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Abstract

As online storage-outsourcing services (e.g., Amazon’s S3) and resource-sharing networks
(e.g., peer-to-peer and grid networks) became popular, the problem of efficiently proving the
integrity of data stored at untrusted servers has received increased attention. Ateniese et al.
[2] formalized this problem with a model called provable data possession (PDP). In this model,
data is preprocessed by the client and then sent to an untrusted server for storage. The client
can then challenge the server to prove that the data has not been tampered with or deleted
(without sending the actual data).

However, their PDP scheme applies only to static (or append-only) files. In reality, many
outsourced storage applications (including network file systems and outsourced databases) need
to handle dynamic data. This paper presents a definitional framework and an efficient construc-
tion for dynamic provable data possession (DPDP), which extends the PDP model to support
provable updates to stored data (modifications to a block or insertion/deletion of a block). To
achieve efficient DPDP, we use a new version of authenticated dictionaries based on rank in-
formation. The price of dynamic updates is a performance change from O(1) to O(log n), for a
file consisting of n blocks, while maintaining the same probability of detection. Yet, our exper-
iments show that this price is very low in practice, and hence our system is applicable to real
scenarios. Our contributions can be summarized as defining the DPDP framework formally, and
constructing the first fully dynamic PDP solution, which performs verification without down-
loading actual data and is very efficient. We also show how our DPDP scheme can be extended
to construct complete file systems and version control systems (e.g., CVS) at untrusted servers,
so that it can be used in complex outsourcing applications.

1 Introduction

Consider online storage-outsourcing services (e.g., Amazon’s S3), outsourced database services [13],
peer-to-peer storage [11, 15] and network file systems [10, 12]. The common concern in all these
systems is the fact that the server (or peer) who stores the client’s data is not necessarily trusted.
Therefore, users would like to check if their data has been tampered with or deleted. However,
outsourcing the storage of very large files (or whole file systems) to remote servers presents an
additional constraint: the client should not be required to download all stored data in order to
validate it. This can be prohibitive in terms of bandwidth and time, especially if the client wishes
to perform this check frequently.

Ateniese et al. [2] formalized this problem with a model called provable data possession (PDP).
In this model, data (often represented as a file F ) is preprocessed by the client, producing metadata
that is used for verification purposes. The file and metadata is then sent to an untrusted server
for storage, and the client may delete its copy of the file. The client keeps some (possibly secret)
information himself to check server’s responses later. The server proves the data has not been
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tampered with by responding to challenges sent by the client. The authors present several variations
of their scheme under different cryptographic assumptions. These schemes provide probabilistic
guarantees of data possession, where the client checks a random subset of stored data blocks with
each challenge.

However, the PDP model and schemes presented before [2, 9, 22] apply only to the case of
static, archival storage (i.e. a file that is outsourced and never changes). While this model fits some
application scenarios (e.g., libraries and scientific datasets), it is crucial to consider a dynamic
case, where the users of untrusted storage also wish to modify their outsourced data—by inserting,
modifying, or deleting stored blocks or files—while maintaining data possession guarantees. A
dynamic PDP scheme could be used to provide real applications we are considering in this paper
(outsourced online storage (e.g., Amazon’s S3), outsourced database services [13], peer-to-peer
storage [11, 15] and network file systems [10, 12]).

Being aware of the importance of supporting dynamic security solutions for data possession
applications, in this paper we provide a definitional framework and an efficient construction for
dynamic provable data possession (DPDP), which extends the PDP model to support provable
updates on the stored data. Given a file F consisting of n blocks, we define an update as either
insertion of a new block (anywhere in the file, not only append), or modification of an existing
block, or deletion of any block. Therefore our update operation describes the most general form of
modifications a client may wish to perform on a file.

The solution we provide for DPDP is based on a new variant of authenticated dictionaries,
based on [18], where we use rank information to organize dictionary entries, rather than using
search keys. Thus we are able to support efficient authenticated operations on files at the block
level, enabling file operations such as authenticated insert and delete. We prove the security of these
updates using collision-resistant hash functions. We also show how to extend these data structures
to support authenticating file system directory structure as well as file data itself, and show how
our work can be extended to represent a whole file system. To the best of our knowledge, this is the
first construction of a provable storage system that enables efficient proofs of a whole file system,
enabling verification at different levels for different users (e.g., every user can verify her own home
directory).

The main contributions of this work can be summarized as follows:

• We provide a general definitional framework for dynamic provable data possession (DPDP) for
the first time.

• To the best of our knowledge, we provide the first fully dynamic PDP solution, which performs
verification without downloading actual data and is very efficient (with O(log n) communication,
server computation and client computation, and O(1) client storage requirements).

• We develop a new version of authenticated dictionaries, implemented with authenticated skip
lists [18] based on rank information, rather than search keys, so that we can support efficient
operations on data blocks. This contribution might be of independent interest.

• We show how our construction can be used in many realistic scenarios such as implementing
provable outsourced file systems and versioning systems, and provide evaluation on the practi-
cality of our scheme. Our evaluations suggest that using our schemes, the price of dynamism is
very low in practice.

In order to compare and assess the efficiency of our work, we use the four main complexity
measures from the PDP model [2] (n is the number of the blocks of the stored file):

1. Server Computation: This is the time needed by the server to process an update or to compute
a proof for a certain block (or a set of blocks). In our solution, server computation is O(log n).
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2. Client Computation: This is the time needed by the client to verify an answer to his query (i.e.
to process the proof returned by the server). This time is also O(log n) in our construction.

3. Communication Complexity : This is the size of the proof returned by the untrusted server to
the client, which for our solution is O(log n).

4. Client Storage: This is the amount of data that the client needs to keep to perform verification.
In our solution, it is O(1).

As said before and discussed in Section 7, our evaluations suggest that using our schemes, the
price of dynamism is very low in practice.

Related work. Ateniese et al. [2] present an overview of previous work on protocols fitting their
model, but find these approaches lacking; either they require expensive server computation or
communication over the entire file [7, 17], linear storage complexity for the client [21], or do not
provide secure guarantees for data possession [20].1

The PDP scheme of [2] provides an optimal protocol for the static case that achieves O(1)
server/client computation, O(1) communication, and O(1) client storage. Note that we have a
change in performance, from O(1) to O(log n). This is due to the fact that we support updates.
It is an open problem to provide a fully capable DPDP with complexities better than O(log n).
Nevertheless, our scheme achieves optimal client storage by requiring O(1) space.

Juels and Kaliski [9] present proofs of retrievability (PORs) and, like the PDP model, focus on
static archival storage of large files. Their scheme’s effectiveness rests largely on preprocessing steps
the client conducts before sending a file F to the server: “sentinel” blocks are randomly inserted
to detect corruption, F is encrypted to hide these sentinels, and error-correcting codes are used to
recover from corruption. As expected, the error-correcting codes improve the error-resiliency of their
system. Unfortunately, these operations prevent any efficient extension to support updates, beyond
simply replacing F with a new file F ′. Furthermore, the number of queries a client can perform is
limited, and fixed a priori. Shacham and Waters have an improved version of this protocol called
Compact POR [22], but their solution also only supports static files.

In our solution, we regard error-correcting codes or encryption as external to our system. If the
user wants to have more error-resiliency, she can provide us with a file that has error-correcting
codes integrated. Furthermore, encrypted files can be provided to our constructions if the secrecy
of the file is desired. All such modifications to the file are regarded as external to our system and
are treated equally. Since in our constructions we do not modify the file or assume any property on
the file given, our system will work in perfect compliance.

Simultaneously with our work, Ateniese et al. have developed a dynamic PDP solution [3].
Their idea is to come up with all future challenges during setup, and store pre-computed answers as
metadata (at the client, or at the server in an authenticated and encrypted manner). Because of this,
the number of updates and challenges a client can perform is limited and fixed a priori. Moreover,
it is not fully dynamic: it cannot perform block insertions anywhere (only append-type insertions
are possible). Under these limitations, they provide a protocol with optimal asymptotic complexity
(O(1) in all complexity measures giving the same probabilistic guarantees as our scheme). Yet,
their work is in the random oracle model whereas our scheme is provably secure in the standard
model. We also formally define a DPDP framework, and prove security accordingly.

The probability guarantee in [3] is fixed during setup since all challenges are prepared a priori.
In our scheme, the client can decide on the probability guarantee for each challenge independently
and on the fly. Unfortunately, each update in their scheme requires re-creating all the remaining

1The E-PDP construction in [2] does not provide data possession guarantees under cryptographic assumptions
either, but the argument on its security relies on the assumption that the server does not have sufficient storage to
let him answer challenges correctly without the data itself.
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Scheme SC CC Comm CS model capabilities

PDP [2] O(1) O(1) O(1) O(1) random oracle append only

Scalable PDP [3] O(1) O(1) O(1) O(1) random oracle limited updates

Our work O(log n) O(log n) O(log n) O(1) standard unlimited updates

Table 1: Comparison chart for state-of-the-art PDP schemes. SC denotes server computation, CC
denotes client computation, Comm denotes communication overhead, and CS denotes client storage,
as our four performance measures. The comparison of capabilities of these schemes in detail can
be found in the related work section or in Section 7.

challenges. This can be a big problem especially when the whole file system is outsourced. Further-
more, our scheme can easily be applied to situations where blocks can be of variable size. This is a
very useful feature for versioning systems, which we discuss in Section 6. Lastly, due to the use of
symmetric key cryptography, their work is not suitable for public verification, as the authors point
out. We have also developed an efficient public verifiability protocol (usable for official arbitration
purposes), but in this paper we will focus only on supporting dynamic updates with our DPDP
protocol. For more comparison, see Section 7.

Our work is also related to memory checking. Memory checking focuses on ensuring that the
contents of memory are kept intact, and the problem has many similarities to our DPDP model.
Unlike DPDP, there has been much theoretical work on memory checking, with lower bounds
presented on performance [6, 16]. Clarke et al. [5] show that by using hashing, one can do no
better than O(log n) for online memory checking. Similar bounds for many different primitives like
hash functions, pseudo-random functions, and universal one-way hash functions have been shown
by Blum et al. [4]. These results suggest that our DPDP scheme’s performance may be the best
possible. We admit that there is no proof of this, and a novel idea using a different primitive might
perform better. Nevertheless, our construction can also be regarded as an optimal memory checking
construction when the “file” is the memory.

2 Model

First we must define a DPDP scheme properly. We will build on the PDP definitions from [2, 9].
Unfortunately, those definitions are not general enough to cover as broad a range of even PDP
protocols as we do. We start by defining a general DPDP scheme, and then show how the definition
can be restricted to give a PDP scheme which is more general than the previous definitions.

Definition 1 (DPDP Scheme) In a DPDP scheme, there are two parties. The client wants to
off-load her files to the untrusted server. A complete definition of a DPDP scheme should describe
the following (possibly randomized) efficient procedures for the client and the server, possibly with
the order in which they should be executed.

• KeyGen(1k) → {sk, pk} is a probabilistic algorithm run by the client. It takes as input a security
parameter, and outputs a secret key sk and a public key pk. The client stores the secret and public
keys, and sends the public key to the server.

• PrepareUpdate(sk, pk,F , info,Mc) → {F ′, info′,M ′} is an algorithm run by the client to prepare
(a part of) the file for untrusted storage. As input, it takes secret and public keys, (a part of)
the file F with the definition info of the update to be performed ( e.g., full re-write, modify block
i, delete block i, add block b after block i, etc.), and the previous metadata Mc. The output is
an “encoded” version of (a part of) the file F ′ ( e.g., by adding randomness, adding sentinels,
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encrypting for confidentiality, etc.), along with the information info′ about the update (changed
to fit the encoded version), and the new metadata M ′. The client sends F ′, info′,M ′ to the server.

• PerformUpdate(pk,Fi−1 ,Mi−1 , info′,F ′,M ′) → {Fi ,Mi ,Mc
′,PMc

′} is run by the server in re-
sponse to an update request from the client. The input contains the public key pk, the previous
version of the file Fi−1 , the metadata Mi−1 and the client-provided values F ′, info′,M ′. The out-
put is the new version of the file Fi and the metadata Mi , along with the metadata to be sent to
the client Mc

′ and its proof PMc
′ . The server sends Mc

′,PMc
′ to the client.

• VerifyUpdate(sk, pk,F , info,Mc,Mc
′,PMc

′) → {ACCEPT, REJECT} is run by the client to verify the
server’s behavior during the update. It takes all the inputs the PrepareUpdate algorithm did, plus
the Mc

′,PMc
′ sent by the server. It outputs acceptance or rejection signals. If the verification

accepts, the client may delete F .

• Challenge(sk, pk,Mc) → {c} is a probabilistic procedure run by the client to create a challenge
for the server. It takes the secret and public keys, along with the latest client metadata Mc as
input, and outputs a challenge c that is then sent to the server.

• Prove(pk,Fi ,Mi , c) → {P} is the procedure run by the server upon receipt of a challenge from
the client. It takes as input the public key, the latest version of the file and the metadata, and
the challenge c. It outputs a proof P that is sent to the client.

• Verify(sk, pk,Mc, c, P ) → {ACCEPT, REJECT} is the procedure run by the client upon receipt of the
proof P from the server. It takes as input the secret and public keys, the client metadata Mc, the
challenge c, and the proof P sent by the server. It outputting accept ideally means that the server
still has the file intact. We will define the security requirement of a DPDP scheme later.

We assume there is a hidden input and output clientstate in all functions run by the client,
and serverstate in all functions run by the server. Some inputs and outputs may be empty in
some schemes. For example, the PDP scheme of [2] does not store any metadata at the client
side. Also sk, pk can be used for storing multiple files, possibly on different servers. All these
functions can be assumed to take some public parameters as an extra input if operating in the
public parameters model, although our construction does not require such modifications. Besides
outputting {ACCEPT, REJECT}, VerifyUpdate can also output a new client metadata Mc. In most of
the scenarios, we imagine that this new metadata will be set as Mc = Mc

′.
Retrieval of a (part of a) file is very similar to the challenge-response protocol above, composed

of Challenge,Verify,Prove algorithms, except that along with the proof, the server also sends the
requested (part of the) file, and the verification algorithm must use this (part of the) file in the
verification process. Otherwise, even though the server proves the possession of the file, it may not
necessarily send the client’s file back. We strongly believe that a retrieval protocol must be part of
any DPDP (or PDP) system specification, but don’t define it formally, as it is very similar to the
challenge-response protocol.

Definition 2 (PDP Scheme) A PDP scheme is a restricted DPDP scheme, with the restriction
that the algorithms PrepareUpdate,PerformUpdate,VerifyUpdate can only specify an update that is
a full re-write (or append).

As defined above, PDP is a restricted case of DPDP. We now show how our DPDP definition
(when restricted in this way) fits some previous schemes. The PDP scheme of [2] has the same
KeyGen algorithm definition, defines a restricted version of PrepareUpdate that can create the
metadata for only one block at a time, and defines Prove and Verify algorithms similar to our
definition. It lacks an explicit definition of Challenge. The POR scheme of [9] defines KeyGen which
does not return any public key, their encode algorithm is the PDP version of our PrepareUpdate, and
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they have challenge, respond and verify algorithms similarly defined as our Challenge,Prove,Verify.
In both papers, PerformUpdate is simply storing files (and tags), and VerifyUpdate always returns
true (actually, nothing is sent back from the server to the client). It is clear that our definition
allows a broader range of DPDP (and PDP) schemes.

Having defined what a DPDP scheme is composed of, we now define the security of such a
scheme. While reading the security definition, note that the restriction to PDP case gives us a
security definition for PDP schemes, compatible with previous definitions [2, 9, 22].

Definition 3 (Security of DPDP) We say that a DPDP scheme is secure if for any proba-
bilistic polynomial time (PPT) adversary who can win the following data possession game with
non-negligible probability, there exists an extractor that can extract the challenged data by resetting
and challenging the adversary polynomially many times.

Data Possession Game: Played between the challenger who plays the role of the client and
the adversary who acts as a server.

1. Keygen: The challenger runs KeyGen(1k) → {sk, pk} and sends the public key pk to the
adversary.

2. ACF Queries: The adversary is very powerful. He can mount adaptive chosen file (ACF)
queries as follows. The adversary specifies a message F and the related information info

specifying what kind of update to perform (see Definition 1) and sends these to the challenger.
The challenger runs PrepareUpdate on these inputs and sends the resulting F ′, info′,M ′ to the
adversary. Then the adversary replies with Mc

′,PMc
′ which are verified by the challenger

using the algorithm VerifyUpdate. The result of the verification is told to the adversary. The
adversary can repeat the interaction defined above polynomially many times.

3. Setup: Finally, the adversary decides on messages F ∗

i and related information info∗i for all
i = 1, . . . , N of adversary’s choice of polynomially large N ≥ 1. The ACF interaction is
performed again, with the following rules. The first info∗1 must specify a full re-write (this
corresponds to the first time the client sends a file to the server). Also, all the tags and proofs
Mc

∗
′

i ,P
Mc

∗
′

i

sent by the adversary must be accepted by the challenger’s verification algorithm

Verify. This is normal, because the client will not delete (parts of) her file if the server did
not perform the update correctly.

4. Challenge: Call the final version of the file F , which is created according to all the updates
the adversary requested in the previous step. The challenger holds the latest metadata Mc =
Mc

∗
′

N sent by the adversary, which verified as accepting. Now the challenger creates a challenge
using Challenge(sk, pk,Mc) → {c} and sends it to the adversary. The adversary returns a proof
P . If Verify(sk, pk,Mc, c, P ) accepts, then the adversary wins. The challenger has the ability to
reset the adversary to the beginning of the challenge phase and repeat this step polynomially
many times for the purpose of extraction. Overall, the goal is to extract the challenged parts
of F from the adversary’s responses which are accepting.

The PDP definition of [9] includes an extractor as part of the scheme, instead of the security
definition. This results in a limited definition of an extractor, which works against only stateless
adversaries (see [9]). To prevent introducing such artificial limitations, we prefer formalizing it as
above (similar to [2]). Note that our definition coincides with standard extractor definitions in
proofs of knowledge.
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3 Authenticated Skip Lists

In order to implement our DPDP scheme, we will be using the authenticated skip list data structure
which was introduced by Goodrich and Tamassia [8]. We could have used a Merkle tree instead,
something that would probably make the presentation easier. Even though this would perfectly work
for the static case, in the dynamic case, no exact algorithms have been presented for rebalancing a
Merkle tree (basically we would need an authenticated red-black tree) and efficiently maintaining
and updating authentication information, which, however, has been extensively studied for the case
of the authenticated skip list [18].

The authenticated skip list is a skip list [19] (see Figure 1) with the difference that every internal
node v of the skip list (which has two pointers, namely right(v) and down(v)) also stores a label
f(v) that is a cryptographic hash and is computed using some collision resistant hash function h

(e.g., SHA-1 in practice) as a function of f(right(v)) and f(down(v)). Using this data structure, one
can answer queries like “does 21 belong to the set represented with this skip list?” and also provide
a proof that the given answer is correct. To be able to verify the proofs to his answers, the client
must always hold the label f(s) of the top leftmost node of the skip list (node w7 in Figure 1). We
call f(s) the basis (or root), and it corresponds to the client’s metadata in our DPDP construction
(Mc = f(s)).In our construction, the leaves of the skip list represent the blocks of the file. When
the client asks for a block, the server needs to send that block, along with a proof that the block
is intact.

As we said before, we use the authenticated skip list data structure [8] to check the integrity of
the file blocks. However, the updates we want to support in our DPDP scenario are insertions of a
new block after the i-th block and deletion/modification of the i-th block (there is no search key
in our case, in contrast with [8], which basically implements an authenticated dictionary). If we
use indices of blocks as search keys in an authenticated dictionary, we have the following problem.
Suppose we have a file consisting of 100 blocks m1,m2, . . . ,m100 and we want to insert a block
after the 40-th block. This means that the indices of all the blocks m41,m42, . . . ,m100 should be
incremented, and therefore an update becomes extremely inefficient. To overcome this difficulty,
we define a novel hashing scheme and a way to search an authenticated skip list that is completely
independent of the search keys—actually we are not going to use search keys at all.

We have a file F consisting of n blocks m1,m2, . . . ,mn. The leaves of the skip list will contain
some representation of the blocks, namely leaf i will store T (mi). For now, let T (mi) = mi (we
will define T (mi) later). The actual block mi will be stored somewhere in the hard drive of the
untrusted server. Every internal node v of the skip list stores the size of the subtree rooted on this
node, namely how many leaves of the skip list can be reached from this node, instead of storing a
search key. We call this number rank of an internal node v and denote it with r(v).

3.1 Rank-based authenticated skip lists

Suppose now we have stored n blocks m1,m2, . . . ,mn in our rank-based skip list. In order to find
block i we use the following method. Obviously, the rank of the top leftmost node v of the skip list
is n (all blocks can be reached from that node). Naturally we can define low(v) = 1 and high(v) = n.
Let α = right(v) and β = down(v) be the nodes that can be reached from v by following the right
or the down pointer respectively. Suppose we search for block i. We can now compute the intervals
[low(α), high(α)] and [low(β), high(β)] by setting high(α) = high(v), low(α) = high(v) − r(α) + 1,
high(β) = low(v) + r(β) − 1 and low(β) = low(v). If now i ∈ [low(α), high(α)] we follow the right
pointer that leads to α, else we follow the down pointer that leads to β. We continue in this way
until we reach a node x that is at the zero-level with low(x) = i. It is easy to see that there always
exists such a node which corresponds to the i-th block. Finally note that we do not have to store

7



in the skip list nodes the numbers high and low. We just compute them on the fly using the stored
ranks.

If we want to update a block, we traverse the search path (see Pugh [19]) for the element we
want and update all the affected values while the recursion returns (e.g., in case of an insertion,
we increase the ranks along the traversed path and recompute the relevant hashes according to
Definition 4).

v1
v8

0

4

v3v4v5

v7

v6 v9

w 3

w 4

w 5

w 6

w 7

3

12

11 10

5 4

1 1111 1 1 1 11 3 2

5

2 3

2

Figure 1: A skip list used to store a file of 12 blocks using ranks.

In order to extend authenticated skip lists with ranks, we must authenticate the ranks as well.
Hence the hashing scheme defined in [8] can no longer be used. Let I(v) denote the interval that
corresponds to node v. For example, in Figure 1, we have I(w4) = [2, 6] while I(w3) = [3, 6]. Let
l(v) be the level of node v in the skip list. Our new hashing scheme is as follows:

Definition 4 (Hashing scheme with ranks) The label f(v) of a node v in a skip list with ranks
is computed as follows:

• if level(v) > 0 then f(v) = h(A||I(down(v))||f(down(v)),A||I(right(v))||f(right(v))).

• if level(v) = 0 and right(v) = null then f(v) = h(A||I(v)||T (data(v)),A||I(succ(v))||T (data(succ(v)))).

• if level(v) = 0 and right(v) 6= null then f(v) = h(A||I(v)||T (data(v)),A||I(right(v))||f(right(v))).

where A = l(v)||r(v), || denotes the concatenation operator and succ(v) is the successor node of v.

Note that, before inserting any block (i.e. if initially the skip list was empty), the basis can easily be
computed by hashing the sentinel values of the skip list; —the file consists of only two “fictitious”
blocks— block 0 and block +∞.

3.2 Queries

Suppose now the file F and a skip list on the file have been stored at the untrusted server. The
client wants to verify the integrity of block i, and therefore queries for block i. The server constructs
the proof Π(i) for block i as follows (see Algorithm 3.1). Let v1, v2, . . . , vm be the search path in
the skip list for block i (note that node v1 corresponds to block i + 1 and node v2 corresponds
to block i and therefore we are talking about the reverse path). For every node vj 1 ≤ j ≤ m, a
4-tuple A(vj) is added to the proof. The 4-tuple A(vj) contains the level l(vj), the rank r(vj), an
interval I(vj) and a hash value (label) f(vj). For those nodes vj that lie in the zero level, we have
that the interval value is I(vj) and the hash value is T (data(vj)). For those nodes that lie above
the zero level, I(vj) equals the I(v′) and f(vj) equals f(v′), where v′ is either right(vj) or down(vj)
according from where vj gets its hash value. For example, the proof for the 5-th block of the skip
list of Figure 2 is depicted in Table 2. Finally, note that since any search path in the skip list is
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expected to be of logarithmic length (in the number of blocks) with high probability, the size of
the proof is logarithmic too.

Algorithm 3.1: Π(i) = query(i)

1: Let v1, v2, . . . , vm be the search path for block i;
2: return Π(i) = {A(v1), A(v2), . . . , A(vm)};

node v v1 v3 v4 v5 w3 w4 w5 w6 w7

l(v) 0 0 0 0 2 2 3 3 4

r(v) 1 1 2 3 4 5 10 11 12

I(v) [6, 6] [5, 5] [4, 5] [3, 5] [6, 6] [2, 2] [7, 12] [1, 1] [12, 12]

f(v) T (m6) T (m5) T (m4) T (m3) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 2: The proof for the 5-th block of the file F stored in the skip list of Figure 1.

3.3 Verification

After receiving the 4-tuples A(vj) which are the proof for a block mi, the client has to process
them and compute a value f ′. If f ′ is equal to the locally stored metadata Mc, then the verifica-
tion algorithm outputs ACCEPT, else it outputs REJECT (see Algorithm 3.2). If it outputs ACCEPT,
then with high probability, the server indeed stores T (mi) intact [18] (we recall that T (mi) is a
representation of the data of the actual block mi —which can be viewed as mi itself for the sake
of presentation— and this is what is stored at the leaves of the skip list). In order to show how to
process the given proof, we need to define hashing between 4-tuples:

Definition 5 (Hashing with ranks) Given two 4-tuples A(u) = (l(u), r(u), I(u), f(u)), A(v) =
(l(v), r(v), I(v), f(v)) that correspond to two consecutive nodes u, v of a path of the skip list such
that u = right(v) or u = down(v) we define S(A(u), A(v)) to be the 4-tuple

(l(v), r(v), I(v), h(A||I(v)||f(v),A||I(u)||f(u)))

where A = l(v)||r(v).

Note that operation S is associative, namely for every three 4-tuples A(vi), A(vj), A(vk) such that vi,
vj and vk form an upward path in the skip list, it is S(A(vi), A(vj), A(vk)) = S(S(A(vi), A(vj)), A(vk)).
We now have the following result:

Lemma 1 Let v1, v2, . . . , vm be a reverse search path for a node x in a skip list where the hashing
scheme with ranks is used. Let L be the maximum level, n be the number of items stored in the skip
list and A(vi) (i = 1, . . . ,m) be the 4-tuple that corresponds to each node vi. Then

S(A(v1), A(v2), . . . , A(vm)) = (L, n, [1, n], f(s))

where f(s) is the label of the top-leftmost node.

From now on, we denote with λ(A(v1), A(v2), . . . , A(vm)) the last element of the 4-tuple
S(A(v1), A(v2), . . . , A(vm)) (the value f(s) in Lemma 1). Now, in order to perform verification,
the client applies S(., .) sequentially to the proof Π(i) sent by the server, according to Definitions
5 and 4 and outputs ACCEPT or REJECT according to whether λ(Π(i)) = Mc or not.

Note that we must authenticate all the intervals, the ranks and the levels since they are critical
in verification. Suppose we query for the i-th block. Then the server sends us a proof that con-
sists of the 4-tuples {A(v1), A(v2), . . . , A(vm)}. As before, we denote with l(vi), r(vi), I(vi), f(vi)
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Algorithm 3.2: {ACCEPT, REJECT} = verify(Π(i),Mc)

1: Let Π(i) be the proof returned by Algorithm 3.1;
2: if λ(Π(i)) = Mc then return ACCEPT;
3: return REJECT;

the level, the rank, the interval and the label that corresponds to node vi for i = 1, . . . ,m, re-
spectively. Note that for vt such that l(vt) = 0 we have that f(vt) = T (data(vt)). We process
all zero-level nodes v1, . . . , vk′ until we reach a node u such that low(u) = i. If we apply S(, ., )
to {A(v1), A(v2), . . . , A(vm)} and the results equals Mc, then we are assured that the data corre-
sponding to block i is f(u).

3.4 Updates

The possible update types in our DPDP scheme are insertions of a new block after the i-th block,
deletions of the i-th block, and modifications of the i-th block for 1 ≤ i ≤ n. Suppose the client wants
to insert a new block after the i-th block. He sends an “insert” query to the server. While performing
the insertion (see Algorithm 3.3), the server also computes the proof Π(i) (using Algorithm 3.1).
Then he sends the proof Π(i) along with the new metadata Mc

′ to the client (Mc
′ is the new basis).

Note that when the server performs an insertion or deletion, it must update (and also include in
the hashing scheme) the ranks and the intervals as well (see line 5 of Algorithm 3.3). This can be
easily done in O(log n) time: it is easy to see that only ranks and intervals along the search path
of the skip list are affected.

Algorithm 3.3: {M ′

c,Π(i)} = performUpdate(i,T ,upd)

1: set Π(i) = query(i);
2: if upd = ins then insert T after block i in the skip list;
3: if upd = del then delete block i in the skip list;
4: if upd = modify then set T (mi) = T in the skip list;
5: forall affected nodes v, update A(v),f(v) to A′(v),f ′(v);
6: return {f ′(s),Π(i)}; (s is the basis of the skip list)

After the client has received the proof Π(i) and the metadata Mc
′, he has to process Π(i) and

produce another updated proof Π′(i) using Algorithm 3.4. This is done by using a variation of the
algorithm update presented in [18], the presentation of which is deferred to the full version of the
paper, due to space limitations.

Algorithm 3.4:
{ACCEPT, REJECT} = verifyUpdate(M ′

c,Π(i),i,upd)

1: process Π(i) according to [18] and upd to produce Π′(i);
2: if λ(Π(i)) = M ′

c then return ACCEPT;
3: return REJECT;

To give some intuition of how Algorithm 3.4 produces proof Π′(i), the reader can verify that
Table 3 corresponds to Π′(5), the proof that the client produces from Table 2 in order to verify the
update “insert a new block with data T after block 5 at level 1 of the skip list of Figure 1”. Note
that this update causes the creation of two new nodes in the skip list, namely the node that holds
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node v v2 v3 v4 v5 w w3 w4 w5 w6 w7

l(v) 0 0 0 0 1 2 2 3 3 4

r(v) 1 1 2 3 4 5 6 11 12 13

I(v) [6, 6] [5, 5] [4, 5] [3, 5] [3, 6] [7, 7] [2, 2] [8, 13] [1, 1] [13, 13]

f(v) T T (m5) T (m4) T (m3) f(v2) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 3: The proof Π′(5) as produced by Algorithm 3.4 for the update ”insert a new block with
data T after block 5 at level 1“. Note that two new nodes are inserted, namely v2, w, where
f(v2) = h(0||1||[6, 6]||T , 0||1||[7, 7]||T (data(v1))) as defined in Definition 4 and that the ranks and
the intervals along the search path are increased in order to accommodate the addition of one more
block.

the data for the 6-th block, v2, and node w (5-th line of Table 3) that needs to be inserted in the
skip list at level 1.

4 DPDP scheme construction

4.1 Core construction

In this section, we present the main idea behind our DPDP construction, keeping the presentation
simple. Later, in Section 4.2, we discuss techniques that can be used in practice to improve efficiency.
We now present each of our algorithms as defined in Definition 1 in Section 2. In the following, n

is the current number of blocks that the client’s file has.

• KeyGen(1k) → {sk, pk}: In our basic construction, we do not require any keys to be generated.
So, this procedure’s output is empty, and hence none of the other procedures make use of these
keys.

• PrepareUpdate(sk, pk,F , info,Mc) → {F ′, info′,M ′}: This is a dummy procedure that outputs the
file F and information info it receives as input. The metadata Mc as an input and M ′ as an
output are empty (not used).

• PerformUpdate(pk,Fi−1 ,Mi−1 , info′,F ′,M ′) → {Fi ,Mi ,Mc
′,PMc

′}: Inputs Fi−1 ,Mi−1 are the
previously stored file and metadata on the server (empty if this is the first run). F ′, info′,M ′,
which are output by PrepareUpdate, are sent by the client (M ′ being empty). The file is stored
as is, and the metadata stored at the server is a skip list (where for block b, T (b) is the block
itself). The procedure updates the file according to info′, outputting Fi , runs the skip list update
procedure on the previous skip list Mi−1 (or builds the skip list from scratch if this is the first
run), outputs the resulting skip list as Mi , the new skip list root as Mc

′, and the proof returned
by the skip list update as PMc

′ . This corresponds to calling Algorithm 3.3 on inputs the new
data T (in case of an insertion or a modification), a block index j and the kind of the update
upd. Note that the index j and the type of the update upd is taken from info′ and the new
data T is simply F ′. Finally, Algorithm 3.3 outputs Mc

′ and PMc
′ = Π(j) which are output by

PerformUpdate. The runtime is O(log n).

• VerifyUpdate(sk, pk,F , info,Mc,Mc
′,PMc

′) → {ACCEPT, REJECT}: Client metadata Mc is the pre-
vious skip list root the client has (empty for the first time), whereas Mc

′ is the new root sent by
the server. The client runs Algorithm 3.4 using the file F and the proof sent by the server PMc

′ ,
and compares the root output by that procedure with Mc

′. If they are the same, the client sets
Mc = Mc

′ and accepts. The client may now delete the new block from its local storage. This
procedure is a direct call of Algorithm 3.4. It runs in time O(log n).
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• Challenge(sk, pk,Mc) → {c}: This procedure does not need any input apart from knowing the
number of blocks, n, in the file on the outsourced storage. It might additionally take a security
parameter C which is the number of blocks to challenge. This value will be analyzed when we talk
about the evaluation of our protocol. The procedure creates C random block numbers between
1, . . . , n. This set of C random block numbers are sent to the server and is denoted with c. It
runs in time O(C). Note that C will be a constant.

• Prove(pk,Fi ,Mi , c) → {P}: This procedure uses the last version of the file Fi and the skip
list Mi , and the challenge c sent by the client. It runs the skip list prover to create a proof
on the challenged blocks. Namely, let i1, i2, . . . , iC (C being the number of challenged blocks)
be the indices of the challenged blocks. Prove calls Algorithm 3.1 C times (with arguments
i1, i2, . . . , iC) and sends back C proofs. All these C skip list proofs form the output P . The
runtime is O(C log n).

• Verify(sk, pk,Mc, c, P ) → {ACCEPT, REJECT}: This procedure takes the last skip list root Mc the
client has as input, as well as the challenge c sent to the server, and the proof P sent by the
server. It then runs the skip list verification using the proof sent by the server, including the
challenged blocks, which returns a skip list root. If this root matches Mc then the client accepts.
All these are achieved by calling Algorithm 3.2 C times. This procedure takes O(C log n) time.

As presented above, the core DPDP construction does not provide blockless verification. Namely
for each block b, we have T (b) = b. In the next section, we show how to prevent downloading of
the blocks by the client, and have a very efficient DPDP protocol.

4.2 Blockless verification using tags

In our construction above, we used the skip list leaves as the data blocks themselves. This requires
the client to download all the challenged blocks for verification purposes, since the skip list proof
includes leaves. To improve the efficiency and accomplish blockless verification, we can employ tags;
we use homomorphic tags as in [2], but our tags are simpler and more efficient to compute.

We now set each leaf T (mi) of our skip list to be the tag of block mi. The tags (explained later)
are small in size compared to data blocks. Therefore, making the skip list leaves to be tags have two
main advantages. Firstly, the skip list can be kept in memory. Secondly, instead of downloading
the data, the client can just download the tags. The integrity of the tags themselves are protected
by the skip list, and the tags protect the integrity of the data. We now present modifications to
our protocols to accommodate tags.

Before talking about the tags, we need to modify our KeyGen algorithm to output pk = (N, g),
where N = pq is a product of two primes, and g is an element of high order in Z∗

N . pk is sent to
the server. There is no secret key.

In the skip list, tags T (mi) = gmi mod N will be used as the skip list leaves instead of the
blocks. Therefore, the skip list proof will contain these tags instead of the blocks themselves.
This computation can be carried out easily with the knowledge of the public key and the block.
Alternatively, the server can store the tags for faster proof computation.

The Prove procedure now sends the skip list proof for the challenged blocks mij (1 ≤ i1, . . . , iC ≤
n denote the challenged indices, where C is the number of challenged blocks, and n the total number
of blocks), with the tags as leaves. The server also sends a combined block M =

∑C
j=1

ajmij , where
aj are random values sent by the client as part of the challenge. The size of this combined block is
roughly the size of a single block, and thus imposes much smaller overhead than sending C blocks.
This achieves blockless verification.

The Verify algorithm verifies the skip list proof as before, except now with tags as leaves. It
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also computes T =
∏C

j=1
T (mij)

aj mod N , and accepts if and only if T = gM mod N and the
skip list proof verifies.

The Challenge procedure can also be made more efficient by using the ideas in [2]. First, instead
of sending random values aj separately, the client can simply send a random key to a pseudo-
random function that will generate those values. Second, a key to a pseudo-random permutation
can be sent to select the challenged blocks: if 1 ≤ ij ≤ n (j = 1, . . . , C) are pseudo-random
block numbers generated using that key, the challenged blocks will be mij for each j = 1, . . . , C.
Definitions of these pseudo-random families can be put into the public key. See [2] for more details
on this efficient challenge procedure.

Theorem 1 Assume the existence of a collision-resistant hash function and that the factoring
assumption holds. The dynamic provable data possession scheme (DPDP) presented in Section 4.2
for a file consisting of n blocks has the following properties:

1. It is secure (according to Definition 3), as proven in Section 5;

2. The client uses O(1) space;

3. The server uses expected O(n) space w.h.p.;

4. The probability of detecting a tampered block when the server tampers with T random blocks

is 1 −
(

n−T
n

)C
, where C is the number of the blocks probed;

5. The expected running time (at the server and client side) and communication complexity when
updating a number of consecutive blocks is O(log n) w.h.p.;

6. The expected running time (at the server and client side) and communication complexity for
challenging C random blocks is O(C log n) w.h.p..

5 Security

In this section we prove the security of our DPDP scheme. From the two-party authenticated skip
list (Theorem 1 in [18]), and our discussion in Section 3, we use the following result:

Lemma 2 Assuming the existence of a collision-resistant hash function, the proofs generated using
our rank-based authenticated skip list structure guarantees the integrity of its leaves T (mi) with high
probability.

Theorem 2 (Security of core DPDP protocol) The DPDP protocol presented in Section 4.1
is secure in the standard model according to Definition 3 assuming the existence of a collision-
resistant hash function.

Proof: Assume that the adversary wins the data possession game in Definition 3. Then, we show
that the challenger can either extract the challenged blocks, or break the collision-resistance of the
hash function used.

As input, the challenger is given a hash function. The challenger plays the data possession game
with the adversary using this hash function, honestly answering every query of the adversary. As
the only difference from the real game, the challenger does not remove the blocks sent by the
adversary from its storage. This difference is invisible to the adversary, and so he will behave in
the same manner as he would to an honest challenger. At the end, the adversary replies to the
challenge sent by the challenger. If this proof verifies, and hence the adversary wins, it must be
the case that either all the blocks are intact (and so the extractor can just output the blocks sent
in the proof) or the challenger breaks the collision-resistance as follows. By Lemma 2, if we have
a skip list proof that verifies, but at least one block that is different from the original block, the
challenger can output the original block he stored and the different block sent in the proof as a
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collision. Therefore, if the adversary has a non-negligible probability of winning the data possession
game, the challenger can either extract or break the collision-resistance of the hash function with
non-negligible probability. �

Next, we analyze our improved DPDP construction which uses tags. In this construction, we
need an extra assumption stated below.

Definition 6 (Factoring Assumption) For all PPT adversaries A and large-enough number
N = pq which is a product of two primes p and q, the probability that A can output p or q given N

is negligible in the size of p and q.

Theorem 3 (Security of tagged DPDP protocol) The DPDP protocol presented in Section
4.2 is secure in the standard model according to Definition 3 assuming the existence of a collision-
resistant hash function and that the factoring assumption holds.

We would like to mention that our scheme relies on neither the RSA assumption nor the
knowledge of exponent assumption.
Proof: Assume that the adversary wins the data possession game in Definition 3. Then, we show
that the challenger can either extract the challenged blocks, or break the collision-resistance of the
hash function used, or break the factoring assumption by interacting with the adversary.

The challenger is given a hash function and an integer N = pq but not p or q. The challenger
then samples a high-order element g (a random integer between 1 and N will have non-negligible
probability of being of high order in Z∗

N , which suffices for the sake of reduction argument—a
tighter analysis can also be performed). He interacts with the adversary in the data possession
game honestly, using the given hash function, and creates the tags while using N as the modulus
and g as the base. As the only difference from the real game, the challenger does not remove the
blocks sent by the adversary from its storage. This difference is invisible to the adversary, and so
he will behave in the same manner he would to an honest challenger. At the end, the adversary
replies to the challenge sent by the challenger.

First, consider the case where only one block is challenged. If the adversary wins, and thus
the proof verifies, then the challenger can either extract the block correctly, or break the factoring
assumption, or break the collision-resistance of the hash function, as follows.

Call the block sent in the proof by the adversary x, and the original challenged block stored at
the challenger b. If x 6= b (and thus the extraction fails, because otherwise we can easily extract),
then the challenger checks if gx = gb mod N . If that is the case, the challenger can break the
factoring assumption; otherwise, he breaks the collision-resistance. If gx = gb mod N , this means
x = b mod φ(N), which means x − b = kφ(N) for some integer k 6= 0. Hence, x − b can be used
in Miller’s lemma [14], which leads to factoring N .

Otherwise gx 6= gb mod N . This means, there are two different tags that can provide a verifying
skip list proof. By Lemma 2, the challenger can break the collision-resistance of the hash function
by outputting gx mod N and gb mod N .

Now consider challenging multiple blocks (C blocks). Let i1, i2, . . . , iC be the C challenged
indices. Recall that each block is not sent individually. Instead, the adversary sends a linear com-
bination of blocks M =

∑C
j=1

ajmij for random aj sent by the challenger. We can easily plug in
the extractor at the last paragraph of the proof of Theorem 4.3 in [2]. The idea is to reset and
challenge with independent aj (which means independent pseudo-random function keys) and get
enough independent linear equations from the adversary to solve for each mij . Note that the reduc-

tion to the factoring assumption is very easy, since, after computing T =
∏C

j=1
T (mij )

aj mod N ,
if this value can be obtained by a different linear combination M ′ of blocks, it leads to factoring
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using Miller’s lemma [14] (we get gM = gM ′

mod N with M 6= M ′). The tags for each block are
sent separately, and so the reduction to collision-resistance works the same way as before. This
concludes the proof of Theorem 3. �

Probability of detection. As we mentioned before, the client probes C blocks by calling the
Challenge procedure. Obviously, if the server tampers with a block different than the probed ones,
the server can cheat. Assume now that the server tampers with T blocks, while the client probes
C blocks. We can easily prove that, if the total number of blocks is n, the probability that at least

one of the probed blocks matches at least one of the tampered blocks is 1 −
(

n−T
n

)C
(since there

are n − T non-tampered blocks, and choosing all C of them has probability
(

n−T
n

)C
).

As mentioned before, error-correcting codes can be applied external to our system to increase
error-resiliency of the file. We do not take into account such modifications when we consider the
probability of detection. Furthermore, many usages of a DPDP system over many files/contents can
tolerate small number of errors. As an example, consider movie files, music files, most (unofficial)
text files, image files, etc. Thus, there are many real scenarios where several flipped bits will
not cause real problems. More importantly, the probability of getting caught is so high that no
respectable DPDP server will take the risks under proper business management.

6 Extensions and Applications

Our DPDP model as presented considers only a single large file F , but our scheme may be extended
to support multiple files and directories, as in a network file system or version control system. We
can also support the use of variable-sized blocks by modifying our rank mechanism, which may be
useful in conserving bandwidth and reducing the number of updates necessary for some applications.

Hierarchical File System. We can extend our DPDP scheme to allow for authenticated storage
and updates to multiple files existing within a directory hierarchy. The key idea is to use the root of
each file’s rank-based skip list (from our single-file scheme) as leaves in a parent dictionary structure
which is used to map file names to files. Using an authenticated dictionary based on skip lists [18]
allows us to combine and chain our proofs of possession and update operations with queries and
proofs through the entire hierarchy of authenticated structures. Each directory is represented as a
key-ordered skip list containing the set of files and subdirectories within it. Thus we can use skip
lists in a nested manner to represent a hierarchical file system: one can think of the basis of the
topmost skip list as the root of the file system, and at the bottom, leaves for the tags associated
with blocks for each file (as depicted in Figure 2(a)).

This extension scheme affords certain flexibility in multi-user environments. Consider a case
where a system administrator employs an untrusted storage provider. The system administrator
can keep the skip list basis corresponding to the topmost directory, and use it to periodically check
the integrity of the whole file system, learning only the sum M =

∑

aimi of random blocks of users’
data in the process. Each user can keep the skip list basis corresponding to her home directory,
and use it to independently check the integrity of the directory hierarchy rooted at that basis, at
any time and without need for cooperation from the administrator. Proofs of possession can be
performed at any level of the hierarchy.

Since the basis of a skip list at level i is a leaf of another skip list at level i− 1 in the hierarchy,
one drawback to this construction is that upper levels of the hierarchy must be updated with each
update to the lower levels. Still, the proof complexity stays relatively low; if n is the maximum
number of leaves in each skip list, and the depth of the directory structure is d, then proofs on the
whole hierarchy have size and computation time of O(d log n).
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(a) (b)

Figure 2: (a) A file system skip list with blocks as leaves, directories and files as roots of nested skip
lists. (b) A version control file system. Notice the additional level of skiplists for holding versions
of a file. For better performance, persistent authenticated skip lists [1] should be used for versions.
The complexity of our proofs will then be O(log n + log v + d log f).

Variable-sized blocks. Although our DPDP scheme allows for updates that insert, modify and
delete blocks within a file, most practical applications that operate above the file system layer do
not perform updates that cleanly map to fixed-size block boundaries. An application that wishes
to insert or delete an odd-sized chunk of data in a file (e.g., adding or removing a line in a text file)
would have to perform modifications to each of the blocks in the file following the change, in order
to realign the new version of the file with the partition of fixed-size blocks. This renders all but
block-sized updates at boundary points inefficient, since new tags and proofs must be generated
for each changed block.

However, we can easily augment our ranking scheme to support updates that do not require
changes to unaffected blocks. Recall that our ranking scheme assigns each internal skip list node v

a rank r(v) equivalent to the number of leaf nodes (blocks) that can be reached from the subtree
rooted at v, while leaves are implicitly assigned a rank value of 1. We can support variable-sized
blocks by defining each leaf node’s rank to be equal to the size of its associated block (i.e. in
bytes). Each internal node, in turn, is assigned a rank equivalent to the number of bytes that
can be reached below it. Queries and proofs proceed the same as before, except that ranks and
intervals associated with the search path refer to bytes, not blocks; update operations are phrased
as, e.g., “insert m bytes at byte index i”. Such an insertion would require changing only the block
containing the data at byte index i. Similarly, modifications and deletions affect only those blocks
spanned by the range of bytes specified in the update.

Version control. We can build on these extensions to efficiently support versioning systems, such
as a CVS repository. Consider a skip list for a file in the CVS repository. The server stores each
version of the file, maintaining a skip list for each. The obvious way to achieve a versioning system
is to keep one basis for each version of the file, which requires O(v) client storage and O(log n)
proof complexity, where v is the number of versions of the file.

To authenticate version numbers, each different version’s basis can serve as leaves in yet another
authenticated skip list, this one keyed by version number; as above, the client needs only store the
topmost basis. Therefore, we can achieve a versioning system with only O(1) storage at the client
and O(log n + log v) proof complexity.

As an efficiency improvement, we can use persistent authenticated skip lists [1] along with
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our rank mechanism. These persistent data structures handle updates by adding new nodes for
those affected by an update (nodes appearing along the search path), while preserving old internal
nodes and roots corresponding to previous versions of the structure before each update. Therefore,
instead of replicating the entire skip list for each update, the server needs to store only those nodes
corresponding to blocks affected by it.

We can combine this versioning system for each file with the file system extension described
above to support authenticating versions of entire directory hierarchies. If even the directories have
v versions, and d is the depth of the directory hierarchy, the proof complexity for the versioning
file system will be O(d(log n + log v)). See Figure 2(b) for details.

7 Performance evaluation

We evaluate of the performance of our DPDP scheme (as in Section 4.2) in terms of communication
and computational overhead: here, our goal is to determine the price of dynamism over previous
work on static PDP schemes. For ease of comparison, our evaluation uses the same scenario as in
[2], where a server wishes to prove possession of a 1GB file. As observed in [2], the number of blocks
that must be queried by a challenger to detect with some probability that a server has deleted or
corrupted T blocks of the file is independent of the total number of blocks n, when T is defined as
a fraction of n. Thus when T = 1% of n, detecting this fraction of incorrect data with 95% and
99% confidence requires challenging 300 and 460 blocks, respectively.

The expected size of proofs of possession under our scheme for a 1GB file under different block
sizes is illustrated in Figure 3(a). Here, a DPDP proof consists of responses to 460 authenticated
skip list queries, combined with a single verification block M = Σaimi which grows linearly with
the block size. The size of this block M is the same as that used by the PDP scheme in [2], and is
thus represented by the line labeled PDP in Figure 3(a). The distance between this line and those
for our DPDP scheme represents our communication overhead—the price of dynamism.

This overhead comes from our scheme’s skip list query responses (illustrated in Table 2), each
of which contains on average 1.5 log n rows. Their total size decreases exponentially (but slowly)
as the block size grows, providing near-constant overhead except at very small block sizes. This
points to an optimal choice of block size that best minimizes total communication cost for a 1GB
file: a block size of 16KB is best for both 95% and 99% confidence, resulting in a proof size of
289KB and 436KB, respectively, compared with PDP’s verification block size of 16KB (for an
overhead of 420KB). Selecting larger block sizes narrows the overhead of our scheme against that
of PDP, reducing it to 318KB when using a 1MB block size. Nonetheless, all the proof sizes shown
in Figure 3(a) are only when proving huge files (1GB).

Next we measure the computational performance of our scheme in answering challenges. Fig-
ure 3(b) presents the results of these experiments, which were performed on an AMD 2GHz Athlon
X2 3800+ system with 2GB of RAM; results were averaged from 5 trials. As above, we compute
the time required by our scheme for a 1GB file under varying block sizes, providing 99% confi-
dence. As shown, our performance is dominated by computing M , even when not I/O-bound, and
increases linearly with the block size. Note that the PDP scheme of [2] must also compute this M

in response to challenges. Thus the computational overhead of our scheme due to dynamism—time
spent traversing the skip list and building proofs—while logarithmic in the number of blocks, is
extremely low in practice: even for a million 1KB blocks, 460 queries with proofs require less than
40ms to compute in total (as small as 13ms with larger blocks).

When comparing our work with the simultaneous work of Ateniese et al. [3], we immediately
notice that their work is not suitable to use with variable sized blocks, and therefore a versioning
system atop their work will be much less efficient. Furthermore, in some scenarios, their solution
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Figure 3: (a) Size of proofs of possession and their component pieces on a 1GB file, for 99%
probability of detecting misbehavior. (b) Computation time required by the server in response to
a challenge for a 1GB file, with 99% probability of detecting misbehavior.

might be less efficient than ours in practice, especially if the metadata is kept at the server. To
give an idea, with each update, 2 × 16 = 32MB of metadata needs to be transferred between the
server and the client [3] (this is much larger than our logarithmic proof size, which is a few hundred
kilobytes in practice, even for very large files, as seen above). If the metadata is kept at the client,
this is not a problem of communication, but of computation and storage.

7.1 Version control extension

We also assess the performance of a version control system built atop our scheme, as described in
Section 6. Using public CVS repositories for the Samba and Tcl projects, we retrieved the sequence
of updates from the RCS source of each file in each repository’s main branch. These RCS updates
come in two types: “insert m lines at line n” or “delete m lines starting at line n”. For this evalu-
ation, we consider a scenario where queries and proofs descend a search path through hierarchical
skip list dictionaries corresponding to the directory structure, history of versions for each file, and
finally to the source-controlled lines of each file (depicted in Figure 2(b)). For simplicity, we as-
sume a naive scheme where each line of a file is assigned its own block; a smarter block-allocation
scheme that collects contiguous lines during updates would yield fewer blocks, further reducing the
overhead of our scheme.

In Table 4 we present performance characteristics of three public CVS repositories under this
system. Here, “commits” refer to individual CVS checkins, each of which establish a new version
and adds a new node in the version dictionary for that file. “Updates” describe the number of
insertion or deletion operations required to support each commit. Total statistics sum the number
of lines and kilobytes required to store all inserted lines across all versions, even after they have
been removed from the file by later deletions.

We use these figures to estimate the performance of a proof of possession under this scheme:
as described in Section 6, the cost of authenticating different versions of files within a directory
hierarchy requires time and space complexity corresponding to the depth of the skip list hierarchy,
and the width of each skip list encountered during the Prove procedure. (Further details on the
complexity of these proofs are provided in Figure 2(b).) Adding an extra level of hierarchy to the
chain of skip lists representing the versioned file system adds only an additive logarithmic overhead
to the query proof size.
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Rsync Samba Tcl
Dates of activity 1996-2007 1996-2004 1998-2008

# of Files 371 1538 1757
# of Commits 11413 27534 24054
# of Updates 159027 275254 367105

Total Lines 238052 589829 1212729
Total KBytes 8331 KB 18525 KB 44585 KB

Avg. # of updates per commit 13.9 10 15.3
Avg. # of commits per file 30.7 17.9 13.7

Avg. # of entries per directory 12.8 7 19.8
Expected proof size, 99% 700 KB 1241 KB 1520 KB

Fraction of total size 8.4% 6.7% 3.4%

Table 4: CVS repository characteristics.

These figures, combined with the sizes of rank-based and regular skip list proofs as described
in Section 3, provide an estimate of the average proof size required to validate a chain of skip lists
which together verify an entire versioning file system. Similar to the calculations used in the first
part of Section 7, this size includes the response to 460 challenge queries, along with it the size of
the largest block, in order to estimate the size of the verification block M . This results in proofs
of possession that require only a small fraction of that required to download the entire repository.
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A Skip lists

The skip list data structure (see Figure 4) is an efficient means for storing a set S of elements
from an ordered universe. It supports the operations find(x) (determine whether element x is in
S), insert(x) (insert element x in S) and delete(x) (remove element x from S). It stores a set S of
elements in a series of linked lists S0, S1, S2, . . . , St. The base list, S0, stores all the elements of S

in order, as well as sentinels associated with the special elements −∞ and +∞. Each successive
list Si, for i ≥ 1, stores a sample of the elements from Si−1. To define the sample from one level to
the next, we choose each element of Si−1 at random with probability 1

2
to be in the list Si.
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Figure 4: A skip list used to store the ordered set {25, 31, 38, 39, 44, 55, 58, 67, 80, 81}. The proof
for the existence of element 39 (and for the absence of element 40) as proposed in [8] is the
set {44, 39, 38, 31, f(v1), f(v6), f(v7), f(v8), f(v9)}. The recomputation of f(w7) is performed by
sequentially applying h(·, ·) to this set.
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