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Abstract. Fairly exchanging digital content is an everyday problernhals been shown that fair
exchange cannot be done without a trusted third party @eileArbiter). Yet, even with a trusted
party, it is still non-trivial to come up with an efficient smion, especially one that can be used in
a p2p file sharing system with a high volume of data exchanged.

We provide an efficient optimistic fair exchange mechanismbfartering digital files, where re-
ceiving a payment in return to a file (buying) is also constdefair. The exchange is optimistic,
removing the need for the Arbiter’s involvement unless gulis occurs. While the previous
solutions employ costly cryptographic primitives for gvdile or block exchanged, our proto-
col employs them only once per peer, therefore achie@f efficiency improvement when
blocks are exchanged between two peers. The rest of ourcptatses very efficient cryptog-
raphy, making it perfectly suitable for a p2p file sharingteys wheretensof peers exchange
thousandf blocks and they do not know beforehand which ones theyemifl up exchanging.
Thus, for the first time, a provably secure (and privacy respg when payments are made using
e-cash) fair exchange protocol is being used in real bageapplications (e.g., BitTorrent) [14]
without sacrificing performance.

1 Introduction

Fairly exchanging digital content is an everyday problenfaik exchange scenario commonly in-
volves Alice and Bob. Alice has something that Bob wants, Bold has something that Alice wants.
A fair exchange protocol guarantees that at the end eithedr @bthem obtains what (s)he wants, or
neither of them does (see [39] for more details and examples)

In this paper, we consider a general file exchange (barfesiognario, inspired by the BitTor-
rent [22] peer-to-peer file sharing protocol. Alice has saléles (BitTorrent blocks) of interest to
Bob, and Bob has several files (blocks) of interest to Alideeyfdo not know ahead of time how many
or which blocks they will end up exchanging. They want to perf a fair exchange: Alice should get
Bob's file (block) if and only if Bob gets Alice’s file (block)n our scenario, we are assuming that
Alice/Bob will be equally happy to get a payment in return &/his file. Thus, exchanging a file with
a payment (buying) is also considered fair, as in some puswmrks [4, 8, 18, 36, 35].

One of the hardest points in creating a usable optimisticelathange protocol suitable for p2p
file sharing applications is that the peers to contact anaddméent to exchange are not pre-defined.
BitTorrent clients keep connecting to different peers ttaobdifferent blocks. Fault-tolerance issues,
connectivity problems, and availability of data blocks altdactors affecting from whom which block
should be obtained. Our protocol uniquely addresses tkeges by removing the need to know what
content to exchange with whom beforehand.

In a nutshell, in our protocol, Alice sends a verifiable escod a payment (e.g., e-coin) to Bob
first. Then, they exchange encrypted files. Afterward, Aieads Bob an escrow of her key with her
signature on the escrow. Then, Bob sends Alice the key tolaid-inally, Alice sends Bob the key to
her file. Since Bob has a verifiable escrow of an e-coin and envwf a key before he sends his key
to Alice, he is protected. In the worst case, if Alice doesprovide the correct key and the key escrow
contains garbage, Bob can go to the Arbiter and obtain Aipayment. The escrow of the payment
cannot contain garbage, because it was formed usiragifiable escrow. After the exchange of the
verifiable escrow, the rest of our protocol can be repeatadasy times as necessary to exchange



multiple files (even if the number and content of the files wertknown in advance), unless there is
a dispute.

We provide two versions of the protocol: In the first one (tine alescribed briefly above) only
one party provides a verifiable escrow. This version regtilte use of timeouts for dispute resolution
purposes. We provide another version that needs both parirovide verifiable escrows but requires
no timeouts. Both versions are very efficient since they udg ane(resp.two) expensive primitives
(verifiable escrow and payment) regardless of the numbetesf éixchanged. We stress the fact that
our timeouts can be very large (e.g., one day or week) to dbownexpected situations in which the
participants act honestly (e.g., network failure), andttequire very loose synchronization (e.g., one
hour difference), and users can freely participate in otfixehanges without waiting for the timeout.

Previous Work: It is well-known that a fair exchange protocol is impossiblighout a trusted
third party (TTP) [42] (called thérbiter) that ensures that Alice cannot take advantage of Bob, and
vice versa. Without loss of generality, Alice will have tmskthe last message of the protocol, and
we want to protect Bob in case she chooses not to do so. Withoatbiter, gradual release type of
protocols where parties send pieces to each other in ro@misrovide only weaker forms of fairness,
and are much less efficient [11, 13].

Luckily, the impossibility result [42] does not require thilae Arbiter be involved in each transac-
tion, but simply that the Arbiter exists. If Alice and Bob dreth well-behaved, there is no need for
the Arbiter to do anything (or even know an exchange tookejladicali [38], Asokan, Schunter and
Waidner [2], and Asokan, Shoup and Waidner [4, 3] investidalhisoptimisticfair exchange scenario
in which the Arbiter gets involved only in case of a dispute@oTsuch protocols [4, 30] were analyzed
in [45] (see also [7]).

Asokan, Shoup and Waidner (ASW) [4] gave the first provabbuse and completely fair op-
timistic exchange protocol for exchanging digital sigmatu Later on, Belenkiy et al. [8] gave a
protocol for buying digital content in exchange for e-cdskilding on top of the ASW protocol. They
provided an optimization for the Arbiter so that, unlike ietASW protocol, the amount of work that
the Arbiter is required to do depends only logarithmicalfytbe size of the file. They also assume
there is an additional TTP (which we call theackel) that provides a means of verification that the
file actually contains the right content (e.g., using hast&sch entities certifying hashes already exist
in current BitTorrent systems [22].

Belenkiy et al. [8] used e-cash (introduced by Chaum [2@]particular, endorsed e-cash [18] in
their constructions. The reason is that other forms of paysgsignatures or electronic checks used
in [4,36]) do not provide any privacy. In our protocols, amyrh of payment can be employed, but
we will also use endorsed e-cash in our sample instantiatime it is efficient and anonymous. See
Sections 3.6 and 3.7 for more discussion on employing diffepayment systems.

Contributions: We present the most efficient fair exchange known to us, wterefficiency is
comparable to a simple unfair exchange if performed mutiphes between the same pair of users,
even when peers do not know beforehand which blocks thegnalitip exchangindJsing the previous
work (Belenkiy et al. barter protocol [8]),pairs of blocks can be exchanged usirtgansactions, each
of which requires a costly step involving expensive crypapdnic primitives (a verifiable escrow and
an e-coin). Our contribution is a very efficient fair exchamgotocol using which this can be done
with only one (or two if we do not want to employ timeouts) step in total that ineas\vthe same
expensive primitives (verifiable escrow and payment). Theans that, with no (i.e., neglectable)
efficiency loss, our fair exchange protocol can be used thaxge files instead of the unfair protocol
currently used by BitTorrent or similar file sharing protéorhis is a property that is unique to
our protocol: Instead of employing the costly primitives fvery file or block that is exchanged,
we employ them once per peer, even when peers do not knowebefiod which blocks they will
end up exchanging. Then, exchanging multiple files/bloeka/ben peers involves only very efficient
cryptography (i.e., symmetric- and public-key encryptiand digital signatures). Considering that



BitTorrent peers exchange thousands of blocks with onlg tE#npeers, this improvement is pretty
significant (as also seen in Section 3.4).

We stress the fact that the timeouts used for dispute régolpitirposes in one of our protocols can
be very large (e.g., one day or week) to allow for unexpedteations in which the participants act
honestly (e.g., network failure), and thus require vergbsynchronization (e.g., one hour difference),
andusers can freely participate in other exchanges withoutingifor the timeout

We take the idea of using verifiable escrow from ASW [4], arelghbprotocols of Belenkiy et al.
[8] that increase the efficiency of the Arbiter (see AppermlixThe Arbiter does absolutely no work
in our protocols, as long as no dispute occ@nsr protocols can make use of any type of paymdmuiis
we will show an instantiation using e-cash since it also fales privacy. Our performance evaluation
numbers will use endorsed e-cash [18] as the payment mexhaNbte that other (non-anonymous)
forms of payments (e.qg., electronic checks [21]) will be enefficient.

Our additional contribution is definitional. We give a gealetefinition of fair exchange of digital
content (not just digital signatures) provided that it canvierified using some verification algorithm
(defined in Section 2.2). Furthermore, our fairness dedfinittovers polynomially many exchanges
between an honest party and an adversary controlling poliaity-many other participants (see [27]
for an example fair exchange protocol that is fair for a stregchange but stops being fair in a multi-
user setting). We then prove our protocol’s security basethes definition. We sum up the most
important properties of our protocols below.

Security of our protocol: Our protocols provably satisfy the following conditionditing for at
most one timeout period if timeouts are used, or withoutingiat all if no timeouts are used), as long
as at least one of the trading parties (Alice and Baob) is hones

— Either Alice and Bob both get their corresponding files,
— Or Alice gets Bob's file and Bob gets Alice’s payment (tumimia buy protocol in effect),
— Or neither of them gets anything.

Efficiency of our protocol: We have the following properties regarding efficiency:

— An honest user can reuse her e-coin for other exchangesutitiaiting for the completion of the
protocol.

— The overhead of our costly step — verifiable escrow and e-e&sconstan®(1), instead of linear
O(n) as in previous best results, whefiles or blocks are exchanged.

Already, the Brownie Project [14] is using our protocolsheit BitTorrent deployment. We dis-
cuss the efficiency of our protocols and our initial impletagion results in Section 3.4. Discussion
of limitations and future work can be found in Appendix C.

2 Definitions

Barter is an exchange of two items, which are digital filesumn case. We assume that the reader is
familiar with encryption and signature schemes, and hasttions. Further required definitions and
notation are given below, although partially, omitting thetails not necessary for understanding this
paper.

2.1 Notation

An escrow is a ciphertext under the public key of some trutied party (TTP). Averifiableescrow
[4, 19, 15] means that the recipient can verify that the autstef the ciphertext satisfy some relation
(therefore stating that the ciphertext contains the exgubodntent). A contract (a.k.a. label, condition,
or tag) attached to such a ciphertext defines the conditindsruwhich the TTP should decrypt and
give away the encrypted secret [46]. The label is public anslintegrated with the ciphertext in a



such way that it cannot be modified. We will uSg,(a;b) to denote an escrow of the secaainder
the Arbiter’s public key, with the contrabt Similarly, VEa(a; b) will denote a verifiable escrow.

Any payment protocol that can efficiently be verifiably eseed and is secure can be used in
our protocols. Furthermore, if privacy is desired, the pegta should be anonymous as in e-cash
[20]. We provide an instantiation using endorsed e-cash (dBich is an extension of compact e-
cash [17]), since it satisfies all these requirements. Ematbe-cash splits a coin into an unendorsed
coin (denotectoin’) and endorsement (denotedd. One can think oftoin’ as an encrypted coin
andendas the key. One can check if the endorsenagrtin a given verifiable escrow [19] matches
the given unendorsed coaoin’ (without learning the endorsemeamd). Furthermore, given only the
unendorsed padoir’, no other party (except the owner) can come up with a valibesamenend
Endorsed e-cash moreover has the ability to catch douldeelgrs. Hence, if one uses two different
coirn’,end pairs trying to spend the same coin twice, (s)he will be cagaid, since her identity is
revealed, can be punished). Note that if a party tries to siefite same coin twice (using the same
coir’,end pair), the operation can easily be denied by checking agaitist of past transactions.
Lastly, only matchingsoir’, endpairs can be linked, unendorsed coins and endorsementapoor
different exchanges remain unlinkable.

Wherever used{p will denote a symmetric key of a parfy, generated through an encryption
scheme’s key generation algorithm. Wedet Enac (f) denote that the ciphertegtis an encryption
of the plaintextf under the symmetric kel¢. Similarly, f = Deqgg (c) will denote that the plaintext
f is the decryption of the ciphertextunder the symmetric kell. Our protocol can make use of
any secure symmetric encryption scheme (see the book byafaltt indell [33] for definitions and
constructions).

Let pkp andske denote public and secret keys for a pd@tyThensignsk(x) will denote a signature
onxunder the secret keskwhich can be verified using the corresponding public feyOur protocol
can make use of any secure public-key encryption schem@§24nd any secure signature scheme
[31].

Furthermore, leHy be a family of (universal one-way) hash functions [40], véieis the security
parameter, and ldtashbe a hash function uniformly choosen from the fantily of hash functions.
Then,hy = hashx) will denote thah, is the hash ok under the hash functidmsh We now introduce
a definition we frequently use in the paper.

Definition 1. We say that a key idecrypts correctly, or is thecorrect key with respect to a plaintext
hash h and a ciphertext c, if the plaintext £ Deq¢(c) has the property hagli’) = hs.

Finally, a negligible probability denotes a probabilityaths a negligible function of the security
parameter (e.g., the key-length of an encryption schemeggiigible function ofis a function which
is smaller than any inverse polynomial ovewith n > N for sufficiently largeN (e.g.,negn)=2"").

A non-negligible probability is a probability that is notglwgible.

2.2 (Optimistic) Fair Exchange

In this section we will give a general definition of fair exclgee. Unlike in ASW, our definitions will
not be specific to signature exchange, and we will considgmpmially-many exchanges between
an honest user and an adversary controlling polynomialiywnother users. Furthermore, we separate
and clearly define the roles of all trusted parties. Whilevjaimg models and definitions for a general
framework of (optimistic) fair exchange applicable to admagange of protocols, we will also show
its extensions to our case.

MoDEL: The model is adapted from the ASW definition [4], with clardfiions and generaliza-
tions. There are three playefdice andBobexchanging two digital items, and tAebiter! for conflict
resolution. All players are assumed to be polynomial tinteractive Turing machines. We make no

1 0ne of the TTPs in ASW.



assumption about the underlying network capabfliyny message that does not confirm with the
protocol specification will be discarded by the honest partAny input which does not verify ac-
cording to the protocol will be resolved as stated by theqarolt or the protocol will be aborted if
no resolution is applicable. It is important that the Arbitesolves conflicts on the same exchange
atomically® Thus, it will only interact with either Alice or Bob at any @i time instance, until that
interaction ends as specified by the protdt8ensitive communication (e.g., exchange of decryption
keys for files or endorsement of an e-coin) will be carried @wgr a secure (and possibly authenti-
cated) channel (e.g., SSL can be used to connect to the Arbisecure key exchange with no public
key infrastructure can be used for the communication batwdiee and Bob).

For protocols using imeou?, we assume that the adversary cannot prevent the honestroant
reaching the Arbiter before the timeout. If no timeouts agéirbd, we assume the adversary cannot
prevent the honest party from reaching the Arbiter evehtudence, the honest party is assumed to
be able to reach the Arbiter as defined by the protocol. Evém tivheouts, this is not an unrealistic
assumption since our timeouts can be large (e.g., one dagek)w

In our model, we have two additional players, namely Trecker (also in [4, 8, 22]§ providing
verification algorithms, and theankdealing with monetary parts of the system.

SETUP PHASE: Before the fair exchange protocol is run, we assume thesesstup phase. In
this one-time pre-exchange phase, the Arbiter generaggumibiic-private key pair (for the (verifiable)
escrow schemes) and publishes his public key(s) so thatAlmthh and Bob obtain it. Optionally, the
Arbiter may learn public keys of Alice and Bob in the setup gdhaut our focus is on the case where
the Arbiter does not need to know anything (and learns almatting, see Section 3.6) about Alice
or Bob. The adversary cannot interfere with the setup phfaBethe setup phase, the Bank and the
Tracker also generate their public-private key pairs artdiglu their public keys.

Definition 2. LetSP denote the security parameters of the system (e.g., kethieofthe primitives
used). LePP denote all the public values in the system, includifg public keys of the trusted par-
ties, and possibly some public parameters. RBGen(SP) be the randomized procedure which gen-
erates the public values given the security parametersn;Tdhefine ouPP = (pkyp, PKoank PKrackers
timeoutSP, and additional parameters for primitives used).

From now on, we need to talk about multiple exchanges takiagep Alice has files‘,il), . ff\”)

to be exchanged with Bob, and Bob h%é ) to be exchanged with Alicen(is a polynomial
in SP).2 In general, we can consider these f|Ies as some string®,ih}*, therefore consider fair
exchange of anything that is verifiable. Without loss of galiy, the Tracker gives Alice @erification

algorithm V<.) for each fllefé), and Bob a verification algorlthmr for each filefg) before the

exchange takes place.
Assume that the content to be exchanged and associatedaoifi algorithms are output by a
generation algorithnGen(SP) that takes the security parameters as input and outputs combent to

2 Clients will have a locaiessage timeouechanism like the TCP timeout, which is small (e.g., oneutein
The receiver deals with message timeo@xactly as it would deal with a non-verifying input.

3 We present a trade-off between non-atomicity and perfocaar the Arbiter later on.

4 For ease of the Arbiter to find the correct exchange, a randamamge ID can be incorporated into the mes-
sages. Since this is only a minor implementation efficiessyé, we do not want to complicate our definitions
with that.

5 This is not themessage timeouit is the timeoutspecified by the protocol, which is generally much longer
(e.g., one day or week).

6 ASW has the corresponding TTP in their file exchange schemtkelr signature exchange protocol, the public
key infrastructure providing the public keys can be seemhadtacker.

7 This is the standard trusted setup assumption that says &fi¢ Bob have the correct public key of the Arbiter.

8 Note that Alice or Bob can represent multiple entities colfed by the adversary.



be exchanged, with associated verification algorithmspasdibly some public information about the
content. This procedure involves a trusted p&ttgnd the Tracker. The parties trust the Tracker in that
any input accepted by that verification algorithm will be tuntent they want. In other words, they
are going to be happy with any content that verifies undendfication algorithm. In particular, the
content generation process is trusted. The adversary tganerate “junk” files and ask the Tracker
to create verification algorithms for them. BitTorrent forgites and ratings provide a level of defense
against this in practice.

Definition 3. Content and verification algorithms are secur® iIPPT adversaries? andV auxiliary
inputs ze {0,1}P°¥SP) we have (over the randomness of the generation algoritimesadversary,
and possibly the verification algorithms)

Pr[PP « PPGen(SP); (fV,V V,w.Puby. ,f.3>, Vi(n:PUb ) — Gen(SP);

1
(f;),..,f;”))Hﬂ(Vfu pub TORAACE pu ),PP,2):3i € [1..n] |

(Vf<.)( );A accepNV ) (f 0) = accepj] = neg(SP)

The definition above models the case in which the files to bbaxged cannot be found by the
adversary by some other meérfand hence exchanging files makes sense for the adversaey), e
with the help of associated verification algorithms and fmibformatiortC,

To provide evidence on the generality and applicabilitywf @efinition, we present several exam-
ple verification algorithms for various tasks. For examaléle verification can be performed using

hashes. So, each verification algorltwm for Alice’s file f contains the definition of hash function

used -hash-'1, and the hash vaIUe = hask(f ) Theit" verification algorithm computes the hash

of the given input according to the description of the hasitfion, and accepts it if and only if the
computed hash matchbg (see Appendix B for a security analysis). As another exapgalesider
A

the ASW signature exchange protocol, in which each verifioadlgorithm contains the signature
scheme’s descriptidh, the signature public key of Alicgka'?, and the messag® to be signed.
When it receives a signature as input, tieverification accepts the signature if and only if it is a valid
signature on messagg under the public kepk, using the signature scheme. As yet another example,
an e-coin verification algorithm can take a coin to verifyd aise the Bank’s public key while verify-
ing the non-interactive proofs given. Such an algorithm jmé of the specification of every e-cash
scheme (e.g., see [18, 17]). Verifiable encryption schemes, (19]) and, in general, proof systems
also specify a verification algorithm in their definitionsic algorithms can be used directly in a fair
exchange protocol, satisfying our definition as long as Hreysecure according to Definition 3.

To summarize, in the setup phase, public values are gedersitegPPGen(SP). The files and the
verification algorithms are generated jointly by the Tracked some trusted content generator (e.g.,
movie distributor) using th&en(SP) procedure. In the context of BitTorrent, this means thatnwstt
the content generator about the content, and the Trackeit #iverification algorithms. In practice,
BitTorrent forum sites and ratings on files provide this trés “highly rated” BitTorrent user will
be trusted about the content, or alternatively, commenttheriorum sites will warn against bogus
content. Besides, even the public information leaked frioengeneration procedure does not help the

9 We assume that the adversary cannot just “guess” an honeistint’s file, in which case the exchange is
trivially unfair.

10 For example, if movies are being exchanged, a lot of infoionas publicly available about such a movie file,
such as actors, length, and release date. But these do ¢ @eaple to come up those movie files.

11 possibly different for each verification algorithm



adversary. From now on, we assume the content and the vidfiagorithms used are secure and
trusted.

Definition 4. Fair Exchange Protocol: A fair exchange protocol is composed of three interactive
algorithms: Alice running algorithm A, Bob running algdrih B, and the Arbiter running the trusted
algorithm T. The content and verification algorithms useedi® be secure according to Definition 3.
The security of the exchange is then defined in terms of ctengles (when Alice and Bob are both
honest) and fairness (when either Alice or Bob is malicious)

ComMmPLETENESSfor a (non-optimistic) fair exchange states that the irdtva run ofA, BandT
by honest partiesesults inA gettingB's files andB gettingA'’s files (assuming an ideal network):

Pri(iY, . 1) — A ,f/in)vaun V., PP) )

w0 BT T Vi Vi PP) — (£ 7)) = 1

f

where the notation describes tigtB andT can all communicate (in a three-way interaction) follow-

ing the protocol, and at the enﬁdoutputsféi) andB outputsfg) foralli:1..n.

OpTIMISTIC COMPLETENESSfor an optimistic fair exchange states that the interaatisreof A

andB by honest partiesesults inA getting fé” andB getting f,g) for all i : 1..n (the Arbiter’s algo-
rithm T is not involved, assuming an ideal network. A protocol $gitig) optimistic completeness
also satisfies completeness. @ptimistic completeneskefinition is:

PrI(fSY . 18Y) — AR T VooV, PP) = BUTSY  8 Vowy Vw PP) — (147 B = 1
B B A A

Fairness states that at the end of the protocol, either AlickBob both get content that passes
the verification algorithms given to them, or neither Aliaar Bob gets anything that passes the veri-
fication, in each of th@ exchanges, even when one of them is malicitBhis definition is easy to
satisfy using a (non-optimistic) fair exchange protocaotsi Alice and Bob can both hand their files
to the Arbiter, and then the Arbiter can send Bob’s files tcéland Alice’s files to Bob, if they pass
respective verifications. Thus, below, we will define the enimteresting case; fairness for apti-
misticfair exchange. It is important to note that the ASW definitddfairness applies only to a single
exchange, whereas our definition covers polynomially-nexthanges between an honest party and
other players all controlled by the adversary.

FAIRNESS We have an honest playkr, and an adversarial playgt. The honest player runs al-
gorithmA in exchanges where he plays the role of Alice, algorithin exchanges where he plays the
role of Bob, and the Arbiter runs the algoritiimall as defined by the protocdd. has filesf,ﬂl), . f,ﬂ”)
to be exchanged with the adversary, amtias f;l), v f;n) to be exchanged withl. The adversary is
assumed to control all other players, and hence all interabf the honest player are with parties
controlled by the adversary, which is the worst possibl@ade covering multiple exchanges.

First there is the trusted setup phase as explained abatiegghe security parameters as input,
generating secure content and verification algorithmsgalaith some associated public information,

and giving the appropriate values to each party. Since tiup ghase is trusted) : 1..n\/f<i) 7Vf<i) ,PP
H Aa

are trusted. Then parties proceed with the fairness gamaiegd below, the honest party outputting
X and the adversary outputting At the end of the game, we require the fairness conditiod$ioh
X,Y, the verification algonthmv o ,Vf ,- ,me) ,Vf m, and the public valueBP with high probabil-

ity against all PPT adversarigh and aII polynom|ally long auxiliary inputs.

12 On the contrary, completeness definition only deals wittelsbparticipants.



Pr [ Setup; FairnessGame: FairnessConditien1 — negSP)

FAIRNESS GAME: There are three types of interaction in our fairness gampee T interactions
are betweerH and 4. Type 2 interactions are betweéhandT. Type 3 interactions are between
4 andT .12 The adversary can arbitrarily interleave typ@.B interactions, but cannot prevent type
2 interactions from happening until the timeout if timeoats used, or eventually otherwise. The
game ends when the honest pattyroduces its final output (including aborts and resolujiamsll
the started protocols. Without loss of generality, in thenless game we assume both parties want to

exchange different content in different exchang@s4 j f,ﬂi) #+ f,ﬂ” andl‘g> #+ f;” andvi, j f,ﬂi) #+
f;(qj))-14
FAIRNESS CONDITION: Recall that the honest party’s output wésand the adversary’s output

wasY at the end of the fairness game. A general fairness conditimd beVi : 1..n [Ix € X :

Vf@) (X) = accepte Iy e Y : me (y) = accept meaning that eithed andZ both get what they want
H

orﬂboth don't, in each exchange.

Our protocol with payments has a very straightforward galimation of the fairness property.
Our fairness condition states that either they both pagetseach other’s file, or one of them gets
the other’s file whereas the other gets his payment, or théy ¢pet nothing at each exchange. We
believe that a broad range of optimistic fair exchange mwican adapt the definition above using
straightforward extensions whenever necessary.

TIMELY RESOLUTION: Lastly, as pointed out by ASW [4], an optimistic fair exclgarprotocol
must provide timely resolution: Alice and Bob must be abléawe disputes resolved within a finite
and limited time. In our protocol without timeouts, resadat is immediate. In our protocol with
timeouts, we guarantee resolution at the timeout (whichnisefiand fixed). We furthermore show
that timeouts do not render our system less usable (AliceBuoirican freely participate in other
exchanges without waiting for the timeout), and so in gengeacan use our more efficient protocol
with timeouts.

We now present two different barter protocols, one that egglimeouts (Section 3), and one that
does not (Section 4). Both of our protocols &) times more efficient than previous protocols [4,
3,2,5, 39, 8,18], whenfiles or blocks are exchanged, and almost as efficient as air exthange,
while still being provably fair.

3 Efficient Optimistic Barter Protocol

3.1 Barter with Timeouts

We will show a particular instantiation of our protocol, ngiendorsed e-cash [18] as the payment and
hashes as the file verification algorithms, and then poinhowtto generalize it easily, in Section 3.7.
Before the protocol begins, we assume Alice has withdrawaremin from the Bank. Every time Alice
and Bob wants to exchange two files (every time before stegtZqgirotocol below), Alice generates
her fresh keyKa and Bob generates his fresh ki€y for a symmetric encryption scheme. Alice and
Bob both have their filesfg, fg), have the encrypted versions of their filea & Eno, (fa),cs =
Ena, (fs)), have the hashes of their files and encryptions (Alicethas= hash{ fa), he, = hash(ca),

and Bob ha$i, = hash{fg),he; = hash{cg)). Besides, the Tracker provides them with the respective

13 |In the implementation] may need to have a way to differentiate which one of Alice anb Be is talking
to, which can easily be done in our protocols without leagnifho Alice and Bob are. When necessary, using
one-way function values whose pre-image is known by onlyadtibe parties will suffice.

14 |f the honest party already has the adversary's file, theangd will be trivially fair due to the completeness
property. If the adversary already has the honest partg'stfien there is no hope for fairness since the adver-
sary can just abort the protocol but he already has the fiteil&iarguments hold for exchanging the same file
multiple times.



verification algorithms: Alice getss,, Bob getshy,.1° Everyone uses the same time zone (e.g., GMT),
and thetimeoutis a globally known paramettt If anything goes wrong prior to step 5 (no resolution
protocol is applicable), the protocol will be aborted. Thetpcol proceeds as follows (summarized in
Figure 1):

1. Alice creates a fresh public-secret key galix, ska for a signature scheme. Alice sends a fresh
unendorsed e-coicoin’ to Bob, along with a verifiable escrow= VEa,(end pk,) of the en-
dorsemenénd labeled with the signature scheme’s public key.

2. Alice sends Bob ciphertexs of her filel” Bob calculatesi, = hask{ca).1®
3. Bob sends Alice ciphertegg of his file. Alice calculate$i, = hashcg).

4. Alice sends Bob an escrosv= Earp(Ka; ht,, g, Nea, Neg, time) and her signature = signy, (e)
on that escrow. The escroswshould encrypt a key and should be labeled with four hashegalu
ht,, htg, Ny, Neg, @and atime value. If any of the hash values do not match Bob’s knowledge o
those values, or if thime value is deviated too much from Bob’s knowledge of the timeg.(e
almost one timeout difference), then Bob abdft8loreover, if the signature on the escrove
does not verify with the public kepk, sent in step 1 as part of the verifiable escroBob aborts
the protocol.

5. Bob sends Alice his kelfis. Alice checks if the keXg decrypts the ciphertext correctly. If not,
Alice does not proceed with the next step, and riliseResolvealthough she might have to run
it again just after the timeout to be able to resolve.

6. Alice sends Bob her kega. Bob checks if the ke decrypts the ciphertexi correctly. If not,
he runsBobResolvehe must do so before the timedit.

Once step 1 is completed, cheap
steps 2-6 can be repeated to ex-

change more files, as long as no dis- Alice - Bob
pute occurs. Alice and Bob need not @ o gl Py -
know beforehand how many orwhich ~ — ~ — C: 777777777
files/blocks to exchange. Whenever ®‘ s =®

they decide to exchange blocks (be-‘ff)lr’eat
fore every step 2), it is enough for mutiple @
them to just obtain their hashes from "' K, -
the Tracker. Actually, in BitTorrent, K,
once you ask for hash of a file, the
Tracker provides you with the hashes
of all the blocks in that file already.
Thus, connecting the Tracker for each
block is not necessary in real life.

Below we present the resolution protocols in case of a déspetween Alice and Bob. The Arbiter
never gets involved in a transaction unless there is a disput

\

Fig. 1. Our Barter Protocol with Timeouts

15 We are abusing the notation by using hash values as vemiicatgorithms provided by the Tracker hoping
that the actual verification procedure of hashing the files @mparing the result with values given by the
Tracker is obvious.

16 |t can easily be a per-exchange parameter known to (or atpedubth parties.

17 Alice and Bob can use their choice of (symmetric) encryptohemes (not necessarily the same). This only
requires us to add the definition of the encryption schemd testhe messages exchanged.

18 These will be Merkle hashes [37] for efficiency reasons, asugised in Appendix A.

19 We do not require tight synchronization. So, for exampletithevalue can just contain hours, and not minutes
and seconds.

20 Bob can run BobResolve immediately aftemassage timeoutie need not wait for a long time for Alice.
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3.2 BobResolve

Bob needs to contact the Arbiter before the timeout for rggmh (current time< timein escrowe +
timeou), since otherwise the Arbiter is not going to honor his refiu&ssuming Bob resolves before
the timeout, he provides the Arbiter with the escr@and signaturas that he received in step 4, and
also the verifiable escrowhe received in step 1 from Alice. The escrewhould be labeled with four
hash valueks,, he, he,, Nz, and aimevalue. The verifiable escrowshould be labeled with a public
key pk, for a signature scheme. If the labels of the escrows areriihéd, the Arbiter will not honor
the request. The Arbiter checks the signatsitesing the public key in the verifiable escrawand

if it verifies, he asks Bob to present his correct kgythat verifies using the VerifyKey protocol in
Appendix A (i.e., it decrypts a ciphertext with halsfj to a plaintext with hashy;). If Bob succeeds
in giving the correct key, the Arbiter stores the K€y, decrypts the escro@ and hands in the key
Ka from the escrow to Bob. Bob checksKfy decrypts Alice’s filefa correctly. If not, he proves
this to the Arbiter using the technique in Appendix A and dbtsendorsememndin the verifiable
escrowv from the Arbiter?! Notice that only Bob may succeed in the BobResolve protodthl the
Arbiter because any other party will fail to provide the emtrkey matching hashes of Bob's files (see
Appendix B).

3.3 AliceResolve

When Alice contacts the Arbiter for resolution, she asksBob's keyKg. If such a key exists, then
the Arbiter send¥g to her?? Kg has already been verified, so Alice does not need to perfoym an
further action. If such a key does not exist yet, Alice shazddhe back after the timeout. If, even
after the timeouKg does not exist, then Alice is assured that it will never exdst can consider that
particular trade as aborted.

3.4 Efficiency Analysis

The efficiency of Alice’s and Bob'’s parts in the protocol canfbrther improved, although this would
require the Arbiter to perform more work. To improve Alicaisd Bob's efficiency, Bob sends the file
unencrypted in step 5, instead of separately sending thetgxt in step 3 and the key in step 5, thus
eliminating step 3 completely (a similar logic might alsgbpto steps 2 and 6). But, in that case,
the Arbiter needs to keep the whole file for resolution pugsdastead of only a very short key as in
the current case. Since such trusted third parties can bettmbottlenecks of the system, we prefer
having the least amount of work to be done by the Arbiter, @hds$ers perform slightly more work
instead. Moreover, if secrecy of the files is desired, thdiyhwi encrypted anyways.

We consider a concrete instantiation of our protocol usimipesed e-cash [18], Camenisch-Shoup
verifiable escrow [19], AES encryption [25], DSS signaty#dq, and RSA-OAEP public key encryp-
tion for (non-verifiable) escrow [10]. Our protocol has onlgglectable overhead over just doing an
unfair exchange. Sending the ciphertexts in steps 2 and 8¢uesponds to sending the files in any
(even unfair) exchang® The keys sent in steps 5 and 6 are extremely short messaglegtésseach
for 128-bit AES keys). For a fair exchange, step 4 is stillivereap since the only primitives used are

21 The Arbiter can abort this trade forgetting thg in such a case. This is not necessary according to our
definition (and can even be considered unfair), but it candeel as a way to punish cheating Alice even more.
In the worst case, if non-atomicity of the Arbiter is allowied efficiency reasons, Alice can obtdiig before
Bob provesKa to be incorrect, effectively turning our protocol into a buytocol.

22|t the Arbiter is allowed to be non-atomical for efficiencyas®ns, then he needs to ask Alice for her key
Ka, verifying it using the VerifyKey protocol in Appendix A befe giving herKg. This represents a tradeoff
between the atomicity and efficiency of the Arbiter, whiclm & resolved arbitrarily, although it can also be
used as a tougher punishment for cheaters.

23 \We can in general assume that the I/O and CPU can be pipelintdisthe encryption will not add more time
to uploading the files.
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an ordinary (non-verifiable) escrow (just a public key eptign), and a signature (A DSS signhature
created using a 1024-bit key is about 40 bytes, while an R&&®encryption with a 1024-bit key
is about 128 bytes).

Assuming 10 and CPU can be overlapped, encryption of filebnetladd any time. Furthermore,
signatures and escrows take only a few milliseconds. The time consuming step is sending the
blocks themselves, which has to be done in any case (andmmeryloes not increase size). The only
real overhead is the first step, where the verifiable escrod éadorsed e-cash, if used) is costly (see
below).

Our protocol, in addition to guaranteeing fair barter effittly, is optimized for multi-barter situ-
ations. One such situation is a file sharing scenario as ifoB#nt [22, 8]. The peers Alice and Bob
are expected to have a long-term barter relationship. Heiee 1 needs to be carried out only once
per peer, and remaining cheap steps 2-6 would be repeated faach block, whereas previous
protocols required a costly step like step 1 to be performeddr each block This greatly amor-
tizes the costly step 1 in our protocol, when multiple blofdsfiles) are exchangedyen when the
files/blocks to be exchanged are not pre-defingthey need to be defined only before each execution
of step 2).

To give some numbers, consider an average BitTorrent filzeefZ8GB made up of about, 500
blocks [32]. Using previous optimistic fair exchange pals, this requires,500 costly steps (one
per block). Our C++ implementation using endorsed e-caSh #hd Camenisch-Shoup verifiable
escrow [19] takes about 2 seconds of computation for stepost(nf which is the verifiable escrow)
on an average computer@®2). This corresponds to 25002seconds- 84 minutesof computation
overhead. Considering a BitTorrent client that connectaltout 40 peers, using our protocol, this
overhead becomes ju80 secondsOur network overhead is similarly neglectable (aroundB@er
peer, almost all of which is the one-time cost of step 1, abalftof it being endorsed e-cash). This
corresponds to about 256060KB = 125 MB total overhead using previous schemes, and 2miB
total overhead using our scheme (for.8@Bfile).

As for the Arbiter, he checks a signature, sometimes desiyfterifiable) escrow, and performs
the VerifyKey protocol of Belenkiy et al. [8] (see AppendiX.AThe signature check and ordinary
escrow decryption takes only milliseconds, the verifialslerew decryption, when necessary, can take
a few hundred milliseconds. The bottleneck is the data thatArbiter needs to download for the
VerifyKey protocol, which is about 2Zhunksx 16KB = 352KB [8]. An important point to note is
thatthe amount of data the Arbiter's needs to download is inddpahof the size of the file that is
being exchanget® Some more efficiency evaluation, limitations and possiblations are discussed
in Appendix C.

3.5 Security Analysis

In this section, we assume that we are given a one-way funaianiversal one-way hash function, a
chosen plaintext secure encryption scheme, a chosengas®cure verifiable escrow scheme, a cho-
sen ciphertext secure escrow scheme, an unforgeablesigisaheme, and an e-cash scheme which is
unforgeable, anonymous and unlinkable. For precise diefiisipf security of these primitives, please
see the references [29, 31,41, 40, 37,33, 25,19, 18, 8]. iicpkar, we can use the instantiation in
Section 3.4.

Theorem 1. Our efficient barter protocol with timeouts as given in SattB is a secure optimistic
fair exchange protocol according to Definition 4 in SectioB.2

Proof. Itis obvious that our protocol satisfies the optimistic cdetgness (and therefore the complete-
ness) property. We prove the fairness of our protocol overfdirness game defined in Section 2.2.

24 Merkle proofs are logarithmic in number of the blocks in tHe, fout are much smaller in size than the data
blocks themselves in practice.
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Remember that our fairness condition states that eithérnties obtain the other party’s file, or one
party obtains the other party’s file while the other partyaits the e-coin (effectively turning into a
buy protocol), or no party obtains anything.

An honest party will always use independent keys for eacheriext (s)he sends. Furthermore,
endorsed e-cash [18] forces the users to use indeperment€nd pairs in different exchanges by
using randomness contributed by both parties involved énetkchange. Our goal is that even if the
adversary corrupts all other parties in the system (ex¢epTTPs), he cannot obtain more than the
union of what each of these individual corrupted parties stggposed to obtain from an honest trade
with the honest user.

Security of the Resolution Protocols
We first prove the security of our resolution protocols, agjlas one of the participants is honest.
Afterward, for the rest of the proofs, we will assume thosesacure and do not worry about them.

Claim 1. If BobResolve and AliceResolve protocols are executed éritthexchangeij" exchange
will be fair on its own.

Proof. BobResolve: When an honest Bob contacts the Arbiter, he provides theecbkeyKg and
obtain the decryption of the escraamfrom the Arbiter. If this escrow contained the correct k&y;
then we are done. Otherwise, Bob can prove so (as in Appendixéthen the Arbiter hands out the
endorsemergndto Bob. This endorsement s valid due to the security of thiiable escrow scheme
(it can be shown by a reduction). Therefore, an honest Bobobthin either the correct key or the
endorsement of Alice.

If a dishonest Bob contacts the Arbiter, he cannot provideeorrect key to the Arbiter and make
him accept. This can easily be shown by reduction to the ggafruniversal one-way hash functions
[40] (see Appendix B) or the VerifyKey protocol of Belenkiy &. [8] (Appendix A). If dishonest
Bob provided the Arbiter his correct ké§g and obtained honest Alice’s correct ki€y, the only way
he can be unfair against an honest Alice is to obtain hereoitin addition. But, Bob cannot obtain
endbecause he either has to forge Alice’s signature on anotiveowe’' of some junk key<, which
does not decrypt correctly, or he could break our assumptidhe hash functions by providing some
ciphertext with descriptiofc, which does not give a plaintext with descriptibg, when decrypted
using Alice’s keyKa in the escrove. So, a dishonest Bob cannot obtain the endorsement of asthone
Alice. Furthermore, he can obtain Alice’s correct K&y only if he deposits his correct kd{g.

AliceResolve: In this protocol, Alice contacts the Arbiter and asks fobBdey. If Bob deposited
his keyKg to the Arbiter, then Alice obtains it. From BobResolve, walrthat if a keyKg exists,
it is correct. In case Alice was dishonest and obtained thiskg from the Arbiter, we know that
honest Bob has already received either the correct key oireeé Alice using BobResolve. In case
where Alice was honest but Bob was dishonest, we know he emildbtain both the correct key and
endorsement of Alice. O

Hence, we can conclude that the resolution protocols do elptthe adversary to win the game,
and so if the adversary wants to be unfair in flexchange, he will not execute a resolution protocol
for that exchange. Next we split the analysis of our maingwokinto two cases: the case where the
honest party plays the role of Alice, and the case where hes piee role of Bob.

Case 1: Honest Alice vs dishonest Bob
Claim 2. Suppose Bob succeeds in obtaining honest Alice’s e-coin man-negligible probability.

Then we can construct an adverségy breaking the e-cash scheme with non-negligible probgbilit
by playing the fairness game with Bob.
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Proof. Ac is given a challengeoir’ and her goal is to output an endorsemend 2> She guesses
an indexi that Bob will succeed in being unfair, and replacesab'ef“) by the givencoin'. Since
Ac does not know thend”), she puts garbage into the verifiable escrdW; and sends it to Bob.
She fakes the verifiability by using the simulator for theifi@ble escrow [4, 19F° For all the other
interactionsAc acts exactly as an honest Alice would. Sirgeis honest, the verifiable escrow)
will never be decrypted by the Arbiter (shown in Claim 1), dnydthe security of verifiable escrow,
the adversary cannot obtain the endorsement by decryptimgii can the adversary distinguish it
from a verifiable escrow of a valid endorsement (can be shguandtraightforward reduction to CPA-
security of the verifiable escrow scheme, since the verdiabtrow will never be decrypted because
Alice is honest). At some point, Bob outputs an endorserard?) with non-negligible probability.
The probability that = j is non-negligible by definition (the total number of barteiis a polynomial
in SP as defined in Section 2.2). If the indices match-(j), Ac outputs theend). Therefore Ac
breaks the endorsed e-cash [18] with non-negligible pritibalby endorsing an unendorsed coin
coin’ without the endorsemeernd a

Claim 3. Suppose Bob, without calling BobResolve, succeeds in oiogione of honest Alice’s files
fgj) with non-negligible probability before step 6 f exchange for somg(Alice will perform step

6 only if she obtained the correct ke@éj) from Bob). Then we can construct an advers&gywhich
breaks the encryption scheme Alice uses with non-negégibbbability.

Proof. Ae generates her files using the setup phase. Then she gueasésxarihat Bob will succeed
in being unfair, and sends two files to the challenger of tharygtion schemeAg is given back a
challenge ciphertexts and her goal is to decide which file she sent was encryptedrefiteces the

cﬂ) by ca. For the rest of the interactioAg behaves as an honest Alidg does not know the ke&ﬂ),

but she can fake the escr@il’ by encrypting junk in it. Due to the security of the escrowestie, Bob
cannot distinguish it from an honest escrow (can be shown dtyaightforward reduction to CCA-

security of the escrow scheme). At the end, Bob returns atebed f,ij). If the guessed was correct

(i=j), thenAg returnsfﬁ) and wins with the same probability as Bob does. Sikgénteracts with
Bob only polynomially many times, the event j has non-negligible probability, and since Bob has
non-negligible probability of obtaining Alice’s file, theX: has non-negligible probability of breaking
the encryption scheme used. a

Case 2: Honest Bob vs dishonest Alice

The argument is symmetric to Claim 3. The symmetric versioAgocan easily be reconstructed
asBeg in this scenario, indistinguishable from an honest Bob.ddeif Alice obtains Bob’s file before
step 5B breaks Bob’s encryption scheme. After step 5, Alice alrd@alyBob’s file, and can choose
not to send her key in step 6. But, the security of BobResahaantees that Bob can obtain Alice’s
key or e-coin in exchange to his file from the Arbiter (showiCiaim 1).

Combining these results, fairness for the honest partyasapueed in all the exchanges, regardless
of him playing the role of Alice or Bob. a

3.6 Privacy Analysis

None of the exchanged material contains information totifieAlice or Bob (not even Alice’s sig-
nature, since her public key is generated just for the expiiahis a temporary key, not permanent).

25 A detailed proof will giveAc two oracles, one fotoin’ creation, and one fandcreation. ThenAc will play a
CCA-security like game with the e-cash scheme. The cha#leniyf will be the one used in thé" exchange,
on whichA¢ cannot query the endorsement oracle.

26 The verifiable escrow simulator can require simulating thblis parameters too, but this is allowed and is
indistinguishable from real public parameters due to tleisey of the verifiable escrow scheme.
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Moreover, even an adversary performing multiple exchamgéssthe same honest party cannot link
those exchanges together using the protocol messagestBsmbenest party uses fresh keys every
time and endorsed e-cash is unlinkable (IP address linkisgrilar means might be possible, but our
protocol does not create any additional means of identifioand linking). Furthermore, the Arbiter
does not necessarily know who he is talking to, apart fronfdbethat the resolution is on a particular
exchange (possibly identified by a random exchange ID). Tihi#ét may be able to find out whether
he is talking to Alice or Bob, but not who Alice or Bob is. Ananpus communication techniques
such as onion routing [26] can be used when necessary. | astlysh [18] is anonymous, and thus
even when Bob deposits the e-coin, no one can know it was'akeeoin (unless she double-spends).

3.7 Generalized Version

We have shown an instance of our protocol which uses hashesritication, and endorsed e-cash for
payment. In generabur protocols can employ any secure verification algorithm(see Definition 3)
provided by the Tracker, instead of the hashes. Similanly, protocols can easily make use of
other payment methods(see [1] for a compilation) or signatures instead of e-chahthen privacy
of the participants will not be preserved (see Section 3r@fprivacy analysis). The modification is
straightforward, and involves just replacing the verifeadscrow of the e-coin with a verifiable escrow
of any other form of payment.

4 Efficient Barter without Timeouts

We provide another protocol which does not make use of tinsedni this case, both parties give e-
coins to each other as a warranty. A similar setup applies, adrere Bob is also required to have with-
drawn an e-coin. Furthermore, Bob also generates a publiatp key pair for his signature scheme.
Details that were explained in our previous protocol willdseitted here.

1. a. Alice sends her unendorsed caimin 5, along with the verifiable escrow, = VEarp(end; pka)
of the endorsement to Bob.
b. Bob sends his unendorsed caiin'g, along with his verifiable escrows = VEar,(ends; pkg)
of his endorsement to Alice.

2. a. Alice sendsca to Bob. Bob computelse, = hash{ca).
b. Bob sendgg to Alice. Alice computes, = hashcg).

3. a. Alice picks a random value from the domain of a one-way functian and computesg(r).
Alice sends her escrody = Ean(Ka; ht,,htg, Ny, Neg,a(r)) and her signaturgs = sigrky, (€a)
on her escrow to Bob. Bob aborts the protocol if the signagnigoes not verify undepk, in va
or the hash values do not match Bob’s knowledge of those salue
b. Bob sends his escroes = Eam(Kg; ht,, hig, he,, heg,9(r)) and his signatures = Sigr; (es)
on his escrow to Alice. Alice calls AliceAbort below if thegsiaturesg does not verify undepkg
in vg, or the hash values @(r) do not match Alice’s knowledge of those values.

4. a. Alice sends her keia to Bob.
b. Bob sends his kel{g to Alice.

The escrows in step 3 are a bit different than the previousmpob. First, there is néime value
attached, since no timeouts are used. Furthermore, batbvesoeed to contain a valggr) whereg
is a one-way function, and only Alice knowsThis is achieved by requiring Alice to pick a random
r in step 3.a, and then pgtr) in the label of the escrow. After receiving Alice’s escrexy Bob also
incorporateg(r) into the label of his escrows.?’

27 This is showing how the Arbiter can distinguish Alice and Bafing one-way functions, as discussed in
previous footnotes. Other possible measures having the s#ect can also be taken.



15

The new AliceResolve and BobResolve algorithms are bothsiarilar to the BobResolve in our
barter protocol with timeouts (of course, both parties bgesiscrows and signatures received from the
other party, AliceResolve gekss by giving Ka, and there are no timeouts), and they should be run if
the key Alice or Bob receives at step 4 is not correct, respelgt

The logic behind getting rid of the timeouts is similar to fdea in ASW [4]. If Alice wants to
abort the protocol (because something was wrong with thesagesshe received in step 3.b, or she
did not receive any response, she can do so by contactingrthiteAusing the AliceAbort protocol
below. She no longer needs to wait until after tmeeout After receiving (or not receiving) Alice’s
message at step 3.a, Bob can simply abort locally if anytisimgong.

4.1 AliceAbort

Alice contacts the Arbiter, handing him her escreny her signaturea on that escrow, and her veri-
fiable escrowa that contains the public keyk, for the signature. The Arbiter checks the signature
first. If it verifies, he requires Alice to give a valueso thatg(r) matches the one-way function value
in the label of the escrown (therefore Bob cannot succeed in this protocol). Then,glseproceeds
similar to the AliceResolve in our previous protocol. Aliagks the Arbiter for Bob's kel(g. If such

a key exists (because Bob resolved before Alice aborteeh), tthe Arbiter sendKg to Alice. Kg has
already been verified, so Alice does not need to perform artiadu action. If such a key does not
exist yet though, the Arbiter considers that particuladé¢ras aborted, and will perform no further
resolutions regarding this particular barter. (Rememhlkce needed to come back after the timeout
in our previous protocol.)

4.2 Analysis

Theorem 2. Our efficient barter protocol without timeouts in Sections4ai secure optimistic fair
exchange protocol due to the Definition 4 in Section 2.2.

Proof. Omitted due to extreme similarity with the proof of our proabwith timeouts. The proof of
AliceResolve is now the symmetric version of BobResolveolefThe proof of AliceAbort is very
similar. Furthermore, the corresponding adversakiesAc, Bc, andBg are very straightforward to
construct. O

The privacy analysis in Section 3.6 and the generalizati@eiction 3.7 also applies to this proto-
col. Regarding efficiency, agaistep 1 has to be completed only once per peer, and then multipl
files can be exchanged by carrying out steps 2-ds long as both parties are honest, amortizing the
cost of the coin and verifiable escrow exchange in step 1. ThéeX's cost will be doubled though,
due to the need to perform two costly resolutions (AliceResis as costly as BobResolve now).

5 Conclusion

There already are many scenarios where peers trade coB&¥2]. These systems unfortunately
rely on the honesty of the peers for providing fairness, lpéecause of the high cost incurred by the
previous fair exchange protocols [2-5, 8,18, 39]. Our prot® uniquely limit the use of the costly
primitives (verifiable escrow and e-cash) to once (or twige) peer, as opposed to per file/block.
We have shown in Section 3.4 that there are huge efficiencysgaier previous protocols. Besides,
most of the existing systems already rely on similar trugtedies [2-5, 8,17, 18, 20, 22, 32, 39, 42].
Therefore, by using our protocols, such bartering systetifisexperience almost no performance
loss, while the benefit of providing fairness guarantees lvélvery noticeable indeed (e.g., see [8]
for how the use of fair exchange can solve the free-ridindglem of BitTorrent). For the first time,
the neglectable overhead of our protocols enable the ifeadéployment of fair exchange protocols.
Already, the Brownie Project [14] is adopting our protodalsheir BitTorrent deployment.
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A Subprotocols

We use two subprotocols from Belenkiy et al. [8] that makeitheraction with the Arbiter efficient.
One protocol is used to prove that a key is not correct, whidedther is used to prove that the key is
in fact correct. For efficiency, Merkle hashes [37] are usethése subprotocols (see Belenkiy et al.
[8] for more information on the protocols and the use of Mettkashes).

Proving a key is not correct Showing that a ke does not decrypt a ciphertextith hashh,
to a plaintextf with hashh; can be done efficiently, as Belenkiy et al. suggests. Carqirave the
key is not correct, gives the Arbiter a payiof data which does not decrypt correctly. The Arbiter can
check if the given part; matches the Merkle tree hash of the ciphertext,2ad (¢;) does not match
the hash of the plaintext, using the proof provided by Carol.

Proving a key is correct Using a challenge-response protocol (Belenkiy et al.fy&gy proto-
col), one can prove that a key is correct. The Arbiter askpfoofs of the key decrypting correctly
on random chunks. If Bob can reply correctly to all chunks/tmg valid proofs for Merkle hashes,
the the Arbiter accepts Bob's key. If Bob corruptarifraction of the file, and the Arbiter verifids
random parts, then the Arbiter will catch Bob with a probiapipf at least 1— (1 — %)k [8].

B Universal One-Way Hash Functions (UOWHF)

Let Hk be a family of hash functions, whekas the security parameter. We assume that the following
experiment has negligible probability of success for anymamial-time adversar, for sufficiently
largek: We have a filef and a hash functiohash«< Hy uniformly chosen from the family. Given that
file f and the hash function’s descriptibash(which effectively also means givirttgash f)) as input,

A returns ac,K pair, wherehashDeqc(c)) = hash(f) but Dec (c) # f. Remember thaf cannot
control the file’s hash, due to the trusted content and vatiéio algorithm generation process, hence
he needs to find a targeted collision.

This requirement is equivalent to the security of Unive@ak Way Hash Functions (UOWHF)
[40]. We first reduce our assumption to the UOWHF assumpgpecifically, letA be a polynomial-
time adversary succeeding in the above attack with nonigibg probability. We can construct an
adversanyB which finds a collision in our UOWHF as follows: Whdhis given (f,hash, he runs
A on (f,hash to obtain(c,K). B then checks iDec (c) = f, in which case it fails. Otherwise, if
Dex (c) # f buthasi{Ded (c)) = hashf), thenB outputsDec (c) as the collision. As easily seen,
B has the same success probabilityAaand has polynomial runtime complexity.

The reverse reduction is also possible. Betucceed in attacking UOWHF with non-negligible
probability. A, when given(f,hash as the challenge, rur on (f,hash to getc’ with haskc') =
hasH{f) andc’ # f. A then picks a random kel{, and returngc = Eng(c'),K) as the answer.
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Obviously,hasHc = Dea (c)) = hasH f) butc’ = Deg (c) # f. Hence, our assumption is equivalent
to the UOWHF target collision-resistance assumption.

Our discussion above applies in our trusted content settitngre the content and verification
algorithm generation process is trusted. If we allow theeaslary to generate his own content (thus
content generation is not trusted), he can as well genewfeshcontent. Yet, if we are in a semi-
trusted setting where the adversary is allowed to geneistewn content as long as it is not bogus
(e.g., he can generate a movie file that really is showing tbeiel), then we need to use collision-
resistant hash functions for security. The reasoning isttigacontent may be generated after the hash
function is chosen by the Tracker. This will not affect thagiice, since all widely-used hash functions
are assumed to be collision-resistant.

C Limitations and Future Work

One limitation of our work is the need for the exchanging igarto trust the Arbiter. Alice trusts the
Arbiter not to give away both her e-coin and the key to her fileen though giving away the key
only makes the exchange unfair, giving away the coin maylrgsaven an honest Alice becoming a
double-spendet® One possible way to reduce this need for the trust would begusiveral arbiters,
who do not necessarily know each other. Alice and Bob can atiytagree on a specific arbit¢he
Arbiter, before the protocol begins. Since, there is no registnatith the Arbiter in our protocol, any
arbiter can accomplish the job.

Fortunately, if a proof of dishonesty is requested, neitherArbiter, nor Bob, nor anyone else can
frame an honest Alicé? The Arbiter may be asked to prove Alice’s guilt by presentingerifiable
escrow, a non-verifiable escrow and a signature on it, aldttgtive proofs that Bob'’s key decrypts
correctly yet Alice’s key in the (non-verifiable) escrow damt. Due to the security of these primitives,
no one can frame an honest Alice. Of course, this requireé\thiter to store all past resolutions,
and Alice’s privacy has already been invaded by the doupésding detection. In order to prevent
a malicious Alice from framing the Arbiter by intentionallouble-spending, we can require either
Alice’s or the Arbiter’s signature when a coin is being defezk We leave the issue of efficiently
reducing the need to trust the Arbiter or verifying the Aebi behavior without violating Alice’s
privacy as a future work.

As for the bottleneck that can be caused by the central ArtbMeoine et al. [6] show how to
employ secret sharing techniques [44, 12] to distributestiaes of the secrets among arbiters. This
will decrease the amount of job each arbiter needs to perfgemit will reduce the efficiency of
our resolution protocols. As argued in [34], the same tegpies can be applied to our protocol with
timeouts. In another work, Belenkiy et al. [9] show how tosmitrce computation, which can be used
as a means to distribute the work of our trusted parties. TlogvBie Project [14] is analyzing this
strategy to distribute the arbiter and the bank in their &@it&nt deployment.

Without considering distributed denial of service (DDo&peks, let us provide some numbers
for evaluation. To have an idea, consider a p2p system @000 users, exchanging8GB files
on the average [32]. Exchanging two such files means exchgidiGB of data. If 1% of all users
are malicious, this can correspond to, Q@0 exchanges requiring an arbiter at a given time (where
one user is honest and the other is malicious. If both of themmraalicious, this number reduces to
half of it). We said, in case of a dispute, a peer should upREKB of data to the Arbiter. Assume
that the same upload speed is used when trading files andctogtéhe Arbiter. If we assume the
worst case scenario where the Arbiter can handle only oneatsetime and every user is active at
all times, this requires having 2 arbiters; with 10% maliciauser ratio, we need 11 arbiters. Under
the very realistic assumption that an arbiter can handles2bsiat a time (e.g., assuming 25 times as
fast download speed of the Arbiter as the upload speed ofdaes23]), we will need 1 arbiter in

28 This does not result in Alice losing money, but losing herrgmoity.
29 Of course, this requires yet another trusted entity, caledudge
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this system (even with 10% malicious user ratio). When weausgrotocol without timeouts, these
numbers will double (but if our arbiter can handle 25 usestanhe, we still need only 1 arbiter).

As in many deployments, it is possible to mount a distributedial of service (DDoS) attack on
the arbiters by continuously performing fake barters asdlxéng with an arbiter. We leave the pro-
tection against such attacks (by means like blacklistingd&resses) to system and network security
researchers. Alternative strategies of reducing theexdditoad were already discussed above.

In terms of the storage load associated with the trustedegathe techniques from [16] can be
applied. Using those techniques, the Bank can have a limitedge, as opposed to a groving storage.
For example, if every e-coin is valid for a limited but longg (e.g., one month), then the bank needs
to keep track of only the transactions that happened in teepgaaiod, instead of all past transactions.
Note that the Arbiter also only needs to have a short-term ongiwf past resolutions.

Lastly, our fairness definition states that a file and a payroan be fairly traded, as in previous
works [4, 8, 18, 36, 35]. The economics of this system, dagidin how much a file is worth fairly, is
outside the scope of this paper. The participants can somagoee on the price before our protocol
begins (variable pricing), or alternatively a system cartlse price that will apply to all participants
(fixed pricing). In Belenkiy et al. [8], the authors assumetellock in the BitTorrent system are worth
one e-coin. We leave this pricing issue as an interestinticgion-dependent open problem.



