
BGKM: An Efficient Secure Broadcasting Group
Key Management Scheme

Zhibin Zhou
Arizona State University
zhibin.zhou@asu.edu

Dijiang Huang
Arizona State University

dijiang@asu.edu

Abstract— Broadcasting Group Key Management (BGKM)
scheme is designed to reduce communication, storage, and com-
putation overhead of existing Broadcasting Encryption Schemes
(BES). To this end, BGKM proposes a new broadcasting
group management scheme by utilizing the basic construction
of ciphertext policy attribute based encryption and flat table
identity management. Compared to previous approaches, our
performance evaluation shows that BGKM greatly improved
performance in communication (O(log n) for one addition and
O((log n)(log m)) for bulk additions), storage (O(log n) for each
group member), and computation (O((log n)(log m)) for both
encryption and decryption), where n is the ID space size and m
is the number of GMs in the group. Moreover, BGKM scheme
provides group forward/backward secrecy, and it is resilience to
colluding attacks.

I. INTRODUCTION

We propose a novel secure Broadcasting Group Key
Management (BGKM) scheme to reduce communication,
storage, and computation overhead compared to existing
Broadcasting Encryption Schemes (BES). Our solution
extends the basic construction of Ciphertext Policy At-
tribute Based Encryption (CP-ABE) [2], which is based
on identity-based cryptography [5] and threshold secret
sharing scheme [23]. As in BES, our scheme uses a trusted
key server (or Group Controller – GC) to manage group
formations and distribute keys. When joining the group,
each group member (GM) is distributed a set of secrets to
decrypt a broadcasted Data Encryption Key (DEK) in later
communication phase. For GMs addition and deletion, a
new encrypted DEK is broadcasted, and only legitimated
group members can decrypt the DEK based on their pre-
distributed secrets.

Typical applications of BGKM include: digital-TV, con-
tent distributions and so on, where only registered (or
legitimated) subscribers to the service providers can reveal
broadcasted data content. In addition, pay-per-view sub-
groups of subscribers can be formed dynamically based on
users’ ad hoc selections, e.g., sports, movies, games, and
so on. Moreover, some of the communication groups may
overlap or inclusive and have hierarchical relations. For
example, the subscribers of premium package can watch
programs for basic package subscribers. We can observe
that subscribers from the same service providers form

an overall communication group; pay-per-view subscribers
form multiple dynamic conferences; subscribers to different
packages belong to different groups that can be overlapped.

Various BES solutions [3], [4], [6], [14], [38] were
proposed to address the key management issues in the
above described applications. Previous BES solutions are
mostly based on manipulations of intersections or unions
of pre-distributed keys among GMs. The most efficient fully
collusion resistant BES solutions for arbitrary receiver sets
is BGW scheme as described in [3], [4], [6]. However,
the overhead of these solutions is still prohibitive when
the group size is large. For example, the communication
overhead (size of updating messages due to group mem-
bers’ additions and deletions) is O(m 1

2 ), where m is the
number of group members; storage overhead (the number
of pre-distributed keys) is O(m 1

2 ); computation overhead
(the number of cryptographic operations) is O(m). Flat
Table (FT) key management schemes [11], [36] map the
set of pre-distributed secret keys for each GM to bit
positions in the GM’s ID, in order to reduce communication
overheads to O(log m). However, FT solutions simply
adopt the shared key solutions and thus are subject to
collusion attacks. For example, GMs 001 and 010 can
decrypt ciphertexts destined to other GMs, e.g., 011, 000,
by combining their secret keys that are mapped to their bit
positions.

B2 B0B1

s

(a)

s

(b)

s

(c)

GMs’ IDs
000 not assigned
001
010
011
100
101
110
111

B2 B0B1 B2 B0B1

= ======= = ====

0 1 0 0 1 0 0 0 1

B0B2 B1B2

0 0 0 0

Fig. 1. Examples of access trees.

Overview of BGKM: BGKM is designed to improve the
performance of existing BES solutions in communication,
storage, and computation aspects. To this end, BGKM
extends CP-ABE solutions and combines the group man-
agement techniques used by FT solutions. CP-ABE allows



any user to construct an access control tree (e.g. trees in
Figure 1) and perform encryption, so that only receivers
who satisfy the access control tree can decrypt the message.
However, our extension will enable the GC as the only
source to encrypt a message.

To demonstrate the basic construction of BGKM, we
present a toy example for a group containing 7 GMs.
Each GM is assigned a unique binary ID, from 001 to
111 (suppose 000 is not assigned in this example). For
each GM, GC generates a set of secrets, i.e., a private key
consists of multiple private key components, and a unique
private key component is mapped to each bit position in ID.
For example, if a GM’s ID B2B1B0 is 010, three private
key components are mapped to bits: B2 = 0, B1 = 1,
B0 = 0, respectively. Note that, 1) although GM 001 has
the same bit assignment as GM 010 at the leftmost bit
B2, the private key components mapped to the first bit are
different (please see section II-B for details); 2) GC does
not need to store any GMs’ private keys. Based on assigned
ID and distributed private keys, each GM can be uniquely
identified by an access control tree, e.g., the access control
tree B2 = 0 ∧ B1 = 1 ∧ B0 = 0 as shown in Figure
1(a) is only satisfied by GM 010. Now, suppose we want
to communicate with a group of GMs such as 010 and
001, the GC can simply combine two access control trees
by adding a ∨ operator as shown in Figure 1(b). However,
the complexity of combined access control tree is tightly
bounded to Θ(l · log(n)), where l is the size of group and
n is the size of ID space. To reduce the complexity of the
access tree, we can further reduce the access control tree
from 6 leaves to 4 leaves as shown in Figure 1(c) using the
Boolean Function Minimization (BFM) techniques [22], if
we consider the 000 as do not care (i.e., no group member
has been assigned as 000). In this way, only 010 and 001
can satisfy the access tree and use extended CP-ABE to
decrypt the DEK s at the root. Through this example, we
showed that the GC can construct an access tree based
on GMs’ IDs. Thus, the research focus is really how to
construct access trees based on known GMs’ IDs and how
to integrate the GM identity management and the extended
CP-ABE schemes.

BGKM scheme achieves high efficiency in that: (1) The
communication overhead is O(log(n)) for revoking single
GM, and O(log(n) · log(m)) for revoking multiple GMs
contrasting to previous broadcasting solutions, which is
bounded by O(m 1

2 ) [3], [4], [6], where n is the ID space
size and m is the number of GMs in the group. More-
over, we proposed a modified CP-ABE algorithm, which
further reduce a key update message by approximately
50%; (2) The storage overhead for GC can be as low

as Θ(1) contrasting to previous solution O(m 1
2 ) [3], [4],

[6]. The storage overhead for a GM is O(log(n)); (3)
The computation overhead for encryption and decryption
is O(log(n) · log(m)). Moreover, BGKM scheme fulfills
the group forward/backward secrecy, and it is resilience
to colluding attacks. In addition to the performance and
security gain, BGKM is flexible in that it does not just be
restricted for broadcast encryption applications. By slightly
twisting the protocol, it also can support secure many-to-
many group communications, and hierarchical data access
control.

We must note that we utilize the basic concept and con-
struction of CP-ABE and borrow some definitions from CP-
ABE, such as attributes and access control tree. However,
our solution is quite different from CP-ABE in several
aspects. First, BGKM only allows the GC to encrypt a
message, while every member, even a non-group member
can encrypt a message by using CP-ABE. Thus, BGKM is
suitable for the control purpose of group formations and is
resilient to impersonation attacks and can prevent malicious
users from impersonating the GC. Second, we proposed a
modified construction of CP-ABE which reduces the size
of a ciphertext by approximately 50%.

A. Paper Organization

The rest of this paper is organized as follows. Section II
presents notations, and a simplified but sufficient version of
CP-ABE and the attack model. We present detailed BKGM
in Section III. In Section IV, we show the construction for
message compression in BGKM scheme and discuss the
performance of BGKM scheme. Finally, we conclude our
work in Section VI.

II. SYSTEM AND MODELS

A. Notations

Notations used in the rest of paper are presented in the
following table.

Symbols Descriptions
U the ID space
G the broadcasting group includes all GMs
J the set includes all joining GMs
L the set includes all leaving GMs
CS the complementary set of S.
a one GM
n Size of ID space
b number of bits in ID, i.e., b = log(n)
m number of GMs in G
A attribute
S set of attributes possessed by a GM



B. Basics of Ciphertext Policy Attribute Based Encryption

In CP-ABE [2], a trusted Private Key Generator (PKG)
computes a unique set of private key components for each
user with respect to their publicly known attributes. For
example, attributes are meaningful, such as faculty, student,
computer science department, etc. Although two users
may share the same attributes, the private key component
associated with each attribute are distinct. Moreover, private
key components belongs to different user is incompatible
and thus cannot be used together. Thus, collusion attacks
are prevented. For encryption, the encrypter must specify
an access tree T = (A,O) composted by a set of
attributes A = {A1, ..., Ak} as leaves and a set of logical
operators O = {∨,∧} as internal nodes. Every internal
operator represents a secret sharing threshold with respect
to the number of attributes as children of that particular
operator. The encryption operation is to split a DEK from
the root of a given T in a top-down fashion using secret
sharing scheme. The decryption is just the opposite to
the encryption operations in a bottom-up fashion by using
shares to recover the secret at the root position. A user
can decrypt if and only if his attributes can satisfy the
given access tree and reveal the DEK at the root. Here,
we present the basic construction of CP-ABE presented in
[2]. Particularly, we use index(x) to return the index of
x as a child of its parent and use parent(x) to return
the parent node of x. CP-ABE is constructed based on
bilinear map e : G0 × G0 → G1 of prime order p with a
generator g. This bilinear map has the following properties:
e(P a, Qb) = ê(P, Q)ab,∀P, Q ∈ G0,∀a, b ∈ Z∗p. In
addition, hash function H1 : {0, 1}∗ → G0 is also required.
CP-ABE scheme consists of four fundamental algorithms:
Setup, Encrypt, KeyGen and Decrypt. We describe these
algorithms at an abstract level, for detailed description of
CP-ABE, please refer to [2].
Setup The PKG generates two random numbers α, β ∈ Zp

and master key MK = {β, gα}, which are kept privately.
It then publishes the following system parameters:
Para = {e,H1,h = gβ,u = e(g,g)α}.
KeyGen(Para, MK,S) The key generation algorithm
will take a set of attributes S of a user as inputs and output a
private key SK including multiple private key components
associated with each attribute.
• Chooses random values r ∈ Zp and rj ∈ Zp for each

attribute j ∈ S.
• Then computes the key as SK = (D =

g(α+r)/β;∀j ∈ S : Dj = grH1(j)rj ;D′
j = grj ).

Note that in the Keygen algorithm, the random number
r is unique for each user. Thus it can guarantee that: 1)
even if two users share some common attributes, their

corresponding private key components are different; 2)
private key components from different users are embedded
with different rs, and thus they cannot be used together in
the Decrypt algorithm.
Encrypt(Para, M, T ) The encryption algorithm encrypts
a message M using the access tree T and Para.

• Chooses a polynomial qx for each node x ∈ T
(including leaves).

– Starts from the root node R, for each node x in
the tree, sets the degree dx of the polynomial qx

to be one less than the threshold value kx of x,
thus dx = kx − 1; chooses a random s ∈ Zp

as the top-level secret and sets qR(0) = s, then
chooses dR points as secrets (qR(0)) for lower
level polynomials.

– For any other node x, it sets qx(0) =
qparent(x)(index(x)) and chooses dx other points
randomly to completely define qx.

• Let Y be the set of leaf nodes in T . The ciphertext is
then constructed by giving the tree access structure
T and computing: CT = {T ; C̃ = Mus;C =
hs;CY = {∀y ∈ Y : Cy = gqy(0)};C ′

Y = {∀y ∈
Y : C ′

y = H1(y)qy(0)}}.

Using CP-ABE, any user can encrypt a message because
Param and T is publicly known. However, we need to
restrict that only the GC can encrypt a message in BGKM.
To this end, we changed the CP-ABE and make h = gβ

and u = e(g,g)α in the setup procedure only known by the
PKG (or GC in BGKM). This modification is viable and
will not downgrade the security strength of our solution,
since these factors are only used in Encryption, but not in
Decryption.
Decrypt(CT, SK) For simplicity, we just define a function
DecryptNode(CT, SK, x) that takes as input a ciphertext
CT , a private key SK , which is associated with a set S
of attributes, and a leaf node x from T . If i ∈ S, then
DecryptNode(CT, SK, x) = e(Dx,Cx)

e(D′x,C′x)
= e(g, g)rqx(0);

else, DecryptNode(CT ;SK;x) = ⊥. For the complete
description of Decryption algorithm, please refer to Ap-
pendix.

C. Attack Models

We assume an attacker 1) can be a GM or a non-GM
(i.e., one to be revoked or one to join a group); 2) can
receives and stores all transmitted messages. We assume
that no attackers can break the security of CP-ABE with
any reasonable probability by solving hard problems of
elliptical curves based cryptography, cryptographic hash
functions, and symmetric encryption/decryption functions.



III. BROADCASTING GROUP KEY MANAGEMENT

(BGKM)

BGKM requires that each GM is identified by a unique
binary string ID: Bb−1Bb−2...B0, where B ∈ {0, 1}. The
ID is assigned by the GC when a GM joins the group.
Each GM is also uniquely identified by a set of attributes
S = {Ai,Bi

|i ∈ {0, 1, . . . , b − 1}}. An attribute Ai,Bi

denotes ”the ith bit of ID is Bi” as illustrated in Figure
2. For a group, the total number of attributes is 2 log n
when the length of an ID is b; that is, one bit position
maps two attributes (one for value 0 and one for value 1).
For example, B2 = 1 maps to attribute A2,1 and B2 = 0
maps to attribute A2,0. As shown in the figure, the attributes
belongs to a GM can be represented in a tree structure (note
that this tree is different from the access tree presented in
Figure 1). The attributes of a GM can be represented by
links from the root down to the leave that represents a GM.
Thus, each GM will have at least one attribute which is
different from other GMs.

Fig. 2. An illustration of attribute allocation in a 3-bit ID space.

In addition to the hash function H1, BGKM defines
another hash function H2 = {0, 1}x, where x is the key
length of a DEK. We denote the encryption of message
M using a shared key K as {M}K ; additionally, the
encryption of M using CP-ABE with an access policy T
is denoted as {M}T .

A. System Setup

The GC is a trusted authority and it generates the
following parameters:

1) Group Public Parameter: GP =
{G0,G1, e, g,H1,H2}.

2) Group Encryption Parameter: EK = {h =
gβ, e(g, g)α}. EK is only known to the GC.

3) Group Master Key: MK = {β, gα}. MK is only
known to the GC.

The parameters h = gβ, e(g, g)α are publicly known in
CP-ABE. However, in BGKM is in EK and only known

to the GC. We denote the encryption as:

Encrypt(GP, EK,M, T ). (1)

B. Join

When a set of GMs, denoted by J , join the group,
they need to setup a secure channel with GC, who checks
whether each GM is authorized to join. For each accepted
GM a ∈ J , GC assigns a unique ID Ba

b−1B
a
b−2...B

a
0 and

a set of attributes Sa = {Ai,Ba
i
|i ∈ {0, 1, . . . , b− 1}}.

To preserve group backward secrecy, i.e., a new GM
should not have access to data that were transmitted before
joining the group, GC renews the DEK to K ′ and broadcast
{K ′}K , where K is the current DEK. Then the GC runs
SKa = KeyGen(MK,Sa) for each GM a ∈ J . Finally,
GC sends the private key SKa and K ′ to GM a through
a secure channel. In the join operation, GC only needs to
broadcast one message, i.e., {K ′}K , for multiple joining
GMs.

C. Leave

We present a key update scheme that updates all the
remaining GMs’ private keys. Then we present BGKM
leave scheme and show how it works with Boolean function
minimization (BFM) [22].

1) Key Update: For a set of leaving GMs, denoted by L,
GC needs to update the {MK, EK} as well as the private
key of each remaining GM a ∈ G \ L. To perform key
updates, GC first changes MK ′ = {β, gα′} and EK =
{h = gβ, e(g, g)α′}, where α′ is randomly selected in Zp.
Then, GC broadcasts an encrypted key update factor g

α′−α
β .

Note that the key update factor is encrypted and should
NOT be decrypted by any a ∈ L. How to encrypt the key
update factor is presented in Sections III-C.2 and III-C.3.

Each a ∈ G \ L updates its private key SKa and DEK
based on the key update factor g

α′−α
β . The original private

key is SK = (D = g(α+r)/β;∀j ∈ S : Dj = gr ×
H1(j)rj ;D′

j = grj ). The update factor only affects D.
The new D can be updated by the following method:

D · g α′−α
β = g

α+r
β · g α′−α

β

= g
α+r+α′−α

β

= g
α′+r

β

In this way, each a ∈ G \ L update their DEK K ′ simply
by compute K ′ = H2(g

α′−α
β ).

2) Leave without using BFM: Here, we present the GM
leave operations without using BFM, which will help us
to understand the leave operations with BFM presented in
the following section. We first consider that only one GM
leaves the group. We assume that the leaving GM a’s ID is



Ba
b−1B

a
b−2...B

a
1Ba

0 . We can define the complementary set
of a to be C{a} = {B′

b−1B
′
b−2...B

′
1B

′
0| ∃b:B′

b−1=Ba
b−1}.

Since the ID is represented in binary form, we have Ab,1 =
Ab,0. Then, we can represent the ID of a leaving GM a by

T = (Ab−1,Ba
b−1

) ∧ (Ab−2,Ba
b−2

) ∧ ...(A1,Ba
1
) ∧ (A0,Ba

0
).
(2)

T = (Ab−1,Ba
b−1

) ∨ (Ab−2,Ba
b−2

) ∨ ...(A1,Ba
1
) ∨ (A0,Ba

0
).
(3)

Using De Morgan’s law we can deduce (3) from
(2). Obviously, G/{a} ⊆ C{a}. Thus, to broad-
cast an encrypted key update factor, GC can perform
Encrypt(GP, EK, , g

α′−α
β , T ) using (1). This message

can be decrypted by ∀b ∈ G/{a}. For example, if GM
010 leaves the group, T = (A2,1) ∨ (A1,0) ∨ (A0,1). In
this way, we can guarantee that all the remaining GMs can
decrypt the key update factor and update the private key as
well as DEK, as presented in the section III-C.1.

The operation of multiple leave can be performed similar
to single leave. ∀a ∈ L, GC can derive an access policy
that represents the complementary set C{a}, as mentioned
above. Then, GC can represent the intersection of all these
complementary sets by constructing a three-level access
control tree. The top level is a ∧ gate and the children of this
∧ gate are subtrees representing the complementary set of
all leaving GMs. If there are l leaving GMs, we denote the
ith GM’s ID as Bi

b−1B
i
b−2...B

i
1B

i
0, where 0 ≤ i ≤ l − 1.

Using (3), we represent T i as the access policy tree to
exclude ith GM, then we can represent the overall access
control tree T as:

T = T 0 ∧ . . . ∧ T l. (4)

GC then can broadcast Encrypt(GP, EK, g
α′−α

β , T ).
3) Leave with BFM: Using (4), the number of attributes

equals l log n, where l is the number of leaving GMs. Here,
we demonstrate how to use BFM to reduce the total number
of attributes used in the access control tree.

We borrow from the results of logical design to our
construction of BGKM. First, we define some of the terms
we use in subsequent discussions.

• Literal: A variable or its complement, e.g. B1, X1,
X2, X2, etc.

• Product Term: Series of literals related by AND gate,
e.g. X2X1X0.

• Sum Term: Series of literals related by OR gate, e.g.
X2 + X1 + X0.

• Sum-of-Product Expression (SOPE): Series of Product
Terms related by OR gate, e.g. X2X1X0 + X2X1.

Formally, we define the boolean membership
functions f(Xb−1, Xb−2, . . . , X1, X0) and

f ′(Xb−1, Xb−2, . . . , X1, X0), both of which are
in the form of SOPE and have b variables.
For example, if the set of leaving GMs L =
{001, 010, 101} and G \ L = {011, 111}, the
f(X2, X1, X0) = X2X1X0 + X2X1X0 + X2X1X0

and the f ′(X2, X1, X0) = X2X1X0 + X2X1X0. The
following properties of membership functions hold:

f(Ba
b−1, B

a
b−2, . . . , B

a
1 , Ba

0 ) =
{

0 iff a ∈ CL

1 iff a ∈ L

f ′(Ba
b−1, B

a
b−2, . . . , B

a
1 , Ba

0 ) =
{

0 iff a ∈ CG/L

1 iff a ∈ G/L

The GC runs the Quine-McCluskey algorithm [22] to
reduce f and f ′ to minimal sum-of-product expression
fmin = E0 + . . . + EL and f ′min = E′

0 + . . . + E′
L′ ,

respectively, in which the term E uses product term. In
each of the computations, we can allow do not care values
on the U/G, which further reduces the size of both f and
f ′. After calculating fmin and f ′min, GC chooses the one
with least number of literals, i.e., min{fmin, f ′min}. For
example, 011, 101, 100 are leaving GMs, and 001, 010,
110, 111 are remaining GMs, and 000 is never assigned.
With do not care value 000 considered, fmin can be
reduced to X2X1X0 + B2X1 and f ′min can be reduced to
X2X0 +X2X1 +X2X1. We can find that fmin contains 5
literals and f ′min contains 6 literals. Thus, fmin is selected.

If fmin = E0+. . .+EL contains less numbers of literals,
GC calculates fmin, which will be the product-of-sum form
according to De Morgan law, i.e., fmin = E0 · · ·EL, in
which E will be the sum of negated literals in E. Thus,
the fmin represents a three-level access control tree, i.e.,
a ∧ gate at the top and each child is a two-level subtree
connected by a ∨ gate. Let Tl denote a two-level access
control tree, whose top node is a ∨ gate and each leaves
are attributes corresponding to the literals occurred in El.
For example, if El = X2 + X1 + X0, then Tl = A2,1 ∨
A1,0 ∨A0,0. The three-level access policy is:

T0 . . . ∧ . . . TL′ .

One the other hand, suppose f ′ = E′
0+. . .+E′

L′ contains
less numbers of literals. GC can use a three-level access
policy with a ∨ gate at the top and each child is a two-level
sub-tree connected by a ∧ gate. Let T ′l denote a two-level
access control tree, whose top node is a ∧ gate and leaves
are attributes corresponding to the literals occurred in E′

l .
For example, if El = X2X1X0, then T ′l = A2,1 ∧A1,0 ∧
A0,0. The three-level access control tree is:

T ′0 . . . ∨ . . . T ′L′ .

GC finally encrypts and broadcasts the key update factor



using the three-level access control tree that has the least
number of attributes.

D. Security Properties of BKGM

BGKM scheme provides the following security proper-
ties:

Lemma 1 (Group Backward Secrecy): GBKM provides
group backward secrecy.

Proof Sketch 1: When new GMs join the group, a new
random DEK K ′ is encrypted ({K ′}K), and then dis-
tributed through broadcasting. Also, suppose the private
keys of joining GMs are generated under MK ′ = {β, gα′}.
All the previous key update messages are encrypted using
(EK = {h = gβ, e(g, g)α}). Given 1) randomness of K ′

and α′; 2) security of symmetric encryption and CP-ABE,
the group backward secrecy is satisfied.
¤

Lemma 2 (Group Forward Secrecy): GBKM provides
group forward secrecy.

Proof Sketch 2: When GMs leave the group, GC updates
the system parameters to MK ′ and EK ′ using a new
random α′ and broadcast the encrypted g

α′−α
β to all the

GMs in G\L. All remaining GMs will update their private
keys and a new DEK using the key update factor g

α′−α
β .

The leaving GMs cannot decrypt future encrypted messages
since the decrypting parameter D is changed. Even if a
leaving GM stores all encrypted key update messages and
join the group again, he or she cannot decrypt any previous
key update message, since these messages are encrypted
under different system parameters, which is unknown to
the GM. Moreover, knowing the key update factor g

α′−α
β to

derive gα and β is considered to solve a hard problem. This
property will ensure the whole key management scheme is
secure, and thus no GM can compromise the GC’s master
keys.
¤

Lemma 3 (Collusion Resistance): GMs cannot collude
to decrypt broadcasted messages targeted to other GMs.

Proof Sketch 3: The proof is the same as shown in [2].
¤

Lemma 4 (Key Update Authenticity): Only GC can
broadcast a legal key update message.

Proof Sketch 4: GMs cannot perform encryption and
produce legitimated ciphertexts, since EK is only known
by the GC. If we assume CP-ABE is secure, EK cannot be
recovered from ciphertext by any attacker. Without knowing
EK , the probability of Non-GCs constructing a legitimated
ciphertext is 1

p2 , where p is a large prime number.

IV. PERFORMANCE IMPROVEMENT AND ASSESSMENTS

In this section, we first present how to reduce the cipher-
text size and assess the performance of BGKM compared
to previous solutions.

A. Reducing the Size of Ciphertext

In this section, we present an improved encryption
scheme, which can reduce the ciphertext size by 50%
compared to CP-ABE scheme.

The message size of CP-ABE ciphertext linearly depends
on the number of attributes in the access control tree. In
[12], the authors observed that, empirically, a CP-ABE
ciphertext encrypted using an access control tree with one
attribute is roughly 630 bytes and each additional attribute
adds roughly 250 to 300 bytes. This is due to the fact that,
for each attributes in access control tree, two members
in G0 are included in ciphertext, i.e., CY = {Cy =
gqy(0)|∀y ∈ Y } and C ′

Y = {H(att(y))qy(0)|∀y ∈ Y }.
The bytes overhead is non-trivial in the network with
limited bandwidth.

Note that the function H1 : {0, 1}∗ → G0 hashes
arbitrary strings to a member in G0. We can denote the
hashed member to be gt. GC and GMs cannot derive t,
given the hardness of discrete logarithm problem in G0 and
one-way nature of H1. In our approach, the attributes in the
system are in the fixed set {Ai,B|i ∈ Zb, B ∈ {0, 1}} with
size of 2n. Thus, arbitrary attributes are not required and
we can remove the hash function H1. Instead, GC randomly
selects 2n large prime numbers in Zp, where p is the group
size of G0. We can denote the set of random numbers to
be R = {tAi,B

|i ∈ Zb, B ∈ {0, 1}} and R can be added
to group master keys.

In particular, We also modify the KeyGen, Encrypt and
Decrypt function as follows:
KeyGen(MK,S, T )

The generated private key is SK = {D =
g(α+r)/β;∀j ∈ S : Dj = gr/tj}.
Encrypt(P, M, T )

The encrypted ciphertext is CT = {T ; C̃ =
Me(g; g)αs;C = hs;C ′

Y = {C ′
y = gty·qy(0)|∀y ∈ Y }}.

Note that we remove the CY from the ciphertext in original
CP-ABE scheme.
Decrypt(P, CT, SK)

Then the modified decryption for a leaf node
is DecryptNode(P, CT, SK, j) = e(Dj, C

′
j) =

e(gr/tj , gtj ·qj(0)) = e(g, g)r·qj(0).
In a summary, the original CP-ABE requires 2 group

members in G0 for each attribute to construct a ciphertext,
whereas our solution only requires 1 group member in G0.
Thus, we can reduce the size of ciphertext by roughly 50%.



From security perspective, this modified version of CP-
ABE is still collusion-resistant, given the randomness of
number r for each user.

B. Performance Assessment

We analyze the performance of our BGKM scheme and
compare it with several previous solutions: flat table scheme
(FT) [11], [36], subset-difference scheme (Subset-Diff)
[14], BGW broadcasting encryption [6], access control
polynomial (ACP) scheme [38], and tree based schemes
(e.g., OFT [33], LKH [37], and ELK [26]). The per-
formance assessments are assessed in terms of storage
overhead (group data to be stored on the GC and GM),
communication overhead (number and size of messages to
be broadcasted in join and leave operation) and computation
overhead (number of cryptographic operations needed in
encryption and decryption). In this section, we focus on the
comparison between BGKM and another three broadcasting
encryption schemes, i.e. Subset-Diff scheme, ACP scheme
and BGW scheme. We denote the size of ID space to be n,
the number of current GMs to be m, the number of leaving
GMs to be l. Also, for the Subset-Diff scheme, t denotes
the maximum number of colluding users to compromise
the ciphertext. The summary of performance assessment is
presented in Table I.

1) Storage Overhead: In BGKM, the storage overhead
for GC is Θ(m) (when GC store the IDs of all current
GMs). The storage overhead is Θ(log n) for GC, since GM
stores a private key component for each bit in its ID.

2) Communication Overhead: In BGKM, the join and
leave operation only require 1 message, regardless of the
number of joining or leaving GMs.

The message size is Θ(1) in the join operation. Our
discussion focuses on the complexity of leave operation.
In Subset-Diff scheme, the communication overhead grows
linearly with the maximum number of colluding users to
compromise the ciphertext. In ACP scheme, the size of
message depends on the degree of access control poly-
nomial, which equals to the number of current GMs plus
the number of joining GMs or the number of current GMs
minus the number leaving GMs. Thus, the message size is
O(m). For BGW scheme, the message size is O(m 1

2 ) as
reported in [6].

In BGKM, the size of message linearly depends on the
number of leafs (attributes) in the access control policy
tree. We utilize BFM to minimize number of literals in the
minimized SOPE, and thus, reduce the number of leaves in
the access control tree. In [32], the authors derived an upper
bound on the average number of products in the minimized
SOPE. According to [12], the number of product expression
after the Boolean function minimization is about O(log m).

Given that each product expression contains log n literals at
most, the message size of BGKM is O(log n · log m). For
single leave, the message is encrypted with access control
tree with log n attributes, i.e., O(log n).

3) Computation Overhead: For shared key or hash based
group key management schemes, the computation overhead
is trivial for decryption and encryption. On the other hand,
the asymmetric cryptographic operations are non-trivial.
Moreover, some systems require large group (e.g. m or
n is 216, 232, . . .). In ACP scheme, the author reports
that the encryption needs O(m2) finite field operations;
in the BGW scheme, the encryption and decryption require
O(m) operations on the bilinear group, e.g., a group of
Elliptic curve points, which is heavier than finite field
operations [16], [29]. In BGKM, the encryption requires
1 pairing operation and log n operations on the bilinear
group, and the decryption requires log n pairing operations
and log m finite field operations. Although the problem of
minimizing SOPE is NP-hard, efficient approximations are
widely known. Thus, we can conclude that BGKM is much
more efficient than ACP and BGW when the size of group
goes large.

V. RELATED WORK

Group key management (GKM) has been investigated
intensively in centralized group key distribution schemes
[9], [20], [21], [25], [27], [37] and decentralized (contrib-
utory) key agreement schemes [1], [18], [19], [10], [13],
[30], [34], [35]. Due to richness of research publications,
we can hardly list all the related researches in this area. We
refer to [24], [28] as two excellent surveys.

Tree-based rekey algorithms have gained popularity, in-
cluding, notably, Logical Key Hierarchy (LKH) [37], One-
Way Function Tree (OFT) [33], One-way Function Chain
Tree [7], Hierarchical α-ary Tree with Clustering [8] and
Efficient Large-Group Key (ELK) [26]. These algorithms
provide different tradeoffs among storage, computation and
communication overheads. Compared to these schemes,
flat table (FT) scheme achieves high efficiency in terms
of storage, computation and communication overheads.
In FT schemes [11], [36], there are total 2 log n KEKs:
{ki,b|i ∈ {0, 1, . . . , 2 log n − 1}, b ∈ {1, 0}} and log n
symmetric KEKs are distributed to each GM, with each
KEK corresponding to one bit in ID. Despite its efficiency,
FT scheme is vulnerable to collusion attacks. To prevent
the collusion attacks, Cheung et al. [12] proposed CP-
ABE-FT to implement the FT using CP-ABE. CP-ABE-
FT utilizes a periodic refreshment mechanism to ensure
forward secrecy. However, it has several drawbacks: 1) if
the ID of a revoked GM is re-assigned to another GM
before the refreshment, the revoked GM can regain the



TABLE I

COMPARISON OF STORAGE OVERHEAD AND NUMBER OF MESSAGES IN DIFFERENT GKM SCHEMES.

Scheme Storage Communication Overhead Computation Overhead
GC GM join single leave multiple leave encryption decryption

BGKM Θ(m) Θ(log n) Θ(1) O(log n) ≈O(log n · log m) O(log n) O(log n)
FT Θ(m + log n) Θ(log n) Θ(log n) O(log n) ≈ O(log m)

Subset-Diff Θ(m) Θ(log2(n)) N/A O(t · log2(t) · log m) O(t · log2(t) · log m)

BGW O(m
1
2 ) O(m

1
2 ) N/A O(m

1
2 ) O(m

1
2 ) O(m) O(m)

ACP O(m) O(1) O(m) O(m) O(m) O(m2) Θ(1)
Tree based schemes Θ(m) Θ(log m) Θ(1) Θ(log m) O(l · log m)
n: the ID space; m: the number of group members; l: the number of leaving members; t: maximum number of colluding users to compromise the ciphertext.

access to group data and then the group forward secrecy is
compromised; 2) outsiders can impersonate GC to disturb
the rekey process by sending CP-ABE ciphertexts.

In [14], the authors first formally explored the broad-
casting encryption. They presented a solution for m
users, which is secure against collusion attacks of t
users. The communication overhead of this scheme is
O(t log2 t log m). In [6], Boneh et al. proposed a collusion-
resistant broadcasting encryption scheme. In this approach,
the storage, communication and computation overhead
grows linearly with the increase of the number of users.

ID based Encryption (IBE) [5] greatly facilitate the man-
agement of public key. One improvement to the ID based
cryptography is pseudonym-based cryptography [17](PBC).
In PBC, each user is free to generate pseudonym and
corresponding key for herself. Attribute based encryption
was first proposed by A. Sahai and B. Waters in [31].
In recent years, encrypting data using attributes to enforce
fine-grained access control has draw a lot research interests.
V. Goyal et al. proposed an attribute-based encryption for
fine-grained access control in [15]. In this scheme, each
ciphertext is attached with certain descriptive attributes and
each user’s private key is embedded with an access control
policy. J. Bethencourt et al. [2] proposed the ciphertext pol-
icy attribute based encryption, in which encrypter specifies
an access control policy to confine who can decrypt the
ciphertext .

VI. CONCLUSION

In this paper, we proposed a novel BGKM scheme.
By utilizing the basic construction of ciphertext policy at-
tribute based encryption and flat table identity management,
BGKM greatly improved performance in communication
(O(log n) for one addition and O((log n)(log m)) for
bulk additions), storage (O(log n) for each group member),
and computation (O((log n)(log m)) for both encryption
and decryption), where n is the ID space size and m
is the number of GMs in the group. Moreover, BGKM
scheme provides group forward/backward secrecy, and it
is resilience to colluding attacks.

The future work of this paper would be considered in
the following directions: 1) since ciphertext is large of
the original CP-ABE scheme, reducing the ciphertext size
requires more research efforts; 2) this work is subjected to
single failure problem when GC fails, we can investigate
distributed group management infrastructure to improve the
robustness of BGKM.

REFERENCES

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, JL Schultz, J. Stanton, and G. Tsudik.
Secure group communication using robust contributory key agreement.
Parallel and Distributed Systems, IEEE Transactions on, 15(5):468–480,
2004.

[2] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy Attribute-
Based Encryption. Proceedings of the 28th IEEE Symposium on Security
and Privacy (Oakland), 2007.

[3] D. Boneh, C. Gentry, and B. Waters. Collusion Resistant Broadcast
Encryption with Short Ciphertexts and Private Keys. Advances in
Cryptology-Crypto 2005: 25th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
2005.

[4] D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and
revoke system. Proceedings of the 13th ACM conference on Computer
and communications security, pages 211–220, 2006.

[5] Dan Boneh and Matt Franklin. Identity-based encryption from the weil
pairing. SIAM Journal of Computing, 32(2):586–615, 2003.

[6] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant
traitor tracing with short ciphertexts and private keys. pages 573–592,
2006.

[7] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas,
I.B.M.T.J.W.R. Center, and Y. Heights. Multicast security: a taxonomy
and some efficient constructions. INFOCOM’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, 2, 1999.

[8] R. Canetti, T. Malkin, and K. Nissim. Efficient Communication-
Storage Tradeoffs for Multicast Encryption, Advances in Cryptology-
Eurocrypt99. Lecture Notes in Computer Science, 1592:459–474, 1999.

[9] G. Caronni, M. Waldvogel, D. Sun, and B. Plattner. Efficient security
for large and dynamic multicast groups. Proceedings of the IEEE 7th
International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE98), 1998.

[10] H. Chan, V.D. Gligor, A. Perrig, and G. Muralidharan. On the Distribu-
tion and Revocation of Cryptographic Keys in Sensor Networks. IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING,
pages 233–247, 2005.

[11] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, D. Saha, I.B.M.T.J.W.R.
Center, and Y. Heights. Key management for secure lnternet multicast
using Boolean functionminimization techniques. INFOCOM’99. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE, 2, 1999.

[12] L. Cheung, J. Cooley, R. Khazan, and C. Newport. Collusion-Resistant
Group Key Management Using Attribute-Based Encryption. Technical
report, Cryptology ePrint Archive Report 2007/161, 2007. http://eprint.
iacr. org.



[13] L.R. Dondeti, S. Mukherjee, and A. Samal. Disec: A distributed frame-
work for scalable secure many-to-many communication. Proceedings of
The Fifth IEEE Symposium on Computers and Communications (ISCC
2000), 2000.

[14] A. Fiat and M. Naor. Broadcast Encryption, Advances in Cryptology-
Crypto93. Lecture Notes in Computer Science, 773:480–491, 1994.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. Proceedings of
the 13th ACM conference on Computer and communications security,
pages 89–98, 2006.

[16] D.R. Hankerson, S.A. Vanstone, and A.J. Menezes. Guide to Elliptic
Curve Cryptography. Springer, 2004.

[17] Dijiang Huang. A Pseudonym-Based Cryptography for Anonymous
Communications in Mobile Ad-hoc Networks. Special Issue on Cryp-
tography in Networks, International Journal of Security and Networks
(IJSN), 2007.

[18] Dijiang Huang and Deep Medhi. A key-chain-based keying scheme
for many-to-many secure group communication. ACM Trans. Inf. Syst.
Secur., 7(4):523–552, 2004.

[19] Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key agreement.
ACM Transactions on Information and System Security (TISSEC),
7(1):60–96, 2004.

[20] X.S. Li, Y.R. Yang, M.G. Gouda, and S.S. Lam. Batch rekeying for
secure group communications. Proceedings of the 10th international
conference on World Wide Web, pages 525–534, 2001.

[21] D. Liu, P. Ning, and K. Sun. Efficient self-healing group key distribution
with revocation capability. Proceedings of the 10th ACM conference on
Computer and communications security, pages 231–240, 2003.

[22] E.J. McCluskey. Minimization of Boolean functions. Bell System
Technical Journal, 35(5):1417–1444, 1956.

[23] A.J. Menezes. Handbook of Applied Cryptography. CRC Press, 1997.
[24] MJ Moyer, JR Rao, and P. Rohatgi. A survey of security issues in

multicast communications. Network, IEEE, 13(6):12–23, 1999.
[25] Wee Hock Desmond Ng, Michael Howarth, Zhili Sun, and Haitham

Cruickshank. Dynamic balanced key tree management for secure multi-
cast communications. IEEE Transactions on Computers, 56(5):590–605,
2007.

[26] A. Perrig, D. Song, and J. Tygar. ELK, A New Protocol for Efficient
Large-Group Key Distribution. IEEE SYMPOSIUM ON SECURITY
AND PRIVACY, pages 247–262, 2001.

[27] A. Perrig and JD Tygar. Secure Broadcast Communication in Wired and
Wireless Networks. Springer, 2003.

[28] S. Rafaeli and D. Hutchison. A survey of key management for secure
group communication. ACM Computing Surveys (CSUR), 35(3):309–
329, 2003.

[29] Archana Ramachandran, Zhibin Zhou, and Dijiang Huang. Computing
Cryptographic Algorithms in Portable and Embedded Devices. Portable
Information Devices, 2007. PORTABLE07. IEEE International Confer-
ence on, 25-29:1–7, 2007.

[30] M. Ramkumar and N. Memon. An efficient key predistribution scheme
for ad hoc network security. Selected Areas in Communications, IEEE
Journal on, 23(3):611–621, 2005.

[31] A. Sahai and B. Waters. Fuzzy Identity-Based Encryption. Advances in
Cryptology–Eurocrypt, 3494:457–473.

[32] T. Sasao. Bounds on the average number of products in the minimum
sum-of-products expressions for multiple-value input two-valued output
functions. Computers, IEEE Transactions on, 40(5):645–651, May 1991.

[33] A.T. Sherman and D.A. McGrew. Key Establishment in Large Dynamic
Groups Using One-Way Function Trees. IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, pages 444–458, 2003.

[34] M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman key distribution
extended to group communication. Proceedings of the 3rd ACM
conference on Computer and communications security, pages 31–37,
1996.

[35] B. Sun, W. Trappe, Y. Sun, and KJR Liu. A time-efficient contributory
key agreement scheme for secure group communications. Communica-
tions, 2002. ICC 2002. IEEE International Conference on, 2, 2002.

[36] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner. The Ver-
saKey Framework: Versatile Group Key Management. IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS, 17(9), 1999.

[37] C.K. Wong, M. Gouda, and SS Lam. Secure group communications
using key graphs. Networking, IEEE/ACM Transactions on, 8(1):16–30,
2000.

[38] X. Zou, Y.S. Dai, and E. Bertino. A Practical and Flexible Key Man-
agement Mechanism For Trusted Collaborative Computing. INFOCOM
2008. The 27th Conference on Computer Communications. IEEE, pages
538–546, 2008.

APPENDIX

We first define a function DecryptNode(CT, SK, x)
that takes as input a ciphertext CT , a private key SK ,
which is associated with a set S of attributes, and a node x
from T . If the node x is a leaf node then we let i = att(x)
and define as follows: If i ∈ S, then

DecryptNode(CT, SK, x)

=
e(Di, Cx)
e(D′

i, C
′
x)

=
e(gr ·H(i)ri , gqx(0))

e(gri ,H(i)qx(0))

=
e(gr, gqx(0)) · e(H(i)ri , gqx(0))

e(gri ,H(i)qx(0))
= e(g, g)rqx(0)

If i 6∈ S, then we define DecryptNode(CT ;SK;x) =
⊥.

We now consider the recursive case when x is a non-
leaf node. The algorithm DecryptNode(CT ;SK;x) then
proceeds as follows: For all nodes z that are children of x,
it calls DecryptNode(CT ;SK; z) and stores the output
as Fz. Let Sx be an arbitrary kx-sized set of child nodes z
such that Fz 6= ⊥. If no such set exists then the node was
not satisfied and the function returns ⊥.

Otherwise, we compute

Fx =
∏

z∈Sx

F
∆i,S′x(0)
z

=
∏

z∈Sx

(e(g; g)r·qz(0))∆i;S′x (0)

=
∏

z∈Sx

(e(g; g)r·qparent(z)(index(z)))∆i;S′x (0)

=
∏

z∈Sx

(e(g; g)r·qx(i)·∆i;S′x (0)

= e(g, g)rqx(0)

where i = index(z) and S′x = {index(z) : z ∈ Sx}
Now that we have defined DecryptNode, we can define

the decryption algorithm, which begins by simply calling
the DecryptNode function on the root node r of the
tree T . If the tree is satisfied by S we set A =
DecryptNode(CT ;SK; r) = e(g; g)rqR(0) = e(g; g)rs.
The algorithm decrypts by computing C̃/(e(C;D)/A) =
C̃/(e(hs; g(α+r)/β)/e(g; g)rs) = M


