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Abstract

As storage-outsourcing services and resource-sharing networks have become popular, the problem
of efficiently proving the integrity of data stored at untrusted servers has received increased attention.
In the provable data possession (PDP) model, the client preprocesses the data and then sends it to an
untrusted server for storage, while keeping a small amount of meta-data. The client later asks the server
to prove that the stored data has not been tampered with or deleted (without downloading the actual
data). However, the original PDP scheme applies only to static (or append-only) files.

We present a definitional framework and efficient constructions for dynamic provable data possession
(DPDP), which extends the PDP model to support provable updates to stored data. We use a new version
of authenticated dictionaries based on rank information. The price of dynamic updates is a performance
change fromO(1) to O(log n) (or O(nǫ log n)), for a file consisting ofn blocks, while maintaining
the same (or better, respectively) probability of misbehavior detection. Our experiments show that this
slowdown is very low in practice (e.g., 415KB proof size and 30ms computational overhead for a 1GB
file). We also show how to apply our DPDP scheme to outsourced file systems and version control
systems (e.g., CVS).

1 Introduction

In cloud storage systems, the server (or peer) that stores the client’s data is not necessarily trusted. Therefore,
users would like to check if their data has been tampered with or deleted. However, outsourcing the storage
of very large files (or whole file systems) to remote servers presents an additional constraint: the client should
not download all stored data in order to validate it since this may be prohibitivein terms of bandwidth
and time, especially if the client performs this check frequently (thereforeauthenticated data structure
solutions [32] cannot be directly applied in this scenario).

Ateniese et al. [2] have formalized a model calledprovable data possession(PDP). In this model, data
(often represented as a fileF ) is preprocessed by the client, and metadata used for verification purposes
is produced. The file is then sent to an untrusted server for storage, and the client may delete the local
copy of the file. The client keeps some (possibly secret) information to check server’s responses later.
The server proves the data has not been tampered with by responding to challenges sent by the client.
The authors present several variations of their scheme under different cryptographic assumptions. These
schemes provide probabilistic guarantees of possession, where the client checks a random subset of stored
blocks with each challenge.

However, PDP and related schemes [2, 7, 12, 31] apply only to the case of static, archival storage, i.e., a
file that is outsourced and never changes (simultaneously with our work, Ateniese et al. [3] present a scheme
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Scheme Server Client Comm. Model Block operations Probability
comp. comp. append modify insert delete of detection

PDP [2] O(1) O(1) O(1) RO X 1 − (1 − f)C

Scalable PDP [3] O(1) O(1) O(1) RO X
∗

X
∗

X
∗ 1 − (1 − f)C

DPDP I O(log n) O(log n) O(log n) standard X X X X 1 − (1 − f)C

DPDP II O(nǫ log n) O(log n) O(log n) standard X X X X 1 − (1 − f)Ω(log n)

Table 1: Comparison of PDP schemes: original PDP scheme [2]; Scalable PDP [3]; our scheme based on
authenticated skip lists (DPDP I); and our scheme based on RSA trees (DPDP II). A star (*) indicates that
a certain operation can be performed only a limited (pre-determined) number of times. We denote withn
the number of the blocks of the file, withf the fraction of the corrupted blocks, and withC a constant, i.e.,
independent ofn. In all constructions, the storage space isO(1) at the client andO(n) at the server.

with somewhat limited dynamism, which is discussed in detail in the related work section). While the static
model fits some application scenarios (e.g., libraries and scientific datasets),it is crucial to consider the
dynamic case, where the client updates the outsourced data—by inserting,modifying, or deleting stored
blocks or files—while maintaining data possession guarantees. Such a dynamic PDP scheme is essential in
practical cloud computing systems for file storage [13, 16], database services [17], and peer-to-peer storage
[14, 20].

In this paper, we provide a definitional framework and efficient constructions fordynamic provable data
possession(DPDP), which extends the PDP model to support provableupdateson the stored data. Given a
file F consisting ofn blocks, we define an update as either insertion of a new block (anywherein the file, not
only append), or modification of an existing block, or deletion of any block.Therefore our update operation
describes the most general form of modifications a client may wish to perform on a file.

Our DPDP solution is based on a new variant of authenticated dictionaries, where we userank informa-
tion to organize dictionary entries. Thus we are able to support efficient authenticated operations on files at
the block level, such as authenticatedinsert anddelete. We prove the security of our constructions using
standard assumptions.

We also show how to extend our construction to support data possession guarantees of a hierarchical file
system as well as file data itself. To the best of our knowledge, this is the first construction of a provable
storage system that enables efficient proofs of a whole file system, enabling verification at different levels
for different users (e.g., every user can verify her own home directory) and at the same time not having
to download the whole data (as opposed to [10]). Our scheme yields a provable outsourced versioning
system (e.g., CVS), which is evaluated in Section 8 by using traces of CVS repositories of three well-known
projects.

1.1 Contributions

The main contributions of this work are summarized as follows:

1. We introduce a formal framework fordynamic provable data possession(DPDP);

2. We provide the first efficientfully dynamicPDP solution;

3. We present a rank-based authenticated dictionary built over a skip list.This construction yields a
DPDP scheme with logarithmic computation and communication and the same detection probability
as the original PDP scheme (DPDP I in Table 1);

4. We give an alternative construction (Section 6) of a rank-based authenticated dictionary using an RSA
tree [26]. This construction results in a DPDP scheme with improved detection probability but higher
server computation (see DPDP II in Table 1);
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5. We present practical applications of our DPDP constructions to outsourced file systems and versioning
systems (e.g., CVS, with variable block size support);(6) We perform an experimental evaluation of
our skip list-based scheme.

Now, we outline the performance of our schemes. Denote withn the number of blocks. Theserver
computation, i.e., the time taken by the server to process an update or to compute a proof for a block,
is O(log n) for DPDP I andO(nǫ log n) for DPDP II; theclient computation, i.e., the time taken by the
client to verify a proof returned by the server, isO(log n) for both schemes; thecommunication complexity,
i.e., the size of the proof returned by the server to the client, isO(log n) for both schemes; theclient
storage, i.e., the size of the meta-data stored locally by the client, isO(1) for both schemes; finally, the
probability of detection, i.e., the probability of detecting server misbehavior, is1 − (1 − f)C for DPDP I
and1 − (1 − f)Ω(log n) for DPDP II, for fixed logarithmic communication complexity, wheref is the ratio
of corrupted blocks andC is a constant, i.e., independent ofn.

We observe that for DPDP I, we could use a dynamic Merkle tree (e.g., [15, 21]) instead of a skip list
to achieve the same asymptotic performance. We have chosen the skip list dueto its simple implementation
and the fact that algorithms for updates in the two-party model (where clientscan access only a logarithmic-
sized portion of the data structure) have been previously studied in detail for authenticated skip lists [25] but
not for Merkle trees.

1.2 Related work

The PDP scheme by Ateniese et al. [2] provides an optimal protocol for thestaticcase that achievesO(1)
costs for all the complexity measures listed above. They review previous work on protocols fitting their
model, but find these approaches lacking: either they require expensive server computation or communi-
cation over the entire file [9, 23], linear storage for the client [30], or donot provide security guarantees
for data possession [29]. Note that using [2] in a dynamic scenario is insecure due to replay attacks. As
observed in [8], in order to avoid replay attacks, an authenticated tree structure that incurs logarithmic costs
must be employed and thus constant costs are not feasible in a dynamic scenario.

Juels and Kaliski present proofs of retrievability (PORs) [12], focusing on static archival storage of large
files. Their scheme’s effectiveness rests largely on preprocessing steps the client conducts before sending a
file F to the server: “sentinel” blocks are randomly inserted to detect corruption, F is encrypted to hide these
sentinels, and error-correcting codes are used to recover from corruption. As expected, the error-correcting
codes improve the error-resiliency of their system. Unfortunately, these operations prevent any efficient
extension to support updates, beyond simply replacingF with a new fileF

′. Furthermore, the number of
queries a client can perform is limited, and fixed a priori. Shacham and Waters have an improved version
of this protocol called Compact POR [31], but their solution is also static (see[7] for a summary of POR
schemes and related trade-offs).

Simultaneously with our work, Ateniese et al. have developed a dynamic PDP solution called Scalable
PDP [3]. Their idea is to come up with all future challenges during setup and store pre-computed answers
as metadata (at the client, or at the server in an authenticated and encryptedmanner). Because of this
approach, the number of updates and challenges a client can perform islimited and fixed a priori. Also,
one cannot perform block insertions anywhere (only append-type insertions are possible). Furthermore,
each update requires re-creating all the remaining challenges, which is problematic for large files. Under
these limitations (otherwise the lower bound of [8] would be violated), they provide a protocol with optimal
asymptotic complexityO(1) in all complexity measures giving the same probabilistic guarantees as our
scheme. Lastly, their work is in the random oracle model whereas our scheme is provably secure in the
standard model (see Table 1 for full comparison).

Finally, our work is closely related to memory checking, for which lower bounds are presented in [8,
22]. Specifically, in [8] it is proved that all non-adaptive and deterministiccheckers have read and write
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query complexity summing up toΩ(log n/ log log n) (necessary for sublinear client storage), justifying the
O(log n) cost in our scheme. Note that for schemes based on cryptographic hashing, anΩ(log n) lower
bound on the proof size has been shown [6, 33]. Related bounds for other primitives have been shown by
Blum et al. [4].

2 Model

We build on the PDP definitions from [2]. We begin by introducing a generalDPDP scheme and then show
how the original PDP model is consistent with this definition.

Definition 1 (DPDP Scheme)In a DPDP scheme, there are two parties. Theclient wants to off-load her
files to the untrustedserver. A complete definition of a DPDP scheme should describe the following (possibly
randomized) efficient procedures:

• KeyGen(1k) → {sk, pk} is a probabilistic algorithm run by theclient. It takes as input a security
parameter, and outputs a secret keysk and a public keypk. The client stores the secret and public
keys, and sends the public key to the server;

• PrepareUpdate(sk, pk,F , info,Mc) → {e(F ), e(info), e(M )} is an algorithm run by theclient to pre-
pare (a part of) the file for untrusted storage. As input, it takes secret and public keys, (a part of) the file
F with the definitioninfo of the update to be performed (e.g., full re-write, modify blocki, delete blocki,
add a block after blocki, etc.), and the previous metadataMc. The output is an “encoded” version of (a
part of) the filee(F ) (e.g., by adding randomness, adding sentinels, encrypting for confidentiality, etc.),
along with the informatione(info) about the update (changed to fit the encoded version), and the new
metadatae(M ). The client sendse(F ), e(info), e(M ) to the server;

• PerformUpdate(pk,Fi−1,Mi−1, e(F ), e(info), e(M )) → {Fi,Mi,M
′

c,PM ′

c

} is an algorithm run by the
server in response to an update request from the client. The input contains the public keypk, the previous
version of the fileFi−1, the metadataMi−1 and the client-provided valuese(F ), e(info), e(M ). Note that
the valuese(F ), e(info), e(M ) are the values produced byPrepareUpdate. The output is the new version
of the fileFi and the metadataMi, along with the metadata to be sent to the clientM

′

c and its proofPM ′

c

.
The server sendsM ′

c ,PM ′

c

to the client;

• VerifyUpdate(sk, pk,F , info,Mc,M
′

c,PM ′

c

) → {accept, reject} is run by theclient to verify the server’s
behavior during the update. It takes all inputs of thePrepareUpdate algorithm,1 plus theM ′

c ,PM ′

c

sent
by the server. It outputs acceptance (F can be deleted in that case) or rejection signals;

• Challenge(sk, pk,Mc) → {c} is a probabilistic procedure run by theclient to create a challenge for the
server. It takes the secret and public keys, along with the latest client metadataMc as input, and outputs
a challengec that is then sent to the server;

• Prove(pk,Fi,Mi, c) → {P} is the procedure run by theserver upon receipt of a challenge from the
client. It takes as input the public key, the latest version of the file and the metadata, and the challengec.
It outputs a proofP that is sent to the client;

• Verify(sk, pk,Mc, c, P ) → {accept, reject} is the procedure run by theclient upon receipt of the proofP
from the server. It takes as input the secret and public keys, the client metadataMc, the challengec, and
the proofP sent by the server. An output of accept ideally means that the server still has the file intact.
We will define the security requirements of a DPDP scheme later.
1However, in our modelF denotes part of some encoded version of the file and not part of the actual data (though for generality

purposes we do not make it explicit).
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We assume there is a hidden input and outputclientstatein all functions run by the client, andserverstate
in all functions run by the server. Some inputs and outputs may be empty in some schemes. For example, the
PDP scheme of [2] does not store any metadata at the client side. Alsosk, pk can be used for storing multiple
files, possibly on different servers. All these functions can be assumed to take some public parameters as
an extra input if operating in the public parameters model, although our construction does not require such
modifications. Apart from{accept, reject}, algorithmVerifyUpdate can also output a new client metadata
Mc. In most scenarios, this new metadata will be set asMc = M

′

c .
Retrieval of a (part of a) file is similar to the challenge-response protocolabove, composed of

Challenge, Verify, Prove algorithms, except that along with the proof, the server also sends the requested
(part of the) file, and the verification algorithm must use this (part of the) file in the verification process. We
also note that a PDP scheme is consistent with the DPDP scheme definition, with algorithmsPrepareUpdate,
PerformUpdate andVerifyUpdate specifying an update that is a full re-write (or append).

As stated above, PDP is a restricted case of DPDP. The PDP scheme of [2]has the same algorithm
definition for key generation, defines a restricted version ofPrepareUpdate that can create the metadata
for only one block at a time, and definesProve andVerify algorithms similar to our definition. It lacks an
explicit definition ofChallenge (though one is very easy to infer).PerformUpdate consists of performing
a full re-write or an append (so thatreplayattacks can be avoided), andVerifyUpdate is used accordingly,
i.e., it always accepts in case of a full re-write or it is run as in DPDP in caseof an append. It is clear that
our definition allows a broad range of DPDP (and PDP) schemes.

We now define the security of a DPDP scheme, inspired by the security definitions of [2, 7]. Note that
the restriction to the PDP scheme gives a security definition for PDP schemes compatible with the ones
in [2, 3].

Definition 2 (Security of DPDP) We say that a DPDP scheme is secure if for any probabilistic polynomial
time (PPT) adversary who can win the following data possession game with non-negligible probability, there
exists an extractor that can extract (at least) the challenged parts of the file by resetting and challenging the
adversary polynomially many times.

DATA POSSESSIONGAME: Played between the challenger who plays the role of the client and the
adversary who acts as a server.

1. KEYGEN: The challenger runsKeyGen(1k) → {sk, pk} and sends the public keypk to the adversary;

2. ACF QUERIES: The adversary is very powerful. The adversary can mount adaptivechosen file (ACF)
queries as follows. The adversary specifies a messageF and the related informationinfo specifying
what kind of update to perform (see Definition 1) and sends these to the challenger. The challenger
runs PrepareUpdate on these inputs and sends the resultinge(F ), e(info), e(M ) to the adversary.
Then the adversary replies withM ′

c ,PM ′

c

which are verified by the challenger using the algorithm
VerifyUpdate. The result of the verification is told to the adversary. The adversary can further
request challenges, return proofs, and be told about the verification results. The adversary can repeat
the interaction defined above polynomially-many times;

3. SETUP: Finally, the adversary decides on messagesF
∗

i and related informationinfo∗i for all i =
1, . . . , R of adversary’s choice of polynomially-large (in the security parameterk) R ≥ 1. The ACF
interaction is performed again, with the firstinfo∗1 specifying a full re-write (this corresponds to the
first time the client sends a file to the server). The challenger updates his local metadata only for the
verifying updates (hence, non-verifying updates are considered not tohave taken place—data has not
changed);

4. CHALLENGE: Call the final version of the fileF , which is created according to the verifying updates
the adversary requested in the previous step. The challenger holds the latest metadataMc sent by
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the adversary and verified as accepting. Now the challenger creates a challenge using the algorithm
Challenge(sk, pk,Mc) → {c} and sends it to the adversary. The adversary returns a proofP . If
Verify(sk, pk,Mc, c, P ) accepts, then the adversary wins. The challenger has the ability to reset the
adversary to the beginning of the challenge phase and repeat this step polynomially-many times for
the purpose of extraction. Overall, the goal is to extract (at least) the challenged parts ofF from the
adversary’s responses which are accepting.

Note that our definition coincides with extractor definitions inproofs of knowledge. For an adversary that
answers a non-negligible fraction of the challenges, a polynomial-time extractor must exist. Furthermore,
this definition can be applied to the POR case [7, 12, 31], in which by repeating the challenge-response
process, the extractor can extract the whole file with the help of error-correcting codes. The probability of
catching a cheating server is analyzed in Section 5.

Finally, if a DPDP scheme is to be truly publicly verifiable, theVerify algorithm should not make use of
the secret key. Since that is the case for our construction (see Section 4), we can derive a public verifiability
protocol usable for official arbitration purposes; this work is currentlyunder development.

3 Rank-based authenticated skip lists

In order to implement our first DPDP construction, we use a modified authenticated skip list data struc-
ture [11]. This new data structure, which we call arank-based authenticated skip list, is based on authen-
ticated skip lists but indexes data in a different way. Note that we could havebased the construction on
any authenticated search data structure, e.g., Merkle tree [18] instead. This would perfectly work for the
static case. But in the dynamic case, we would need an authenticated red-black tree, and unfortunately no
algorithms have been previously presented for rebalancing a Merkle treewhile efficiently maintaining and
updating authentication information (except for the three-party model, e.g., [15]). Yet, such algorithms have
been extensively studied for the case of the authenticated skip list data structure [25]. Before presenting the
new data structure, we briefly introduce authenticated skip lists.

The authenticated skip list is a skip list [27] (see Figure 1) with the difference that every nodev above
the bottom level (which has two pointers, namelyrgt(v) anddwn(v)) also stores a labelf(v) that is a
cryptographic hash and is computed using some collision-resistant hash functionh (e.g., SHA-1 in practice)
as a function off(rgt(v)) andf(dwn(v)). Using this data structure, one can answer queries like “does 21
belong to the set represented with this skip list?” and also provide a proof that the given answer is correct.
To be able to verify the proofs to these answers, the client must always hold the labelf(s) of the top leftmost
node of the skip list (nodew7 in Figure 1). We callf(s) thebasis(or root), and it corresponds to the client’s
metadata in our DPDP construction (Mc = f(s)). In our construction, the leaves of the skip list represent
the blocks of the file. When the client asks for a block, the server needs tosend that block, along with a
proof that the block is intact.

We can use an authenticated skip list to check the integrity of the file blocks. However, this data structure
does not support efficient verification of the indices of the blocks, which are used as query and update
parameters in our DPDP scenario. The updates we want to support in ourDPDP scenario are insertions
of a new block after thei-th block and deletion or modification of thei-th block (there is no search key in
our case, in contrast to [11], which basically implements an authenticated dictionary). If we use indices of
blocks as search keys in an authenticated dictionary, we have the followingproblem. Suppose we have a
file consisting of 100 blocksm1, m2, . . . , m100 and we want to insert a block after the40-th block. This
means that the indices of all the blocksm41, m42, . . . , m100 should be incremented, and therefore an update
becomes extremely inefficient. To overcome this difficulty, we define a new hashing scheme that takes into
account rank information.
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Figure 1: Example of rank-based skip list.

3.1 Authenticating ranks

Let F be a file consisting ofn blocksm1, m2, . . . , mn. We store at thei-th bottom-level node of the skip
list a representationT (mi) of blockmi (we will defineT (mi) later). Blockmi will be stored elsewhere by
the untrusted server. Each nodev of the skip list stores the number of nodes at the bottom level that can be
reached fromv. We call this value therank of v and denote it withr(v). In Figure 1, we show the ranks of
the nodes of a skip list. An insertion, deletion, or modification of a file block affects only the nodes of the
skip list along a search path. We can recompute bottom-up the ranks of the affected nodes in constant time
per node.

The top leftmost node of a skip list will be referred to as thestart node. For example,w7 is the start node
of the skip list in Figure 1. For a nodev, denote withlow(v) andhigh(v) the indices of the leftmost and
rightmost nodes at the bottom level reachable fromv, respectively. Clearly, for the start nodes of the skip
list, we haver(s) = n, low(s) = 1 andhigh(s) = nbe the nodes that can be reached fromv by following
the right or the down pointer respectively. Using the ranks stored at the nodes, we can reach thei-th node of
the bottom level by traversing a path that begins at the start node, as follows. For the current nodev, assume
we knowlow(v) andhigh(v). Let w = rgt(v) andz = dwn(v). We set

high(w) = high(v) ,

low(w) = high(v) − r(w) + 1 ,

high(z) = low(v) + r(z) − 1 ,

low(z) = low(v) .

If i ∈ [low(w), high(w)], we follow the right pointer and setv = w, else we follow the down pointer and
setv = z. We continue until we reach thei-th bottom node. Note that we do not have to storehigh andlow.
We compute them on the fly using the ranks.

In order to authenticate skip lists with ranks, we extend the hashing scheme defined in [11]. We consider
a skip list that stores data items at the bottom-level nodes. In our application, the nodev associated with the
i-th blockmi stores itemx(v) = T (mi). Let l(v) be the level (height) of nodev in the skip list (l(v) = 0
for the nodes at the bottom level).

Let || denote concatenation. We extend a hash functionh to support multiple arguments by defining

h(x1, . . . , xk) = h(h(x1)|| . . . ||h(xk)) .

We are now ready to define our new hashing scheme:

Definition 3 (Hashing scheme with ranks)Given a collision resistant hash functionh, the labelf(v) of a
nodev of a rank-based authenticated skip list is defined as follows.
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Case 0: v = null

f(v) = 0 ;

Case 1: l(v) > 0
f(v) = h(l(v), r(v), f(dwn(v)), f(rgt(v))) ;

Case 2: l(v) = 0
f(v) = h(l(v), r(v), x(v), f(rgt(v))) .

Before inserting any block (i.e., if initially the skip list was empty), the basis, i.e., the labelf(s) of the top
leftmost nodes of the skip list, can easily be computed by hashing the sentinel values of the skip list; —the
file consists of only two “fictitious” blocks— block0 and block+∞.

node v v3 v4 v5 w3 w4 w5 w6 w7

l(v) 0 0 0 2 2 3 3 4
q(v) 0 1 1 1 1 5 1 1
g(v) 0 T (m4) T (m5) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 2: Proof for the5-th block of the fileF stored in the skip list of Figure 1.

3.2 Queries

Suppose now the fileF and a skip list on the file have been stored at the untrusted server. The client wants
to verify the integrity of blocki and therefore issues queryatRank(i) to the server. The server executes
Algorithm 1, described below, to computeT (i) and a proof forT (i) (for convenience we useT (i) to
denoteT (mi)).

Let vk, . . . , v1 be the path from the start node,vk, to the node associated with blocki, v1. The reverse
pathv1, . . . , vk is called theverification pathof block i. For each nodevj , j = 1, . . . , k, we define boolean
d(vj) and valuesq(vj) andg(vj) as follows, where we conventionally setr(null) = 0:

d(vj) =

{

rgt j = 1 or j > 1 andvj−1 = rgt(vj)

dwn j > 1 andvj−1 = dwn(vj)
,

q(vj) =























r(rgt(vj)) if j = 1

1 if j > 1 andl(vj) = 0

r(dwn(vj)) if j > 1, l(vj) > 0 andd(vj) = rgt

r(rgt(vj)) if j > 1, l(vj) > 0 andd(vj) = dwn

,

g(vj) =























f(rgt(vj)) if j = 1

x(vj) if j > 1 andl(vj) = 0

f(dwn(vj)) if j > 1, l(vj) > 0 andd(vj) = rgt

f(rgt(vj)) if j > 1, l(vj) > 0 andd(vj) = dwn

.

The proof for blocki with dataT (i) is the sequenceΠ(i) = (A(v1), . . . , A(vk)) whereA(v) =
(l(v), q(v), d(v), g(v)). So the proof consists of tuples associated with the nodes of the verificationpath.
Booleand(v) indicates whether the previous node is to the right or belowv. For nodes above the bottom
level, q(v) andg(v) are the rank and label of the successor ofv that is not on the path. The proofΠ(5) for
the skip list of Figure 1 is shown in Table 2. Due to the properties of skip lists, aproof has expected size
O(log n) with high probability (whp).
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Algorithm 1 : (T ,Π) = atRank(i)

1: Let v1, v2, . . . , vk be the verification path for blocki;
2: return representationT of block i and proofΠ = (A(v1), A(v2), . . . , A(vk)) for T ;

3.3 Verification

After receiving from the server the representationT of block i and a proofΠ for it, the client executes
Algorithm 2 to verify the proof using the stored metadataMc.

Algorithm 2 : {accept, reject} = verify(i,Mc, T ,Π)

1: Let Π = (A1, . . . , Ak), whereAj = (lj , qj , dj , gj) for j = 1, . . . , k;
2: λ0 = 0; ρ0 = 1; γ0 = T ; ξ0 = 0;
3: for j = 1, . . . , k do
4: λj = lj ; ρj = ρj−1 + qj ; δj = dj ;
5: if δj = rgt then
6: γj = h(λj , ρj , γj−1, gj);
7: ξj = ξj−1;
8: else{δj = dwn}
9: γj = h(λj , ρj , gj , γj−1);

10: ξj = ξj−1 + qj ;
11: end if
12: end for
13: if γk 6= Mc then
14: return reject;
15: else if ρk − ξk 6= i then
16: return reject;
17: else{γk = Mc andρk − ξk = i}
18: return accept;
19: end if

Algorithm 2 iteratively computes tuples(λj , ρj , δj , γj) for each nodevj on the verification path plus a
sequence of integersξj . If the returned block representationT and proofΠ are correct, at each iteration of
the for-loop, the algorithm computes the following values associated with a nodevj of the verification path:

• integerλj = l(vj), i.e., the level ofvj ;

• integerρj = r(vj), i.e., the rank ofvj ;

• booleanδj , which indicates whether the previous nodevj−1 is to the right or belowvj ;

• hash valueγj = f(vj), i.e., the label ofvj ;

• integerξj , which is equal to the sum of the ranks of all the nodes that are to the right of the nodes of
the path seen so far, but are not on the path.

Lemma 1 If T is the correct representation of blocki and sequenceΠ of lengthk is the correct proof forT ,
then the following properties hold for the values computed in iterationk of the for-loop of Algorithm 2:

1. Valueρk is equal to the number of nodes at the bottom level of the skip list, i.e., the number n of blocks
of the file;

2. Valueξk is equal ton − i; and

3. Valueγk is equal to the label of the start node of the skip list.
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node v v2 v3 v4 v5 w w3 w4 w5 w6 w7

l(v) 0 0 0 0 1 2 2 3 3 4
r(v) 1 1 2 3 4 5 6 11 12 13
f(v) T T (m5) T (m4) T (m3) f(v2) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 3: The proofΠ′(5) as produced by Algorithm 4 for the update “insert a new block with dataT after
block 5 at level 1”.

3.4 Updates

The possible updates in our DPDP scheme are insertions of a new block after a given blocki, deletion of a
block i, and modification of a blocki.

To perform an update, the client issues first queryatRank(i) (for an insertion or modification) or
atRank(i − 1) (for a deletion), which returns the representationT of block i or i − 1 and its proofΠ′.
Also, for an insertion, the client decides the height of the tower of the skip list associated with the new
block. Next, the client verifies proofΠ′ and computes what would be the label of the start node of the
skip list after the update, using a variation of the technique of [25]. Finally,the client asks the server to
perform the update on the skip list by sending to the server the parameters of the update (for an insertion,
the parameters include the tower height).

We outline in Algorithm 3 the update algorithm performed by the server (performUpdate) and in Algo-
rithm 4 the update algorithm performed by the client (verUpdate). Input parametersT ′ andΠ′ of verUpdate

are provided by the server, as computed byperformUpdate.
Since updates affect only nodes along a verification path, these algorithmsrun in expectedO(log n)

time whp and the expected size of the proof returned byperformUpdate is O(log n) whp.

Algorithm 3 : (T ′,Π′) = performUpdate(i, T , upd)

1: if upd is a deletionthen
2: setj = i − 1;
3: else{upd is an insertion or modification}
4: setj = i;
5: end if
6: set(T ′,Π′) = atRank(j);
7: if upd is an insertionthen
8: insert elementT in the skip after thei-th element;
9: else ifupd is a modificationthen

10: replace withT thei-th element of the skip list;
11: else{upd is a deletion}
12: delete thei-th element of the skip list;
13: end if
14: update the labels, levels and ranks of the affected nodes;
15: return (T ′,Π′);

To give some intuition of how Algorithm 4 produces proofΠ′(i), the reader can verify that Table 3
corresponds toΠ′(5), the proof that the client produces from Table 2 in order to verify the update “insert
a new block with dataT after block 5 at level 1 of the skip list of Figure 1”. This update causes the
creation of two new nodes in the skip list, namely the node that holds the data forthe 6-th block,v2,
and nodew (5-th line of Table 3) that needs to be inserted in the skip list at level 1. Note that f(v2) =
h(0||1||T , 0||1||T (data(v1))) is computed as defined in Definition 3 and that the ranks along the search
path are increased due to the addition of one more block.
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Algorithm 4 :
{accept, reject} = verUpdate(i,Mc, T , upd, T ′,Π′)

1: if upd is a deletionthen
2: setj = i − 1;
3: else{upd is an insertion or modification}
4: setj = i;
5: end if
6: if verify(j,Mc, T

′,Π′) = reject then
7: return reject;
8: else{verify(j,Mc, T

′,Π′) = accept}
9: from i, T , T ′, andΠ′, compute and store the updated labelM

′

c of the start node;
10: return accept;
11: end if

4 DPDP scheme construction

In this section, we present our DPDP I construction. First, we describe our algorithms for the procedures
introduced in Definition 1. Next, we develop compact representatives forthe blocks to improve efficiency
(blockless verification). In the following,n is the current number of blocks of the file. The logarithmic
complexity for most of the operations are due to well-known results about authenticated skip lists [11, 26].
Most of the material of this section also applies to the DPDP II scheme presented in Section 6.

4.1 Core construction

The server maintains the file and the metadata, consisting of an authenticated skip list with ranks storing
the blocks. Thus, in this preliminary construction, we haveT (b) = b for each blockb. The client keeps a
single hash value, calledbasis, which is the label of the start node of the skip list. We implement the DPDP
algorithms as follows.

• KeyGen(1k) → {sk, pk}: Our scheme does not require any keys to be generated. So, this procedure’s
output is empty, and hence none of the other procedures make use of these keys;

• PrepareUpdate(sk, pk,F , info,Mc) → {e(F ), e(info), e(M )}: This is a dummy procedure that outputs
the fileF and informationinfo it receives as input.Mc ande(M ) are empty (not used);

• PerformUpdate(pk,Fi−1,Mi−1, e(F ), e(info), e(M )) → {Fi,Mi,M
′

c ,PM ′

c

}: InputsFi−1,Mi−1 are the
previously stored file and metadata on the server (empty if this is the first run). e(F ), e(info), e(M ), which
are output byPrepareUpdate, are sent by the client (e(M ) being empty). The procedure updates the file
according toe(info), outputtingFi, runs the skip list update procedure on the previous skip listMi−1 (or
builds the skip list from scratch if this is the first run), outputs the resulting skip list asMi, the new basis
asM

′

c , and the proof returned by the skip list update asPM ′

c

. This corresponds to calling Algorithm 3
on inputs a block indexj, the new dataT (in case of an insertion or a modification) and the type of the
updateupd (all this information is included ine(info)). Note that the indexj and the type of the update
upd is taken frome(info) and the new dataT is e(F ). Finally, Algorithm 3 outputsM ′

c andPM ′

c

= Π(j),
which are output byPerformUpdate. The expected runtime isO(log n) whp;

• VerifyUpdate(sk, pk,F , info,Mc,M
′

c,PM ′

c

) → {accept, reject}: Client metadataMc is the label of
the start node of the previous skip list (empty for the first time), whereasM

′

c is empty. The client runs
Algorithm 4 using the indexj of the update,Mc, previous dataT , the update typeupd, the new dataT ′

of the update and the proofPM ′

c

sent by the server as input (most of the inputs are included ininfo). If the
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procedure accepts, the client setsMc = M
′

c (new and correct metadata has been computed). The client
may now delete the new block from its local storage. This procedure is a direct call of Algorithm 4. It
runs in expected timeO(log n) whp;

• Challenge(sk, pk,Mc) → {c}: This procedure does not need any input apart from knowing the number of
blocks in the file (n). It might additionally take a parameterC which is the number of blocks to challenge.
The procedure createsC random block IDs between1, . . . , n. This set ofC random block IDs are sent to
the server and is denoted withc. The runtime isO(C);

• Prove(pk,Fi,Mi, c) → {P}: This procedure uses the last version of the fileFi and the skip listMi, and
the challengec sent by the client. It runs the skip list prover to create a proof on the challenged blocks.
Namely, leti1, i2, . . . , iC be the indices of the challenged blocks.Prove calls Algorithm 1C times (with
argumentsi1, i2, . . . , iC) and sends backC proofs. All theseC proofs form the outputP . The runtime is
O(C log n) whp;

• Verify(sk, pk,Mc, c, P ) → {accept, reject}: This function takes the last basisMc the client has as input,
the challengec sent to the server, and the proofP received from the server. It then runs Algorithm 2 using
as inputs the indices inc, the metadataMc, the dataT and the proof sent by the server (note thatT and
the proof are contained inP ). This outputs a new basis. If this basis matchesMc then the client accepts.
Since this is performed for all the indices inc, this procedure takesO(C log n) expected time whp.

The above construction requires the client to download all the challenged blocks for the verification. A more
efficient method for representing blocks is discussed in the next section.

4.2 Blockless verification

We can improve the efficiency of the core construction by employing homomorphic tags, as in [2]. However,
the tags described here are simpler and more efficient to compute. Note that itis possible to use other
homomorphic tags like BLS signatures [5] as in Compact POR [31].

We represent a blockb with its tagT (b). Tags are small in size compared to data blocks, which provides
two main advantages. First, the skip list can be kept in memory. Second, instead of downloading the blocks,
the client can just download the tags. The integrity of the tags themselves is protected by the skip list, while
the tags protect the integrity of the blocks.

In order to use tags, we modify ourKeyGen algorithm to outputpk = (N, g), whereN = pq is a product
of two primes andg is an element of high order inZ∗

N . The public keypk is sent to the server; there is no
secret key.

The tagT (b) of a blockb is defined by

T (b) = gb mod N .

The skip list now stores the tags of the blocks at the bottom-level nodes. Therefore, the proofs provided by
the server certify the tags instead of the blocks themselves. Note that insteadof storing the tags explicitly,
the server can alternatively compute them as needed from the public key and the blocks.

TheProve procedure computes a proof for the tags of the challenged blocksmij (1 ≤ i1, . . . , iC ≤ n
denote the challenged indices, whereC is the number of challenged blocks andn is the total number of
blocks). The server also sends a combined blockM =

∑C
j=1 ajmij , whereaj are random values sent by

the client as part of the challenge. The size of this combined block is roughlythe size of a single block.
Thus, we have a much smaller overhead than for sendingC blocks. Also, theVerify algorithm computes the
value

T =
C

∏

j=1

T (mij )
aj mod N ,
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and accepts ifT = gM mod N and the skip list proof verifies.
The Challenge procedure can also be made more efficient by using the ideas in [2]. First,instead of

sending random valuesaj separately, the client can simply send a random key to a pseudo-random function
that will generate those values. Second, a key to a pseudo-random permutation can be sent to select the
indices of the challenged blocks1 ≤ ij ≤ n (j = 1, . . . , C). The definitions of these pseudo-random
families can be put into the public key. See [2] for more details on this challengeprocedure. We can now
outline our main result (for the proof of security see Section 5):

Theorem 1 Assume the existence of a collision-resistant hash function and that the factoring assumption
holds. The dynamic provable data possession scheme presented in this section (DPDP I) has the following
properties, wheren is the current number of blocks of the file,f is the fraction of tampered blocks, and
C = O(1) is the number of blocks challenged in a query:

1. The scheme is secure according to Definition 2;

2. The probability of detecting a tampered block is1 − (1 − f)C ;

3. The expected update time isO(log n) at both the server and the client whp;

4. The expected query time at the server, the expected verification time atthe client and the expected
communication complexity are eachO(log n) whp;

5. The client space isO(1) and the expected server space isO(n) whp.

Note that the above results hold in expectation and with high probability due to theproperties of skip
lists [27].

5 Security

In this section we, prove the security of our DPDP scheme. While our proofrefers specifically to the DPDP I
scheme, it also applies to the DPDP II scheme discussed in the next section. Indeed, the only difference
between the two schemes is the authenticated structure used for protecting theintegrity of the tags.

We begin with the following lemma, which follows from the two-party authenticated skip list construc-
tion (Theorem 1 of [25]) and our discussion in Section 3.

Lemma 2 Assuming the existence of a collision-resistant hash function, the proofs generated using our
rank-based authenticated skip list guarantees the integrity of its leavesT (mi) with non-negligible proba-
bility.

Theorem 2 (Security of core DPDP protocol)The DPDP protocol without tags is secure in the standard
model according to Definition 2 and assuming the existence of a collision-resistant hash function.

Proof: As input, the challenger is given a hash function, which he also passes onto the reductor. The
challenger plays the data possession game with the adversary using this hash function, honestly answering
every query of the adversary. As the only difference from the real game, the challenger provides the reductor
the blocks (together with their ids) whose update proofs have verified, sothat the reductor can keep them
in its storage. Note thatthe extractor does not know the original blocks, only the reductor does. Also note
that the reductor keeps updating the blocks in its storage when the adversary performs updates. Therefore,
the reductor always keeps the latest version of each block. This difference is invisible to the adversary, and
so he will behave in the same way as he would to an honest challenger. At theend, the adversary replies
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to the challenge sent by the challenger. The extractor just outputs the blocks contained in the proof sent
by the adversary. If this proof verifies, and hence the adversary wins, it must be the case that either all the
blocks are intact (and so the extractor outputs the original blocks) or the reductor breaks collision-resistance
as follows.

The challenger passes all the blocks (together with their ids) in the proof to the reductor. By Lemma 2,
if we have a skip list proof that verifies, but at least one block that is different from the original block
(thus the extractor failed), the reductor can output the original block (the–latest verifying version of the–
block he stored that has the same block id) and the block sent in the proof asa collision. Therefore, if the
adversary has a non-negligible probability of winning the data possessiongame, the challenger can either
extract (using the extractor) or break the collision-resistance of the hash function (using the reductor) with
non-negligible probability.2

Next, we analyze our improved DPDP construction that uses tags. In this case, we need also the follow-
ing standard assumption:

Definition 4 (Factoring assumption) For all PPT adversariesA and large-enough numberN = pq which
is a product of two primesp andq, the probability thatA can outputp or q givenN is negligible in the size
of p andq.

Theorem 3 (Security of DPDP protocol with tags)The DPDP protocol with tags is secure in the standard
model according to Definition 2, assuming the existence of a collision-resistant hash function and that the
factoring assumption holds.

Proof: The challenger is given a hash function, and an integerN = pq but notp or q. The challenger then
samples a high-order elementg (a random integer between1 andN −1 will have non-negligible probability
of being of high order inZ∗

N , which suffices for the sake of reduction argument—a tighter analysis can also
be performed). He interacts with the adversary in the data possession gamehonestly, using the given hash
function, and creates the tags while usingN as the modulus andg as the base.

As in the previous proof, our challenger will have two sub-entities: Anextractor who extracts the
challenged blocks from the adversary’s proof, and areductorwho breaks the collision-resistance of the hash
function or factorsN , if the extractor fails to extract the original blocks. The challenger acts thesame as in
the previous proof.

First, consider the case where only one block is challenged. If the adversary wins, and thus the proof
verifies, then the challenger can either extract the block correctly (usingthe extractor), or break the factoring
assumption or the collision-resistance of the hash function (using the reductor), as follows.

Call the block sent in the proof by the adversaryx, and the original challenged block stored at the
reductorb. The extractor just outputsx. If the extractor succeeds in extracting the correct block, then we are
done. Now suppose the extractor fails, which meansx 6= b. The challenger provides the reductor with the
blockx in the proof, its block id, the hash function, andg, N . Then the reductor retrieves the original block
b from its storage, and checks ifgx = gb mod N . If this is the case, the reductor can break the factoring
assumption; otherwise, he breaks the collision-resistance of the hash function. If gx = gb mod N , this
meansx = b mod φ(N) (whereφ(N) denotes the order ofZ∗

N , which is(p − 1)(q − 1)), which means
x−b = kφ(N) for some integerk 6= 0 (since the extractor failed to extract the original block). Hence,x−b
can be used in Miller’s Lemma [19], which leads to factoringN . Otherwisegx 6= gb mod N . This means,
there are two different tags that can provide a verifying skip list proof.By Lemma 2, the reductor can break
the collision-resistance of the hash function by outputting(gx mod N) and(gb mod N).

Now consider challengingC blocks. Leti1, i2, . . . , iC be theC challenged indices. Recall that each
block is not sent individually. Instead, the adversary is supposed to send a linear combination of blocksM =
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∑C
j=1 ajmij for randomaj sent by the challenger. We can easily plug in the extractor at the last paragraph

of the proof of Theorem 4.3 in [2]. The idea of the extraction is to reset and challenge with independent
aj and get enough independent linear equations that verifies from the adversary to solve for eachmij (thus,

the extractor is just an algebraic linear solver). In the equationM =
∑C

j=1 ajmij , we haveC unknowns.
Therefore, we can solve for individual blocksmij if we getC verifying linearly independent equations on
the same blocks. Therefore, if the adversary can respond to a non-negligible fraction of challenges, since the
extractor needs only polynomially-many equations, by rewinding polynomially-many times, the extractor
can extract the original blocks. If the extractor fails to extract the original blocks, we can employ the reductor
as follows.

With each rewind, if the proof given by the adversary verifies, the challenger passes on theM value
and the tags in the proof to the reductor, along with the challenge. Call each original blocksbij . The

reductor first checks to see if there is any tag mismatch:T (mij ) 6= gbij mod N , for some1 ≤ j ≤ C.

If this is the case, the reductor can outputT (mij ) andgbij mod N for that particularj as a collision,
using Lemma 2. If all the tags match the original block, the reductor uses the challenge and the ids
of the challenged blocks to compute linear combinationB =

∑C
j=1 ajbij of the original blocks he

stored. Since the proof sent by the adversary verified, we haveT =
∏C

j=1 T (mij )
aj mod N = gM

mod N . Since all the tags were matching, we haveT (mij ) = gbij mod N for all 1 ≤ j ≤ C.
Replacing the tags in the previous equation, we obtainT = gB mod N . Now, if M 6= B, then it
leads to factoring using Miller’s Lemma [19] as before (we havegM = gB mod N with M 6= B). Oth-
erwise, ifM = B for all the rewinds, then the reductor fails, but this means the extractor wassuccessful.2

Concerning the probability of detection, the client probesC blocks by calling theChallenge procedure.
Clearly, if the server tampers with a block other than those probed, the server will not be caught. Assume
now that the server tampers witht blocks. If the total number of blocks isn, the probability that at least one
of the probed blocks matches at least one of the tampered blocks is1 − ((n − t)/n)C , since choosingC of
n − t non-tampered blocks has probability((n − t)/n)C .

6 Rank-based RSA trees

We now describe how we can use ideas from [26] to implement the DPDP II scheme (see Table 1), which
has a higher probability of detection, maintains logarithmic communication complexity but has increased
update time.

In [26], a dynamic authenticated data structure calledRSA treeis presented that achieves constant ex-
pected query time (i.e., time to construct the proof), constant proof size, and O(nǫ log n) expected amortized
update time, for a given0 < ǫ < 1. We can add rank information to the RSA tree by explicitly storing ranks
at the internal nodes. Using this data structure allows the server to answerO(log n) challenges withO(log n)
communication cost since the proof for a block tag hasO(1) size.

The reason for sending additional challenges is the fact that the probability p of detection increases with
numberC of challenges, sincep = 1 − (1 − f)C , wheref is the fraction of tampered blocks. Therefore,
by using an RSA tree with ranks to implement DPDP, we obtain the same complexity measures as DPDP I,
except for the update time, which increases fromO(log n) to O(nǫ log n) (expected amortized), and achieve
an improved probability of detection equal to1 − (1 − f)Ω(log n).

We now describe how we can use the tree structure from [26] to supportrank information. In [26], an
ǫ is chosen between 0 and 1 and a tree structure2 is built that hasO(1/ǫ) levels, each node having degree
O(nǫ). However, there is no notion of order in [26]. To introduce a notion of order we assume that the

2The use of such a tree is dictated by the specific cryptographic primitive used.
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elements lie at the leaves of the tree and we view it as a B-tree with lower bound on the degreet = 3nǫ/4
and therefore upper bound equal to2t = 3nǫ/2, which are both viewed as constants. Therefore we can use
known B-tree algorithms to do the updates with the difference that we rebuild the tree whenever the number
of the blocks of the file increases fromn to 2n or decreases fromn to n/4. When we rebuild, we set the new
constants for the degree of the tree. By the properties of the B-tree (all leaves lie at the same level), we can
prove that it is not possible to change the number of the levels of the tree before a new rebuilt takes place.
To see that, suppose our file initially consists ofn blocks. Suppose now, for contradiction that the number
of the levels of the tree changes before a new rebuilt takes place. Note that a new rebuilt takes place when
at least3n/4 operations (insertions/deletions) take place. We distinguish two cases:

1. If the number of the levels of the tree increases, that means that the number b of the added blocks
is at leastn1+ǫ − n. Since there is no rebuilt it should be the case thatb ≤ 3n/4 and therefore that
n1+ǫ − n ≤ 3n/4, which is a contradiction for largen;

2. If the number of the levels of the tree decreases, that means that the number b of the deleted blocks
is at leastn − n1−ǫ. Since there is no rebuilt it should be the case thatb ≤ 3n/4, and therefore that
n − n1−ǫ ≤ 3n/4, which is again a contradiction for largen.

Therefore before a big change happens in the tree, we can rebuild (byusing the sameǫ and by changing
the node degree) the tree and amortize. This is important, because the RSA tree structure works for trees
that do not change their depth during updates, since the constant proofcomplexity comes from the fact that
the depth is not a function of the elements in the structure (unlike B-trees), but is always maintained to be a
constant.

Using the above provably secure authenticated data structure based on [26] to secure the tags (where
security is based on thestrong RSA assumption), we obtain the following result:

Theorem 4 Assume the strong RSA assumption and the factoring assumption hold. The dynamic provable
data possession scheme presented in this section (DPDP II) has the following properties, wheren is the
current number of blocks of the file,f is the fraction of tampered blocks, andǫ is a given constant such that
0 < ǫ < 1:

1. The scheme is secure according to Definition 2;

2. The probability of detecting a tampered block is
1 − (1 − f)Ω(log n);

3. The update time isO(nǫ log n) (expected amortized) at the server andO(1) (expected) at the client;

4. The expected query time at the server, the expected verification time atthe client and the worst-case
communication complexity are eachO(log n);

5. The client space isO(1) and the server space isO(n).

Note that sendingO(log n) challenges in [2, 3] or DPDP I would increase the communication complex-
ity from O(1) to O(log n) and fromO(log n) to O(log2 n), respectively.

7 Extensions and applications

Our DPDP scheme supports a variety of distributed data outsourcing applications where the data is subject
to dynamic updates. In this section, we describe extensions of our basic scheme that employ additional
layers of rank-based authenticated dictionaries to store hierarchical, application-specific metadata for use in
networked storage and version control.
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7.1 Variable-sized blocks

We now show how we can augment our hashing scheme to support variable-sized blocks (e.g., when we
want to update a byte of a certain block). Recall that our ranking scheme assigns each internal nodeu a
rankr(u) equivalent to the number of bottom-level nodes (data blocks) reachable from the subtree rooted
at u; these nodes (blocks) are conventionally assigned a rank equal to1. We support variable-sized blocks
by defining the rank of a node at the bottom level to be the size of its associated block (i.e., in bytes). Each
internal node, in turn, is assigned a rank equivalent to the amount of bytes reachable from it. Queries and
proofs proceed the same as before, except that ranks and intervals associated with the search path refer to
byte offsets, not block indices, with updates phrased as, e.g., “insertm bytes at byte offseti”. Such an
update would require changing only the block containing the data at byte index i. Similarly, modifications
and deletions affect only those blocks spanned by the range of bytes specified in the update.

7.2 Directory hierarchies

We can also extend our DPDP scheme for use in storage systems consisting of multiple files within a direc-
tory hierarchy. The key idea is to place the start node of each file’s rank-based authenticated structure (from
our single-file scheme) at the bottom node of a parent dictionary used to mapfile names to files. Using
key-based authenticated dictionaries [25], we can chain our proofs and update operations through the entire
directory hierarchy, where each directory is represented as an authenticated dictionary storing its files and
subdirectories. Thus, we can use these authenticated dictionaries in a nested manner, with the start node of
the topmost dictionary representing the root of the file system(as depicted in Figure 2(a)).

This extension provides added flexibility for multi-user environments. Consider a system administrator
who employs an untrusted storage provider. The administrator can keep theauthenticated structure’s meta-
data corresponding to the topmost directory, and use it to periodically check the integrity of the whole file
system. Each user can keep the label of the start node of the dictionary corresponding to her home direc-
tory, and use it to independently check the integrity of her home file system atany time, without need for
cooperation from the administrator.

Since the start node of the authenticated structure of the directory hierarchy is the bottom-level node
of another authenticated structure at a higher level in the hierarchy, upper levels of the hierarchy must be
updated with each update to the lower levels. Still, the proof complexity stays relatively low: For example,
for the rank-based authenticated skip list case, ifn is the maximum number of leaves in each skip list and
the depth of the directory structure isd, then proofs on the whole file system have expectedO(d log n) size
and computation time whp.

7.3 Version control

We can build on our extensions further to efficiently support a versioningsystem (e.g., a CVS repository,
or versioning filesystem). Such a system can be supported by adding another additional layer of key-based
authenticated dictionaries [25], keyed by revision number, between the dictionaries for each file’s directory
and its data, chaining proofs as in previous extensions. (See Figure 2(b) for an illustration.) As before, the
client needs only to store the topmost basis; thus we can support a versioning system for a single file with
only O(1) storage at the client andO(log n + log v) proof complexity, wherev is the number of the file
versions. For a versioning system spanning multiple directories, letv be the number of versions andd be
the depth of the directory hierarchy. The proof complexity for the versioning file system has expected size
O(d(log n + log v)).

The server may implement its method of block storage independently from the dictionary structures
used to authenticate data; it does not need to physically duplicate each blockof data that appears in each
new version. However, as described, this extension requires the addition of a new rank-based dictionary
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(a) A file system skip list with blocks as leaves, directo-
ries and files as roots of nested skip lists.

(b) A version control file system. Notice the additional
level of skiplists for holding versions of a file. To elim-
inate redundancy at the version level, persistent authen-
ticated skip lists could be used [1]: the complexity of
these proofs will then beO(log n + log v + d log f).

Figure 2: Applications of our DPDP system.

representing file data for each new revision added (since this dictionary isplaced at the leaf of each file’s
version dictionary). In order to be more space-efficient, we could usepersistentauthenticated dictionaries [1]
along with our rank mechanism. These structures handle updates by addingsome new nodes along the
update path, while preserving old internal nodes corresponding to previous versions of the structure, thus
avoiding unneeded replication of nodes.

8 Performance evaluation

We evaluate the performance of our DPDP I scheme (Section 4.2) in terms of communication and compu-
tational overhead, in order to determine theprice of dynamismover static PDP. For ease of comparison, our
evaluation uses the same scenario as in PDP [2], where a server wishes toprove possession of a 1GB file.
As observed in [2], detecting a1% fraction of incorrect data with 99% confidence requires challenging a
constant number of 460 blocks; we use the same number of challenges forcomparison.

8.1 Proof size

The expected size of proofs of possession for a 1GB file under different block sizes is illustrated in Fig-
ure 3(a). Here, a DPDP proof consists of responses to 460 authenticated skip list queries, combined with a
single verification blockM = Σaimi, which grows linearly with the block size. The size of this blockM
is the same as that used by the PDP scheme in [2],3 and is thus represented by the line labeled PDP. The
distance between this line and those for our DPDP I scheme represents ourcommunication overhead—the
price of dynamism—which comes from the skip list query responses (illustrated in Table 2). Each response
contains on average1.5 log n rows, so the total size decreases exponentially (but slowly) with increasing
block size, providing near-constant overhead except at very small block sizes.

3The authors present multiple versions of their scheme. The version without the knowledge of exponent assumption and the
random oracle actually sends thisM ; other versions only compute it.
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Figure 3: (a) Size of proofs of possession on a 1GB file, for 99% probability of detecting misbehavior. (b)
Computation time required by the server in response to a challenge for a 1GB file, with 99% probability of
detecting misbehavior.

8.2 Server computation

Next, we measure the computational overhead incurred by the server in answering challenges. Figure 3(b)
presents the results of these experiments (averaged from 5 trials), whichwere performed on an AMD Athlon
X2 3800+ system with 2GHz CPU and 2GB of RAM. As above, we compute the timerequired by our
scheme for a 1GB file under varying block sizes, providing 99% confidence. As shown, our performance
is dominated by computingM and increases linearly with the block size; note that static PDP [2] must
also compute thisM in response to the challenge. Thus the computational price of dynamism—time spent
traversing the skip list and building proofs—while logarithmic in the number of blocks, is extremely low
in practice: even for a 1GB file with a million blocks of size 1KB, computing the proof for 460 challenged
blocks (achieving 99% confidence) requires less than 40ms in total (as small as 13ms with larger blocks).
We found in other experiments that even when the server is not I/O bound (i.e., when computingM from
memory) the computational cost was nearly the same. Note that any outsourced storage system proving the
knowledge of the challenged blocks must reach those blocks and therefore pay the I/O cost, and therefore
such a small overhead for such a huge file is more than acceptable.

The experiments suggest the choice of block size that minimizes total communication cost and compu-
tation overhead for a 1GB file: a block size of 16KB is best for 99% confidence, resulting in a proof size of
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415KB, and computational overhead of 30ms. They also show that the price of dynamism is a small amount
of overhead compared to the existing PDP scheme.

8.3 Version control

Finally, we evaluate an application that suits our scheme’s ability to efficiently handle and prove updates to
versioned, hierarchical resources. Public CVS repositories offer auseful benchmark to assess the perfor-
mance of the version control system we describe in Section 7. Using CVS repositories for the Rsync [28],
Samba [28] and Tcl [24] projects, we retrieved the sequence of updates from the RCS source of each file in
each repository’s main branch. RCS updates come in two types: “insertm lines at linen” or “deletem lines
starting at linen”. Note that other partially-dynamic schemes (i.e., Scalable PDP [3]) cannothandle these
types of updates. For this evaluation, we consider a scenario where queries and proofs descend a search
path through hierarchical authenticated dictionaries corresponding (in order) to the directory structure, his-
tory of versions for each file, and finally to the source-controlled lines ofeach file. We use variable-sized
data blocks, but for simplicity, assume a naı̈ve scheme where each line of a file is assigned its own block;
a smarter block-allocation scheme that collects contiguous lines during updates would yield fewer blocks,
resulting in less overhead.

Rsync Samba Tcl
dates of activity 1996-2007 1996-2004 1998-2008

# of files 371 1538 1757
# of commits 11413 27534 24054
# of updates 159027 275254 367105

Total lines 238052 589829 1212729
Total KBytes 8331 KB 18525 KB 44585 KB

Avg. # updates/commit 13.9 10 15.3
Avg. # commits/file 30.7 17.9 13.7

Avg. # entries/directory 12.8 7 19.8
Proof size, 99% 425 KB 395 KB 426 KB

Proof size per commit 13 KB 9 KB 15 KB
Proof time per commit 1.2ms 0.9ms 1.3ms

Table 4: Authenticated CVS server characteristics.

Table 4 presents performance characteristics of three public CVS repositories under our scheme; while
we have not implemented an authenticated CVS system, we report the server overhead required for proofs of
possession for each repository. Here, “commits” refer to individual CVS checkins, each of which establish
a new version, adding a new leaf to the version dictionary for that file; “updates” describe the number of
inserts or deletes required for each commit. Total statistics sum the number of lines (blocks) and kilobytes
required to store all inserted lines across all versions, even after they have been removed from the file by
later deletions.

We use these figures to evaluate the performance of a proof of possession under the DPDP I scheme:
as described in Section 7, the cost of authenticating different versions of files within a directory hierarchy
requires time and space complexity corresponding to the depth of the skip list hierarchy, and the width of
each skip list encountered during theProve procedure.

As in the previous evaluation, “Proof size, 99%” in Table 4 refers to the size of a response to 460
challenges over an entire repository (all directories, files, and versions). This figure shows that clients of
an untrusted CVS server—even those storing none of the versioned resources locally—can query the server
to prove possession of the repository using just a small fraction (1% to 5%)of the bandwidth required to
download the entire repository. “Proof size and timeper commit” refer to a proof sent by the server to
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prove that a single commit (made up of, on average, about a dozen updates) was performed successfully,
representing the typical use case. These commit proofs are very small (9KB to 15KB) and fast to compute
(around 1ms), rendering them practical even though they are requiredfor each commit. Our experiments
show that our DPDP scheme is efficient and practical for use in distributedapplications.
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