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Abstract

Factoring an integer is equivalent to express the integer as the difference of two squares. We test
that for any odd modulus, in the corresponding ring of remainders, any element can be realized as the
difference of two quadratic residues, and also that, for a fixed remainder value, the map assigning to
each modulus the number of ways to express the remainder as difference of quadratic residues is non-
decreasing with respect to the divisibility ordering in the odd numbers. The reduction to remainders
rings of the problem to express a remainder as the difference of two quadratic residues does not diminish
the complexity of the factorization problem.

1 Introduction

Whenever an integer is written as the difference of two squares n = x2
1−x2

0 in Z, then n = (x1−x0)(x1 +x0)
and the greatest common divisors (n, x1 − x0), (n, x1 + x0) will provide non-trivial divisors of n, whenever
{x1 − x0, x1 + x0} 6= {1, n}. This is the basis of Shor’s Factoring Quantum Algorithm [3] and a main
component of Scolnik’s talk at this year Spanish Meeting on Cryptology [2].

If n = x2
1−x2

0 then for any integer m > 1, πm(n) = [πm(x1)]2−[πm(x0)]2 in Zm, where πm : x 7→ x mod m
is the canonical projection Z→ Zm. In other words, πm(n) is the difference of two quadratic residues in Zm.

In this paper we state some basic remarks related to quartets (z, x2
0, x

2
1,m) with πm(z) = x2

1 − x2
0 in Zm.

2 Difference of squares in the integers

Certainly, if n = x2
1 − x2

0 in Z, then z0 = (x1 − x0) and z1 = (x1 + x0) give two factors of n, although they
can be trivial. Let us say that the triplet (z, x2

0, x
2
1) determines a splitting difference. Conversely, if n factors

as n = z0z1 then the equation system x1 − x0 = z0, x1 + x0 = z1 can be stated as

Ax = z with A =
[ −1 1

1 1

]
, x =

[
x0

x1

]
, z =

[
z0

z1

]
. (1)

Clearly, A2 = 2I2, where I2 is the (2 × 2)-identity matrix. Thus the rational values x0 = 1
2 (z1 − z0),

x1 = 1
2 (z1 + z0) are such that n = x2

1 − x2
0. These values are indeed integer whenever both z0, z1 have the

same parity, either they are odd or they are even.
The map f : R × R → R, (x0, x1) 7→ x2

1 − x2
0, has as contour lines equilateral hyperbolas (see figure 1),

and for each integer n ∈ Z, f−1(n) ∩ Z is a finite set because n has finitely many divisors.
As an elementary remark [1], we have that if (n, x2

0, x
2
1) determines a splitting difference then for any

integer m > 1, ((m2 − 1)n, (x1 + mx0)2, (mx1 + x0)2) also determines a splitting difference. Namely,

(m2 − 1)n = (m2 − 1)(x2
1 − x2

0)
= m2x2

1 − x2
1 −m2x2

0 + x2
0

= (m2x2
1 + x2

0 + 2mx1x0)− (x2
1 + m2x2

0 + 2mx1x0)
= (mx1 + x0)2 − (x1 + mx0)2. (2)
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Figure 1: Contour lines of map (x0, x1) 7→ x2
1 − x2

0. The lighter zones correspond to greater values.

This difference determines the factors (m− 1)(x0 − x1) and (m + 1)(x0 + x1) of (m2 − 1)n.

3 Differences of quadratic residues

In what follows, the statements quoted as “remarks” are rather obvious and no proofs are provided.
Let m ∈ N be an integer greater than 1 and let Z∗m be the multiplicative group of the ring of remainders

Zm. The order of the group is o(Z∗m) = φ(m) where φ is Euler’s totient function. Let Qm denote the set of
quadratic residues in Zm and let Q∗

m = Qm∩Z∗m be the subgroup in Z∗m consisting of unit quadratic residues.
The squaring map x 7→ σ(x) = x2 is an epimorphism Z∗m → Q∗

m and its kernel Um = {x ∈ Zm| x2 = 1}
consists of the elements of order 2 in Z∗m.

Let Qm − 1 = {z ∈ Zm| ∃y ∈ Qm : z = y − 1} be the collection of remainders that can be expressed as
the difference of a quadratic residue and 1. Obviously, y 7→ y − 1 is a bijection Qm → Qm − 1 and we may
realize Qm − 1 as a “shifted copy” of Qm.

Let Dm = {z ∈ Zm| ∃y0, y1 ∈ Qm : z = y1 − y0} be the collection of remainders that can be expressed
as the difference of two quadratic residues:

∀z ∈ Zm : z ∈ Dm ⇐⇒ ∃x1, x0 ∈ Z : z = (x2
1 − x2

0)mod m.

If z = (x2
1 − x2

0)mod m we will say that the quartet (z, x2
0, x

2
1, m) determines a splitting difference.

Remark 3.1 If (z, y0, y1) determines a splitting difference in the ring Z of integers, then for any m > 1,
(πm(z), πm(y0), πm(y1),m) determines a splitting difference in Zm.

Remark 3.2 (Scolnik) Suppose that (z, y0, y1,m) determines a splitting difference in Zm, and that for
some integers z1, w0, w1,m1 ∈ Z, z = y1−y0+z1 mod m and (z1, w0, w1,m1) determines a splitting difference.
If there exist c0, c1 ∈ Z such that y0 + mw0 + c0mm1, y1 + mw1 + c1mm1 ∈ Qmm1 and m1|(c1 − c0), then
(z, y0 + mw0 + c0mm1, y1 + mw1 + c1mm1,mm1) determines a splitting difference.

Remark 3.3 Clearly,
y ∈ Qm & z ∈ Dm =⇒ yz ∈ Dm. (3)

For any z ∈ Dm, let Ezm = {(y0, y1) ∈ Q2
m| z = y1 − y0} be the collection of pairs of quadratic residues

whose difference produces z. Evidently,

• [z ∈ Qm =⇒ (0, z) ∈ Ezm]

• [z ∈ Qm − 1 =⇒ (1, z + 1) ∈ Ezm]

• [(y0, y1) ∈ Ezm =⇒ (y1, y0) ∈ E−z mod m,m]

Besides, if y0 ∈ Q∗
m, then for any y1 ∈ Qm: y1 − y0 = y0(y−1

0 y1 − 1); thus the map η : Q∗m × Qm → Qm,
(y0, y1) 7→ y−1

0 y1 (where multiplicative inverse is on the group Z∗m) is such that

∀z ∈ Zm , (y0, y1) ∈ Q∗m ×Qm : (y0, y1) ∈ Ezm ⇐⇒ z = y0(η(y0, y1)− 1). (4)
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Figure 2: Sequences (ezm)2≤m≤200 for different odd values of z.

Remark 3.4 The image of the product · restricted to Q∗m × (Qm − 1) lies within the set Dm.

Remark 3.5 Let z ∈ Zm be an arbitrary element and let d = (m, z) be the greatest common divisor of z
and the modulus m. Indeed, for some z0 ∈ Z∗m, z = dz0.

If z ∈ Dm, z0 ∈ Q∗
m and (y0, y1) ∈ Ezm, then d = z−1

0 z = z−1
0 (y1− y0) ∈ Dm and (z−1

0 y0, z
−1
0 y1) ∈ Edm.

Conversely, if (w0, w1) ∈ Edm and z0 ∈ Q∗
m, then (z0w0, z0w1) ∈ Ezm.

Thus, whenever z0 ∈ Q∗
m the map Edm → Ezm, (w0, w1) 7→ (z0w0, z0w1), is a bijection.

Remark 3.6 Let m be an odd modulus. Then Dm = Zm. In other words, the map δm : Qm × Qm → Zm,
(y0, y1) 7→ y1 − y0, is onto.

Indeed, if for some z ∈ Zm and x0, x1 ∈ Zm, we would have z = x2
1 − x2

0 = (x1 − x0)(x1 + x0), then
for any factorization z0z1 = z the equation system (1) can be posed, and it possesses an unique solution
x = 2−1Az ∈ Z2

m whenever 2 ∈ Z∗m, i.e. the modulus m is odd. ¤
We remark here that the more non-trivial factorizations z0z1 = z do occur, more systems (1) can be

posed and there will be more elements in the sets Ezm.
For any integer z ∈ Z, let us define Ezm = Eπm(z),m. The number of elements in the set Ezm, ezm =

card(Ezm), gives the number of ways to realize z as the difference of two quadratic residues in Zm. Exhaustive
accounts show that for a fixed value of z and for most values of m, εm ≤ ezm ≤ 1

4m, where εm = mmod2.
In figure 2 we plot the values of ezm, for 2 ≤ m ≤ 200 and z = 53, 199, 367, 937.

The displayed sequences hint that the smallest value ezm = 1 is attained in most cases when m is even,
which correspond to the cases in which system (1) has no an unique solution.

Remark 3.7 The following assertions are inmediate:

1. If m is odd, then ∀z ∈ Zm: Ezm 6= ∅.
2. If m1|m then πm1 (Ezm) ⊂ Ezm1 , and consequently card (πm1 (Ezm)) ≤ card(Ezm1). (Here, notation

has the following meaning: πm1 (Ezm) = {(πm1(y0), πm1(y1))| (y0, y1) ∈ Ezm}.)
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3. If p is a prime factor of both z and m, then:
[
(y0, y1) ∈ Ezm =⇒ πp(y0, y1) ∈ E z

p
m
p
.
]

As an example of second assertion, we have E3,15 = {(1, 4), (6, 9)} although E3,5 = {(1, 4)} since π5(6, 9) =
(1, 4). As an example of third assertion, we have (10, 25) ∈ E15,45 ((402− 352) = 8 · 45+15, 402 = 25 mod 45
and 352 = 10 mod 45,) thus (2, 3) = π5(10, 25) ∈ E5,9.

Remark 3.8 Whenever (z, x2
0, x

2
1,m) determines a splitting difference in Zm then there exists t ∈ Z such

that z = (x2
1 − x2

0) + tm, thus if m1|tm we have also that (z, x2
0, x

2
1, m1) determines a splitting difference.

Hence,
(y0, y1) ∈ Ezm &
y0 = x2

0 modm &
y1 = x2

1 modm &
z = (x2

1 − x2
0) + tm &
m1|tm





=⇒ πm1(y0, y1) ∈ Ezm1 . (5)

Let (2Z+ − 1) denote the set of odd positive integers. It is a poset with the “divisibility” relation, its
minimum element is 1 and its atoms, i.e. the minimal elements greater than the minimimum, are the prime
numbers. The reciprocal form of second assertion at remark 3.7 above can be generalized as follows:

Proposition 3.1 For any z ∈ N, the map (2Z+ − 1) → N, m 7→ ezm = card(Ezm), is non-decreasing with
respect to the divisibility ordering in (2Z+ − 1) and the usual ordering in N.

And the above proposition can be re-stated as follows:

Proposition 3.2 For any z ∈ N, and for any ` odd primes p1, . . . , p` there exist e1, . . . , e` ∈ N such that

[∀j ≤ ` : dj ≥ ej ] &


m =

∏̀

j=1

p
dj

j


 =⇒ card(Ezm) > 1.

Whenever the modulus m is odd, given z ∈ Zm, if one has a factorization z = z0z1 in Zm, then by
solving the corresponding equation system (1), one can realize z as the difference of two quadratic residues.
Conversely, any expression of z as the difference of two quadratic residues will provide a factorization z = z0z1

in Zm.
If n = w0w1 is factored as the product of two integers in Z, then for all odd prime modulus p ∈ Z+ we

have πp(n) = z0z1 mod p, where z0 = πp(w0) and z1 = πp(w1). Thus whenever p1, . . . , pk ∈ Z+ is a collection
of k odd prime numbers, the pair (w0, w1) is a solution of the equation system

πpi(x0) = z0i mod pi , πpi(x1) = z1i mod pi , πpi(n) = z0iz1i in Zpi , i = 1, . . . , k. (6)

Nevertheless the converse is not a direct matter. By the Chinese Remainder Theorem, for any k the system
has a solution but it does not provide neither a factorization of n nor even a congruence classes modulus∏n

i=1 pi in which the factors of n may appear.

4 Conclusions

Although the factorization problem is equivalent to represent the argument integer as the difference of two
squares, the reduction of the problem to express a remainder as the difference of two quadratic residues is
of no help.
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