72, 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia Dwork, editor, CRYPTO 2006,
volume 4117 of LNCS, pages 78–96, 2006.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups. In Burt Kaliski, editor,
CRYPTO ’97, volume 1296 of LNCS, pages 410–424. Springer Verlag, 1997.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete logarithms. In CRYPTO
’03, volume 2729 of LNCS, pages 126–144, 2003.

[Dam90] Ivan Bjerre Damgård. Payment systems and credential mechanism with provable security against abuse by individ-
uals. In Shafi Goldwasser, editor, CRYPTO ’88, volume 403 of LNCS, pages 328–335. Springer Verlag, 1990.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[GPS06] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptographers. Cryptology ePrint Archive, Report
2006/165, 2006. http://eprint.iacr.org/.

[GR04] S. Galbraith and V. Rotger. Easy decision diffie-hellman groups. Journal of Computation and Mathematics, 7:201–
218, 2004.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel Smart, editor,
EUROCRYPT 2008, 2008.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence of
malicious adversaries. In EUROCRYPT 2007, 2007.

[LRSW99] Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In Howard Heys and Carlisle
Adams, editors, Selected Areas in Cryptography, volume 1758 of LNCS, 1999.

[Lys02] Anna Lysyanskaya. Signature Schemes and Applications to Cryptographic Protocol Design. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, September 2002.

[Sco02] Mike Scott. Authenticated id-based key exchange and remote log-in with insecure token and pin number. http:
//eprint.iacr.org/2002/164, 2002.

[SCP00] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Necessary and sufficient assumptions for non-
interactive zero-knowledge proofs of knowledge for all NP relations. In Ugo Montanari, José P. Rolim, and Emo
Welzl, editors, Proc. 27th International Colloquium on Automata, Languages and Programming (ICALP), volume
1853 of LNCS, pages 451–462. Springer Verlag, 2000.

[Ver04] Eric R. Verheul. Evidence that xtr is more secure than supersingular elliptic curve cryptosystems. J. Cryptology,
17(4):277–296, 2004.

