The computational SLR: a logic for reasoning about computational
indistinguishability

Yu Zhang

Faculty of Information Technology, Macau University of Science and Technology
Macau SAR China
yu.zhang@gmail.com

Abstract. Computational indistinguishability is a notion in complexity-theoretic cryptography and is used to
define many security criteria. However, in traditional cryptography, proving computational indistinguishabil-
ity is usually informal and becomes error-prone when cryptographic constructions are complex. This paper
presents a formal axiomatization system based on an extension of Hofmann’s SLR language, which can cap-
ture probabilistic polynomial-time computations through typing and is sufficient for expressing cryptographic
constructions. We in particular define rules that justify directly the computational indistinguishability between
programs and prove that these rules are sound with respect to the set-theoretic semantics, hence the standard
definition of security. We also show that it is applicable in cryptography by verifying Goldreich and Micali’s
construction of pseudorandom generator.

1 Introduction

Research on the formal verification of cryptographic protocols in recent years has switched its focus
from the Dolev-Yao model to the computational model — a more realistic model where criteria for the
underlying cryptography are considered. Computational indistinguishability is an important notion in
cryptography and the computational model of protocols, which is particularly used to define many secu-
rity criteria. However, proving computational indistinguishability in traditional cryptography is usually
done in a paper-and-pencil, semi-formal way. It is often error-prone and becomes unreliable when the
cryptographic constructions are complex. This paper aims at designing a formal system that can help us
to verify cryptographic proofs. Our ultra goal will be fully or partially automating the verification.

Noticing that computational indistinguishability can be seen as a special notion of equivalence be-
tween programs, we can make use of techniques from the theory of programming languages, but this re-
quires in the first place a proper language for expressing cryptographic constructions and adversaries. In
particular, we shall consider only “feasible” adversaries, precisely, probabilistic programs that terminate
within polynomial time. While such a complexity restriction can be easily formulated using the model
of Turing-machine, it is by no mean a good model for formal reasoning. At this point, our attention is
drawn to Hofmann’s SLR system [7, 8], a functional programming language that implements Bellantoni
and Cook’s safe recursion [3]. The very nice property about SLR is the characterization of polynomial-
time computations through typing. The probabilistic extension of SLR has been studied by Mitchell et
al. [10], where functions of the proper type capture the computations that terminate in polynomial time
on a probabilistic Turing machine.

Our system is based on the probabilistic extension of the SLR system, and we develop an axioma-
tization system with rules that justify directly the computational indistinguishability between programs.
We prove that these rules are sound with respect to the set-theoretic semantics of the language, hence
coincide with the traditional definition of computational indistinguishability. The reasoning about cryp-
tographic constructions in the axiomatization system is then purely syntactic, whiteout explicit analysis
on the probability of program output.

The rest of the paper is organized as follows: Section 2 introduces Hofmann’s SLR system and the
probabilistic extension — the computational SLR, together with a set-theoretic semantics. An adapted
definition of computational indistinguishability is also given in this section. In Section 3 we develop an
equational proof system and prove the soundness of its rules. Cryptographic examples using the proof
system are given in Section 4. Section 5 summarizes related work and Section 6 concludes the paper.

2 The computational SLR

We start by define a language for expressing cryptographic constructions and adversaries, as well as
the computational indistinguishability between programs. Due to the complexity consideration, the lan-
guage should offer a mechanism to capture the class of probabilistic polynomial-time computations.
Other than the model of Turing machines, Bellantoni and Cook have proposed a recursion model called
safe recursion, defining exactly polynomial-time computable functions [3]. This is an intrinsic, purely
syntactic mechanism: variables are divided into two classes — safe variables and normal variables, and
safe variables must be instantiated by values that are computed using only safe variables; recursion must
take place on normal variables and intermediate recursion results are never sent to safe variables. When
higher-order functions are concerned, it is also required that step functions must be linear, i.e., interme-
diate recursive results can be used only once in each step.

Hofmann later developed a functional language called SLR to implement the safe recursion [7, 8].
In particular, he introduces a type system with modality to distinguish between normal variables and
safe variables, and linearity to distinguish between normal functions and linear functions. He proves that
well-typed functions of a proper type are exactly polynomial-time computable functions. Hofmann’s
original SLR system has a polymorphic type system, but it is not necessary in cryptography, so in this
section we first introduce a non-polymorphic version of Hofmann’s SLR system, then extend it to express
cryptographic constructions. We shall adapt the definition of the computational indistinguishability in our
language.

2.1 The non-polymorphic SLR for bitstrings

Types in our version of SLR are defined by:

7,7, .. u=Bits| x|t |Or—7 |77 |77

Bits is the base type for bitstrings, and all other types are from Hofmann’s language: 7 x 7’ are cartesian
product types, and 7 ® 7' are tensor product types as in linear A-calculus. As in SLR, there are three
sorts of functions: (7 — 7’ are modal functions with no restriction on the use of arguments; 7 — 7’
are non-modal functions where arguments must be safe values; 7 —o 7’ are linear functions where
arguments can be used only once. We also use the aspects of SLR to represent these function spaces
— 7 % 7/ is a function type with aspect a, which is (modal, nonlinear) (noted as m) for Or — 7/,
(nonmodal, nonlinear) (noted as n) for 7 — 7’ and (nonmodal, linear) (noted as [) for 7 — 7’. The
aspects are ordered by m < n < [.

The type system also inherits the sub-typing from SLR and we write 7 <: 7/ if 7 is a sub-type of 7.
The sub-typing rules are listed in Figure 1. Note that the last rule, from which we can have Bits — 7 <:
Bits —o 7, states that bitstrings can be duplicated without violating linearity.

! ! !
” T<T

/
o<.0

/
TIT

/
o<.0

T<!T T<IT77

’ ’ /
T <1 o<:0 a <a

! /
TXo<:T X0

To<:T Q@0

’
TIT

a / al /
T—0<!:T —O0

Bits — 7 <: Bits — 7’

Fig. 1. Sub-typing rules for the computational OSLR

U

Expressions of SLR are defined by the following grammar:

€1,€2,... = T atomic variables
| nil empty bitstring
‘ Bo ‘ B1 bits
| case, case distinction
| rec, safe recursor
| A\z.e abstraction
| eres application
| (e1,e2) product
| proj,e | projse product projection
| e1® ey tensor product
|

letz®y =-e1 iney tensor projection

B and B; are two constants for constructing bitstrings: if « is a bitstring, Bou (or By u) is the new bitstring
with a bit 0 (or 1) added at the left end of u. We often use B to denote the bit constructor when its value is
irrelevant. Note that in this language we work on real bitstrings, not the number that they represent. For
instance, 0 and 00 are two different objects in our language, so the two constants By and B; are different
from the two successors Sy and S; in Hofmann’s system. case, is the constant for case distinction:
case,(u, e, fo, f1) tests the bitstring v and returns e if u is an empty bitstring, fo(u') if the first bit of u
is 0 and the rest is u/, and f1(u') if the first bit of w is 1. rec; is the constant for recursion on bitstrings:
rec,(e, f,u) returns e if u is empty, and f(u',rec. (e, f,u’)) otherwise, where u’ is the part of the
bitstring v with its first bit cut off.

Typing assertions of expressions are of the form I" - ¢ : 7, where I is a typing context that assigns
types and aspects to variables. A context is typically written as a list of bindings x; :** 71, ...
where ay, . . . a, are aspects of {m, n, [}. Typing rules are given in Figure 2.

an
y I 2" Tn,

2.2 The computational SLR

The probabilistic extension of SLR has been done by Mitchell et al. by adding a random bit oracle to
simulate the oracle tape in probabilistic Turing machines [10]. However, in their language, there is no
explicit distinction between probabilistic and purely deterministic functions, so we adopt a different type
system from Moggi’s computational A-calculus [12], where probabilistic computations are captured by
monadic types. We call the language computational SLR and often abbreviate it as CSLR.

Types in CSLR are extended with a unary type constructor:

Tu=...|Tr

It comes from Moggi’s language: a type T is called a monadic type (or a computation type), which is
for computations that return (if they terminate correctly) values of type 7. In our case, a computation

I'kFe:m 7<:7 Nz *rthke:7
T-SUB T-ABS
I'Fe:7 'FXxx.e:m %7

T-VAR
Iz “trFzx:71

!
NArber:m2 7 IAskes:7 Inonlinear z:* o €T, Asimpliesa’ <a

T-APP
F,Al,AQ = €e1€2 : Tl
I'kFei:mm TbFey:m I'te:mixm i€{1,2}
T-PAIR T-PROJ
'k (e1,e2) : 1 X T2 I'+proj,(e) : i

INAiber:nn IAskez: 72 I nonlinear
T-TENSOR

F,A17A2F61®622T1 R T2

F,Al,x:[n,y:[Tzl—e:T F,Agl—e/:n®7—2 I" nonlinear

T-LET
F,Al,Agl—letx(X)y:e' ine: T

€ {1,2
TNIL et T-BIT

I'Fnil: Bits I+ B, : Bits — Bits

T-REC

I'+rec, : 7 — O(OBits — 7 — 7) — OBits — 7

T-CASE
I' - case; : Bits —o (7 x (Bits — 7) X (Bits — 7)) —o 7

Fig. 2. Typing rules for the SLR

always terminates and can be probabilistic, hence it will return one of a set of values, each with a certain
probability. The sub-typing system is then extended with the rule:

T < 7'
Tr < T7

Expressions of the computational SLR are extended with three constructions for probabilistic com-
putations:

€1,€2,... 1= ... SLR terms
| rand oracle bit
| val(e) deterministic computation

| bind = €1 in ey sequential computation

The constant rand returns a random bit O or 1, each with the probability % val(e) is the trivial (de-
terministic) computation which returns e with the probability 1. bind z = e; in ey is the sequential
computation which first computes e, binds the value to x, then computes e;. We sometimes abbreviate
the program of the form

bind ;1 =e; in ...bind 2, = ¢, ine

as
bind (x1 =e€1,...2, =€,) ine.

Note that the order of the bindings in the abbreviated form matters.

Typing rules for these extra constant and constructions are given in Figure 3. Note that when defin-
ing a purely deterministic program in CSLR, it is not sufficient to state that their types does not have
monadic components. For instance, the function A\zB*s . (\yTBi*s z)rand has type Bits — Bits, but it

still contains probabilistic computations. Instead, we must show that the program can be defined and
typed in (non-probabilistic) SLR, and in that case, we say it is SLR-definable and SLR-typable.

I'kFe:T
T-RAND - TVAL

I' - rand : TBits I'bFval(e): Tt
NNAibe: T NAs,z:°mibex:Tr

a

I nonlinear z:* o € I', A, implies @’ < a

T-BIND
A, Ay -bindx =e; iney: Tre

Fig. 3. Typing rules for the computational SLR

As in some standard typed A-calculi, we can define a reduction system for the computational SLR,
and prove that every closed term has a canonical form. In particular, the canonical form of type Bits is:

b::=nil ‘ Bob ‘ Blb.

If w is a closed term of type Bits, we write |u| for its length. We define the length of a bitstring on its
canonical form b:
|nil| =0, |Bib| =|b|+1 (i=0,1).

2.3 A set-theoretic semantics

We write B for the set of bitstrings, with a special element € denoting the empty bitstring. When u, v
are bitstrings, we write u - v for their concatenation. If A, B are sets, we write A x B and A — B
for their cartesian product and function space. To interpret the probabilistic computations, we adopt the
probabilistic monad defined in [14]: if A is set, we write D4 : A — [0, 1] for the set of probability mass
functions over A. The original monad in [14] is defined using measures instead of mass functions, and
is of type (24 — [0,00]) — [0, 00], where 24 denotes the set of all subsets of A, so that it can also
represent computing probabilities over infinite data structure, not just discrete probabilities. But for the
sake of simplicity, in this paper we work on mass functions instead of measures. Note that the monad
not the one defined in [10], which is used to keep track of the bits read from the oracle tape rather than
reasoning about probabilities.

When d is a mass function of D4 and a € A, we also write Pr[a « d] for the probability d(a). If
in a distribution d € D4, there are finitely many elements, we can write d as {(a1,p1),. .., (Gn,Pn)}s
where a; € A and p; = d(a;).

The detailed definition of the set-theoretic semantics is given in Figure 4.

The very nice property of SLR is the characterization of polynomial-time computations (the class
PTIME) through typing:

Theorem 1 (Hofmann [8]). The set-theoretic interpretations of terms of type [1Bits — Bits in SLR
define exactly polynomial-time computable functions.

Mitchell et al. have extended Hofmann’s result to the probabilistic version of SLR with a random
bit oracle, showing that terms of the same type in their language define exactly the functions that can
be computed by a probabilistic Turing machine in polynomial time. Although our language is slightly
different from their language OSLR (which does not have computation types), the categorical model that

Interpretation of types:

Interpretation of terms:

[Bits] =B
[rx7] =[] <[]
o] =[x
[r=~] =111
[T7] = Dy
[=]p = p(z)
[nil]p =€
[Bilp =M.(i-v),i=0,1
[rec-]p = function f such that for all v € 7], u € [Bits],

h € [Bits] — [r] — [~],
f(v,h,e) =vand
f(U, hyi-u) = h(u7 f(U7 h, u))
[case-]p = function f such that for all v € 7], u € [Bits]
h; € [Bits] — [7] (¢ = 0,1),
f(v,ho, hi,€) = wand
f(U, ho7 hl,i . u) = hl(u)

[Az.e]p = . [e]p[z — v]

lerez]p = [ex]([e2]p)

[ew,ea)lp = [ex ® exlp = ([e1lp [ea]o)

[proj,elp = v;, where [e]p = (v1, v2)

[let z®y =e1 inez]p = [e2]plx — vi1,y — v2] where [e1]p = (v1,v2)
[rand]p — {(0.3).(L. 1)}

[vai(e)]p = {([e]p, 1)}

[bind x = e; inex]p =M. X e le2]plz — v'](v) x [er] p(v”)

where 7 is the type of the variable = (or T7 is the type of e1).

Fig. 4. The set-theoretic semantics for the computational SLR

they use to prove the above result can be also used to interpret the computational SLR. In particular,
if we follow the traditional encoding of call-by-value A-calculus into Moggi’s computational language,
function types 7 — 7’ in OSLR will be encoded as 7 — T’ in CSLR, hence OSLR functions that
correspond to PPT computations are actually CSLR functions of type [IBits — TBits. This permits us
to reuse the result of [10], adapted for the computational SLR:

Theorem 2 (Mitchell et al. [10]). The set-theoretic interpretations of terms of type [1Bits — TBits in
CSLR define exactly functions that can be computed by a probabilistic Turing machine in polynomial
time.

2.4 Computational indistinguishability

We call a closed SLR term p (of type [IBits — Bits) a length-sensitive polynomial if for every two

bitstrings w1, ug of the same length, i.e. |u1| = |ug|, it holds that |p(u1)| = |p(uz2)|. When a term p is
length-sensitive, we write |p| for the underlying length measure function, i.e., |p|(n) = |p(u)|, where
|lu| = n.If p and g are two length-sensitive polynomials, we write |p| < |g| for the fact that for all

bitstring u, [p(u)| < ¢q(u), and similar for |p| > |g|, |p| = |q|, etc. A length-sensitive polynomial is said
positive if for every bitstring u, |p(u)| > |ul.

A length-sensitive polynomial p is called a numerical polynomial if its value depends only on the
length of its argument, i.e., [p(u1)] = [p(u2)] if |ui| = |uz|. Note that we do not introduce the standard
numerical functions in the language, so the numerical polynomials will be used to represent the usual
polynomials of numerals, and we often abbreviate them as polynomials. A numerical polynomial is
canonical if it returns empty bitstring or all-1 bitstrings only.

Intuitively, two probabilistic functions are computationally indistinguishable, if the probability that
any feasible adversary can distinguish them becomes negligible when they take sufficiently large argu-
ments. We adapt the definition of the computational indistinguishability of [6, Definition 3.2.2] in the
setting of CSLR.

Definition 1 (Computational indistinguishability). Two CSLR terms f1 and fs, both of type [1Bits —
TBits, are computationally indistinguishable (written as fi ~ f5) if for every term A such that - A :
OBits — TBits — TBits, every positive polynomial p such that & p : OBits — Bits, and all bitstring w
such that lw| > n (for some n € N),

1
p(w)|’

Note that the second parameter of the adversary must be a computation which can be executed several
times. If the adversary were of type [IBits — Bits — TBits, it would be too weak since the only way
to get the second argument from the programs under testing is bind z = f;(w) in A(w, x), where the
adversary executes the programs only once and uses the value everywhere.

[Prle — [A(w, fi(w))]] = Prle — [A(w, fo(w))]]] <

2.5 Examples of PPT functions

Before moving on to develop the logic for reasoning about programs in the computational SLR, we define
some useful PPT functions that will be frequently used in cryptographic constructions.

— The random bitstring generation rs:

rs < Az Bits. rec(val(nil), hys,),

where hys is defined by
def . .
hrs = Am.Ar.bind (b=rand, u=r)in
case(b, (val(nil), Az.val(Bou), Az.val(Biu))).

8 receives a bitstring and returns a uniformly random bitstring of the same length. It can be checked
that - Ay : OBits — TBits — TBits, hence I rs : [IBits — TBits. Some of the type checking
procedure is given in Figure 2.5.

u:' Bits,x :' Bits - val(Bju): TBits (i =0,1)

u:' Bits - Az.val(Bju) : Bits — TBits

w :' Bits F (val(nil), Az.val(Bou), Ax.val(Biu)) :
TBits x (Bits — TBits) x (Bits — TBits)

b:' Bits,u :' Bits - case(b, (val(nil), Az.val(Bou), \z.val(Biu))) : TBits

m :™ Bits,r :' TBits - bind (b= rand,u =) in
case(b, (val(nil), Az.val(Bou), Az.val(Biu))) : TBits

FAm.Ar.bind (b =rand,u =7) in
case(b, (val(nil), Az.val(Bou), Ax.val(Biu))) : OBits — TBits — TBits

Fig. 5. Type checking of the function hrs

If e is a closed program of type TBits and all possible results of e are of the same length, we write
le| for the length of its result bitstrings. Clearly, for any bitstring w, the result bitstrings of rs(u) are
of the same length and it can be easily checked that |rs(u)| = |u.

The string concatenation conc:

conc def Az . Ay . rec(y, heone, X),

where hconc is defined by

heone def Nm . A case(m, (r, \x.Bor, \x.B17)).

heone 18 @ purely deterministic, well-typed function of SLR of type [IBits — TBits — TBits,
hence - conc : [IBits — Bits — Bits. Note that conc can also be defined as a SLR-term of type
Bits — [IBits — Bits, i.e., it recurs on only one of its argument but it does not matter which one, so
we do not distinguish the two forms but only require that one of the two arguments of conc must be
normal (modal). We often abbreviate conc(u, v) as uev.
Head function hd:

hd < Az . case(z, (nil, \y.0, Ay.1))

Tail function #l:

tl def Az . case(z, (nil, A\y.y, \y.y))

Both hd and ¢l are SLR-typed, of the type Bits — Bits.

— Split function split:
split f e . rec(nil ® x, hgpiit, 1),
where
Posptit df \m M. let v1 ® vy =71 in
case(vz, (V1 ® v2, Ay.(v100) @ Yy, \y.(viel) ® y)).

split(x,n) split the bitstring x into two bitstrings, among which the first one is of the length |n|
if |n| < |z| or = otherwise. It can be checked that split is SLR-typed, of type Bits — [Bits —
Bits ® Bits. With split we can define the prefix and suffix functions:

pref def Nz . let uy @ ug = split(x,n) in uq,
def

suff = Ax.\n.let u; ® uy = split(x,n) in us.
Both of the two functions are SLR-typed, of type Bits —o [1Bits — Bits.
— Cut function cut: ;
cut < Nz An . pref (x, suff (x,n)).

cut(x,n) cuts the right part of length |n| of the bitstring . We shall often abbreviate it as © — n. cut
is SLR-typable: |- cut : Bits — [Bits — Bits.

3 The proof system

We present in this section an equational proof system C on top of CSLR, through which one can justify
the computational indistinguishability between CSLR programs at the syntactic level.

The system C has two sets of rules: the first set (Figure 6) are rules for justifying semantic equiv-
alence between CSLR programs, and the second set (Figure 7) are rules for justifying computational
indistinguishability.

The first set are standard rules in typed A-calculi, with axioms for probabilistic computations. Rules
in the second set are similar as in the logic of Impagliazzo and Kapron [9] (which we shall refer to as the
IK-logic in the sequel), where they also define an equational proof system for the computational indistin-
guishability based on their own arithmetic model. But here we do not have the EDIT rule for managing
bitstrings, as appears internally in their logic, because in our language, there is no primitive operations
for editing bitstrings except the two bit constructor By, B;. Many bitstring operations are defined as CSLR
functions and we have introduced a series of lemma for bitstring operations (see Section 3.2 for details).

The H-IND rule comes from the frequently used hybrid technique in cryptography: if two complex
programs can be transformed into a “small” (polynomial) number of hybrids (relatively simpler pro-
grams), where the extreme hybrids are exactly the original programs, then proving the computational
indistinguishability of the two original programs can be reduced to proving the computational indistin-
guishability between neighboring hybrids. The H-IND in our system is slightly different from that in the
IK-logic since we do not have the general primitive that returns uniformly a number which is smaller
than a polynomial, but the underlying support from the hybrid technique remains there.

3.1 Soundness of the system C

To show that the system C is sound with respect to the set-theoretic semantics of CSLR, we prove the
soundness of rules of Figure 6 for program equivalence and of Figure 7 for computational indistinguisha-
bility.

Axioms:

AX-REC-NIL

AX-REFL
rec(er, ez,nil) = e

e=e
AX-REC

rec(e1, e2,Be) = ea(e, rec(e1, ez, €))
i=0,1
AX-CASE-i

- AX-CASE-NIL
case(Bse, (€/,e0,e1)) = e e

case(nil, (¢, e, e1)) = e
x & FV(e i=1,2
————AXp z ()AXm AX-PROJ-i
(Az.e)e’ = ele’ /x] \e.ex = e proj,(e1,e2) = e;
AX-LET

AX-PAIR
(proj,e,proj.e) =e let 11 ® T2 = €1 ® €2 in e = efe1 /a1, €2/ 2]
AX-TENSOR

(letz1 ®z2 =einz1)® (let 1 ®x2 =einza) =e
AX-RAND

bind b = rand in e = bind b = rand in case(b, (€', Ax.€[0/b], \x.e[1/b]))
AX-BIND-2

AX-BIND-1
bindz = einval(z) =e

bind z = val(e1) in ez = eze1/z]
AX-BIND-3

bind z = (bind y = e1 inez) inez3 =bindy = e; inbindx = ez ines

Inference rules:
ei=e; (i=1,2,3)
REC

e=e =
SYM ——— TRANS PR
rec(ei, ez, e3) = rec(ey, ey, €3)

/

e=¢e
(&

ei=e; (i=1,2,3,4)
CASE

—
e =e€
ABS

Az.e = \ze’

_ / VN
Case(el, <627 €3, 64>) = Case(eh <e27 €3, €4>)
/ / / . ! !
e] =e; €3 =ey = t=1,2 el =e; ez =ey
— APP —— PROJ-i — PAIR
7 . — . ’ — / /
e1ez = ejey proj,e = proj,e (e1,e2) = (e1,€3)
i _ !
€1 = € €2 = €9
LET

615611 6256/2
TENSOR
el®egze'1®e/2 1etw®y=elinezzletx®y:e'1ine'2
/
e=e

e = 6/1 € = €l2
BIND

VAL
val(e) = val(e) bind 2 = e; ines = bind x = ¢ ine)

Fig. 6. System C rules for program equivalence

Fe; : OBits — TBits F es : OBits — TBits e1 = e2

EQUIV
€1 X~ e2
€1 X ez e2 >es
TRANS-INDIST
€1 >~ es
x " Bits,y :" Bitse: TBits e; ~ ez
SUB

Az.bindy = ei1(z) ine ~ Az .bind y = e2(z) ine

z " Bits,n :" BitsF e : TBits An.e[u/z] is a numerical polynomial for all bitstring u
Az . e[i(z)/n] ~ Az . e[B1i(x)/n] for all canonical polynomial ¢ such that |i| < |p|

Az . e[nil/n] ~ Az .e[p(x)/n]

H-IND

Fig. 7. System C rules for computational indistinguishability

Theorem 3 (Soundness of program equivalence rules). If ' -ey : 7, ' Fex : 7, and e = ez is
provable in the system C, then [e1]p = [e2]p, where p € [I].

Proof. Most rules in Figure 6 are standard in typed A-calculus. The probabilistic monad also certifies the
axioms for computations. g

Theorem 4 (Soundness of computational indistinguishablity rules). If I' - e; : OBits — TBits,
I' I es : OBits — TBits, and e1 ~ ey is provable in the system C, then ey and ey are computationally
indistinguishable.

Proof. We prove that rules in Figure 7 are sound. The soundness of the rule EQUIV is obvious.

For the rule TRANS-INDIST, let A be an arbitrary (well-typed hence computable in polynomial
time) adversary and ¢ be an arbitrary positive polynomial, then we can easily define another polynomial
¢’ such that for all bitstring u, |¢'(u)| = 2|q(u)| (e.g., ¢’ e q(z)eq(x), and clearly it is well typed).
Because e; ~ eg, according Definition 1, there exists some n € N and for any bitstring w such that

jw| = n,

1
Prle — [A(w, — Prle «— [A(w, < .
[Prle — [A(w, e1(w))]] — Prle «— [A(w, e2(w))]]| 7 ()]
Also because eg =~ eg, there exists another n € N and for any bitstring w such that |w| > n’,
1
Prle — [A(w, — Prle — [A(w, < i
[Prle — [A(w, ea(w))]] e — [A(w, es(w))]]] ()]

Without losing generality, we suppose that n > n/, then for every bitstring w such that |w| > n,

[Prle — [A(w, e1(w))]] — Prle « [A(w, e3(w))]]|
< [Prle — [A(w, e1(w))]] — Prle — [A(w, e2(w))]]|
+ [Prle — [A(w, ea(w))]] = Prle — [A(w, e3(w))]]]

1 1 1

@) i@ T)l

Since p is arbitrary, according to Definition 1, e; ~ es.
To prove the soundness of the rules SUB, we assume that there exists an adversary which can com-
putationally distinguish the two terms in the conclusion part, and show that one can also build another

adversary which computationally distinguishes the two terms in the premise part. More precisely, for
some polynomial p and any integer n, there exists some bitstring w such that |w| > n and

1
p(w)|’

[Prle — [A(w, fi(w))]] = Prle — [A(w, fa(w))]]] =

where fi and f5 are the two programs in the conclusion part of the rule SUB. We then build another
adversary A’:

def . .
A'E Az)\ . A(z,bind y = 2/ ine),
where f is not free in .A and e. According to the set-theoretic semantics,

[A (w, e;(w))] = [A(w, bind y = e;(w) ine)],

hence

[Prle [Aw,ex(w))]] = Prle — [eaw))])| 2 o

which is a contradiction of the premise e; >~ es.
The soundness of the rule H-IND can be proved in a similar way as the proof of TRANS-INDIST.
Let A be an arbitrary well-typed adversary and g be an arbitrary positive polynomial. Define another

polynomial: ¢’ Nz rec(nil, Am.Ar.¢'(x)er, p(x)). Clearly, for all bitstrings u, |¢'(u)| = |q(u)] -
|p(u)|. Because Az.e[i(x)/n] ~ Az.e[Bi(x)/n| for all canonical numeral ¢ such that |i| < |p|, we can
find a sufficiently large number m € N such that for all bitstring w whose length is larger than m,

1

...... |q/(w)|

[Pre — [A(w, e[p(w) — 1/n])]] — Pre — [A(w, e[p(w)/n])]]| <

[Prle — [A(w, e[nil/n])]] — Prle — [A(w, e[l/n])]]] <

1
¢’ (w)|

Therefore,

[Prle — [A(w, e[nil/n])]] - Prle — [A(w, e[p(w)/n])]]]
< [Prle — [A(w, e[nil/n])]] = Prle — [A(w,e[l/n])]]|

+ [Prle « [A(w, e[p(w) — 1/n])]] — Prle « [A(w, e[p(w) /n])]]|
1 |p(w)] 1

S T T)] T i) T Ja(w))

and according to Definition 1, A\z.e[nil/n| ~ Az.e[p(z)/n], since ¢, A are arbitrary. O

3.2 Useful lemmas for proving cryptographic constructions

We introduce in this section some useful lemmas that will be frequently used in reasoning about cryp-
tographic constructions. Most of the lemmas are about the indistinguishable programs using random
bitstring generation. Note that these are not internal rules of the system C, but we shall name and use
them as we do with the system C rules.

Lemma 1. For every bitstring u, the functions Ax.split(u, z), \x.pref (u, x), \z.suff (u, x) and A\x.u —
x are numerical polynomials.

Proof. We prove only the the function split(u) — proofs for all others are similar.

We need to prove that, for all bitstrings n, m such that |n| = |m|, [split(u,n)] = [split(u,m)],
or split(u,n) = split(u, m) according to Theorem 3. The proof is an induction on the length of the
argument n. The case where |n| = 0 is clear. When |n| > 0, suppose that n = Bn’ and m = Bm/, then

split(u,Bn') = let v; ® vo = split(u,n’) in case(vy, (V1 @ v2, \y.(v100) @ y, \y.(viel) @ y))
= let vy ® vy = split(u, m’) in case(ve, (v1 @ v2, A\y.(v100) @ y, \y.(v101) @ y))
= split(u,Bm’) 0

Lemma 2 (HEAD-TAIL). For all bitstrings b and u such that |b| = 1,
hd(beu) = b, tl(beu) = u
Proof. Both can be easily deduced from their definitions. O

Lemma 3 (SPLIT-1). For all bitstrings u, u/, there exist bitstrings uy, us such that split(u,v') = u; ®
ug and |uy| + |ug| = |ul. If || < |ul, then |ui| = |v/|.

Proof. We prove by the induction on u’. Obviously, the lemma holds when ©/ = nil. Consider the
induction step:

split(u,Bu') = rec(nil ® u, hgpiit, Bu')
= let v; ® vy = split(u,u’) in
case (v, v1 ® v, \y.(v100) R Yy, \y.(v1el) @ y)
= case(ug, u; ® uz, \y.(u100) @ y, \y.(u101) ® y)
(by the induction hypothesis, we suppose split(u, u') = u; ® ug)

By induction hypothesis, |ua| = |u| — |u1| = |u| — |o/|. If |u/| = |u], then |uz| = 0, i.e. ug = nil, and
, hence

ur| = Ju
split(u,Bu) = case(nil,u; ®nil, \y.(u100) @ y, \y.(u1e1) ® y) = u; @nil,

and |ui| + [nil| = |ul. If [u/| < |ul, then |ua| = |u] — |u/| > 0, so there exists a bitstring w5 such that
ug = Bul, hence

split(u,Bu’) = case(Bujy, u1 @ nil, \y.(u100) @ y, \y.(u101) @ y) = (u1eB) ® ul,

and |uj ®B| + |ub| = |u1| + 1 + |ua| — 1 = |u|. Also |u;eB| = |ui|+1 = |[u/| + 1 = |Bu/|, since
IBu/| < |ul. O

Lemma 4 (SPLIT-2). For all bitstrings u and u' sch that |u'| > |u

split(u,nil) = nil ® u, split(u,u') = u @ nil.
Proof. Firstly, for every bitstring u,

split(u,nil) = rec(nil ® u, hgp,nil) = nil @ u.

Because

split(u,Bou’) = rec(nil ® u, hgpit, Bou')
= let v; ® vy = split(u,u’) in
case(vy, v1 ® v, \y.(v100) ® y, A\y.(vo01) R y)
= rec(nil ® u, hgpiit, Biu')
= split(u,Bu’),

it holds that for every bitstring w1, uz such that |uy| = |us|, split(u,u1) = split(u, us).
For every bitstrings u and v’ such that |v'| = |u/|, split(u, u’) = u1 ®us and |u;| = |u’| by Lemma 3,
then |ug| = |u| — |u1| = 0, hence uy = nil, i.e., split(u,v') = u3 @ nil. O

)

Corollary 1 (PREF). For all bitstrings u and v’ such that |u'| > |u

pref (u,nil) = nil, pref (u,u') = u.
Proof. For every bitstring u,

pref (u,nil) et uy @ uy = split(u,nil) in u;
= letu; Quo =nil @ u in uy

= nil,
and for every bitstring »’ such that |u/| > |ul,
y g

f .
pref (u,u’) et us @ug = split(u,u') in ug
= letu; ®ug =u®nil in uq

= u. O

Corollary 2 (SUFF). For all bitstrings w and u' such that |u'| > |u

suff (u,nil) = u, suff (u,v') = nil.
Proof. Similar as in Corollary 1. O
Corollary 3 (CUT). For all bitstrings v and v’ such that |u'| > |ul,
u—nil = u, u—u =nil.

Proof. The first assertion:

u —nil = pref (u, suff (u,nil)) = pref (u,u) = u.
The second assertion:

u —u' = pref (u, suff (u,u’)) = pref (u,nil) = nil. 0

Lemma 5 (RS-EQUIV). For every bitstrings u and v such that |u| = |v

, r8(u) = rs(v).

Proof. We prove by induction on the length of u,v. When |u| = |v| = 0, i.e., u = v = nil, clearly
rs(u) = rs(v).

For the induction step, suppose that u = Bu’ and v = B'v/, hence |u
hypothesis, rs(u') = rs(v’). Then,

/’7

|v'], and by the induction

rs(Bu’) = rec(val(nil), hys,Bu’)
= hys (v, r8(u'))
=bind (y = rs(v),b = rand) in
case(b,val(nil), Az.val(Bopy), Az.val(B1y))
=bind (y = rs(v/),b = rand) in val(bey),

and similarly,

rs(B'v') = bind (y = rs(v'),b = rand) in val(bey)
=bind (y = rs(u’),b = rand) in val(bey)

= rs(Bu'),
therefore, rs(u) = rs(v) for all bitstrings |u| = |v|. O
Lemma 6 (RS-CONCAT). For all bitstrings u and v,
bind (z = rs(u),y = rs(v)) in val(zey) = rs(uev).
Proof. We prove by induction on the length of u. When |u| = 0, i.e., u = nil,

bind (z = rs(nil),y = rs(v)) in val(zey)

=bind y = rs(v) inval(niley) = rs(v) = rs(nilev).
For the induction step, suppose that u = Bu’ and by induction
bind (z = rs(u’),y = rs(v)) in val(zey) = rs(u’ev),
then

r=rs(Bu),y = rs(v)) in val(zey)
r =bind (2’ = rs(v/),b = rand) in val(bez’),y = rs(v)) in val(zey)
x

= bind b = rand in bind z = rs(u/ev) in val(bez)
= rs(B(u'ev))
= rs((Bu')ev) (because |B(u'ov)| = |(Bu')ev)).

Lemma 7 (RS-COMMUT). For all bitstrings u and v,

bind (z = rs(u),y = rs(v)) in val(zey) = bind (z = rs(u),y = rs(v)) in val(yex)

Proof.

bind (z = rs(u),y = rs(v)) in val(zey)
= rs(uev) (by the rule RS-CONCAT)
=rs(veu) (by the rule RS-EQUIV because |uev| = |[veu|)
=bind (z = rs(u),y = rs(v)) inval(yex) (by the rule RS-CONCAT)
Lemma 8 (RS-HEAD). bind x = rs(Bu) in val(hd(x)) = rand.

Proof. First, for every bitstring u:

rs(Bu) = rec(val(nil), hps, Bu)
= hys(u, rs(u))
=bind v’ = rs(u) in
bind b = rand in case(b, val(nil), \x.val(Bou'), \z.val(Biu'))
= bind v’ = rs(u) in bind b = rand in val(beu').

hence,

bind z = rs(Bu) in val(hd(x))
=bind (z = bind (v’ = rs(u),b = rand) in val(beu')) in val(hd(z))
=bind (v’ = rs(u),b = rand) in val(hd(beu’))
=bind (v’ = rs(u),b = rand) in val(b)
= rand.
Lemma 9 (RS-TAIL). bind z = rs(Bu) in val(tl(x)) = rs(u).

Proof. Similar to the proof of Lemma 8.

Lemma 10 (RS-SPLIT). For all bitstrings w and v such that |u| > |v|,

bind x = rs(u) in val(pref(z,v)) = rs(pref (u,v)),
bind z = rs(u) in val(suff (z,v)) = rs(suff (u,v)).

Proof. Proof of the first assertion:

bind z = rs(u) in val(pref (z,v))

= bind z = rs(pref (u,v)esuff (u,v)) in val(pref (z,v))
(by the rule RS-EQUIV, since |u| = |pref (u, v) e suff (u,v)|)

= bind (21 = rs(pref (u,v)), x2 = rs(suff (u,v))) in val(pref (z1e0x2,v))
(by the rule RS-CONCAT)

= bind (1 = rs(pref (u,v)), xo = rs(suff (u,v))) in val(x;)
(pref (x10x9,v) = 21 as |x1| = |pref (u,v)| = |v])

= rs(pref (u,v)).

Similarly one can prove the second assertion.

Lemma 11 (RS-CUT). For all bitstrings u and u’ such that |u'| < |u

bind x = rs(u) inval(z — u') = rs(u —).
Proof.

bind z = rs(u) in val(z — u')
= bind x = rs(u) in val(pref (x, suff (z,u’)))
bind z = rs(u) in val(pref (x, suff (u,u’)))
(because pref (x) is a numeral polynomial and |suff (z, u’)| = |suff (u, u)| since |z| = |u|)
rs(pref (u, suff (u,u))) (by the rule RS-SPLIT)
rs(u —u')

Lemma 12 (RS-NEXT-BIT). For all bitstrings w and i such that |i| < |u

>

rs(pref (u,Bi)) = rs(Bpref (u,1)).

Proof. According to Lemma 3, because |Bi| < |ul,
|pref (u,Bi)| = [Bi| = 1| + 1 = |pref (u,i)| + 1 = |Bpref (u,1)],

hence split (pref (u,Bi)) = rs(Bpref (u,i)) since Az.split(u, x) is a numerical polynomial. O

4 Cryptographic examples

Several cryptographic examples are presented in this section and their proofs of correctness is reformu-
lated in the proof system that we define in the previous section.

4.1 Pseudorandom generators

Our first example is verifying, in our proof system, Goldreich and Micali’s construction of pseudorandom
generator [6]. This example also appears in [9], but their proof has a subtle flaw (see Section 5 for
explanation).

We first reformulate in CSLR the standard definition of pseudorandom generator [6, Definition 3.3.1].

Definition 2 (Pseudorandom Generator). A pseudorandom generator is a length-sensitive SLR term
g : OBits — Bits such that |g(s)| > |s| for every bitstring s and,

Az .bind u = rs(z) in val(g(u)) ~ Az .rs(g(x)).

If g is a pseudorandom generator, we call |g| its expansion factor.
We recall the construction of Goldreich and Micali [] (reformulated in CSLR): Suppose that g; is a
PRG with the expansion factor |g1|(z) = = + 1, i.e.,

Az .bind u = rs(z) in val(gi(x)) >~ Az . rs(Bz).

Let B(x) be the function returning the first bit of ¢; (), and R(x) returning the rest bits:

B Y Az hd(g1(2)), R X\a . tl(g1(2)).

Clearly, both B and R are well typed functions (of the same type [IBits — Bits). We then define a

SLR-function G:
G \uan. rec(nil, \m.\r.reB(R'(u,m)),n),

where the function R’ is defined as:
R Au . An.rec(u, Am . Ar. R(pref (r,u)),n).

It can also be checked that both G and R’ are well typed terms of SLR (of type (IBits — [IBits — Bits).
We first prove the following property about the function G:

Lemma 13. For every bitstring n,

Ar.bindu =rs(z)in _ Ar.bind (b =rand,u = rs(x)) in
val(G(u,Bn) - val(beG(u,n))
Proof. Because R © Nzt (g1(x)), we can conclude that for every bitstring u, |[R(u)| = |u| since

|g1(u)| = |u| + 1. We then show that for any bitstrings u and n, R'(u,n) = R!"(u). This can be done
by induction on |n|: when |n| = 0, i.e.,n = nil,

R'(u,nil) = rec(u, \m . A\r. R(pref (r,u)),nil) = u
when n = Bn/ for some bitstring n’, i.e., |n| = |n/| + 1,

R'(u,Bn’) = rec(u, A\m . Ar. R(pref (r,u)),Bn’)

R(pref(R’(u '), u))
)

= Roref (") |
= R(R'" (u)) (because]R‘” |(u)] = |R|" ‘_l(u)| == u|)
= R‘”/Hl(u) R‘”'().

We next show that for every bitstrings u and n, G(u,Bn) = B(u)eG(R(u),n). This is also proved
by induction on |n|: when |n| = 0, i.e., n = nil,
G(u,Bnil) = rec(nil, A\m.Ar.re B(R'(u,m)),Bnil)
= G(u,nil)e B(R/(u,nil))
(because G(u,nil) = rec(nil, Am.\r.reB(R'(u,m)),nil) = nil)
= B(u) = B(u)eG(u,nil);

when n = Bn/,

G(u,BBn’) = rec(nil, \m.Ar.re B(R'(u,m)),BBn’)
G(u,Bn’)e B(R'(u,Bn’))
)oG(R(u),n')e BRI+ (u))
)oG(R(u),n)e B(R'(R(u),n')).

(
(u
(u

Because

G(R(u),Bn) = rec(nil, \m.\r.re B(R'(u,m)), Bn’
= G(R(u),n) e B(R'(R(u),n)),

it holds that
B(u)eG(R(u),n')e B(R'(R(u),n’)) = B(u)eG(R(u),Bn’),
hence G(u,Bn) = B(u)eG(R(u),n).
We next prove the computational indistinguishability between the two programs in the assertion:
Az .bind u = rs(z) in val(G(u,Bn))
= Az .bind u = rs(z) in val(B(u)eG(R(u),n))
= Az .bind u = rs(z) in val(hd(g(u))eG(t(g1(u)),n))
~ Az .bind u = rs(Bz) in val(hd(u)eG(tl(u),n))
(by the rule SUB and because A\z.bind u = rs(z) in val(gi(u)) ~ A\z.rs(Bx))
= Az.bind (b = rand,u = rs(x)) in val(hd(beu)eG(tl(beu),n))
(by the rule RS-CONCAT)
= Azr.bind (b = rand,u = rs(x)) in val(beG(u,n)).

O

We next prove that, given a polynomial p, one can use GG to construct easily a PRG with the expansion
factor |p|, and the proof will be done in the system C.

Proposition 1 For every well typed (length-sensitive) polynomial - p : (IBits — Bits,

Az .bind u = rs(z) in val(G(u,p(u))) ~ Az .rs(p(x))
Proof. The proof follows the traditional hybrid technique, but is reformulated using rules of the system
C. We define first a hybrid function H:

g Aug . Aug . An . (ug —n)eG(ug,n).

H is well typed in SLR with the following assertion:
+ H : OBits — Bits —o Bits — Bits.
Firstly,

Az .bind u; = rs(z) in bind ug = rs(p(x)) in val(H (u1, ug,nil))
= Azr.bind u; = rs(z) in bind uy = rs(p(x)) in val((uz —nil)eG(u;1,nil))
= A\zr.bind u; = rs$(z) inbind uy = rs(p(z)) in val(uzeG(u1,nil))
(by the rule CUT)
= Az .bind u; = rs(z) in bind uy = rs(p(x)) in val(us)
(because G(u1,nil) =nil)
= Az .rs(p(x)).

Next, for all bitstrings w1, ug, n such that |ug| =

H(ui,uz,n) = (ug —n)eG(ui,n) =nileG(ui,n) = G(ui,n),

hence,
Az .bind u; = rs(z) in bind ug = rs(p(x)) in val(H (u1, ug, p(z)))
= Az .bind u; = rs(x) in bind us = rs(p(z)) in val(G(u1, p(x)))
= Az .bind u; = rs(z) in val(G(u1, p(uy))).

Because for every numeral 4 such that |i(z)| < |p(z)| for any bitstring x,

Az .bind (u; = rs(z),ue = rs(p(z))) in val(H (u1, ug, Bi(z)))

Az .bind (u; = rs(x),us = rs(p(z))) in val((uy — Bi(x))eG(uy,Bi(x)))

Az .bind (b = rand,u; = rs(x),us = rs(p(x))) in val((ug — Bi(x))ebeG(u1,i(x)))
(by Lemma 13 and the rule SUB)

Az .bind (b = rand,u; = rs(z),us = rs(p(x) — Bi(x))) in val(uzebeG(uy,i(x)))
(by the rule RS-CUT, as |Bi(z)| = |i(z)| + 1 < |p(z)] = |uzl)

Az .bind (u; = rs(x),us = rs((p(x) — Bi(x))el)) in val(uzeG(u1,i(x)))
(by the rule RS-CONCAT)

Az .bind (u; = rs(x),us = rs(p(x) —i(x))) in val(uzeG(uy,i(x)))
(because |(p(z) — Bi(z))1] = [p(z) — i(x)] — 1+ 1 = |p(z) — i(x))

Az .bind (u; = rs(z),us = rs(p(z))) in val((uz —i(x))eG(uy,i(x)))

(by the rule RS-CUT)

Az .bind (u; = rs(x),us = rs(p(z))) in val(H (u1, ug,i(x)))

1l I Il 11 1l

by the rule H-IND,

(p(2))) in val(H (u1, u2,p(z)))
(p(z))) in val(H (u1,ug,nil)),

Az .bind (u; = rs(z),u

2 rs
~ \z.bind (u; = rs(x),uy =18

i.e., Az.bind u = rs(z) in val(G(u,p(x))) ~ Az .rs(p(x)) . O
Theorem 5. The CSLR term \x . G(x, p(x)) is a pseudorandom generator with the expansion factor |p|.

Proof. Obviously from Proposition 1 and Definition 2.

4.2 Relating pseudorandomness and next-bit unpredictability

Our second example is the equivalence between pseudorandomness and next-bit unpredictability. We
first reformulate the notion of next-bit unpredictability in CSLR: a positive polynomial f such that - f :
OBits — Bits is next-bit unpredictable if for all canonical numeral 7 such that |i| < |f],

Az . bind u = rs(z) in Az . bind v = rs(z) in bind b = rand in

val(pref (f(u),Bii(z))) val(pref (f(u),i(x))eb)

Lemma 14. Pseudorandomness implies next-bit unpredictability: if a positive polynomial f is a pseu-
dorandom generator, then it is next-bit unpredictable.

Proof. Because f is a pseudorandom generator,

Az.bind u = rs(z) inval(f(u)) ~ Az.rs(f(x)).

Hence,

Az .bind u = rs(z) in val(pref (f(u),B17))

~ Ax.bind u = rs(f(x)) in val(pref (u,B1i))
(because f is a pseudorandom generator)

= Az .rs(pref (f(x),B11)) (by the rule RS-SPLIT)

= Az .rs(Bipref (f(z),1)) (by the rule RS-NEXT-BIT)

= Az .bind b = rand in bind u = rs(pref (f(x),i)) in val(beu)
(by the definition of 7s)

= Az .bind b = rand in bind u = rs(pref (f(x),i)) in val(ueb)
(by the rule RS-COMMUT)

= Az.bind b = rand in bind u = rs(z) in val(pref (f(u),i)eb)
(by the rule RS-SPLIT)

Note that in the above proof ¢ is a function and we omit the argument, but this is careful because

Lemma 15. Next-bit unpredictability implies pseudorandomness: if a positive polynomial f is next-bit
unpredictable, then it is a pseudorandom generator with expansion | f|.

Proof. The proof also uses the hybrid technique. We define the hybrid function as follows:

i Az Ay Az.pref (f(x), z)esuff (v, 2).

It can be easily proved that, for all bitstrings u, v such that |v| = |f(u)|, H(u,v,nil) = v and
H(u,v, f(u)) = f(u), hence

Az .bind (u = rs(x),v = rs(f(x))) inval(H (u,v,nil)) = rs(f(z))
Az .bind (u =rs(z),v =rs(f(x))) inval(H (u,v, f(z))) = A\x.bind u = rs(z) in val(f(u)).

We then prove the hybrid step: for all canonical polynomial ¢ such that |i| < | f

’

Az .bind (u = rs(x),v = rs(f(x))) in val(H (u,v,B1i))

= Azr.bind (u = rs(z),v = rs(f(z))) in val(pref (f(u),B1i)esuff (v,B17))

~ Az .bind (u = rs(x),b =rand,v = rs(f(z))) in val(pref (f(u),i)ebesuff (v,B17))
(because f is next-bit unpredictable)

= Az.bind (u = rs(z),b = rand, v = rs(suff (f(x),B1i))) in val(pref (f(u),i)ebev)
(by the rule RS-SPLIT)

= A\z.bind (u = rs(z),v = rs(lesuff (f(x),B17))) in val(pref (f(u),i)ev)
(by the rule RS-CONCAT)

= Az.bind (u = rs(z),v = rs(suff (f(z),7))) in val(pref (f(u),i)ev)
(by the rule RS-EQUIV since |lesuff (f(x),B17)| = |suff (f(z),4)])

= Azr.bind (u = rs(z),v = rs(f(z))) in val(pref (f(u),i)esuff (v,7))
(by the rule RS-SPLIT)

= Az .bind (u = rs(z),v = rs(f(z))) in val(H (u,v,1)).

Hence, by the rule H-IND,
Az .bind u = rs(x) inval(f(u)) = Ax.rs(f(z)),
i.e., f is a pseudorandom generator with expansion | f|. O

Theorem 6. A positive polynomial is a pseudorandom generator if and only if it is next-bit unpre-
dictable.

Proof. The two directions are proved respectively in the above two lemmas. O

5 Related work

Many researchers in cryptography have realized that the increasing complexity of cryptographic proofs
is now an obstacle that should not be ignored and formal techniques should be introduced to write and
check proofs. Besides the system of this paper, some similar systems have also been proposed in recent
years.

The PPC (probabilistic polynomial-time process calculus) system designed by Mitchell et al. [11] is
based on a variant of CCS with bounded replication and messages that are computable in probabilistic
polynomial-time. An equational proof system is also given in their system, which can be used to prove the
observational equivalence between processes, and the soundness is established upon a form probabilistic
bisimulation. Interestingly, they mention that the terms (or the messages) in their language can be those
of OSLR (the probabilistic extension of SLR), but we are not clear how much expressitivity PPC achieves
by adding the process part. It is probably more natural for modeling protocols, but no such examples are
given in their paper.

Impagliazzo and Kapron have proposed two logic systems for reasoning about cryptographic con-
structions [9]. Their first logic is based on a non-standard arithmetic model, which they prove captures
probabilistic polynomial-time computations. While it is a complex and general system, they define a sim-
pler logic on top of the first one, with rules justifying computational indistinguishability. The language
in their second logic is very close to a functional language but is unfortunately not precisely defined,
and in fact, this leads to a subtle flaw in the proofs in the logic: the SUB rule in their logic requires that
the substitute programs must be closed terms, but this is not respected in their proofs. In particular, the
hybrid proofs often have a program of the form let i < p(n) in e, where e has a free variable = and
it is often substituted by indistinguishable programs, but, for instance, if the two programs also have a
variable 7 receiving a random number:

let i < p(n) ine; ~ let i« p(n) in ey,
according to the rule SUB we can only deduce
let i < p(n) ine[let i < p(n) in e1/z] ~ let i < p(n) in e[let i «— p(n) in es/x],

but never
let i < p(n) in ele;/z] ~ let i < p(n) in elez/x].

However, the latter is used in many proofs in [9]. Furthermore, they claim that by introducing rules jus-
tifying directly the computational indistinguishability between programs, they avoid explicit reasoning
about the probability, but the rule UNIV contains a premise in their base logic (in the arithmetic model)
and proving that might still involve reasoning about the probability.

In our knowledge, both the proof systems in PPC and the IK-logic have not been automated. Mean-
while, Nowak has also proposed a framework for formal verification of cryptographic primitives and it
has been implemented in the proof-assistant Coq [13]. It is in fact a formalization of the game-based
security proofs, an approach advocated by several researchers in cryptography [4, 15], where proofs are
done by generating a sequence of games and transformations between games must be proved computa-
tionally sound. In Nowak’s formalization, games are seen as syntactic objects and game transformations
are syntactic manipulations that can be verified in the proof-assistant, but the complexity-theoretic issues
are not considered. Similar work include the system by Barthe et al., also implemented in Coq but using
an imperative language [2] and the other one by Backes et al., implemented in Isabelle/HOL and using a
functional language with references and events [1].

Blanchet’s CryptoVerif is another automated tool supporting game-based cryptographic proofs, but
not based on any existing theorem provers [5]. Unlike previously mentioned work, CryptoVerif aims
at generating the sequence of games based on a collection of predefined transformations, instead of
verifying the computational soundness of transformations defined by users.

6 Conclusion

In this paper we present an equational proof system that can be used to prove the computational indistin-
guishability between programs. We have proved that rules in the proof system are sound with respect to
the set-theoretic semantics, hence the standard notion of security. We also show that the system is appli-
cable in cryptography by using it to verify a cryptographic construction of pseudorandom generator.
The system is based on the computational SLR, a probabilistic extension of Hofmann’s SLR lan-
guage, which has a very solid mathematical support for the characterization of polynomial-time compu-
tations. But the language is probably not expressive enough (not in the sense of its computability) for
the reasoning in cryptography. In particular, we are interested in using the system to verify cryptographic
protocols in the computational model. Though higher-order functions are already native in the language,
we might need additional mechanism like references in [1] to keep state between invocations of oracles.

References

1. M. Backes, M. Berg, and D. Unruh. A formal language for cryptographic pseudocode. In 4th Workshop on Formal and
Computational Cryptography (FCC 2008), 2008.

2. G. Barthe, B. Grégoire, R. Janvier, and S. Zanella Béguelin. Formal certification of code-based cryptographic proofs. In
4th Workshop on Formal and Computational Cryptography (FCC 2008), 2008.

3. Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic characterization of the polytime functions. Compu-
tational Complexity, 2:97-110, 1992.

4. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint
Archive, Report 2004/331, 2004.

5. Bruno Blanchet. A computationally sound mechanized prover for security protocols. In IEEE Symposium on Security and
Privacy (S&P’06), pages 140—-154, 2006.

6. Oded Goldreich. The Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

7. Martin Hofmann. A mixed modal/linear lambda calculus with applications to bellantoni-cook safe recursion. In Proceed-
ings of the International Workshop of Computer Science Logic (CSL’97), volume 1414 of LNCS, pages 275-294. Springer,
1998.

8. Martin Hofmann. Safe recursion with higher types and BCK-algebra. Annals of Pure and Applied Logic, 104(1-3):113—
166, 2000.

9. Russell Impagliazzo and Bruce M. Kapron. Logics for reasoning about cryptographic constructions. Journal of Computer
and System Sciences, 72(2):286-320, 2006.

10. John C. Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization of bounded oracle computation and
probabilistic polynomial time. In FOCS’98, pages 725-733, 1998.

11.

12.
13.

14.

15.

John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A probabilistic polynomial-time process calcu-
lus for the analysis of cryptographic protocols. Theoretical Computer Science, 353(1-3):118-164, 2006.

Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55-92, 1991.

David Nowak. A framework for game-based security proofs. In Proceedings of the 9th International Conference of
Information and Communications Security (ICICS 2007), volume 4861 of LNCS, pages 319-333. Springer, 2008.
Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability distributions. In 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’02), pages 154-165, 2002.

Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report
2004/332, 2004.

