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Abstract. Fairly exchanging digital content is an everyday problem. It has been shown that fair
exchange cannot be done without a trusted third party (called theArbiter). Yet, even with a trusted
party, it is still non-trivial to come up with an efficient solution, especially one that can be used in
a p2p file sharing system with a high volume of data exchanged.
We provide an efficient optimistic fair exchange mechanism for bartering digital files, where re-
ceiving a payment in return to a file (buying) is also considered fair. The exchange is optimistic,
removing the need for the Arbiter’s involvement unless a dispute occurs. While the previous
solutions employ costly cryptographic primitives for every file or block exchanged, our proto-
col employs them only once per peer, therefore achievingO(n) efficiency improvement whenn
blocks are exchanged between two peers. The rest of our protocol uses very efficient cryptog-
raphy, making it perfectly suitable for a p2p file sharing system wheretensof peers exchange
thousandsof blocks and they do not know beforehand which ones they willend up exchanging.
Thus, for the first time, a provably secure (and privacy respecting when payments are made using
e-cash) fair exchange protocol is being used in real bartering applications (e.g., BitTorrent) [14]
without sacrificing performance.

1 Introduction
Fairly exchanging digital content is an everyday problem. Afair exchange scenario commonly in-
volves Alice and Bob. Alice has something that Bob wants, andBob has something that Alice wants.
A fair exchange protocol guarantees that at the end either each of them obtains what (s)he wants, or
neither of them does (see [39] for more details and examples).

In this paper, we consider a general file exchange (bartering) scenario, inspired by the BitTor-
rent [22] peer-to-peer file sharing protocol. Alice has several files (BitTorrent blocks) of interest to
Bob, and Bob has several files (blocks) of interest to Alice. They do not know ahead of time how many
or which blocks they will end up exchanging. They want to perform a fair exchange: Alice should get
Bob’s file (block) if and only if Bob gets Alice’s file (block).In our scenario, we are assuming that
Alice/Bob will be equally happy to get a payment in return to her/his file. Thus, exchanging a file with
a payment (buying) is also considered fair, as in some previous works [4, 8, 18, 36, 35].

One of the hardest points in creating a usable optimistic fair exchange protocol suitable for p2p
file sharing applications is that the peers to contact and thecontent to exchange are not pre-defined.
BitTorrent clients keep connecting to different peers to obtain different blocks. Fault-tolerance issues,
connectivity problems, and availability of data blocks areall factors affecting from whom which block
should be obtained. Our protocol uniquely addresses these issues by removing the need to know what
content to exchange with whom beforehand.

In a nutshell, in our protocol, Alice sends a verifiable escrow of a payment (e.g., e-coin) to Bob
first. Then, they exchange encrypted files. Afterward, Alicesends Bob an escrow of her key with her
signature on the escrow. Then, Bob sends Alice the key to his file. Finally, Alice sends Bob the key to
her file. Since Bob has a verifiable escrow of an e-coin and an escrow of a key before he sends his key
to Alice, he is protected. In the worst case, if Alice does notprovide the correct key and the key escrow
contains garbage, Bob can go to the Arbiter and obtain Alice’s payment. The escrow of the payment
cannot contain garbage, because it was formed using averifiableescrow. After the exchange of the
verifiable escrow, the rest of our protocol can be repeated asmany times as necessary to exchange



2

multiple files (even if the number and content of the files werenot known in advance), unless there is
a dispute.

We provide two versions of the protocol: In the first one (the one described briefly above) only
one party provides a verifiable escrow. This version requires the use of timeouts for dispute resolution
purposes. We provide another version that needs both parties to provide verifiable escrows but requires
no timeouts. Both versions are very efficient since they use only one(resp.two) expensive primitives
(verifiable escrow and payment) regardless of the number of files exchanged. We stress the fact that
our timeouts can be very large (e.g., one day or week) to allowfor unexpected situations in which the
participants act honestly (e.g., network failure), and thus require very loose synchronization (e.g., one
hour difference), and users can freely participate in otherexchanges without waiting for the timeout.

Previous Work: It is well-known that a fair exchange protocol is impossiblewithout a trusted
third party (TTP) [42] (called theArbiter) that ensures that Alice cannot take advantage of Bob, and
vice versa. Without loss of generality, Alice will have to send the last message of the protocol, and
we want to protect Bob in case she chooses not to do so. Withoutan arbiter, gradual release type of
protocols where parties send pieces to each other in rounds can provide only weaker forms of fairness,
and are much less efficient [11, 13].

Luckily, the impossibility result [42] does not require that the Arbiter be involved in each transac-
tion, but simply that the Arbiter exists. If Alice and Bob areboth well-behaved, there is no need for
the Arbiter to do anything (or even know an exchange took place). Micali [38], Asokan, Schunter and
Waidner [2], and Asokan, Shoup and Waidner [4, 3] investigated thisoptimisticfair exchange scenario
in which the Arbiter gets involved only in case of a dispute. Two such protocols [4, 30] were analyzed
in [45] (see also [7]).

Asokan, Shoup and Waidner (ASW) [4] gave the first provably secure and completely fair op-
timistic exchange protocol for exchanging digital signatures. Later on, Belenkiy et al. [8] gave a
protocol for buying digital content in exchange for e-cash,building on top of the ASW protocol. They
provided an optimization for the Arbiter so that, unlike in the ASW protocol, the amount of work that
the Arbiter is required to do depends only logarithmically on the size of the file. They also assume
there is an additional TTP (which we call theTracker) that provides a means of verification that the
file actually contains the right content (e.g., using hashes). Such entities certifying hashes already exist
in current BitTorrent systems [22].

Belenkiy et al. [8] used e-cash (introduced by Chaum [20]), in particular, endorsed e-cash [18] in
their constructions. The reason is that other forms of payments (signatures or electronic checks used
in [4, 36]) do not provide any privacy. In our protocols, any form of payment can be employed, but
we will also use endorsed e-cash in our sample instantiationsince it is efficient and anonymous. See
Sections 3.6 and 3.7 for more discussion on employing different payment systems.

Contributions: We present the most efficient fair exchange known to us, wherethe efficiency is
comparable to a simple unfair exchange if performed multiple times between the same pair of users,
even when peers do not know beforehand which blocks they willend up exchanging. Using the previous
work (Belenkiy et al. barter protocol [8]),n pairs of blocks can be exchanged usingn transactions, each
of which requires a costly step involving expensive cryptographic primitives (a verifiable escrow and
an e-coin). Our contribution is a very efficient fair exchange protocol using which this can be done
with only one (or two if we do not want to employ timeouts) step in total that involves the same
expensive primitives (verifiable escrow and payment). Thismeans that, with no (i.e., neglectable)
efficiency loss, our fair exchange protocol can be used to exchange files instead of the unfair protocol
currently used by BitTorrent or similar file sharing protocols. This is a property that is unique to
our protocol: Instead of employing the costly primitives for every file or block that is exchanged,
we employ them once per peer, even when peers do not know beforehand which blocks they will
end up exchanging. Then, exchanging multiple files/blocks between peers involves only very efficient
cryptography (i.e., symmetric- and public-key encryption, and digital signatures). Considering that
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BitTorrent peers exchange thousands of blocks with only tens of peers, this improvement is pretty
significant (as also seen in Section 3.4).

We stress the fact that the timeouts used for dispute resolution purposes in one of our protocols can
be very large (e.g., one day or week) to allow for unexpected situations in which the participants act
honestly (e.g., network failure), and thus require very loose synchronization (e.g., one hour difference),
andusers can freely participate in other exchanges without waiting for the timeout.

We take the idea of using verifiable escrow from ASW [4], and the subprotocols of Belenkiy et al.
[8] that increase the efficiency of the Arbiter (see AppendixA). The Arbiter does absolutely no work
in our protocols, as long as no dispute occurs.Our protocols can make use of any type of payments, but
we will show an instantiation using e-cash since it also provides privacy. Our performance evaluation
numbers will use endorsed e-cash [18] as the payment mechanism. Note that other (non-anonymous)
forms of payments (e.g., electronic checks [21]) will be more efficient.

Our additional contribution is definitional. We give a general definition of fair exchange of digital
content (not just digital signatures) provided that it can be verified using some verification algorithm
(defined in Section 2.2). Furthermore, our fairness definition covers polynomially many exchanges
between an honest party and an adversary controlling polynomially-many other participants (see [27]
for an example fair exchange protocol that is fair for a single exchange but stops being fair in a multi-
user setting). We then prove our protocol’s security based on this definition. We sum up the most
important properties of our protocols below.

Security of our protocol: Our protocols provably satisfy the following condition (waiting for at
most one timeout period if timeouts are used, or without waiting at all if no timeouts are used), as long
as at least one of the trading parties (Alice and Bob) is honest:

– Either Alice and Bob both get their corresponding files,

– Or Alice gets Bob’s file and Bob gets Alice’s payment (turns into a buy protocol in effect),

– Or neither of them gets anything.

Efficiency of our protocol: We have the following properties regarding efficiency:

– An honest user can reuse her e-coin for other exchanges without waiting for the completion of the
protocol.

– The overhead of our costly step – verifiable escrow and e-cash – is constantO(1), instead of linear
O(n) as in previous best results, whenn files or blocks are exchanged.

Already, the Brownie Project [14] is using our protocols in their BitTorrent deployment. We dis-
cuss the efficiency of our protocols and our initial implementation results in Section 3.4. Discussion
of limitations and future work can be found in Appendix C.

2 Definitions
Barter is an exchange of two items, which are digital files in our case. We assume that the reader is
familiar with encryption and signature schemes, and hash functions. Further required definitions and
notation are given below, although partially, omitting thedetails not necessary for understanding this
paper.

2.1 Notation
An escrow is a ciphertext under the public key of some trustedthird party (TTP). Averifiableescrow
[4, 19, 15] means that the recipient can verify that the contents of the ciphertext satisfy some relation
(therefore stating that the ciphertext contains the expected content). A contract (a.k.a. label, condition,
or tag) attached to such a ciphertext defines the conditions under which the TTP should decrypt and
give away the encrypted secret [46]. The label is public and it is integrated with the ciphertext in a
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such way that it cannot be modified. We will useEArb(a;b) to denote an escrow of the secreta under
the Arbiter’s public key, with the contractb. Similarly,VEArb(a;b) will denote a verifiable escrow.

Any payment protocol that can efficiently be verifiably escrowed and is secure can be used in
our protocols. Furthermore, if privacy is desired, the payments should be anonymous as in e-cash
[20]. We provide an instantiation using endorsed e-cash [18] (which is an extension of compact e-
cash [17]), since it satisfies all these requirements. Endorsed e-cash splits a coin into an unendorsed
coin (denotedcoin′) and endorsement (denotedend). One can think ofcoin′ as an encrypted coin
andendas the key. One can check if the endorsementend in a given verifiable escrow [19] matches
the given unendorsed coincoin′ (without learning the endorsementend). Furthermore, given only the
unendorsed partcoin′, no other party (except the owner) can come up with a valid endorsementend.
Endorsed e-cash moreover has the ability to catch double-spenders. Hence, if one uses two different
coin′,endpairs trying to spend the same coin twice, (s)he will be caught (and, since her identity is
revealed, can be punished). Note that if a party tries to deposit the same coin twice (using the same
coin′,end pair), the operation can easily be denied by checking against a list of past transactions.
Lastly, only matchingcoin′,endpairs can be linked, unendorsed coins and endorsements prepared for
different exchanges remain unlinkable.

Wherever used,KP will denote a symmetric key of a partyP, generated through an encryption
scheme’s key generation algorithm. We letc = EncK( f ) denote that the ciphertextc is an encryption
of the plaintextf under the symmetric keyK. Similarly, f = DecK(c) will denote that the plaintext
f is the decryption of the ciphertextc under the symmetric keyK. Our protocol can make use of
any secure symmetric encryption scheme (see the book by Katzand Lindell [33] for definitions and
constructions).

Let pkP andskP denote public and secret keys for a partyP. Thensignsk(x) will denote a signature
onx under the secret keyskwhich can be verified using the corresponding public keypk. Our protocol
can make use of any secure public-key encryption scheme [24,28] and any secure signature scheme
[31].

Furthermore, letHk be a family of (universal one-way) hash functions [40], wherek is the security
parameter, and lethashbe a hash function uniformly choosen from the familyHk of hash functions.
Then,hx = hash(x) will denote thathx is the hash ofx under the hash functionhash. We now introduce
a definition we frequently use in the paper.

Definition 1. We say that a key Kdecrypts correctly, or is thecorrect key with respect to a plaintext
hash hf and a ciphertext c, if the plaintext f′ = DecK(c) has the property hash( f ′) = hf .

Finally, a negligible probability denotes a probability that is a negligible function of the security
parameter (e.g., the key-length of an encryption scheme). Anegligible function ofn is a function which
is smaller than any inverse polynomial overn with n > N for sufficiently largeN (e.g.,neg(n) = 2−n).
A non-negligible probability is a probability that is not negligible.

2.2 (Optimistic) Fair Exchange
In this section we will give a general definition of fair exchange. Unlike in ASW, our definitions will
not be specific to signature exchange, and we will consider polynomially-many exchanges between
an honest user and an adversary controlling polynomially-many other users. Furthermore, we separate
and clearly define the roles of all trusted parties. While providing models and definitions for a general
framework of (optimistic) fair exchange applicable to a broad range of protocols, we will also show
its extensions to our case.

MODEL: The model is adapted from the ASW definition [4], with clarifications and generaliza-
tions. There are three players;AliceandBobexchanging two digital items, and theArbiter1 for conflict
resolution. All players are assumed to be polynomial time interactive Turing machines. We make no

1 One of the TTPs in ASW.
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assumption about the underlying network capability.2 Any message that does not confirm with the
protocol specification will be discarded by the honest parties. Any input which does not verify ac-
cording to the protocol will be resolved as stated by the protocol or the protocol will be aborted if
no resolution is applicable. It is important that the Arbiter resolves conflicts on the same exchange
atomically.3 Thus, it will only interact with either Alice or Bob at any given time instance, until that
interaction ends as specified by the protocol.4 Sensitive communication (e.g., exchange of decryption
keys for files or endorsement of an e-coin) will be carried outover a secure (and possibly authenti-
cated) channel (e.g., SSL can be used to connect to the Arbiter, a secure key exchange with no public
key infrastructure can be used for the communication between Alice and Bob).

For protocols using atimeout5, we assume that the adversary cannot prevent the honest party from
reaching the Arbiter before the timeout. If no timeouts are defined, we assume the adversary cannot
prevent the honest party from reaching the Arbiter eventually. Hence, the honest party is assumed to
be able to reach the Arbiter as defined by the protocol. Even with timeouts, this is not an unrealistic
assumption since our timeouts can be large (e.g., one day or week).

In our model, we have two additional players, namely theTracker (also in [4, 8, 22])6 providing
verification algorithms, and theBankdealing with monetary parts of the system.

SETUP PHASE: Before the fair exchange protocol is run, we assume there isa setup phase. In
this one-time pre-exchange phase, the Arbiter generates his public-private key pair (for the (verifiable)
escrow schemes) and publishes his public key(s) so that bothAlice and Bob obtain it. Optionally, the
Arbiter may learn public keys of Alice and Bob in the setup phase, but our focus is on the case where
the Arbiter does not need to know anything (and learns almostnothing, see Section 3.6) about Alice
or Bob.The adversary cannot interfere with the setup phase.7 In the setup phase, the Bank and the
Tracker also generate their public-private key pairs and publish their public keys.

Definition 2. Let SP denote the security parameters of the system (e.g., key lengths of the primitives
used). LetPP denote all the public values in the system, includingSP, public keys of the trusted par-
ties, and possibly some public parameters. LetPPGen(SP) be the randomized procedure which gen-
erates the public values given the security parameters. Then, define ourPP = (pkarb,pkbank,pktracker,
timeout,SP, and additional parameters for primitives used).

From now on, we need to talk about multiple exchanges taking place. Alice has filesf (1)
A , .., f (n)

A

to be exchanged with Bob, and Bob hasf (1)
B , .., f (n)

B to be exchanged with Alice (n is a polynomial
in SP).8 In general, we can consider these files as some strings in{0,1}∗, therefore consider fair
exchange of anything that is verifiable. Without loss of generality, the Tracker gives Alice averification

algorithm V
f
(i)
B

for each file f (i)
B , and Bob a verification algorithmV

f
(i)
A

for each file f (i)
A before the

exchange takes place.
Assume that the content to be exchanged and associated verification algorithms are output by a

generation algorithmGen(SP) that takes the security parameters as input and outputs somecontent to

2 Clients will have a localmessage timeoutmechanism like the TCP timeout, which is small (e.g., one minute).
The receiver deals with amessage timeoutexactly as it would deal with a non-verifying input.

3 We present a trade-off between non-atomicity and performance of the Arbiter later on.
4 For ease of the Arbiter to find the correct exchange, a random exchange ID can be incorporated into the mes-

sages. Since this is only a minor implementation efficiency issue, we do not want to complicate our definitions
with that.

5 This is not themessage timeout, it is the timeoutspecified by the protocol, which is generally much longer
(e.g., one day or week).

6 ASW has the corresponding TTP in their file exchange scheme. In their signature exchange protocol, the public
key infrastructure providing the public keys can be seen as the Tracker.

7 This is the standard trusted setup assumption that says Alice and Bob have the correct public key of the Arbiter.
8 Note that Alice or Bob can represent multiple entities controlled by the adversary.
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be exchanged, with associated verification algorithms, andpossibly some public information about the
content. This procedure involves a trusted partyH and the Tracker. The parties trust the Tracker in that
any input accepted by that verification algorithm will be thecontent they want. In other words, they
are going to be happy with any content that verifies under thatverification algorithm. In particular, the
content generation process is trusted. The adversary cannot generate “junk” files and ask the Tracker
to create verification algorithms for them. BitTorrent forum sites and ratings provide a level of defense
against this in practice.

Definition 3. Content and verification algorithms are secure if∀ PPT adversariesA and∀ auxiliary
inputs z∈ {0,1}poly(SP) we have (over the randomness of the generation algorithms, the adversary,
and possibly the verification algorithms)

Pr[PP← PPGen(SP);( f (1)
H ,V

f
(1)
H

,pub
f
(1)
H

, .., f (n)
H ,V

f
(n)
H

,pub
f
(n)
H

)← Gen(SP);

( f (1)
A

, .., f (n)
A

)← A(V
f
(1)
H

,pub
f
(1)
H

, ..,V
f
(n)
H

,pub
f
(n)
H

,PP,z) : ∃i ∈ [1..n] |

(V
f
(i)
H

( f (i)
H ) 6= accept∨V

f
(i)
H

( f (i)
A

) = accept)] = neg(SP)

The definition above models the case in which the files to be exchanged cannot be found by the
adversary by some other means9 (and hence exchanging files makes sense for the adversary), even
with the help of associated verification algorithms and public information10.

To provide evidence on the generality and applicability of our definition, we present several exam-
ple verification algorithms for various tasks. For example,a file verification can be performed using

hashes. So, each verification algorithmV
f
(i)
A

for Alice’s file f (i)
A contains the definition of hash function

used –hash–11, and the hash valueh
f
(i)
A

= hash( f (i)
A ). Theith verification algorithm computes the hash

of the given input according to the description of the hash function, and accepts it if and only if the
computed hash matchesh

f (i)
A

(see Appendix B for a security analysis). As another example, consider

the ASW signature exchange protocol, in which each verification algorithm contains the signature
scheme’s description11, the signature public key of AlicepkA

11, and the messagemi to be signed.
When it receives a signature as input, theith verification accepts the signature if and only if it is a valid
signature on messagemi under the public keypkA using the signature scheme. As yet another example,
an e-coin verification algorithm can take a coin to verify, and use the Bank’s public key while verify-
ing the non-interactive proofs given. Such an algorithm is apart of the specification of every e-cash
scheme (e.g., see [18, 17]). Verifiable encryption schemes (e.g., [19]) and, in general, proof systems
also specify a verification algorithm in their definitions. Such algorithms can be used directly in a fair
exchange protocol, satisfying our definition as long as theyare secure according to Definition 3.

To summarize, in the setup phase, public values are generated usingPPGen(SP). The files and the
verification algorithms are generated jointly by the Tracker and some trusted content generator (e.g.,
movie distributor) using theGen(SP) procedure. In the context of BitTorrent, this means that we trust
the content generator about the content, and the Tracker about the verification algorithms. In practice,
BitTorrent forum sites and ratings on files provide this trust. A “highly rated” BitTorrent user will
be trusted about the content, or alternatively, comments onthe forum sites will warn against bogus
content. Besides, even the public information leaked from the generation procedure does not help the

9 We assume that the adversary cannot just “guess” an honest participant’s file, in which case the exchange is
trivially unfair.

10 For example, if movies are being exchanged, a lot of information is publicly available about such a movie file,
such as actors, length, and release date. But these do not enable people to come up those movie files.

11 possibly different for each verification algorithm
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adversary. From now on, we assume the content and the verification algorithms used are secure and
trusted.

Definition 4. Fair Exchange Protocol: A fair exchange protocol is composed of three interactive
algorithms: Alice running algorithm A, Bob running algorithm B, and the Arbiter running the trusted
algorithm T. The content and verification algorithms used need to be secure according to Definition 3.
The security of the exchange is then defined in terms of completeness (when Alice and Bob are both
honest) and fairness (when either Alice or Bob is malicious).

COMPLETENESSfor a (non-optimistic) fair exchange states that the interactive run ofA, B andT
by honest partiesresults inA gettingB’s files andB gettingA’s files (assuming an ideal network):

Pr[( f (1)
B , .., f (n)

B )←A( f (1)
A , .., f (n)

A ,V
f
(1)
B

, ..,V
f
(n)
B

,PP)
T(skarb)
←→ B( f (1)

B , .., f (n)
B ,V

f
(1)
A

, ..,V
f
(n)
A

,PP)→ ( f (1)
A , .., f (n)

A )] = 1

where the notation describes thatA, B andT can all communicate (in a three-way interaction) follow-

ing the protocol, and at the endA outputsf (i)
B andB outputsf (i)

A for all i : 1..n.

OPTIMISTIC COMPLETENESSfor an optimistic fair exchange states that the interactiverun of A

andB by honest partiesresults inA getting f (i)
B andB getting f (i)

A for all i : 1..n (the Arbiter’s algo-
rithm T is not involved, assuming an ideal network. A protocol satisfying optimistic completeness
also satisfies completeness. Ouroptimistic completenessdefinition is:

Pr[( f (1)
B , .., f (n)

B ) ← A( f (1)
A , .., f (n)

A ,V
f
(1)
B

, ..,V
f
(n)
B

,PP)↔B( f (1)
B , .., f (n)

B ,V
f
(1)
A

, ..,V
f
(n)
A

,PP)→ ( f (1)
A , .., f (n)

A )] = 1

Fairness states that at the end of the protocol, either Aliceand Bob both get content that passes
the verification algorithms given to them, or neither Alice nor Bob gets anything that passes the veri-
fication, in each of then exchanges, even when one of them is malicious.12 This definition is easy to
satisfy using a (non-optimistic) fair exchange protocol since Alice and Bob can both hand their files
to the Arbiter, and then the Arbiter can send Bob’s files to Alice and Alice’s files to Bob, if they pass
respective verifications. Thus, below, we will define the more interesting case; fairness for anopti-
misticfair exchange. It is important to note that the ASW definitionof fairness applies only to a single
exchange, whereas our definition covers polynomially-manyexchanges between an honest party and
other players all controlled by the adversary.

FAIRNESS: We have an honest playerH, and an adversarial playerA . The honest player runs al-
gorithmA in exchanges where he plays the role of Alice, algorithmB in exchanges where he plays the

role of Bob, and the Arbiter runs the algorithmT, all as defined by the protocol.H has filesf (1)
H , .., f (n)

H

to be exchanged with the adversary, andA has f (1)
A

, .., f (n)
A

to be exchanged withH. The adversary is
assumed to control all other players, and hence all interactions of the honest player are with parties
controlled by the adversary, which is the worst possible scenario covering multiple exchanges.

First there is the trusted setup phase as explained above, getting the security parameters as input,
generating secure content and verification algorithms, along with some associated public information,
and giving the appropriate values to each party. Since the setup phase is trusted,∀i : 1..nV

f
(i)
H

,V
f
(i)
A

,PP

are trusted. Then parties proceed with the fairness game explained below, the honest party outputting
X and the adversary outputtingY. At the end of the game, we require the fairness condition holds on
X,Y, the verification algorithmsV

f
(1)
H

,V
f
(1)
A

, ..,V
f
(n)
H

,V
f
(n)
A

, and the public valuesPP with high probabil-

ity against all PPT adversariesA , and all polynomially-long auxiliary inputs.

12 On the contrary, completeness definition only deals with honest participants.
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Pr [ Setup; FairnessGame: FairnessCondition] = 1 − neg(SP)

FAIRNESS GAME: There are three types of interaction in our fairness game. Type 1 interactions
are betweenH andA . Type 2 interactions are betweenH andT. Type 3 interactions are between
A andT.13 The adversary can arbitrarily interleave type 1,2,3 interactions, but cannot prevent type
2 interactions from happening until the timeout if timeoutsare used, or eventually otherwise. The
game ends when the honest partyH produces its final output (including aborts and resolutions) in all
the started protocols. Without loss of generality, in the fairness game we assume both parties want to

exchange different content in different exchanges (∀i 6= j f (i)
H 6= f ( j)

H and f (i)
A
6= f ( j)

A
and∀i, j f (i)

H 6=

f ( j)
A

).14

FAIRNESS CONDITION: Recall that the honest party’s output wasX and the adversary’s output
wasY at the end of the fairness game. A general fairness conditionwould be∀i : 1..n [∃x ∈ X :
V

f
(i)
A

(x) = accept⇔∃y∈Y : V
f
(i)
H

(y) = accept] meaning that eitherH andA both get what they want

or both don’t, in each exchange.
Our protocol with payments has a very straightforward generalization of the fairness property.

Our fairness condition states that either they both partiesget each other’s file, or one of them gets
the other’s file whereas the other gets his payment, or they both get nothing at each exchange. We
believe that a broad range of optimistic fair exchange protocols can adapt the definition above using
straightforward extensions whenever necessary.

TIMELY RESOLUTION: Lastly, as pointed out by ASW [4], an optimistic fair exchange protocol
must provide timely resolution: Alice and Bob must be able tohave disputes resolved within a finite
and limited time. In our protocol without timeouts, resolution is immediate. In our protocol with
timeouts, we guarantee resolution at the timeout (which is finite and fixed). We furthermore show
that timeouts do not render our system less usable (Alice andBob can freely participate in other
exchanges without waiting for the timeout), and so in general we can use our more efficient protocol
with timeouts.

We now present two different barter protocols, one that employs timeouts (Section 3), and one that
does not (Section 4). Both of our protocols areO(n) times more efficient than previous protocols [4,
3, 2, 5, 39, 8, 18], whenn files or blocks are exchanged, and almost as efficient as an unfair exchange,
while still being provably fair.

3 Efficient Optimistic Barter Protocol
3.1 Barter with Timeouts
We will show a particular instantiation of our protocol, using endorsed e-cash [18] as the payment and
hashes as the file verification algorithms, and then point outhow to generalize it easily, in Section 3.7.
Before the protocol begins, we assume Alice has withdrawn ane-coin from the Bank. Every time Alice
and Bob wants to exchange two files (every time before step 2 ofthe protocol below), Alice generates
her fresh keyKA and Bob generates his fresh keyKB for a symmetric encryption scheme. Alice and
Bob both have their files (fA, fB), have the encrypted versions of their files (cA = EncKA( fA),cB =
EncKB( fB)), have the hashes of their files and encryptions (Alice hashfA = hash( fA),hcA = hash(cA),
and Bob hashfB = hash( fB),hcB = hash(cB)). Besides, the Tracker provides them with the respective

13 In the implementation,T may need to have a way to differentiate which one of Alice and Bob he is talking
to, which can easily be done in our protocols without learning who Alice and Bob are. When necessary, using
one-way function values whose pre-image is known by only oneof the parties will suffice.

14 If the honest party already has the adversary’s file, the exchange will be trivially fair due to the completeness
property. If the adversary already has the honest party’s file, then there is no hope for fairness since the adver-
sary can just abort the protocol but he already has the file. Similar arguments hold for exchanging the same file
multiple times.
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verification algorithms: Alice getshfB, Bob getshfA.15 Everyone uses the same time zone (e.g., GMT),
and thetimeoutis a globally known parameter16. If anything goes wrong prior to step 5 (no resolution
protocol is applicable), the protocol will be aborted. The protocol proceeds as follows (summarized in
Figure 1):

1. Alice creates a fresh public-secret key pairpkA,skA for a signature scheme. Alice sends a fresh
unendorsed e-coincoin′ to Bob, along with a verifiable escrowv = VEArb(end;pkA) of the en-
dorsementend, labeled with the signature scheme’s public key.

2. Alice sends Bob ciphertextcA of her file.17 Bob calculateshcA = hash(cA).18

3. Bob sends Alice ciphertextcB of his file. Alice calculateshcB = hash(cB).

4. Alice sends Bob an escrowe= EArb(KA;hfA,hfB,hcA,hcB, time) and her signatures= signskA(e)
on that escrow. The escrowe should encrypt a key and should be labeled with four hash values
hfA,hfB,hcA,hcB, and atime value. If any of the hash values do not match Bob’s knowledge of
those values, or if thetime value is deviated too much from Bob’s knowledge of the time (e.g.,
almost one timeout difference), then Bob aborts.19 Moreover, if the signatures on the escrowe
does not verify with the public keypkA sent in step 1 as part of the verifiable escrowv, Bob aborts
the protocol.

5. Bob sends Alice his keyKB. Alice checks if the keyKB decrypts the ciphertextcB correctly. If not,
Alice does not proceed with the next step, and runsAliceResolve, although she might have to run
it again just after the timeout to be able to resolve.

6. Alice sends Bob her keyKA. Bob checks if the keyKA decrypts the ciphertextcA correctly. If not,
he runsBobResolve; he must do so before the timeout.20

Fig. 1.Our Barter Protocol with Timeouts

Once step 1 is completed, cheap
steps 2-6 can be repeated to ex-
change more files, as long as no dis-
pute occurs. Alice and Bob need not
know beforehand how many or which
files/blocks to exchange. Whenever
they decide to exchange blocks (be-
fore every step 2), it is enough for
them to just obtain their hashes from
the Tracker. Actually, in BitTorrent,
once you ask for hash of a file, the
Tracker provides you with the hashes
of all the blocks in that file already.
Thus, connecting the Tracker for each
block is not necessary in real life.

Below we present the resolution protocols in case of a dispute between Alice and Bob. The Arbiter
never gets involved in a transaction unless there is a dispute.

15 We are abusing the notation by using hash values as verification algorithms provided by the Tracker hoping
that the actual verification procedure of hashing the files and comparing the result with values given by the
Tracker is obvious.

16 It can easily be a per-exchange parameter known to (or agreedby) both parties.
17 Alice and Bob can use their choice of (symmetric) encryptionschemes (not necessarily the same). This only

requires us to add the definition of the encryption scheme used to the messages exchanged.
18 These will be Merkle hashes [37] for efficiency reasons, as discussed in Appendix A.
19 We do not require tight synchronization. So, for example, the timevalue can just contain hours, and not minutes

and seconds.
20 Bob can run BobResolve immediately after amessage timeout. He need not wait for a long time for Alice.
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3.2 BobResolve
Bob needs to contact the Arbiter before the timeout for resolution (current time< time in escrowe +
timeout), since otherwise the Arbiter is not going to honor his request. Assuming Bob resolves before
the timeout, he provides the Arbiter with the escrowe and signatures that he received in step 4, and
also the verifiable escrowv he received in step 1 from Alice. The escroweshould be labeled with four
hash valueshfA,hfB,hcA,hcB, and atimevalue. The verifiable escrowv should be labeled with a public
key pkA for a signature scheme. If the labels of the escrows are ill-formed, the Arbiter will not honor
the request. The Arbiter checks the signatures using the public key in the verifiable escrowv, and
if it verifies, he asks Bob to present his correct keyKB that verifies using the VerifyKey protocol in
Appendix A (i.e., it decrypts a ciphertext with hashhcB to a plaintext with hashhfB). If Bob succeeds
in giving the correct key, the Arbiter stores the keyKB, decrypts the escrowe and hands in the key
KA from the escrow to Bob. Bob checks ifKA decrypts Alice’s file fA correctly. If not, he proves
this to the Arbiter using the technique in Appendix A and getsthe endorsementend in the verifiable
escrowv from the Arbiter.21 Notice that only Bob may succeed in the BobResolve protocol with the
Arbiter because any other party will fail to provide the correct key matching hashes of Bob’s files (see
Appendix B).

3.3 AliceResolve
When Alice contacts the Arbiter for resolution, she asks forBob’s keyKB. If such a key exists, then
the Arbiter sendsKB to her.22 KB has already been verified, so Alice does not need to perform any
further action. If such a key does not exist yet, Alice shouldcome back after the timeout. If, even
after the timeoutKB does not exist, then Alice is assured that it will never exist, and can consider that
particular trade as aborted.

3.4 Efficiency Analysis
The efficiency of Alice’s and Bob’s parts in the protocol can be further improved, although this would
require the Arbiter to perform more work. To improve Alice’sand Bob’s efficiency, Bob sends the file
unencrypted in step 5, instead of separately sending the ciphertext in step 3 and the key in step 5, thus
eliminating step 3 completely (a similar logic might also apply to steps 2 and 6). But, in that case,
the Arbiter needs to keep the whole file for resolution purposes instead of only a very short key as in
the current case. Since such trusted third parties can become the bottlenecks of the system, we prefer
having the least amount of work to be done by the Arbiter, and let users perform slightly more work
instead. Moreover, if secrecy of the files is desired, they will be encrypted anyways.

We consider a concrete instantiation of our protocol using endorsed e-cash [18], Camenisch-Shoup
verifiable escrow [19], AES encryption [25], DSS signatures[41], and RSA-OAEP public key encryp-
tion for (non-verifiable) escrow [10]. Our protocol has onlyneglectable overhead over just doing an
unfair exchange. Sending the ciphertexts in steps 2 and 3 just corresponds to sending the files in any
(even unfair) exchange.23 The keys sent in steps 5 and 6 are extremely short messages (16bytes each
for 128-bit AES keys). For a fair exchange, step 4 is still very cheap since the only primitives used are

21 The Arbiter can abort this trade forgetting theKB in such a case. This is not necessary according to our
definition (and can even be considered unfair), but it can be used as a way to punish cheating Alice even more.
In the worst case, if non-atomicity of the Arbiter is allowedfor efficiency reasons, Alice can obtainKB before
Bob provesKA to be incorrect, effectively turning our protocol into a buyprotocol.

22 If the Arbiter is allowed to be non-atomical for efficiency reasons, then he needs to ask Alice for her key
KA, verifying it using the VerifyKey protocol in Appendix A before giving herKB. This represents a tradeoff
between the atomicity and efficiency of the Arbiter, which can be resolved arbitrarily, although it can also be
used as a tougher punishment for cheaters.

23 We can in general assume that the I/O and CPU can be pipelined so that the encryption will not add more time
to uploading the files.
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an ordinary (non-verifiable) escrow (just a public key encryption), and a signature (A DSS signature
created using a 1024-bit key is about 40 bytes, while an RSA-OAEP encryption with a 1024-bit key
is about 128 bytes).

Assuming IO and CPU can be overlapped, encryption of files will not add any time. Furthermore,
signatures and escrows take only a few milliseconds. The most time consuming step is sending the
blocks themselves, which has to be done in any case (and encryption does not increase size). The only
real overhead is the first step, where the verifiable escrow (and endorsed e-cash, if used) is costly (see
below).

Our protocol, in addition to guaranteeing fair barter efficiently, is optimized for multi-barter situ-
ations. One such situation is a file sharing scenario as in BitTorrent [22, 8]. The peers Alice and Bob
are expected to have a long-term barter relationship. Hence, step 1 needs to be carried out only once
per peer, and remaining cheap steps 2-6 would be repeated foreach block, whereas previous
protocols required a costly step like step 1 to be performed for each block. This greatly amor-
tizes the costly step 1 in our protocol, when multiple blocks(or files) are exchanged,even when the
files/blocks to be exchanged are not pre-defined(they need to be defined only before each execution
of step 2).

To give some numbers, consider an average BitTorrent file of size 2.8GBmade up of about 2,500
blocks [32]. Using previous optimistic fair exchange protocols, this requires 2,500 costly steps (one
per block). Our C++ implementation using endorsed e-cash [18] and Camenisch-Shoup verifiable
escrow [19] takes about 2 seconds of computation for step 1 (most of which is the verifiable escrow)
on an average computer (2GHz). This corresponds to 2500×2seconds= 84 minutesof computation
overhead. Considering a BitTorrent client that connects toabout 40 peers, using our protocol, this
overhead becomes just80 seconds. Our network overhead is similarly neglectable (around 50KB per
peer, almost all of which is the one-time cost of step 1, abouthalf of it being endorsed e-cash). This
corresponds to about 2500×50KB= 125 MB total overhead using previous schemes, and only2 MB
total overhead using our scheme (for a 2.8GBfile).

As for the Arbiter, he checks a signature, sometimes decrypts a (verifiable) escrow, and performs
the VerifyKey protocol of Belenkiy et al. [8] (see Appendix A). The signature check and ordinary
escrow decryption takes only milliseconds, the verifiable escrow decryption, when necessary, can take
a few hundred milliseconds. The bottleneck is the data that the Arbiter needs to download for the
VerifyKey protocol, which is about 22chunks× 16KB = 352KB [8]. An important point to note is
that the amount of data the Arbiter’s needs to download is independent of the size of the file that is
being exchanged.24 Some more efficiency evaluation, limitations and possible solutions are discussed
in Appendix C.

3.5 Security Analysis
In this section, we assume that we are given a one-way function, a universal one-way hash function, a
chosen plaintext secure encryption scheme, a chosen plaintext secure verifiable escrow scheme, a cho-
sen ciphertext secure escrow scheme, an unforgeable signature scheme, and an e-cash scheme which is
unforgeable, anonymous and unlinkable. For precise definitions of security of these primitives, please
see the references [29, 31, 41, 40, 37, 33, 25, 19, 18, 8]. In particular, we can use the instantiation in
Section 3.4.

Theorem 1. Our efficient barter protocol with timeouts as given in Section 3 is a secure optimistic
fair exchange protocol according to Definition 4 in Section 2.2.

Proof. It is obvious that our protocol satisfies the optimistic completeness (and therefore the complete-
ness) property. We prove the fairness of our protocol over the fairness game defined in Section 2.2.

24 Merkle proofs are logarithmic in number of the blocks in the file, but are much smaller in size than the data
blocks themselves in practice.
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Remember that our fairness condition states that either both parties obtain the other party’s file, or one
party obtains the other party’s file while the other party obtains the e-coin (effectively turning into a
buy protocol), or no party obtains anything.

An honest party will always use independent keys for each ciphertext (s)he sends. Furthermore,
endorsed e-cash [18] forces the users to use independent (coin′,end) pairs in different exchanges by
using randomness contributed by both parties involved in the exchange. Our goal is that even if the
adversary corrupts all other parties in the system (except the TTPs), he cannot obtain more than the
union of what each of these individual corrupted parties wassupposed to obtain from an honest trade
with the honest user.

Security of the Resolution Protocols:
We first prove the security of our resolution protocols, as long as one of the participants is honest.

Afterward, for the rest of the proofs, we will assume those are secure and do not worry about them.

Claim 1. If BobResolve and AliceResolve protocols are executed in the ith exchange,ith exchange
will be fair on its own.

Proof. BobResolve: When an honest Bob contacts the Arbiter, he provides the correct keyKB and
obtain the decryption of the escrowe from the Arbiter. If this escrow contained the correct keyKA,
then we are done. Otherwise, Bob can prove so (as in Appendix A) and then the Arbiter hands out the
endorsementendto Bob. This endorsement is valid due to the security of the verifiable escrow scheme
(it can be shown by a reduction). Therefore, an honest Bob will obtain either the correct key or the
endorsement of Alice.

If a dishonest Bob contacts the Arbiter, he cannot provide anincorrect key to the Arbiter and make
him accept. This can easily be shown by reduction to the security of universal one-way hash functions
[40] (see Appendix B) or the VerifyKey protocol of Belenkiy et al. [8] (Appendix A). If dishonest
Bob provided the Arbiter his correct keyKB and obtained honest Alice’s correct keyKA, the only way
he can be unfair against an honest Alice is to obtain her coinendin addition. But, Bob cannot obtain
endbecause he either has to forge Alice’s signature on another escrowe′ of some junk keyK′A which
does not decrypt correctly, or he could break our assumptionon the hash functions by providing some
ciphertext with descriptionhcA which does not give a plaintext with descriptionhfA when decrypted
using Alice’s keyKA in the escrowe. So, a dishonest Bob cannot obtain the endorsement of an honest
Alice. Furthermore, he can obtain Alice’s correct keyKA only if he deposits his correct keyKB.

AliceResolve: In this protocol, Alice contacts the Arbiter and asks for Bob’s key. If Bob deposited
his keyKB to the Arbiter, then Alice obtains it. From BobResolve, we know that if a keyKB exists,
it is correct. In case Alice was dishonest and obtained this key KB from the Arbiter, we know that
honest Bob has already received either the correct key or e-coin of Alice using BobResolve. In case
where Alice was honest but Bob was dishonest, we know he couldnot obtain both the correct key and
endorsement of Alice. ⊓⊔

Hence, we can conclude that the resolution protocols do not help the adversary to win the game,
and so if the adversary wants to be unfair in theith exchange, he will not execute a resolution protocol
for that exchange. Next we split the analysis of our main protocol into two cases: the case where the
honest party plays the role of Alice, and the case where he plays the role of Bob.

Case 1: Honest Alice vs dishonest Bob:

Claim 2. Suppose Bob succeeds in obtaining honest Alice’s e-coin with non-negligible probability.
Then we can construct an adversaryAC breaking the e-cash scheme with non-negligible probability
by playing the fairness game with Bob.
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Proof. AC is given a challengecoin′ and her goal is to output an endorsementend. 25 She guesses
an indexi that Bob will succeed in being unfair, and replaces thecoin′(i) by the givencoin′. Since
AC does not know theend(i), she puts garbage into the verifiable escrowv(i), and sends it to Bob.
She fakes the verifiability by using the simulator for the verifiable escrow [4, 19].26 For all the other
interactions,AC acts exactly as an honest Alice would. SinceAC is honest, the verifiable escrowv(i)

will never be decrypted by the Arbiter (shown in Claim 1), andby the security of verifiable escrow,
the adversary cannot obtain the endorsement by decrypting it, nor can the adversary distinguish it
from a verifiable escrow of a valid endorsement (can be shown by a straightforward reduction to CPA-
security of the verifiable escrow scheme, since the verifiable escrowv will never be decrypted because
Alice is honest). At some point, Bob outputs an endorsementend( j) with non-negligible probability.
The probability thati = j is non-negligible by definition (the total number of bartersn is a polynomial
in SP as defined in Section 2.2). If the indices match (i = j), AC outputs theend(i). Therefore,AC

breaks the endorsed e-cash [18] with non-negligible probability, by endorsing an unendorsed coin
coin′ without the endorsementend. ⊓⊔

Claim 3. Suppose Bob, without calling BobResolve, succeeds in obtaining one of honest Alice’s files

f ( j)
A with non-negligible probability before step 6 ofjth exchange for somej (Alice will perform step

6 only if she obtained the correct keyK( j)
B from Bob). Then we can construct an adversaryAE which

breaks the encryption scheme Alice uses with non-negligible probability.

Proof. AE generates her files using the setup phase. Then she guesses anindexi that Bob will succeed
in being unfair, and sends two files to the challenger of the encryption scheme.AE is given back a
challenge ciphertextcA and her goal is to decide which file she sent was encrypted. Shereplaces the

c(i)
A by cA. For the rest of the interaction,AE behaves as an honest Alice.AE does not know the keyK(i)

A ,
but she can fake the escrowe(i) by encrypting junk in it. Due to the security of the escrow scheme, Bob
cannot distinguish it from an honest escrow (can be shown by astraightforward reduction to CCA-

security of the escrow scheme). At the end, Bob returns a plaintext f ( j)
A . If the guessedi was correct

(i = j), thenAE returnsf (i)
A and wins with the same probability as Bob does. SinceAE interacts with

Bob only polynomially many times, the eventi = j has non-negligible probability, and since Bob has
non-negligible probability of obtaining Alice’s file, thenAE has non-negligible probability of breaking
the encryption scheme used. ⊓⊔

Case 2: Honest Bob vs dishonest Alice:
The argument is symmetric to Claim 3. The symmetric version of AE can easily be reconstructed

asBE in this scenario, indistinguishable from an honest Bob. Hence, if Alice obtains Bob’s file before
step 5,BE breaks Bob’s encryption scheme. After step 5, Alice alreadyhas Bob’s file, and can choose
not to send her key in step 6. But, the security of BobResolve guarantees that Bob can obtain Alice’s
key or e-coin in exchange to his file from the Arbiter (shown inClaim 1).

Combining these results, fairness for the honest party is guaranteed in all the exchanges, regardless
of him playing the role of Alice or Bob. ⊓⊔

3.6 Privacy Analysis
None of the exchanged material contains information to identify Alice or Bob (not even Alice’s sig-
nature, since her public key is generated just for the exchange; it is a temporary key, not permanent).

25 A detailed proof will giveAC two oracles, one forcoin′ creation, and one forendcreation. Then,AC will play a
CCA-security like game with the e-cash scheme. The challenge coin′ will be the one used in theith exchange,
on whichAC cannot query the endorsement oracle.

26 The verifiable escrow simulator can require simulating the public parameters too, but this is allowed and is
indistinguishable from real public parameters due to the security of the verifiable escrow scheme.
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Moreover, even an adversary performing multiple exchangeswith the same honest party cannot link
those exchanges together using the protocol messages sincethe honest party uses fresh keys every
time and endorsed e-cash is unlinkable (IP address linking or similar means might be possible, but our
protocol does not create any additional means of identification and linking). Furthermore, the Arbiter
does not necessarily know who he is talking to, apart from thefact that the resolution is on a particular
exchange (possibly identified by a random exchange ID). The Arbiter may be able to find out whether
he is talking to Alice or Bob, but not who Alice or Bob is. Anonymous communication techniques
such as onion routing [26] can be used when necessary. Lastly, e-cash [18] is anonymous, and thus
even when Bob deposits the e-coin, no one can know it was Alice’s e-coin (unless she double-spends).

3.7 Generalized Version
We have shown an instance of our protocol which uses hashes for verification, and endorsed e-cash for
payment. In general,our protocols can employ any secure verification algorithm(see Definition 3)
provided by the Tracker, instead of the hashes. Similarly,our protocols can easily make use of
other payment methods(see [1] for a compilation) or signatures instead of e-cash,but then privacy
of the participants will not be preserved (see Section 3.6 for a privacy analysis). The modification is
straightforward, and involves just replacing the verifiable escrow of the e-coin with a verifiable escrow
of any other form of payment.

4 Efficient Barter without Timeouts
We provide another protocol which does not make use of timeouts. In this case, both parties give e-
coins to each other as a warranty. A similar setup applies here, where Bob is also required to have with-
drawn an e-coin. Furthermore, Bob also generates a public-private key pair for his signature scheme.
Details that were explained in our previous protocol will beomitted here.

1. a. Alice sends her unendorsed coincoin′A, along with the verifiable escrowvA = VEArb(endA;pkA)
of the endorsement to Bob.
b. Bob sends his unendorsed coincoin′B, along with his verifiable escrowvB = VEArb(endB;pkB)
of his endorsement to Alice.

2. a. Alice sendscA to Bob. Bob computeshcA = hash(cA).
b. Bob sendscB to Alice. Alice computeshcB = hash(cB).

3. a. Alice picks a random valuer from the domain of a one-way functiong, and computesg(r).
Alice sends her escroweA = EArb(KA;hfA,hfB,hcA,hcB,g(r)) and her signaturesA = signskA(eA)
on her escrow to Bob. Bob aborts the protocol if the signaturesA does not verify underpkA in vA

or the hash values do not match Bob’s knowledge of those values.
b. Bob sends his escroweB = EArb(KB;hfA,hfB,hcA,hcB,g(r)) and his signaturesB = signskB(eB)
on his escrow to Alice. Alice calls AliceAbort below if the signaturesB does not verify underpkB
in vB, or the hash values org(r) do not match Alice’s knowledge of those values.

4. a. Alice sends her keyKA to Bob.
b. Bob sends his keyKB to Alice.

The escrows in step 3 are a bit different than the previous protocol. First, there is notimevalue
attached, since no timeouts are used. Furthermore, both escrows need to contain a valueg(r) whereg
is a one-way function, and only Alice knowsr. This is achieved by requiring Alice to pick a random
r in step 3.a, and then putg(r) in the label of the escrow. After receiving Alice’s escroweA, Bob also
incorporatesg(r) into the label of his escroweB.27

27 This is showing how the Arbiter can distinguish Alice and Bobusing one-way functions, as discussed in
previous footnotes. Other possible measures having the same effect can also be taken.
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The new AliceResolve and BobResolve algorithms are both very similar to the BobResolve in our
barter protocol with timeouts (of course, both parties use the escrows and signatures received from the
other party, AliceResolve getsKB by givingKA, and there are no timeouts), and they should be run if
the key Alice or Bob receives at step 4 is not correct, respectively.

The logic behind getting rid of the timeouts is similar to theidea in ASW [4]. If Alice wants to
abort the protocol (because something was wrong with the message she received in step 3.b, or she
did not receive any response, she can do so by contacting the Arbiter using the AliceAbort protocol
below. She no longer needs to wait until after thetimeout. After receiving (or not receiving) Alice’s
message at step 3.a, Bob can simply abort locally if anythingis wrong.

4.1 AliceAbort
Alice contacts the Arbiter, handing him her escroweA, her signaturesA on that escrow, and her veri-
fiable escrowvA that contains the public keypkA for the signature. The Arbiter checks the signature
first. If it verifies, he requires Alice to give a valuer so thatg(r) matches the one-way function value
in the label of the escroweA (therefore Bob cannot succeed in this protocol). Then, the rest proceeds
similar to the AliceResolve in our previous protocol. Aliceasks the Arbiter for Bob’s keyKB. If such
a key exists (because Bob resolved before Alice aborted), then the Arbiter sendsKB to Alice. KB has
already been verified, so Alice does not need to perform any further action. If such a key does not
exist yet though, the Arbiter considers that particular trade as aborted, and will perform no further
resolutions regarding this particular barter. (Remember,Alice needed to come back after the timeout
in our previous protocol.)

4.2 Analysis
Theorem 2. Our efficient barter protocol without timeouts in Section 4 is a secure optimistic fair
exchange protocol due to the Definition 4 in Section 2.2.

Proof. Omitted due to extreme similarity with the proof of our protocol with timeouts. The proof of
AliceResolve is now the symmetric version of BobResolve before. The proof of AliceAbort is very
similar. Furthermore, the corresponding adversariesAC, AE, BC, andBE are very straightforward to
construct. ⊓⊔

The privacy analysis in Section 3.6 and the generalization in Section 3.7 also applies to this proto-
col. Regarding efficiency, again,step 1 has to be completed only once per peer, and then multiple
files can be exchanged by carrying out steps 2-4as long as both parties are honest, amortizing the
cost of the coin and verifiable escrow exchange in step 1. The Arbiter’s cost will be doubled though,
due to the need to perform two costly resolutions (AliceResolve is as costly as BobResolve now).

5 Conclusion
There already are many scenarios where peers trade content [22, 32]. These systems unfortunately
rely on the honesty of the peers for providing fairness, partly because of the high cost incurred by the
previous fair exchange protocols [2–5, 8, 18, 39]. Our protocols uniquely limit the use of the costly
primitives (verifiable escrow and e-cash) to once (or twice)per peer, as opposed to per file/block.
We have shown in Section 3.4 that there are huge efficiency gains over previous protocols. Besides,
most of the existing systems already rely on similar trustedparties [2–5, 8, 17, 18, 20, 22, 32, 39, 42].
Therefore, by using our protocols, such bartering systems will experience almost no performance
loss, while the benefit of providing fairness guarantees will be very noticeable indeed (e.g., see [8]
for how the use of fair exchange can solve the free-riding problem of BitTorrent). For the first time,
the neglectable overhead of our protocols enable the real-life deployment of fair exchange protocols.
Already, the Brownie Project [14] is adopting our protocolsin their BitTorrent deployment.
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A Subprotocols
We use two subprotocols from Belenkiy et al. [8] that make theinteraction with the Arbiter efficient.
One protocol is used to prove that a key is not correct, while the other is used to prove that the key is
in fact correct. For efficiency, Merkle hashes [37] are used in these subprotocols (see Belenkiy et al.
[8] for more information on the protocols and the use of Merkle hashes).

Proving a key is not correct: Showing that a keyK does not decrypt a ciphertextc with hashhc

to a plaintextf with hashhf can be done efficiently, as Belenkiy et al. suggests. Carol, to prove the
key is not correct, gives the Arbiter a partci of data which does not decrypt correctly. The Arbiter can
check if the given partci matches the Merkle tree hash of the ciphertext, andDecK(ci) does not match
the hash of the plaintext, using the proof provided by Carol.

Proving a key is correct: Using a challenge-response protocol (Belenkiy et al. VerifyKey proto-
col), one can prove that a key is correct. The Arbiter asks forproofs of the key decrypting correctly
on random chunks. If Bob can reply correctly to all chunks providing valid proofs for Merkle hashes,
the the Arbiter accepts Bob’s key. If Bob corrupts 1/m fraction of the file, and the Arbiter verifiesk
random parts, then the Arbiter will catch Bob with a probability of at least 1− (1− 1

m)k [8].

B Universal One-Way Hash Functions (UOWHF)
Let Hk be a family of hash functions, wherek is the security parameter. We assume that the following
experiment has negligible probability of success for any polynomial-time adversaryA, for sufficiently
largek: We have a filef and a hash functionhash←Hk uniformly chosen from the family. Given that
file f and the hash function’s descriptionhash(which effectively also means givinghash( f )) as input,
A returns ac,K pair, wherehash(DecK(c)) = hash( f ) but DecK(c) 6= f . Remember thatA cannot
control the file’s hash, due to the trusted content and verification algorithm generation process, hence
he needs to find a targeted collision.

This requirement is equivalent to the security of UniversalOne Way Hash Functions (UOWHF)
[40]. We first reduce our assumption to the UOWHF assumption.Specifically, letA be a polynomial-
time adversary succeeding in the above attack with non-negligible probability. We can construct an
adversaryB which finds a collision in our UOWHF as follows: WhenB is given( f ,hash), he runs
A on ( f ,hash) to obtain(c,K). B then checks ifDecK(c) = f , in which case it fails. Otherwise, if
DecK(c) 6= f but hash(DecK(c)) = hash( f ), thenB outputsDecK(c) as the collision. As easily seen,
B has the same success probability asA, and has polynomial runtime complexity.

The reverse reduction is also possible. LetB succeed in attacking UOWHF with non-negligible
probability.A, when given( f ,hash) as the challenge, runsB on ( f ,hash) to getc′ with hash(c′) =
hash( f ) and c′ 6= f . A then picks a random keyK, and returns(c = EncK(c′),K) as the answer.
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Obviously,hash(c′ = DecK(c)) = hash( f ) butc′ = DecK(c) 6= f . Hence, our assumption is equivalent
to the UOWHF target collision-resistance assumption.

Our discussion above applies in our trusted content setting, where the content and verification
algorithm generation process is trusted. If we allow the adversary to generate his own content (thus
content generation is not trusted), he can as well generate bogus content. Yet, if we are in a semi-
trusted setting where the adversary is allowed to generate his own content as long as it is not bogus
(e.g., he can generate a movie file that really is showing the movie), then we need to use collision-
resistant hash functions for security. The reasoning is that the content may be generated after the hash
function is chosen by the Tracker. This will not affect the practice, since all widely-used hash functions
are assumed to be collision-resistant.

C Limitations and Future Work
One limitation of our work is the need for the exchanging parties to trust the Arbiter. Alice trusts the
Arbiter not to give away both her e-coin and the key to her file.Even though giving away the key
only makes the exchange unfair, giving away the coin may result in even an honest Alice becoming a
double-spender.28 One possible way to reduce this need for the trust would be using several arbiters,
who do not necessarily know each other. Alice and Bob can mutually agree on a specific arbiter,the
Arbiter, before the protocol begins. Since, there is no registration with the Arbiter in our protocol, any
arbiter can accomplish the job.

Fortunately, if a proof of dishonesty is requested, neitherthe Arbiter, nor Bob, nor anyone else can
frame an honest Alice.29 The Arbiter may be asked to prove Alice’s guilt by presentinga verifiable
escrow, a non-verifiable escrow and a signature on it, along with the proofs that Bob’s key decrypts
correctly yet Alice’s key in the (non-verifiable)escrow does not. Due to the security of these primitives,
no one can frame an honest Alice. Of course, this requires theArbiter to store all past resolutions,
and Alice’s privacy has already been invaded by the double-spending detection. In order to prevent
a malicious Alice from framing the Arbiter by intentionallydouble-spending, we can require either
Alice’s or the Arbiter’s signature when a coin is being deposited. We leave the issue of efficiently
reducing the need to trust the Arbiter or verifying the Arbiter’s behavior without violating Alice’s
privacy as a future work.

As for the bottleneck that can be caused by the central Arbiter, Avoine et al. [6] show how to
employ secret sharing techniques [44, 12] to distribute theshares of the secrets among arbiters. This
will decrease the amount of job each arbiter needs to perform, yet it will reduce the efficiency of
our resolution protocols. As argued in [34], the same techniques can be applied to our protocol with
timeouts. In another work, Belenkiy et al. [9] show how to outsource computation, which can be used
as a means to distribute the work of our trusted parties. The Brownie Project [14] is analyzing this
strategy to distribute the arbiter and the bank in their BitTorrent deployment.

Without considering distributed denial of service (DDoS) attacks, let us provide some numbers
for evaluation. To have an idea, consider a p2p system of 1,700,000 users, exchanging 2.8GB files
on the average [32]. Exchanging two such files means exchanging 5.6GB of data. If 1% of all users
are malicious, this can correspond to 17,000 exchanges requiring an arbiter at a given time (where
one user is honest and the other is malicious. If both of them are malicious, this number reduces to
half of it). We said, in case of a dispute, a peer should upload352KB of data to the Arbiter. Assume
that the same upload speed is used when trading files and contacting the Arbiter. If we assume the
worst case scenario where the Arbiter can handle only one user at a time and every user is active at
all times, this requires having 2 arbiters; with 10% malicious user ratio, we need 11 arbiters. Under
the very realistic assumption that an arbiter can handle 25 users at a time (e.g., assuming 25 times as
fast download speed of the Arbiter as the upload speed of the users [23]), we will need 1 arbiter in

28 This does not result in Alice losing money, but losing her anonymity.
29 Of course, this requires yet another trusted entity, calledtheJudge.
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this system (even with 10% malicious user ratio). When we useour protocol without timeouts, these
numbers will double (but if our arbiter can handle 25 users ata time, we still need only 1 arbiter).

As in many deployments, it is possible to mount a distributeddenial of service (DDoS) attack on
the arbiters by continuously performing fake barters and resolving with an arbiter. We leave the pro-
tection against such attacks (by means like blacklisting IPaddresses) to system and network security
researchers. Alternative strategies of reducing the arbiters’ load were already discussed above.

In terms of the storage load associated with the trusted parties, the techniques from [16] can be
applied. Using those techniques, the Bank can have a limitedstorage, as opposed to a groving storage.
For example, if every e-coin is valid for a limited but long time (e.g., one month), then the bank needs
to keep track of only the transactions that happened in the past period, instead of all past transactions.
Note that the Arbiter also only needs to have a short-term memory of past resolutions.

Lastly, our fairness definition states that a file and a payment can be fairly traded, as in previous
works [4, 8, 18, 36, 35]. The economics of this system, deciding on how much a file is worth fairly, is
outside the scope of this paper. The participants can somehow agree on the price before our protocol
begins (variable pricing), or alternatively a system can set the price that will apply to all participants
(fixed pricing). In Belenkiy et al. [8], the authors assume each block in the BitTorrent system are worth
one e-coin. We leave this pricing issue as an interesting application-dependent open problem.


