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Abstract
We provide a provable-security treatment of the notion of a “robust” encryption scheme, namely

one where the decryption algorithm rejects when the “wrong” secret key is used. We provide formal
definitions of robustness under chosen-plaintext and chosen-ciphertext attacks (notions ROB-CPA
and ROB-CCA). We find that contrary to what seems intuitive, robustness —at least in combi-
nation with privacy and anonymity as required by applications— is actually rarely if ever present,
and obvious ways to confer it fail. We however provide general ways to efficiently confer ROB-CCA
without sacrificing other security properties, for both public-key and identity-based encryption. We
also show that a modified version of the Cramer-Shoup scheme is ROB-CCA. (The original scheme
is not even ROB-CPA.) We present applications to auctions, searchable encryption and anony-
mous wireless communication, including the first PEKS scheme secure against chosen-ciphertext
attacks in the standard model. We believe these results are important to clarify and help fill gaps
in the literature arising from the implicit use of a robustness property that until now lacked formal
definitions.

Keywords: Anonymity, identity-based encryption, searchable encryption.

1 Introduction

Suppose C is a public-key encryption (PKE) ciphertext obtained by encrypting a message M under
a public key pk0. We know that if C is decrypted using the secret key sk0 corresponding to pk0, the
result would be M . But what if we decrypt C using a secret key sk1 corresponding to a public key
pk1 6= pk0? Previous security notions for public-key encryption are silent about this. We will refer to
a scheme as “robust” —this is a rough formulation that we will refine and strengthen later— if the
result of this decryption is ⊥, meaning the decryption algorithm rejects. For identity-based encryption
(IBE), the notion is analogous; simply read “identity” in place of “public key” above.

Why should one care about robustness? Our interest in it was sparked by finding insecurities in
several PKE or IBE-using protocols whose cause is ultimately a lack of robustness in the underlying
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encryption scheme. Yet the works in question do not discuss, let alone define robustness. Rather,
designers seem to have the intuition that robustness is always present. And in fact this intuition is
quite natural. After all, what can you expect if you decrypt under the “wrong” key? As long as the
scheme satisfies a strong enough notion of privacy like IND-CCA, one would think that the result, if
not already ⊥, would certainly be “garbage”. Throw in some redundancy before encrypting, and we
should be done. Robustness, in short, should be “easy”.

This paper makes explicit the so-far implicit notion of robustness, defines it formally, and inves-
tigates provably achieving it. We find that contrary to the intuition presented above, robustness, at
least in combination with privacy and anonymity as required by applications, is actually rarely if ever
present, and obvious ways to confer it fail. We however provide ways to efficiently confer it without
sacrificing other security properties. As a consequence, we obtain several new applications and results,
in areas such as auctions, public-key encryption with keyword search (PEKS) [BDOP04, ABC+05],
and anonymous communication. But we believe that “naming” and provably achieving this so-far
under-the-covers notion of robustness is important beyond this, from the point of view of clarifying
and helping to fill gaps in the literature, and of making encryption more resistant to misuse.

Motivating applications. Before getting into specific applications or results, we believe we can give
some general insight into where and why robustness is important. Briefly, we believe that robustness is
an essential conjunct of anonymous encryption due to what we will call the anonymous identification
problem. To explain, first recall that there are two main security requirements for encryption. The
primary one is data privacy, as captured by notions IND-CPA or IND-CCA [GM84, RS92, DDN00,
BDPR98, BF03]. However, we are seeing an increasing number of applications [Sak00, BDOP04,
ABC+05] that rely on the anonymity of the encryption scheme. The latter asks that a ciphertext does
not reveal the public key or identity under which it was created and is captured by notions ANO-CPA
and ANO-CCA [BBDP01, ABC+05]. Our thesis, then, is that wherever one needs anonymity, one is
likely to need robustness too.

As a canonical example, suppose a wireless base station is broadcasting messages to its subscribers.
Each broadcast message has in fact a single intended recipient, but the broadcaster wishes to keep
the identity of this recipient hidden from eavesdroppers. Anonymous encryption [BBDP01, ABC+05]
will provide the required privacy. But then, how is the intended recipient to know which ciphertext is
intended for it? This is what we call the anonymous identification problem. The obvious (anonymity-
preserving) solution is to include the public key or identity of the recipient in the plaintext and have
recipients check this upon decryption. However, this does not work in general: there are (anonymous)
encryption schemes where it is possible for an adversary to create a ciphertext that multiple recipients
will accept. Robustness solves the problem. If the encryption scheme is robust, only the intended
recipient will, upon decryption, obtain a valid result, meaning one different from ⊥. (And the solutions
discussed above are, in this light, simply attempts to add robustness that did not work, again showing
that robustness is easily underestimated.) Thus, robust anonymous encryption enables anonymous
broadcast.

Let us briefly discuss some other applications. Here the anonymous identification problem does not
show up in a direct or obvious way, but we contend that, under the covers, that is really what is going
on. First, we show that robustness of the underlying IBE scheme is sufficient for the PEKS scheme
resulting from the IBE-to-PEKS transform of [BDOP04] to provide the consistency that was shown oth-
erwise to be lacking by [ABC+05]. Besides effectively validating the original transform of [BDOP04],
this enables us to obtain the first IND-CCA PEKS schemes without random oracles [BR93]. Second,
we present an attack on Sako’s auction protocol [Sak00] that stems ultimately from the strong lack of
robustness of ElGamal encryption. Our constructions fill the gap.

We remark that the above-mentioned applications require that the encryption scheme be not just
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robust but also anonymous. Specifically, privacy of the PEKS scheme resulting from the IBE-to-PEKS
transform of [BDOP04] requires anonymity of the underlying IBE scheme, as noted in [BDOP04] and
formally proved in [ABC+05]. And in Sako’s auction protocol [Sak00], a bid is an encryption of a
known message under a public key related to the bid value, so anonymity of the encryption scheme is
required for bid privacy. This supports our thesis that when anonymity is required, robustness often
is too.

Definition. The first step in a provable-security treatment of robustness, is of course, to provide
a formal definition of robustness. Our definition in Section 3 actually requires something stronger
than what we discussed above, namely that it is computationally infeasible for an adversary, given
a pair of independently-generated public keys, to produce a ciphertext valid under both of them. In
the IBE case, the role of the public keys is played by distinct identities of the adversary’s choice.
This strengthening is important for the security of the above applications. Our attack against Sako’s
protocol, for example, is based on a maliciously created ciphertext that decrypts correctly under any
secret key. A rogue wireless base station could use similar ciphertexts to obtain the list of subscribers
that are within reach; and when PEKS is used to filter encrypted email, such ciphertexts enable
spammers to bypass all filters. As is typical for encryption, we define a pair of notions ROB-CPA and
ROB-CCA.

Achieving robustness. Robustness is trivially achieved by appending to the ciphertext the public
key or identity of the intended recipient, and by checking for it upon decryption. This, however, is at
the expense of anonymity. As we noted above, many applications require that the encryption scheme
be not just robust but also anonymous (ANO-CPA or ANO-CCA). Given that we would also like to
have the usual data privacy (IND-CPA or IND-CCA), we conclude that we need encryption schemes
that provide the conjunction of the three properties, namely robustness, anonymity, and data privacy
all together. We now approach the task of building such schemes, beginning by looking at obvious
approaches and existing schemes.

One might think that robustness is implied by strong existing notions like IND-CCA, ANO-CCA or
non-malleability [DDN00]. In Section 4, we show by counterexample that even IND-CCA+ANO-CCA
(which implies non-malleabiblity [BDPR98, DDN00]) or plaintext awareness [BP04] do not imply
robustness.

Conceding that robustness is not already present, one might think it could be obtained by adding
redundancy to the encrypted data, in the form of a fixed constant or even the public key or identity,
before encrypting. The decryption algorithm rejects if the redundancy is absent. The intuition here is
that when one decrypts with the “wrong” secret key, the result is “random” and hence the redundancy
would be garbled and absent. We show that this is false by presenting examples of schemes which
fail to be robust even after redundancy is added. (Our examples are contrived but this is enough
to illustrate that the methods in question do not work in general.) In fact, in Section 4 we show
something even stronger and more general, namely that even addition of redundancy computed as any
function of the public key and message fails to confer robustness.

Consideration of specific schemes —we restrict attention, for the reasons discussed above, to ones
already known to be anonymous— also turns up bad news. There is no reason to expect schemes that
are only IND-CPA + ANO-CPA to be robust since the decryption algorithm may never reject, so we
focus on schemes that are IND-CCA and ANO-CCA. In the public-key domain, this mainly means
the Cramer-Shoup (CS) scheme, shown to be IND-CCA in [CS03] and ANO-CCA in [BBDP01], and
the DHIES scheme [ABR01], shown to be IND-CCA in [ABR01] and easily seen to be ANO-CCA.
Simple attacks show that neither is even ROB-CPA. (We will however be able to prove ROB-CCA
a simple modification of the CS scheme, see below. A similar modification of DHIES can be proved
ROB-CCA as well.)
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In Appendix B we show that neither of two popular IND-CCA-providing transforms, the Fujisaki-
Okamoto (FO) transform [FO99] in the random oracle model and the Canetti-Halevi-Katz (CHK)
transform [CHK04] in the standard model, yield robustness. Our counterexample for the FO transform
actually shows that robustness is not even implied by the strong notion of plaintext-awareness. We
note that the fact that neither of the transforms confers robustness generically does not exclude that
they may still do so for certain specific schemes. We show that this is actually the case for the Boneh-
Franklin IBE [BF01], which uses the FO transform to obtain IND-CCA security, and that it is not
the case for the Boyen-Waters IBE [BW06], which uses the CHK transform. That is, the former is
robust but the latter is not. The correctness definition of predicate encryption [KSW08] (which is a
generalization of IBE) includes a weak notion of robustness that only considers honestly generated
ciphertexts; the proposed scheme is not robust under our stronger definition.

Our transforms. We provide two general transforms that confer robustness on any given PKE
and IBE scheme, respectively, without sacrificing privacy or anonymity. Namely, for any ATK ∈
{CPA,CCA}, if the starting encryption scheme is IND-ATK and ANO-ATK, then the scheme resulting
from our commit-public-key transform and commit-identity transform is IND-ATK, ANO-ATK and
ROB-ATK.

The transforms use as a tool a (non-interactive) commitment scheme. Conferring ROB-CPA
requires that the commitment scheme satisfy the usual hiding and binding properties. Conferring
ROB-CCA requires that it additionally satisfy a weak form of non-malleability, but we show that the
required property, which we call copy resistance, is easily obtained. The transform is efficient: using
for example the commitment scheme of [DPP97], its overhead is just some symmetric cryptography
(universal and collision-resistant hashing), and otherwise one can use a standard discrete-log-based
commitment for an overhead of one exponentiation. Our transform and the above-mentioned instanti-
ations do not use random oracles, but we note that commitment with a random oracle (RO) is trivial,
so our transform is particularly efficient in the RO model.

As a result of these transforms we obtain the first IND-CCA+ANO-CCA+ROB-CCA PKE schemes
(with or without ROs) and the first IND-CCA + ANO-CCA + ROB-CCA IBE schemes without ROs.

Robustness of CS∗. As we indicated above, the Cramer-Shoup (CS) scheme [CS03] is not robust.
We could make it so via our transform, but we can do better. We modify the scheme slightly, removing
the pathological case of zero randomness that is the basis of the attack, and prove in Section 6 that the
resulting CS∗ scheme is ROB-CCA. Thus, in this case, robustness can be obtained at essentially zero
added cost. The result assumes only security —specifically, pre-image resistance— of the underlying
hash function; we do not assume DDH is hard. The proof combines ideas from the information-
theoretic part of the proof of [CS03] with some new ideas.

Applications. PEKS schemes [BDOP04, ABC+05] allow privacy-preserving filtering of encrypted
email. Boneh, Di Crescenzo, Ostrovsky and Persiano [BDOP04] present a transform —we call it
bdop-ibe-2-peks— that turns an IBE scheme into a PEKS scheme. The transform is IND-CPA-
conferring: if the IBE scheme is ANO-CPA then the PEKS scheme is IND-CPA [BDOP04, ABC+05].
However, Abdalla et al. [ABC+05] noted that the PEKS scheme can lack consistency, meaning the
filter can turn up false positives. They accordingly presented a modified transform new-ibe-2-peks
that was not only IND-CPA-conferring but also provided consistency. We, however, return to the
bdop-ibe-2-peks transform and show that the constructed PEKS scheme actually is consistent if the
underlying IBE scheme is robust. Besides validating the bdop-ibe-2-peks transform from [BDOP04],
this yields the first IND-CCA and consistent PEKS scheme without random oracles. This stems from
something else we show, namely that the bdop-ibe-2-peks transform is (not only IND-CPA but also)
IND-CCA-conferring: if the IBE scheme is ANO-CCA then the PEKS scheme is IND-CCA. (This is
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not true of new-ibe-2-peks.) Now an IND-CCA and consistent PEKS scheme without random oracles
can be obtained by for example starting from the Boyen-Waters ANO-CCA IBE scheme [BW06],
applying our above-mentioned transform to make it robust, and then applying bdop-ibe-2-peks.

We also show how the lack of robustness in the ElGamal encryption scheme leads to lack of fairness
in Sako’s auction protocol [Sak00]. Our attack, presented in Appendix F, enables an adversary, with
the help of a colluding auctioneer, to create a minimal winning bid, meaning a ciphertext representing
a bid that is one dollar more than the highest encrypted bid. The hole can be plugged by instead
using a robust encryption scheme.

As discussed above, another application is to enable broadcast encryption that is anonymous and
yet allows recipients to unambiguously identify the ciphertexts intended for them.

2 Definitions

Notation and conventions. If x is a string then |x| denotes its length, and if S is a set then
|S| denotes its size. The empty string is denoted ε. By a1‖ . . . ‖an, we denote a string encoding
of a1, . . . , an from which a1, . . . , an are uniquely recoverable. (Usually, concatenation suffices.) By
a1‖ . . . ‖an ← a, we mean that a is parsed into its constituents a1, . . . , an. Similarly, if a = (a1, . . . , an)
then (a1, . . . , an) ← a means we parse a as shown. Unless otherwise indicated, an algorithm may be
randomized. By y $← A(x1, x2, . . .) we denote the operation of running A on inputs x1, x2, . . . and fresh
coins and letting y denote the output. We denote by [A(x1, x2, . . .)] the set of all possible outputs of
A on inputs x1, x2, . . ..

Public-key encryption. A public-key encryption (PKE) scheme is a tuple PKE = (PG,KG,Enc,
Dec) of algorithms. The parameter generation algorithm PG takes no input and returns common
parameter pars that could be, for example, the description of a group common to all users. On
input pars, the key generation algorithm KG produces a public key pk and private key sk . On inputs
pars, pk ,M , the encryption algorithm Enc produces a ciphertext C encrypting plaintext M . On input
pars, pk , sk ,C , the deterministic decryption algorithm Dec returns either a plaintext message M or ⊥
to indicate that it rejects. (The inclusion of pk as an explicit input to Dec is somewhat unconventional
but convenient in our case and without loss of generality since it can always be put in sk by KG.)
In Appendix A, we recall the correctness definition and the advantage measures Advind-atk

PKE (A) and
Advano-atk

PKE (A), where atk ∈ {cpa, cca}, which capture, respectively, privacy (ind) and anonymity
(ano) of a PKE scheme PKE against chosen-plaintext (atk = cpa) and chosen-ciphertext (atk = cca)
attacks. The notions are denoted IND-ATK and ANO-ATK for ATK ∈ {CPA,CCA}.

Identity-based encryption. An identity-based encryption (IBE) scheme is a tuple IBE = (Setup,
Ext,Enc,Dec) of algorithms. The parameter generation algorithm Setup takes no input and returns
common parameters pars and a master secret key msk . On input pars,msk , id , the extraction algo-
rithm Ext produces a secret key usk for the user id . On input pars, id ,M , the encryption algorithm
Enc encrypts the plaintext M for the user id . On input pars, id , usk ,C , the deterministic decryp-
tion algorithm Dec decrypts the ciphertext C and returns a message M or ⊥ to indicate that it
rejects. In Appendix A, we recall the correctness definition and advantage measures Advind-atk

IBE (A)
and Advano-atk

IBE (A), where atk ∈ {cpa, cca}, which capture, respectively, privacy and anonymity of an
IBE scheme IBE against chosen-plaintext (atk = cpa) and chosen-ciphertext (atk = cca) attacks. The
notions are denoted IND-ATK and ANO-ATK for ATK ∈ {CPA,CCA}.

Games. Our definitions and proofs use the language of code-based game-playing [BR06]. Recall that
a game —look at Figure 1 for an example— has an Initialize procedure, procedures to respond to
adversary oracle queries, and a Finalize procedure. A game G is executed with an adversary A as
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proc Initialize

pars $← PG ; i← 0
(pk0, sk0) $← KG(pars) ; (pk1, sk1) $← KG(pars)
Return (pars, pk0, pk1)

proc Finalize
Return Win

proc Dec(C)

i← i+ 1 ; If i ≥ 2 Then return ⊥
M0 ← Dec(pars, pk0, sk0, C)
M1 ← Dec(pars, pk1, sk1, C)
If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true
Return (M0,M1)

Figure 1: PKE = (PG,KG,Enc,Dec) is a public-key encryption scheme. Game ROB-CPAPKE contains
the boxed code while Game ROB-CCAPKE does not.

follows. First, Initialize executes and its outputs are the inputs to A. Then A executes, its oracle
queries being answered by the corresponding procedures of G. When A terminates, its output becomes
the input to the Finalize procedure. The output of the latter, denoted GA, is called the output of
the game, and we let “GA⇒ y” denote the event that this game output takes value y. Boolean flags
are assumed initialized to false.

3 Our Notions of Robustness

Robustness of PKE. As with other security notions for public-key encryption, robustness can be
considered under chosen-plaintext attacks (CPA) or chosen-ciphertext attacks (CCA). Our definition
uses the games of Figure 1. The Initialize procedure picks parameters pars and independent key pairs
(pk0, sk1) and (pk1, sk1), and the values pars, pk0, pk1 it returns become the input to the adversary.
The adversary can query the Dec oracle with a ciphertext C, and Dec returns the decryptions M0,M1

of C under sk0 and sk1, respectively. If both their decryptions are valid, then the flag Win is set,
indicating that the adversary has won. The difference between Games ROB-CPA and ROB-CCA is
that, in the former, only one Dec query is allowed. (This rule is enforced by the boxed code.) The
Finalize procedure simply returns the value of the flag Win. For atk ∈ {cpa, cca}, we define the
advantage of adversary A attacking PKE scheme PKE as

Advrob-atk
PKE (A) = Pr

[
ROB-ATKAPKE ⇒ true

]
.

The corresponding notions are denoted ROB-CPA and ROB-CCA.

Discussion. Perhaps the first formulation of robustness one would come to defines the advantage of an
adversary A as the probability that Dec(pars, pk1, sk1,Enc(pars, pk0,M)) 6= ⊥ where the probability
is over

pars $← PG ; (pk0, sk0) $← KG(pars) ; (pk1, sk1) $← KG(pars) ; M $← A(pars, pk0, pk1)

and the coins of Enc. Our ROB-CPA notion implies this because our adversary could always compute
its Dec query as an encryption under pk0 of some message of its choice. Allowing the adversary to
directly choose the ciphertext, however, yields a strictly stronger notion (there are schemes that are
robust in this weaker sense but not ROB-CPA) and is important for applications. Specifically, our
stronger notion of robustness is required for the fairness of Sako’s auction protocol [Sak00] and to
ensure correct recipient detection in the anonymous broadcast encryption example we discussed in
Section 1.

One could consider a formulation in which the adversary gets to pick one or both of the public
keys. But if so, there is nothing to really desire security-wise, since what happens under decryption
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proc Initialize

(pars,msk) $← Setup ; i← 0
Return pars

proc Ext(id)

USKT[id ] $← Ext(pars,msk , id)
Return USKT[id ]

proc Finalize
Return Win

proc Dec(C, id0, id1)

i← i+ 1 ; If i ≥ 2 Then return ⊥
If USKT[id0] = ⊥ Then USKT[id0] $← Ext(pars,msk , id0)
If USKT[id1] = ⊥ Then USKT[id1] $← Ext(pars,msk , id1)
M0 ← Dec(pars, id0,USKT[id0], C)
M1 ← Dec(pars, id1,USKT[id1], C)
If (M0 6= ⊥) ∧ (M1 6= ⊥) ∧ (id0 6= id1) Then Win← true
Return (M0,M1)

Figure 2: IBE = (Setup,Ext,Enc,Dec) is an IBE scheme. Game ROB-CPAIBE contains the boxed
code while Game ROB-CCAIBE does not.

with an adversarially-chosen key affects only the adversary.
We note that while our constructions achieve the strong notions we have defined, the attacks and

negative results show failure to meet even much weaker notions of robustness.

Robustness of IBE. The formalization is analogous to the above with identities playing the role of
public keys, except that these identities are under adversarial control. Consider the games of Figure 2.
The Initialize procedure picks parameters pars and a master secret key msk , and the values it returns
become the input to the adversary. The difference between Games ROB-CPA and ROB-CCA is that,
in the former, only one Dec query is allowed. The adversary wins if the Finalize procedure returns
true, meaning it makes a Dec query C valid under the secret keys of a pair id0 and id1 of distinct
identities. For atk ∈ {cpa, cca}, we define the advantage of an adversary A attacking an IBE scheme
IBE as

Advrob-atk
IBE (A) = Pr

[
ROB-ATKAIBE ⇒ true

]
.

The corresponding notions are again denoted ROB-CPA and ROB-CCA.

4 Adding redundancy before encryption fails

Towards understanding and achieving robustness, it is natural to first ask whether it is implied by
existing notions, already present in existing schemes, or easily conferred by obvious transforms. The
answer to all these questions is negative. Here, we illustrate what we think is the most interesting
of the negative results, namely that adding even sophisticated forms of redundancy before encryption
does not provide robustness. The discussion is for the PKE case, the IBE case is analogous. Other
negative results, including that neither of the IND-CCA-providing Fujisaki-Okamoto (FO) [FO99] or
Canetti-Halevi-Katz (CHK) [CHK04] transforms yield robustness, can be found in Appendix B. Since
in fact the FO transform provides the stronger notion of plaintext-awareness, this also shows that even
plaintext-awareness does not imply robustness.

Transforms. We are interested in transforming a given PKE scheme PKE into a robust PKE
scheme PKE . If we are willing to sacrifice anonymity, this is easy: we simply append the public
key to the ciphertext and have the decryption algorithm check for it. However, for the reasons
mentioned earlier, we are only interested in transforms that preserve privacy and anonymity. For
any ATK ∈ {CPA,CCA}, we say a transform is ATK-security preserving if, for any scheme that is
IND-ATK+ANO-ATK, the scheme resulting from the transform is also IND-ATK+ANO-ATK. Then,
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RC(pk‖M) RV(pk‖M, r)
Return ε Return 1
Return 0k Return (r = 0k)
Return pk Return (r = pk)

K
$← {0, 1}k ; Return K‖H(K, pk‖M) K‖h← r ; Return (H(K, pk‖M) = h)

Figure 3: Examples of redundancy codes, where the data x is of the form pk‖M .

we are interested in transforms that are CPA or CCA-preserving.

Adding redundancy fails. A common perception is that if a ciphertext is encrypted under the
“wrong” secret key, the resulting plaintext will be “random”. This leads one to think that robustness
is either implied by IND-CCA security, or can be easily conferred by adding redundancy before en-
crypting, and upon decryption rejecting if the redundancy is absent. The redundancy could take the
form of a fixed constant, the public key, or even a hash of the message and the public key. We show
that nothing like this works. In fact, we show more: that no redundancy code that is computed as a
function of the public key and message works.

A redundancy code RED = (RC,RV) is a pair of algorithms. On input x the redundancy computa-
tion algorithm RC returns redundancy r. Given x and claimed redundancy r, the redundancy verifica-
tion algorithm RV returns 0 or 1. The consistency condition is that for all x we have RV(x,RC(x)) = 1
with probability one, where the probability is taken over the coins of RC. (We stress that the latter is
allowed to be randomized.) Given a PKE scheme PKE = (PG,KG,Enc,Dec) and a redundancy code
RED = (RC,RV), the redundancy-adding transform associates to them the PKE scheme PKE = (PG,
KG,Enc,Dec) where Enc(pars, pk ,M ) = Enc(pars, pk ,M ‖RC(pk‖M )), and where Dec parses the de-
crypted message as M ‖r and returns ⊥ if RV(pk‖M , r) = 0. Note the redundancy-adding transform
is both CPA and CCA-security preserving, meaning preserves privacy and anonymity in the sense
discussed above.

The first row of Figure 3 shows how PKE itself is a special case of this transform. The counterex-
ample below therefore also shows that IND-CCA + ANO-CCA is not sufficient to imply ROB-CPA.
The second and third rows show redundancy equal to a constant or the public key as examples of
redundancy codes. The fourth row shows a randomized code where the redundancy is the hash of the
public key and message under a key that is part of the redundancy so that it ends up encrypted. (The
hash function could be a MAC or collision resistant.) Obviously, there are many other examples. Yet
we now show that for any redundancy code there is an encryption scheme PKE such that the scheme
PKE resulting from the redundancy-adding transform is not even ROB-CPA. We build PKE = (PG∗,
KG∗,Enc,Dec) by modifying a given encryption scheme PKE∗ = (PG∗,KG∗,Enc∗,Dec∗). Let l(|x|) be
the number of coins used by RC on input x, and let RC(x;ω) denote the result of executing RC on
input x with coins ω ∈ {0, 1}l(|x|). Below, M∗ is a fixed message in the message space of PKE∗:

Algorithm Enc(pars, pk ,M )
C $← Enc∗(pars, pk ,M )
Return 1‖C

Algorithm Dec(pars, pk , sk ,C )
b‖C ∗ ← C
If b = 1 Then return Dec∗(pars, pk , sk ,C ∗)
Else return M ∗‖RC(pk‖M ∗; 0l(|pk‖M

∗|))

The reason we used 0l(|pk‖M
∗|) as coins for RC above is that Dec is required to be deterministic. Now,

apply the redundancy-adding transform to PKE and RED to obtain PKE . Observe that when Dec
is applied to inputs pars, pk , sk , 0‖0, it first computes Dec(pars, pk , sk , 0‖0), the result of which is
M ∗‖r where r = RC(pk‖M ∗; 0l(|pk‖M

∗|)), and then checks whether RV(pk‖M ∗, r) equals 1. But the
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consistency of RED tells us that this check will always be true, so Dec returns M∗. But this is true
for any pars, pk , sk , so the adversary that, given pars, pk0, pk1, makes Dec query 0‖0 and halts, wins
Game ROB-CPAPKE with probability one. We have shown that PKE is not ROB-CPA, as desired.

5 General transforms that provide ROB-CCA

We present transforms that confer robustness on any encryption scheme while preserving privacy
and anonymity. More precisely, for any ATK ∈ {CPA,CCA}, our transform turns any IND-ATK +
ANO-ATK encryption scheme into one that continues to be IND-ATK+ANO-ATK but is additionally
ROB-CCA. We present two transforms, one for PKE schemes and the other for IBE schemes. The
underlying idea is the same for both transforms, with the only difference being that identities play the
role of public keys in the IBE case. Each transform uses a commitment scheme.

Commitment schemes. A non-interactive commitment scheme is a 3-tuple CMT = (CPG,Com,
Open). The parameter generation algorithm CPG returns public parameters cpars. The commital
algorithm Com takes cpars and data x as input and returns a commitment com to x along with a
decommital key dec. The deterministic decommital algorithm Open takes cpars, com, and dec as input
and returns x or ⊥ to indicate that it rejects. The consistency definition and the advantage measures
Advhide

CMT (A) and Advbind
CMT (A), referring to the standard hiding and binding properties, are recalled

in Appendix A. We refer to the corresponding notions as HIDE and BIND.

The commit-public-key transform. The idea is for the ciphertext to include a commitment to
the public key. The commitment is not encrypted, but the decommital key along with a random
string R chosen once as a parameter of the scheme are encrypted. In detail, given an encryption
scheme PKE = (PG,KG,Enc,Dec) and a commitment scheme CMT = (CPG,Com,Open), the commit-
public-key transform associates to them the encryption scheme PKE = (PG,KG,Enc,Dec) where PG
generates parameters pars and cpars from the base schemes PKE and CMT , respectively, chooses
a random string R

$← {0, 1}r (where r is a security parameter), and outputs (pars, cpars, R). KG
simply outputs a public-secret key pair (pk , sk) output by KG(pars). The encryption and decryption
algorithms are as follows:

Algorithm Enc(pars, pk ,M )
(pars, cpars, R)← pars
(com, dec) $← Com(cpars, pk)
C $← Enc(pars, pk , (M , dec, R))
Return (C , com)

Algorithm Dec(pars, pk , sk ,C )
(pars, cpars, R)← pars ; (C , com)← C
(M , dec, R′)← Dec(pars, pk , sk ,C )
If Open(cpars, com, dec) = pk and R′ = R
Then Return M Else Return ⊥

We first fully state the results then explain each of them in turn. Full proofs can be found in Ap-
pendix C; we merely highlight some notable aspects here.

Proposition 5.1 Let PKE be a PKE scheme, let CMT be a commitment scheme, and let PKE be
the PKE scheme obtained by applying the commit-public-key transform. For any adversary A running
in time t against PKE , there exist adversaries B and B1–B4 such that

Advrob-cca
PKE (A) ≤ Advbind

CMT (B) + CollPKE (1)

Advind-cpa

PKE
(A) ≤ Advind-cpa

PKE (B) (2)

Advano-cpa

PKE (A) ≤ Advano-cpa
PKE (B1) + 2 ·Advind-cpa

PKE (B2) + Advhide
CMT (B3) (3)

Advind-cca
PKE (A) ≤ 2 ·Advcopy

CMT (B1) + Advind-cca
PKE (B2) (4)

Advano-cca
PKE (A) ≤ 2 ·Advcopy

CMT (B1) + 2 ·Advind-cca
PKE (B2) + 2 ·Advhide

CMT (B3) + Advano-cca
PKE (B4) +

2|M ∗|
2r

(5)
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proc Initialize

cpars $← CPG ; Return cpars

proc Com(x )

x ∗ ← x ; (com, dec) $← Com(cpars, x ) ; Return (com, dec)

proc Finalize(com ′)
Return (com 6= com ′ ∧ Open(cpars, com ′, dec) = x ∗)

Figure 4: Let CMT be a commitment scheme. Game COPYCMT captures the copy resistance property
of the scheme. An adversary A must call the Com oracle exactly once.

where |M ∗| is the length of the challenge message chosen by A. Furthermore, each adversary B,
B1–B4 runs in time at most t plus the time for O(t) executions of the algorithms of PKE and CMT .

Equation (1) says that the transform provides ROB-CCA as long as the commitment scheme is BIND-
secure and the base encryption scheme PKE has low public-key collision probability. Explicitly, the
latter can be defined as

CollPKE = Pr
[

pk0 = pk1 : pars $← PG ; (pk0, sk0) $← KG(pars) ; (pk1, sk1) $← KG(pars)
]
.

It is easy to see that PKE being IND-CPA implies CollPKE is negligible, so asking for low public-key
collision probability is in fact not an extra assumption. The reason we made it explicit is that for
most schemes it is unconditionally low. For example, for ElGamal, it is 1/|G| where G is the group
being used. Also, it can always be made smaller than or equal to 2−k by adding a random k-bit string
to the public key. (We could have had our transform do this and then have not needed to talk about
this collision probability, but the current transform has the nice property that it leaves public keys
unchanged, so that new certificates are not needed if this transform is used.)

Equation (2) says that, if the base scheme PKE is IND-CPA, then so is PKE , without any assump-
tions on CMT . Equation (3) says that, if PKE is ANO-CPA + IND-CPA, then PKE is ANO-CPA.
For PKE to be ANO-CPA, the reason we need PKE to be IND-CPA in addition to ANO-CPA is that
the decommitment is encrypted, and, if it is revealed, anonymity is lost.

Equations (4) and (5) specify the security assumptions of the base schemes for the transform to be
CCA-preserving, and require a non-standard security assumption from the commitment scheme that
we call copy resistance. This is captured by defining the advantage of an adversary A as

Advcopy
CMT (A) = Pr

[
COPYACMT ⇒ true

]
,

where COPYCMT is the game of Figure 4. Thus, copy resistance requires that given an honestly-
generated commitment (com, dec) of an adversarially-chosen message x ∗, it is computationally infea-
sible to find com ′ 6= com such that (com ′, dec) opens to x ∗.

This property is necessary, because without it the transform may not be CCA-preserving. To see
this, consider an IND-CCA adversary A that receives a challenge ciphertext (C∗, com∗), where C∗ is
an encryption of (M ∗

b , dec∗, R) for some b ∈ {0, 1}. If it can come up with a commitment com ′ 6= com∗

such that Open(cpars, com ′, dec∗) = pk , then (C∗, com ′) is a valid ciphertext that decrypts to Mb. It
could therefore determine b by submitting this cipertext to the decryption oracle. To prevent this
attack, it would suffice for the commitment scheme to be non-malleable [DDN00]. Although such
schemes exist [FF00, DKOS01, Di 02], we observe that we can get away with a much weaker property,
namely copy-resistance.

Finding appropriate commitment schemes. Ignore copy-resistance to begin with. Then there
are many suitable commitment schemes. For example, one can use Pedersen commitments [Ped92],
where cpars is a pair of random generators of a group of G of prime order p. The committal to x
is gH(x)hdec , where dec $← Zp is the decommital and H is a collision-resistant hash function with
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range Zp. This is binding if the discrete log problem is hard and provides unconditional privacy. This
scheme is simple and efficient for practical use. An even more efficient scheme, using only universal
and collision-resistant hashing, is that of [DPP94]. On the theoretical side, commitment schemes of
this nature exist given any one-way function [Nao90]. Naor [Nao90] presents his scheme as interactive,
with the receiver first sending a random string and the sender computing the commitment as a function
of it. But one can put the receiver move into cpars and get a non-interactive scheme of the type we
want. None of these instantiations involve random oracles.

Getting COPY security is easy, which is the advantage of working with this weak form of non-
malleability. Let us say a commitment scheme has the uniqueness property if (1) when Com re-
turns (com, dec) on input (cpars, x ), the decommital dec is exactly the coins used by Com, and (2)
Open(cpars, com, x , dec) runs Com on inputs (cpars, x ) with coins dec, returning 1 if the result is
(com, dec) and 0 otherwise. Most schemes in fact have this uniqueness property, and, if not, can al-
ways be modified to do so by using the coins of the committal as the decommital. (This retains HIDE
and BIND security.) However, any scheme with the uniqueness property is COPY secure because
there is only one possible committal com corresponding to data x and decommital dec. In particular,
all of the above-mentioned schemes have the uniqueness property. So we get efficient transforms that
confer ROB-CCA while being CPA and CCA-preserving, and we also get such transforms assuming
only the existence of a one-way function.

Note from the term 2|M ∗|/2r in Equation (5) that the preservation of ANO-CCA crucially relies
on the presence of the random string R in the encrypted data. To understand where this need comes
from, consider what happens when R is not included in the transform, and when the following PKE
and commitment scheme are used. First imagine that the decryption algorithm of PKE returns a
fixed string of the form (M̂ , ˆdec) whenever the wrong key is used to decrypt. Moreover, imagine CMT
is such that it is easy to, for given cpars, x , dec, find com so that Open(cpars, com, dec) = x . (For
example, any commitment scheme where dec are the coins used by the Com algorithm.) Consider
then the ANO-CCA adversary A against the transformed scheme that, after receiving the challenge
ciphertext (C∗, com∗), creates a commitment ˆcom of pk1 with opening information ˆdec, and queries
(C∗, ˆcom) to be decrypted under pk0. Let C∗ be generated as Enc(pars, pk b, (M ∗, dec∗)) for a hidden
bit b ∈ {0, 1}. If b = 0 this query will return ⊥ because most likely Open(cpars, ˆcom, dec∗) 6= pk0; if
b = 1 it returns M̂ , allowing A to distinguish the value of b.

The inclusion of R in the plaintext thwarts this attack, because the decryption algorithm cannot
“default” to a string that contains R. Proving that this measure is sufficient is a bit delicate however.
As part of the proof, we introduce an information-theoretic lemma that is used to bound the amount
of information about R that the adversary can “slip into” the challenge ciphertext. See Appendix C
for details.

The commit-identity transform. We propose the robustness-conferring commit-identity trans-
form for IBE schemes. It is analogous to the commit-public-key transform, but the user’s identity
plays the role of the public key. It is given in detail in Figure 5. The following proposition states
that it provides robustness and is both IND-ATK and ANO-ATK-preserving. The proof is largely
analogous to that of Proposition 5.1 and can be found in Appendix D.

Proposition 5.2 Let IBE be an IBE scheme with identity space IDSp, let CMT be a commitment
scheme, and let IBE be the IBE scheme obtained by applying the commit-identity transform. Given
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Algorithm Setup

(pars,msk) $← Setup ; cpars $← CPG

R
$← {0, 1}r ; pars ← (pars, cpars, R)

Return (pars,msk)

Algorithm Enc(pars, id ,M )
(pars, cpars, R)← pars
(com, dec) $← Com(cpars, id)
C $← Enc(pars, id , (M , dec, R))
Return (C , com)

Algorithm Ext(pars,msk , id)
(pars, cpars, R)← pars
usk $← Ext(pars,msk , id)
Return usk

Algorithm Dec(pars, id , usk ,C )
(pars, cpars, R)← pars ; (C , com)← C
M ← Dec(pars, id , usk ,C ) ; (M , dec, R)← M
If Open(cpars, com, dec) = id and R = R

Then Return M Else Return ⊥

Figure 5: IBE = (Setup,Ext,Enc,Dec) resulting from applying our commit-identity transform to
IBE = (Setup,Ext,Enc,Dec) and CMT = (CPG,Com,Open). Above, r ≥ 0 is an integer.

any adversary A running in time t against IBE , we can construct adversaries B and B1–B4 such that

Advrob-cca
IBE (A) ≤ Advbind

CMT (B) (6)

Advind-cpa

IBE
(A) ≤ Advind-cpa

IBE (B) (7)

Advano-cpa

IBE
(A) ≤ Advano-cpa

IBE (B1) + 2 ·Advind-cpa
IBE (B2) + Advhide

CMT (B3) (8)

Advind-cca
IBE (A) ≤ 2 ·Advcopy

CMT (B1) + Advind-cca
PKE (B2) (9)

Advano-cca
IBE (A) ≤ 2 ·Advcopy

CMT (B1) + 2 ·Advind-cca
IBE (B2) + 2 ·Advano-cca

IBE (B3)

+ Advhide
CMT (B4) + min

(
2(qid + qdec)
|IDSp|

+
2|M∗|

2r
,

2 · |IDSp| · |M∗|
2r

)
(10)

where qid and qdec are A’s number of queries to the Ext and Dec oracles, respectively, and M ∗ is the
challenge message chosen by A. Furthermore, each adversary B and B1–B4 runs in time at most t
plus the time for O(t) executions of the algorithms of IBE and CMT .

The minimum in Equation (10) shows that our transform works regardless whether the identity
space is small, large, or even infinite. The first bound is tightest when |IDSp| � qid + qdec, the second
is tightest when |IDSp| � 2r. For small identity spaces one can always choose r large enough so that
the latter is negligible.

6 A ROB-CCA version of Cramer-Shoup

Let G be a group of prime order p, and H: Keys(H) × G3 → G a family of functions. We assume
G, p,H are fixed and known to all parties. Figure 6 shows the Cramer-Shoup (CS) scheme and the
variant CS∗ scheme where 1 denotes the identity element of G. The differences are boxed. Recall that
the CS scheme was shown to be IND-CCA in [CS03] and ANO-CCA in [BBDP01]. However, for any
message M ∈ G the ciphertext (1,1,M ,1) in the CS scheme decrypts to M under any pars, pk , and
sk , meaning in particular that the scheme is not even ROB-CPA. The modified scheme CS∗ —which
continues to be IND-CCA and ANO-CCA— removes this pathological case by having Enc choose the
randomness u to be non-zero —Enc draws u from Z∗p while the CS scheme draws it from Zp— and then
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Algorithm PG

K
$← Keys(H) ; g1

$← G∗ ; w $← Z∗p
g2 ← gw1 ; Return (g1, g2,K)

Algorithm Enc((g1, g2,K), (e, f, h),M )
u

$← Z*
p

a1 ← gu1 ; a2 ← gu2 ; b← hu

c← b ·M ; v ← H(K, (a1, a2, c))
d← eufuv ; Return (a1, a2, c, d)

Algorithm KG(g1, g2,K)
x1, x2, y1, y2, z1, z2

$← Zp
e← gx1

1 gx2
2 ; f ← gy11 g

y2
2 ; h← gz11 g

z2
2

Return ((e, f, h), (x1, x2, y1, y2, z1, z2))

Algorithm Dec((g1, g2,K), (e, f, h), (x1, x2, y1, y2, z1, z2),C )
(a1, a2, c, d)← C ; v ← H(K, (a1, a2, c)) ; M ← c · a−z11 a−z22

If d 6= ax1+y1v
1 ax2+y2v

2 Then M ← ⊥
If a1 = 1 Then M ← ⊥

Return M

Figure 6: The original CS scheme [CS03] does not contain the boxed code while the variant CS∗ does.
Although not shown above, the decryption algorithm in both versions always checks to ensure that
the ciphertext C ∈ G4. The message space is G.

having Dec reject (a1, a2, c, d) if a1 = 1. This thwarts the attack, but is there any other attack? We
show that there is not by proving that CS∗ is actually ROB-CCA. Our proof of robustness relies only
on the security —specifically, pre-image resistance— of the hash family H: it does not make the DDH
assumption. Our proof combines ideas from the information-theoretic part of the proof of [CS03] with
some new ideas.

We say that a family H: Keys(H)×Dom(H)→ Rng(H) of functions is pre-image resistant if, given
a key K and a random range element v∗, it is computationally infeasible to find a pre-image of v∗ under
H(K, ·). The notion is captured formally by the following advantage measure for an adversary I:

Advpre-img
H (I) = Pr

[
H(K,x) = v∗ : K

$← Keys(H) ; v∗ $← Rng(H) ; x $← I(K, v∗)
]
.

Pre-image resistance is not implied by the standard notion of one-wayness, since in the latter the
target v∗ is the image under H(K, ·) of a random domain point, which may not be a random range
point. However, it seems like a fairly mild assumption on a practical cryptographic hash function and
is implied by the notion of “everywhere pre-image resistance” of [RS04], the difference being that, for
the latter, the advantage is the maximum probability over all v∗ ∈ Rng(H). The following implies
that CS∗ is ROB-CCA if H is pre-image resistant:

Theorem 6.1 Given any adversary A against CS∗ running in time t and making q Dec queries, we
can construct an adversary I such that

Advrob-cca
CS∗ (A) ≤ Advpre-img

H (I) +
2q + 1
p

. (11)

Furthermore, the running time of I is t+q ·O(texp) where texp denotes the time for one exponentiation
in G.

A detailed proof of Theorem 6.1 is in Appendix E. Here we sketch some intuition. Let (g1, g2,K), (e0,
f0, h0), (e1, f1, h1) be the parameters and public keys generated by Game ROB-CCACS∗ , and let (x01,
x02, y01, y02, z01, z02) and (x11, x12, y11, y12, z11, z12) be the corresponding secret keys. Suppose Amakes
a Dec query (a1, a2, c, d). Then the code of the decryption algorithm Dec from Figure 6 tells us that,
for this to be a winning query, it must be that

d = ax01+y01v
1 ax02+y02v

2 = ax11+y11v
1 ax12+y12v

2
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where v = H(K, (a1, a2, c)). Letting u1 = logg1(a1), u2 = logg2(a2) and s = logg1(d), we have

s = u1(x01 + y01v) + wu2(x02 + y02v) = u1(x11 + y11v) + wu2(x12 + y12v) (12)

However, even acknowledging that A knows little about xb1, xb2, yb1, yb2 (b ∈ {0, 1}) through its Dec
queries, it is unclear why Equation (12) is prevented by pre-image resistance —or in fact any property
short of being a random oracle— of the hash function H. In particular, there seems no way to “plant”
a target v∗ as the value v of Equation (12) since the adversary controls u1 and u2. However, suppose
now that a2 = aw1 . (We will discuss later why we can assume this.) This implies wu2 = wu1 or u2 = u1

since w 6= 0. Now from Equation (12) we have

u1(x01 + y01v) + wu1(x02 + y02v)− u1(x11 + y11v)− wu1(x12 + y12v) = 0 .

We now see the value of enforcing a1 6= 1, since this implies u1 6= 0. After canceling u1 and re-arranging
terms, we have

v(y01 + wy02 − y11 − wy12) + (x01 + wx02 − x11 − wx12) = 0 . (13)

Given that xb1, xb2, yb1, yb2 (b ∈ {0, 1}) and w are chosen by the game, there is at most one solution v
(modulo p) to Equation (13). We would like now to design I so that on input K, v∗ it chooses xb1, xb2,
yb1, yb2 (b ∈ {0, 1}) so that the solution v to Equation (13) is v∗. Then (a1, a2, c) will be a pre-image
of v∗ which I can output.

To make all this work, we need to resolve two problems. The first is why we may assume a2 =
aw1 —which is what enables Equation (13)— given that a1, a2 are chosen by A. The second is to
properly design I and show that it can simulate A correctly with high probability. To solve these
problems, we consider, as in [CS03], a modified check under which decryption, rather than rejecting
when d 6= ax1+y1v

1 ax2+y2v
2 , rejects when a2 6= aw1 or d 6= ax+yv1 , where x = x1 + wx2, y = y1 + wy2,

v = H(K, (a1, a2, c)) and (a1, a2, c, d) is the ciphertext being decrypted. In our proof in Appendix E,
games G0–G2 move us towards this perspective. Then, we fork off two game chains. Games G3–G6 are
used to show that the modified decryption rule increases the adversary’s advantage by at most 2q/p.
Games G7–G11 show how to embed a target value v∗ into the components of the secret key without
significantly affecting the ability to answer Dec queries. Based on the latter, we then construct I as
shown in Appendix E.

7 Applications to searchable encryption

Public-key encryption with keyword search. A public key encryption with keyword search
(PEKS) scheme [BDOP04] is a tuple PEKS = (KG,PEKS,Td,Test) of algorithms. Via (pk , sk) $← KG,
the key generation algorithm produces a pair of public and private keys. Via C $← PEKS(pk ,w),
the encryption algorithm encrypts a keyword w to get a ciphertext under the public key pk . Via
tw

$← Td(sk ,w), the trapdoor extraction algorithm computes a trapdoor tw for keyword w . The
deterministic test algorithm Test(tw ,C ) returns 1 if C is an encryption of w and 0 otherwise. In
Appendix A, we recall the advantage measures Advind-atk

PEKS (A), where atk ∈ {cpa, cca}, which capture
privacy of PEKS scheme PEKS against chosen-plaintext (atk = cpa) and chosen-ciphertext (atk = cca)
attacks, and the notions are denoted IND-ATK. Furthermore, we also recall the advantage measure
Advconsist

PEKS (A), which captures the notion CONSIST of computational consistency of PEKS scheme
PEKS .

Transforming IBE to PEKS. The bdop-ibe-2-peks transform of [BDOP04] transforms an IBE
scheme into a PEKS scheme. Given an IBE scheme IBE = (Setup,Ext,Enc,Dec), the transform as-
sociates to it the PEKS scheme PEKS = (KG,PEKS,Td,Test), where the key-generation algorithm
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KG returns (pk , sk) $← Setup; the encryption algorithm PEKS(pk ,w) returns C ← Enc(pk ,w , 0k); the
trapdoor extraction algorithm Td(sk ,w) returns t $← Ext(pk , sk ,w); the test algorithm Test(t ,C ) re-
turns 1 if and only if Dec(pk , t , C) = 0k. Abdalla et al. [ABC+05] showed that this transform generally
does not provide consistency, and presented the consistency-providing new-ibe-2-peks transform as an
alternative. We now show that the original bdop-ibe-2-peks transform does yield a consistent PEKS if
the underlying IBE scheme is robust. We also show that if the base IBE scheme is ANO-CCA, then the
PEKS scheme is IND-CCA, thereby yielding the first IND-CCA-secure PEKS schemes in the standard
model, and the first consistent IND-CCA-secure PEKS schemes in the RO model. (Non-consistent
IND-CCA-secure PEKS schemes in the RO model are easily derived from [FP07].)

Proposition 7.1 Let IBE be an IBE scheme, and let PEKS be the PEKS scheme associated to it
per the bdop-ibe-2-peks transform. Given any adversary A running in time t, we can construct an
adversary B running in time t+O(t) executions of the algorithms of IBE such that

Advconsist
PEKS (A) ≤ Advrob-cpa

IBE (B) and Advind-cca
PEKS (A) ≤ Advano-cca

IBE (B) .

To see why the first inequality is true, it suffices to consider the adversary B that on input pars
runs (w ,w ′) $← A(pars) and outputs C $← Enc(pars,w). The proof of the second inequality is an
easy adaptation of the proof of the new-ibe-2-peks transform in [ABC+05], where B answers A’s Test
queries using its own Dec oracle.

Securely combining PKE and PEKS. Searchable encryption by itself is only of limited use since it
can only encrypt individual keywords, and since it does not allow decryption. Fuhr and Paillier [FP07]
introduce a more flexible variant that allows decryption of the keyword. An even more powerful (and
general) primitive can be obtained by combining PEKS with PKE to encrypt non-searchable but
recoverable content. For example, one could encrypt the body of an email using a PKE scheme, and
append a list of PEKS-encrypted keywords. The straightforward approach of concatenating ciphertexts
works fine for CPA security, but is insufficient for a strong, combined IND-CCA security model where
the adversary has access to both a decryption oracle and a testing oracle. Earlier attempts to combine
PKE and PEKS [BSNS06, ZI07] do not give the adversary access to the latter. A full IND-CCA-
secure PKE/PEKS scheme in the standard model can be obtained by combining the IND-CCA-secure
PEKS schemes obtained through our transformation with the techniques of [DK05]. Namely, one can
consider label-based [Sho01] variants of the PKE and PEKS primitives, tie the different components of
a ciphertext together by using as a common label the verification key of a one-time signature scheme,
and append to the ciphertext a signature of all components under the corresponding signing key. We
leave details as an exercise to the reader.
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A Recall of standard definitions and tools

Correctness and security of PKE schemes. Correctness of PKE schemes requires that, for all
pars ∈ [PG], all plaintexts M in the underlying message space, and all (pk , sk) ∈ [KG(pars)], we have
Dec(pars, pk , sk ,Enc(pars, pk ,M )) = M with probability one, where the probability is taken over the
coins of Enc. We recall the standard privacy notions IND-CPA, IND-CCA and anonymity notions
ANO-CPA, ANO-CCA of [BBDP01].

The games IND-ATKPKE for ATK ∈ {CPA,CCA} begin with the generation of parameters pars $←
PG, a key pair (pk , sk) $← KG(pars), and a random bit b $← {0, 1}∗. The adversary A is run on input
(pars, pk) and has access to an encryption oracle LR(M ∗

0 ,M
∗
1 ) and, if ATK = CCA, a decryption oracle

Dec(C) = Dec(pars, pk , sk , C). The encryption oracle can only be queried once and returns C∗ $←
Enc(pars, pk ,M ∗

b ). The game returns true if A outputs b′ = b, |M ∗
0 | = |M ∗

1 |, and, if ATK = CCA, it
never queried Dec(C∗). Its advantage is defined as Advind-atk

PKE (A) = 2 ·Pr
[

IND-ATKAPKE ⇒ true
]
−1.

The games ANO-ATKPKE for ATK ∈ {CPA,CCA} first generate parameters pars $← PG, two
key pairs (pk0, sk0), (pk1, sk1) $← KG(pars), and a random bit b $← {0, 1}∗. The adversary A is run
on input (pars, pk0, pk1) and has access to an encryption oracle LR(M ∗) and, if ATK = CCA, a
decryption oracle Dec(d,C) = Dec(pars, pkd, skd, C). The encryption oracle can only be queried
once and returns C∗

$← Enc(pars, pk b,M ∗). The game returns true if A outputs b′ = b and, if
ATK = CCA, if it never queried Dec(d,C∗) for d ∈ {0, 1}. Its advantage is defined as Advano-atk

PKE (A) =
2 · Pr

[
ANO-ATKAPKE ⇒ true

]
− 1.
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Correctness and security of IBE schemes. Correctness of IBE schemes requires that, for all
(pars,msk) ∈ [Setup], all plaintexts M in the underlying message space, all identities id , and all secret
keys usk ∈ [Ext(pars,msk , id)], we have Dec(pars, id , usk ,Enc(pars, id ,M )) = M with probability one,
where the probability is taken over the coins of Enc. We recall here the standard privacy notions
IND-ATK [BF03] and anonymity notions ANO-ATK [ABC+05] for ATK ∈ {CPA,CCA}.

The IND-ATKIBE game starts with the generation of parameters (pars,msk) $← Setup and a
random bit b $← {0, 1}∗. The adversary A is run on input pars and has access to an encryption
oracle LR(id∗,M ∗

0 ,M
∗
1 ), a key extraction oracle Ext(id) = Ext(pars,msk , id), and, if ATK = CCA,

a decryption oracle Dec(id , C) = Dec(pars, id ,Ext(pars,msk , id), C). The encryption oracle can only
be queried once and returns C∗ $← Enc(pars, id∗,M ∗

b ). The game returns true if A outputs b′ = b and
if |M ∗

0 | = |M ∗
1 | while A never made a query Ext(id∗) or Dec(id∗, C∗). Its advantage is defined as

Advind-atk
IBE (A) = 2 · Pr

[
IND-ATKAIBE ⇒ true

]
− 1.

The ANO-ATKIBE game starts with the generation of parameters (pars,msk) $← Setup and a
random bit b $← {0, 1}∗. It runs the adversary A(pars) and gives it access to an encryption ora-
cle LR(id∗0, id

∗
1,M

∗), a key extraction oracle Ext(id) = Ext(pars,msk , id), and, if ATK = CCA, a
decryption oracle Dec(id , C) = Dec(pars, id ,Ext(pars,msk , id), C). The encryption oracle can only
be queried once and returns C∗ $← Enc(pars, id∗b ,M

∗). The game returns true if A outputs b′ = b
without making a query Ext(id∗d) or Dec(id∗d, C

∗) for any d ∈ {0, 1}. Its advantage is defined as
Advano-atk

IBE (A) = 2 · Pr
[

ANO-ATKAIBE ⇒ true
]
− 1.

Consistency and security of PEKS schemes. We consider the consistency definition of [ABC+05]
through the following CONSISTPEKS game. A fresh key pair (pk , sk) $← KG is generated. On input
the public key pk , the adversary A outputs two keywords w ,w ′. The game returns true if w 6= w′ and
Test(t ′, C) = 1 where C $← PEKS(pk ,w) and t ′ $← Td(sk ,w ′). The advantage Advconsist

PEKS (A) is defined
as the probability that the game returns true.

Privacy is defined through the following IND-ATKPEKS games for ATK ∈ {CPA,CCA}. The
experiment generates a key pair (pk , sk) $← KG and a random bit b $← {0, 1}. The adversary A
is given pk as input and has access to oracles LR(w∗0 ,w

∗
1 ), TD(w) = Td(sk ,w), and, if ATK =

CCA, Test(w ,C ) = Test(Td(sk ,w),C ). The LR oracle can only be called once and returns C∗ $←
PEKS(pk ,w∗b ). The game returns true if the adversary A outputs b′ = b without querying TD(w∗d )
or, if ATK = CCA, without querying Test(w∗d ,C

∗) for any d ∈ {0, 1}. Its advantage is defined as
Advind-atk

PEKS (A) = 2 · Pr
[

IND-ATKAPEKS ⇒ true
]
− 1.

Correctness and security of commitment schemes. Correctness of a commitment scheme
CMT = (CPG,Com,Open) requires that, for any x ∈ {0, 1}∗, any cpars ∈ [CPG], and any (com, dec) ∈
[Com(cpars, x )], we have that Open(cpars, com, dec) = x with probability one, where the probability is
taken over the coins of Com. The standard hiding property of a commitment scheme CMT is defined
through the following game HIDECMT . The experiment generates parameters cpars $← CPG and a
random bit b $← {0, 1}∗. The adversary A is run on input cpars and gets to make a single query to
an oracle LR(x0, x1) = Com(cpars, xb). The game returns true if A outputs b′ = b. Its advantage is
defined as Advhide

CMT (A) = 2 · Pr
[

HIDEACMT ⇒ true
]
− 1.

The binding property is defined through a game BINDCMT where A is run on input cpars $← CPG
and outputs a three-tuple (com, dec0, dec1). Let x0 ← Open(cpars, com, dec0) and x1 ← Open(cpars, com,
dec1). The game returns true if x0 6= x1, x0 6= ⊥, and x1 6= ⊥. The advantage Advbind

CMT (A) is the
probability that the game returns true.

Remark on message lengths. We note that the IND-ATK definitions of PKE and IBE schemes
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insist that the challenge messages M ∗
0 ,M

∗
1 be of the same length, while no such restrictions are present

for the challenge identities id∗0, id
∗
1 in the ANO-ATK definition of IBE, for the challenge keywords

w∗0 ,w
∗
1 in the IND-ATK definition of PEKS, or for the data x0, x1 in the HIDE definition of commitment

schemes. This is a conscious choice,

Game-Playing Lemma. We will use the Fundamental Lemma of game-playing of [BR06], which we
now recall. Games Gi,Gj are identical until bad if their code differs only in statements that follow
the setting of bad to true. (For example, games G1,G2 of Figure 7 are identical until bad.)

Lemma A.1 [BR06] Let Gi,Gj be identical until bad games, and A an adversary. Then for any y∣∣Pr
[

GAi ⇒ y
]
− Pr

[
GAj ⇒ y

]∣∣ ≤ Pr
[

GAj sets bad
]
.

B More results on robustness of specific transforms and schemes

In this section we show that neither of two popular IND-CCA-providing transforms, the Fujisaki-
Okamoto (FO) transform [FO99] in the random oracle model and the Canetti-Halevi-Katz (CHK)
transform [CHK04] in the standard model, yield robustness. Since the FO transform even provides
the stronger notion of plaintext awareness [BP04], the counterexample below is at the same time
a proof that even plaintext awareness does not suffice for robustness. The fact that neither of the
transforms confer robustness generically does not exclude that they may still do so for certain specific
schemes. We show that this is actually the case for the Boneh-Franklin IBE [BF01], which uses the FO
transform to obtain IND-CCA security, and that it is not the case for the Boyen-Waters IBE [BW06],
which uses the CHK transform.

The Fujisaki-Okamoto transform. Given a public-key encryption scheme PKE = (PG,KG,Enc,
Dec) the FO transform yields a PKE scheme PKE = (PG,KG,Enc,Dec) where a message M is en-
crypted as (

Enc(pars, pk , x;H(x,M )) , G(x)⊕M
)
,

where x
$← {0, 1}k, where G(·) and H(·) are random oracles, and where H(x,M ) is used as the

random coins for the Enc algorithm. To decrypt a ciphertext (C1, C2), one recovers x by decrypting
C1, recovers M ← C2 ⊕G(x), and checks that Enc(pars, pk , x;H(x,M )) = C1. If this is the case then
M is returned, otherwise ⊥ is returned.

Given a scheme PKE∗ = (PG,KG,Enc∗,Dec∗), we show how to build a scheme PKE = (PG,KG,Enc,
Dec such that PKE obtained by applying the FO transform to PKE is not ROB-CPA. Namely, for
some fixed x∗ ∈ {0, 1}k and M ∗, let encryption and decryption be given by

Algorithm Enc(pars, pk , x; ρ)
If x = x∗ and ρ = H(x∗,M ∗) then return 0
Else return 1‖Enc∗(pars, pk , x; ρ)

Algorithm Dec(pars, pk , sk , b‖C ∗)
If b = 0 then return x∗

Else return Dec∗(pars, pk , sk ,C ∗) .

It is easy to see that if PKE∗ is one-way (the notion required by the FO transform), then so is PKE ,
because for an honestly-generated ciphertext the random coins H(x∗,M ∗) will hardly ever occur.
Moreover, it is also straightforward to show that, if PKE∗ is γ-uniform, then PKE is γ′-uniform for
γ′ = max(γ, 1/2`), where ` is the output length of H (please refer to [FO99] for the definition of
γ-uniformity). It is also easy to see that the scheme PKE obtained by applying the FO transform to
PKE is not robust: the ciphertext C = (0 , G(x∗)⊕M ∗) decrypts correctly to M ∗ under any public
key.

The Boneh-Franklin IBE. Boneh and Franklin proposed the first truly practical provably secure
IBE scheme in [BF01]. They also propose a variant that uses the FO transform to obtain provable
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IND-CCA security in the random oracle model under the bilinear Diffie-Hellman (BDH) assumption;
we refer to it as the BF-IBE scheme here. A straightforward modification of the proof can be used
to show that BF-IBE is also ANO-CCA in the random oracle model under the same assumption. We
now give a proof sketch that BF-IBE is also (unconditionally) ROB-CCA in the random oracle model.

Let e: G1 × G1 → G2 be a non-degenerate bilinear map, where G1 and G2 are multiplicative
cyclic groups of prime order p [BF01]. Let g be a generator of G1. The master secret key of the
BF-IBE scheme is an exponent s $← Z∗p, the public parameters contain S ← gs. For random oracles
H1 : {0, 1}∗ → G∗1, H2 : G2 → {0, 1}k, H3 : {0, 1}k × {0, 1}` → Z∗p, and H4 : {0, 1}k → {0, 1}`, the
encryption of a message M under identity id is a tuple(

gr , x⊕H2(e(S,H1(id))r) , M ⊕H4(x)
)
,

where x $← {0, 1}k and r ← H3(x,M ). To decrypt a ciphertext (C1,C2,C3), the user with identity
id and decryption key usk = H1(id)s computes x ← C2 ⊕ H2(e(C1, usk)), M ← C3 ⊕ H4(x), and
r ← H3(x,M ). If C1 6= gr he rejects, otherwise he outputs M .

Let us now consider a ROB-CCA adversary A that even knows the master secret s (and therefore
can derive all keys and decrypt all ciphertexts that it wants). Since H1 maps into G∗1, all its outputs
are of full order p. The probability that A finds two identities id1 and id2 such that H1(id) = H1(id2)
is negligible. Since S ∈ G∗1 and the map is non-degenerate, we therefore have that gid1 = e(S,H1(id1))
and gid2 = e(S,H1(id2)) are different and of full order p. Since H3 maps into Z∗p, we have that r 6= 0,
and therefore that grid1

and grid2
are different. If the output of H2 is large enough to prevent collisions

from being found, that also means that H2(grid1
) and H2(grid2

) are different. Decryption under both
identities therefore yields two different values x1 6= x2, and possibly different messages M1,M2. In
order for the ciphertext to be valid for both identities, we need that r = H3(x1,M1) = H3(x2,M2),
but the probability of this happening is again negligible in the random oracle model. As a result, it
follows that the BF-IBE scheme is also ROB-CCA in the random oracle model.

The Canetti-Halevi-Katz transform. The CHK transform turns an IBE scheme and a one-time
signature scheme [EGM96, Lam79] into a PKE scheme as follows. For each ciphertext a fresh signature
key pair (spk , ssk) is generated. The ciphertext is a tuple (C , spk , σ) where C is the encryption of M
to identity spk and σ is a signature of C under ssk . To decrypt, one verifies the signature σ, derives
the decryption key for identity spk , and decrypts C .

Given a scheme IBE∗ = (Setup,Ext,Enc∗,Dec∗), consider the scheme IBE = (Setup,Ext,Enc,Dec)
where Enc(pars, id ,M ) = 1‖Enc∗(pars, id ,M ) and where Dec(pars, id , usk , b‖C ∗) returns Dec∗(pars,
id , usk ,C ∗) if b = 1 and simply returns C ∗ if b = 0. This scheme clearly inherits the privacy and
anonymity properties of IBE∗. However, if IBE is used in the CHK transformation, then one can easily
generate a ciphertext (0‖M , spk , σ) that validly decrypts to M under any parameters pars (which in
the CHK transform serve as the user’s public key).

An extension of the CHK transform turns any IND-CPA secure `+1-level hierarchical IBE (HIBE)
into an IND-CCA secure `-level HIBE. It is easy to see that this transform does not confer robustness
either.

The Boyen-Waters IBE. Boyen and Waters [BW06] proposed a HIBE scheme which is IND-CPA
and ANO-CPA in the standard model, and a variant that uses the CHK transform to achieve IND-CCA
and ANO-CCA security. Decryption in the IND-CPA secure scheme never rejects, so it is definitely
not ROB-CPA. Without going into details here, it is easy to see that the IND-CCA variant is not
ROB-CPA either, because any ciphertext that is valid with respect to one identity will also be valid
with respect to another identity, since the verification of the one-time signature does not depend on
the identity of the recipient. (The natural fix to include the identity in the signed data may ruin
anonymity.)
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The IND-CCA-secure variant of Gentry’s IBE scheme [Gen06] falls to a similar robustness attack
as the original Cramer-Shoup scheme, by choosing a random exponent r = 0. We did not check
whether explicitly forbidding this choice restores robustness, however.

C Proofs of the commit-public-key transform

Proof of Equation (1). Let PKE = (PG,KG,Enc,Dec),CMT = (CPG,Com,Open), and PKE =
(PG,KG,Enc,Dec). On input cpars, adversary B lets pars $← PG ; (pk0, sk0) $← KG(pars) ; (pk1,

sk1) $← KG(pars) ; R $← {0, 1}r. Notice that B knows sk0 and sk1. It runs A on input (pars, cpars, R),
pk0, pk1. When A submits a decryption query C , adversary B computes M0 = Dec((pars, cpars, R),
pk0, sk0,C ) and M1 = Dec((pars, cpars, R), pk1, sk1,C ), which it can do so since it has both sk0 and
sk1. Then, B returns (M0,M1) to A. If A wins Game ROB-CCAPKE then there exists a Dec query
C = (C , com) for which neither M0 = Dec((pars, cpars, R), pk0, sk0,C ) nor M1 = Dec((pars, cpars, R),
pk1, sk1,C ) equal ⊥. Upon seeing such a query, B parses Mb = Dec(pars, pk b, sk b,C ) as (Mb, decb, R)
for b ∈ {0, 1}. It returns (com, dec0, dec1). If pk0 6= pk1 and if A wins Game ROB-CCAPKE , then B
also wins BINDCMT . We omit details.

Proof of Equation (2). Let PKE = (PG,KG,Enc,Dec),CMT = (CPG,Com,Open), and PKE =
(PG,KG,Enc,Dec). Adversary B, on input (pars, pk), lets cpars $← CPG ; R $← {0, 1}r and runs
A on input ((pars, cpars, R), pk). When A queries (M0,M1) to its LR oracle, B lets (com, dec) $←
Com(cpars, pk) and queries ((M0, dec, R), (M1, dec, R)) to its own LR oracle, getting back C . It
forwards (C , com) to A and outputs whatever A outputs.

Proof of Equation (3). Given that we already showed PKE is IND-CPA, it is natural to consider
using Halevi’s condition for anonymity [Hal05] to prove Equation (3), but this does not seem to help
here. Instead we give a direct proof. We consider a sequence of games, all of which have the same
Initialize and Finalize procedures. Specifically, for Initialize, each game picks a challenge bit b,
generates the parameters (pars, cpars, R), pk0, sk0, pk1, sk1 faithfully, namely according to PG and KG,
and returns (pars, cpars, R), pk0, pk1. On input a bit b′, the Finalize procedure returns true iff b′ = b.
The differences among the games lie in the way LR encrypts an input plaintext M ∗. Specifically, for
each i, j, k ∈ {0, 1}, we have a game Gijk in which
(1) pk i is used for encryption by the algorithm Enc

(2) pk j is committed to by the algorithm Com, and

(3) if k = 1 then (M , dec, R) gets encrypted by the algorithm Enc; otherwise, (0|M |, 0|dec|, 0r) is
encrypted by Enc.

We let Pijk = Pr
[

GAijk⇒ true
]

for each i, j, k ∈ {0, 1}. (Here, dec is the decommital key obtained
from Com executed in the game.) We consider the sequence of games G001,G000,G100,G110,G111.
Now, notice that for any adversary A

Advano-cpa

PKE (A) = P001 − P111 = (P001 − P000) + (P000 − P100) + (P100 − P110) + (P110 − P111) .

It is easy to construct adversaries B1,B2,B3 so that

P001 − P000 ≤ Advind-cpa
PKE (B2) (14)

P000 − P100 ≤ Advano-cpa
PKE (B1) (15)

P100 − P110 ≤ Advhide
CMT (B3) (16)

P110 − P111 ≤ Advind-cpa
PKE (B2) . (17)
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Equations (14) and (17) hold because the difference in the two games in each equation is whether (M ,
dec, R) or a string of zeros is encrypted. Equation (15) holds because the difference in the two games
is whether the base encryption algorithm Enc is performed under pk0 or pk1. Equation (16) holds
because the difference in the two games is whether pk0 or pk1 is being committed to.

Proof of Equation (4). We prove Equation (4) by considering the following games G0 and G1.

1. Game G0 is exactly as the IND-CCAPKE game, so

Advind-cca
PKE (A) = 2 · Pr

[
GA0 ⇒ true

]
− 1 .

2. Game G1 differs from G0 so that when A makes a query Dec((C∗, com)) with com 6= com∗ yet
still Open(cpars, com, dec) = pk , then the flag bad is set and ⊥ is returned. The game-playing
lemma says that

Pr
[

GA0 ⇒ true
]
≤ Pr

[
GA1 ⇒ true

]
+ Pr

[
GA1 sets bad

]
.

The second term is easily bounded by observing that bad only gets set when com and com∗ open
to the same data pk with the same decommitment dec, thereby violating the copy-resistance of
CMT . To bound the first term, observe that an adversary A winning G1 is easily transformed
into an adversary B2 winning the IND-CCAPKE game. We have that

Pr
[

GA1 sets bad
]
≤ Advcopy

CMT (B1) ,

2 · Pr
[

GA1 ⇒ true
]
− 1 ≤ Advind-cca

PKE (B2) ,

from which Equation (4) easily follows.

Proof of Equation (5). To prove Equation (5), we need the following information-theoretic lemma
that bounds the probability that an algorithm A2 reproduces a random input R to A1 when A1 can
only leak a limited amount of information about R to A2.

Lemma C.1 Let r ∈ N and let A1,A2 be arbitrary (i.e., possibly randomized and computationally
unbounded) algorithms, then

P = Pr
[
R′ = R | R $← {0, 1}r ; L $← A1(R) ; R′ $← A2(L)

]
≤ 2|L|−r .

Proof of Lemma C.1: First let’s assume A1,A2 are deterministic. For a fixed length ` = |L|
consider the sets SL for L ∈ {0, 1}` so that

SL = {R ∈ {0, 1}r : A1(R) = L}

and let cL = |SL|. When A2 gets input L, its best strategy is to return any R′ ∈ SL, in which case
the probability that R′ = R is 1/cL. Let S = {L : SL 6= ∅}. Then for a random R the probability that
A1(R) = L is cL/2r, so that

P ≤
∑
L∈S

1
cL
· cL

2r
=
|S|
2r
≤ 2`

2r

as claimed. If A1,A2 are randomized, then let their respective random tapes be denoted by ρ1, ρ2.
The probability P is taken over the choice of R and the random tapes ρ1, ρ2. Let ρ1, ρ2 be the random
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tapes that maximize P , and let A1,A2 be the deterministic algorithms obtained by fixing the random
tapes of A1,A2 to ρ1, ρ2, respectively. Then applying the above result to A1,A2 yields

P ≤ Pr
[
R′ = R | R $← {0, 1}r ; L $← A1(R) ; R′ $← A2(L)

]
≤ 2`−r .

The proof of Equation (5) is composed of the following sequence of games G0 through G4:

0. Game G0 is exactly as Game ANO-CCAPKE , so we have

Advano-cca
PKE (A) = 2 · Pr

[
GA0 ⇒ true

]
− 1 .

1. In Game G1, the oracle Dec(d, (C, com)) returns ⊥ to A and sets bad to true whenever d = b,
C = C ∗, com 6= com∗, and yet Open(cpars, com, dec) = pk and R′ = R (where dec and R′ are
obtained by decrypting C ). It is clear that this happens only when the copy-resistance of CMT
is broken.

Pr
[

GA0 ⇒ true
]
≤ Pr

[
GA1 ⇒ true

]
+ Pr

[
GA1 sets bad

]
≤ Pr

[
GA1 ⇒ true

]
+ Advcopy

CMT (B1)

2. In Game G2, the procedure LR computes C ∗ as Enc(pars, pk b, (0|M
∗|, 0|dec

∗|, 0r)) instead of
Enc(pars, pk b, (M ∗, dec∗, R)). It is easy to see that to distinguish between these games one needs
to break the IND-CCA security of PKE :

Pr
[

GA1 ⇒ true
]
≤ Pr

[
GA2 ⇒ true

]
+ Advind-cca

PKE (B2) .

3. In G3, Dec returns ⊥ to A and sets bad to true whenever d = 1− b, C = C ∗, com 6= com∗ and
yet Open(cpars, com, dec) = pk and R′ = R (where dec and R′ are obtained by decrypting C ).
We have

Pr
[

GA2 ⇒ true
]
≤ Pr

[
GA3 ⇒ true

]
+ Pr

[
GA3 sets bad

]
.

To bound the second term above, first note that bad is set exactly when A manages to find a mes-
sage M ∗ and a commitment com 6= com∗ such that the encryption C ∗ of a string of zeros of length
|M∗|+ |dec∗|+ r with respect to public key pk b decrypts to (M, dec, R) under secret key sk1−b.
The ciphertext C ∗ however is generated in the LR procedure as Enc(pars, pk b, (0|M

∗|, 0|dec
∗|, 0r)),

which is “almost” independent of R: almost, becauseAmay have slipped some information about
R into M ∗, and the length of M ∗ is used in the generation of C ∗.

We instantiate Lemma C.1 with the algorithmA1(R) that runsA on input pars = (pars, cpars, R)
until it makes its left-or-right query LR(M ∗). The output of A1 is L = |M ∗|. Algorithm
A2(L) generates a ciphertext C ∗ $← Enc(pars, pk b, (0L, 0|dec

∗|, 0r)) and decrypts it again as
(M , dec, R′) ← Dec(pars, pk1−b, sk1−b,C ). It is clear that this is exactly what happens in the
LR and Dec procedures of G3, and that the probability that bad gets set is bounded by the
probability that R′ = R, so by Lemma C.1 we have

Pr
[

GA3 sets bad
]
≤ 1/2r−log |M∗| = |M∗|/2r .
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4. In G4, LR computes (com∗, dec∗) as Com(cpars, 0|pk0|). It is easy to see that to distinguish
between G3 and G4 one needs to break the hiding property of the commitment scheme:

Pr
[

GA3 ⇒ true
]
≤ Pr

[
GA4 ⇒ true

]
+ Advhide

CMT (B3) .

In Game G4 all queries of the form Dec(d, (C∗, com)) are responded to with ⊥, and the only
information thatA has about the hidden bit b is due to the ciphertext C∗ $← Enc(pars, pk b, (0|M

∗|,
0|dec

∗|, 0r)). An adversary A winning Game G4 is therefore easily transformed into an adversary
B4 against the ANO-CCA-security of PKE :

2 · Pr
[

GA4 ⇒ true
]
− 1 ≤ Advano-cca

PKE (B4) .

Equation (5) is easily obtained by combining the inequalities above.

D Proof sketches of the commit-identity transform

Proofs of Equations (6)–(9). Let IBE = (Setup,Ext,Enc,Dec),CMT = (CPG,Com,Open), and
IBE = (Setup,Ext,Enc,Dec). The proof of Equation (6) is similar to that of Equation (1) with the
role of a public key played by a user’s identity. On input cpars, the adversary B simply generates the
rest of the parameters including the master secret key for the scheme IBE then runs A, answering
A’s queries faithfully. If A wins, there must be a Dec query C = (C , com) that decrypts correctly
for both id0 and id1 such that id0 6= id1. This means that B can output (com, dec0, dec1) where
(M0, dec0, R) and (M1, dec1, R) are the decryptions of C under id0 and id1, respectively.

The proof of Equation (7) is straightforward and analogous to that of Equation (2). The proof
of Equation (8) is almost identical to that of Equation (3), replacing the public keys pk0, pk1 with
identities id∗0, id

∗
1. We omit details.

The proof of Equation (9) is the same as that of Equation (4), but again with identities playing
the role of public keys. In the intermediate game that isolates the copy-resistance of CMT , the
Dec(id , (C, com)) procedure sets bad if (C = C∗) ∧ (com 6= com∗) ∧ (id = id∗). None of the other
differences introduce any particular difficulties in the proof.

Proof of Equation (10). In this proof we essentially prove two different bounds, one of them being
obtained through games G0–G5, and the other being obtained through games G0–G2,G′3–G′5. Both
bounds hold at any time, but the first is more useful for large identity spaces IDSp, while the second
is more useful for small identity spaces. The games work as follows:

0. Game G0 executes exactly as in Game ANO-CCAIBE , so

2 · Pr
[

GA0 ⇒ true
]
− 1 = Advano-cca

IBE (A)

1. Game G1 is like G0 except for the description of procedure Dec. In G1, Dec returns ⊥ to A and
sets bad to true whenever id = id∗b , C = C ∗, com 6= com∗, and yet Open(cpars, com, dec) = id
and R′ = R (where dec and R′ are obtained by decrypting C ). This means that A managed
to construct a second commitment com 6= com∗ that with the same opening information dec∗

opens to the same content id∗b , thereby breaking copy-resistance:

Pr
[

GA0 ⇒ true
]
≤ Pr

[
GA1 ⇒ true

]
+ Pr

[
GA1 sets bad

]
Pr
[

GA1 sets bad
]
≤ Advcopy

CMT (B1) .
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2. Game G2 is similar to G1 except for the description of procedure LR. In G2, LR computes C ∗

as Enc(pars, id∗b , (0
|M ∗|, 0|dec

∗|, 0r)). We have

Pr
[

GA1 ⇒ true
]
≤ Pr

[
GA2 ⇒ true

]
+ Advind-cca

IBE (B2) .

At this point, we introduce a fork in the game sequence to derive the two separate bounds. We
first present the branch G3–G5 that is most appropriate for large identity spaces, and then the branch
G′3–G′5 for small identity spaces.

3. Game G3 is like G2 except that in the procedure LR the target ciphertext is encrypted to a
random identity id∗ $← IDSp (or an arbitrarily large subset thereof in case IDSp is infinite),
rather than to id∗b . Consider the adversary B3 who runs A in an environment like that of G2/G3

and submits identities id ′0 = id∗ and id ′1 = id∗b as the challenge identities and (0|M
∗|, 0|dec

∗|, 0r)
as the challenge message in its own game ANO-CCAIBE . The challenge ciphertext C∗ is used
by B3 as part of A’s challenge ciphertext (C∗, com∗). For most of A’s Ext and Dec queries B3

simply relays answers from its own Ext and Dec oracles, except when A queries the Ext or
Dec oracle on id∗. Note that A is allowed to make such a query, but B3 is not. If this happens,
then B3 outputs 0. If this doesn’t happen and eventually A guesses the bit b correctly, then B3

outputs 1, otherwise it outputs 0.

Let β ∈ {0, 1} be the bit that B3 is trying to guess, i.e., C∗ is encrypted under id ′β. We have

Advano-cca
IBE (B3) = Pr [ B3 outputs 1 | β = 1 ]− Pr [ B3 outputs 1 | β = 0 ] .

If β = 1, then C∗ is encrypted under id∗b , and A’s execution environment is exactly as in G2,
unless it makes a query Ext(id∗) or Dec(id∗, ·). Since A’s view is independent of id∗, however,
this happens with probability at most (qid + qdec)/|IDSp|, so that

Pr [ B3 outputs 1 | β = 1 ] ≥ Pr
[

GA2 ⇒ true
]
− qid + qdec

|IDSp|
.

If β = 0, then let E denote the event that A makes a query Ext(id∗) or Dec(id∗, ·). Since A
may recover id∗ from C∗ we cannot upper-bound Pr [ E ], but we have that

Pr [ B3 outputs 1 | β = 0 ]

= Pr [ B10 outputs 1 | β = 0 ∧E ] · Pr [ E ] + Pr [ B10 outputs 1 | β = 0 ∧ ¬E ] · Pr [¬E ]

≤ Pr [ B10 outputs 1 | β = 0 ∧E ] + Pr [ B10 outputs 1 | β = 0 ∧ ¬E ]

= 0 + Pr
[

GA3 ⇒ true
]

Putting this together yields

Pr
[

GA2 ⇒ true
]
≤ Pr

[
GA3 ⇒ true

]
+ Advano-cca

IBE (B3) +
qid + qdec

|IDSp|
.

4. Game G4 is like G3 except for the description of procedure Dec. In G3, Dec returns ⊥ to A and
sets bad to true whenever id = id∗1−b, C = C ∗, com 6= com∗ and yet Open(cpars, com, dec) = id
and R′ = R (where dec and R′ are obtained by decrypting C ). As in Game G3 in the proof
of Equation (5) however, the ciphertext C∗ is generated almost independently of R. The only
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input to the encryption C∗ $← Enc(pars, id∗, (0|M
∗|, 0|dec

∗|, 0r) that can possibly carry information
about R is the length of the message M ∗. Using Lemma C.1 we have that

Pr
[

GA3 ⇒ true
]
≤ Pr

[
GA4 ⇒ true

]
+ Pr

[
GA4 sets bad

]
Pr
[

GA4 sets bad
]
≤ |M∗|

2r
.

5. Game G5 returns ⊥ to all queries Dec(id∗d, (C
∗, com)) for any d ∈ {0, 1}, which is in fact merely

a syntactical change with respect to Game G4. The only information about the bit b that is
passed to A is through the commitment com∗ in the challenge ciphertext, so it is easy to see
that

Pr
[

GA4 ⇒ true
]

= Pr
[

GA5 ⇒ true
]

2 · Pr
[

GA5 ⇒ true
]
− 1 ≤ Advhide

CMT (B4) .

Putting all the above equations from games G0–G5 together yields

Advano-cca
IBE (A) ≤ 2 ·Advcopy

CMT (B1) + 2 ·Advind-cca
IBE (B2) + 2 ·Advano-cca

IBE (B3)

+ Advhide
CMT (B4) +

2(qid + qdec)
|IDSp|

+
2|M∗|

2r
(18)

We now present the second game sequence G′3–G′5 that forks off from game G2.

3. Game G′3 is like G2 except that in the procedure LR the target ciphertext is always encrypted
to id∗0 instead of to id∗b . It is straightforward to construct an ANO-CCA adversary B′3 such that

Pr
[

GA2 ⇒ true
]
≤ Pr

[
G′3
A⇒ true

]
+ Advano-cca

IBE (B′3) .

4. Game G′4 is like G′3 except that Dec returns ⊥ to A and sets bad to true whenever id = id∗1−b,
C = C ∗, com 6= com∗ and yet Open(cpars, com, dec) = id and R′ = R (where dec and
R′ are obtained by decrypting C ). Again, the ciphertext C∗ is generated almost indepen-
dently of R. The inputs that carry information about R in the ciphertext generation C∗

$←
Enc(pars, id∗b , (0

|M∗|, 0|dec
∗|, 0r) are id∗b and |M ∗|. Using Lemma C.1 we have that

Pr
[

G′3
A⇒ true

]
≤ Pr

[
G′4
A⇒ true

]
+ Pr

[
G′4
A sets bad

]
Pr
[

G′4
A sets bad

]
≤ 2log |IDSp|+log |M ∗|−r =

|IDSp| · |M∗|
2r

.

5. Game G′5 returns ⊥ to all queries Dec(id∗d, (C
∗, com)) for any d ∈ {0, 1}. The only information

about the bit b that is passed to A is through the commitment com∗, so it is easy to see that

Pr
[

G′4
A⇒ true

]
= Pr

[
G′5
A⇒ true

]
2 · Pr

[
G′5
A⇒ true

]
− 1 ≤ Advhide

CMT (B′4) .

Putting the inequalities obtained from games G0–G2,G′3–G′5 together yields

Advano-cca
IBE (A) ≤ 2 ·Advcopy

CMT (B1) + 2 ·Advind-cca
IBE (B2) + 2 ·Advano-cca

IBE (B′3)

+ Advhide
CMT (B′4) +

2 · |IDSp| · |M∗|
2r

. (19)

Equation (10) is easily obtained from Equations (18) and (19).
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E Proof of the robustness of CS ∗ (Theorem 6.1)

The proof relies on Games G0–G11 of Figures 7–9 and the adversary I of Figure 10. See Section 6
for intuition. The games are written in a compact form where we show individual procedures, writing
next to each the games in which it occurs. We assume that every Dec query (a1, a2, c, d) of A satisfies
a1 6= 1. This is without loss of generality because the decryption algorithm rejects otherwise. This
will be crucial below. Similarly, we assume (a1, a2, c, d) ∈ G4. We now proceed to the analysis. Game
G0 is simply Game ROB-CCACS∗ , so

Advrob-cca
CS∗ (A) = Pr [ G0⇒ true ] . (20)

Games G1,G2 start to move us to the alternative decryption rule. In G1, if a2 = aw1 and d = axb+ybv
1

then d = axb1+yb1v
1 axb2+yb2v

2 , so Dec in G1 returns the correct decryption, like in G0. If a2 6= aw1 or
d 6= axb+ybv

1 then, if d 6= axb1+yb1v
1 · axb2+yb2v

2 , then Dec in G1 returns ⊥, else it returns ca−zb1
1 a−zb2

2 , so
again is correct either way. Thus,

Pr
[

GA0 ⇒ true
]

= Pr
[

GA1 ⇒ true
]

= Pr
[

GA2 ⇒ true
]

+ (Pr
[

GA1 ⇒ true
]
− Pr

[
GA2 ⇒ true

]
)

≤ Pr
[

GA2 ⇒ true
]

+ Pr
[

GA2 sets bad
]
, (21)

where the last line is by Lemma A.1 since G1,G2 are identical until bad. We now fork off two game
chains, one to bound each term above.

First, we will bound the second term in the right-hand side of Inequality (21). Our goal is to move
the choices of xb1, xb2, yb1, yb2, zb1, zb2 (b = 0, 1) and the setting of bad into Finalize while still being
able to answer Dec queries. We will then be able to bound the probability that bad is set by a static
analysis. Consider Game G3. If a2 6= aw1 and d = axb1+yb1v

1 axb2+yb2v
2 then bad is set in G2. But a2 = aw1

and d 6= axb+ybv
1 implies d 6= axb1+yb1v

1 axb2+yb2v
2 , so bad is not set in G2. So,

Pr
[

GA2 sets bad
]

= Pr
[

GA3 sets bad
]
. (22)

Since we are only interested in the probability that G3 sets bad, we have it always return true. The
flag bad may be set at line 315, but is not used, so we move the setting of bad into the Finalize
procedure in G4. This requires that G4 do some bookkeeping. We have also done some restructuring,
moving some loop invariants out of the loop in Dec. We have

Pr
[

GA3 sets bad
]

= Pr
[

GA4 sets bad
]
. (23)

The choice of xb1, xb2, xb at lines 404, 405 can equivalently be written as first choosing xb and xb2 at
random and then setting xb1 = xb − wxb2. This is true because w is not equal to 0 modulo p. The
same is true for yb1, yb2, yb. Once this is done, xb1, xb2, yb1, yb2 are not used until Finalize, so their
choice can be delayed. Game G5 makes these changes, so we have

Pr
[

GA4 sets bad
]

= Pr
[

GA5 sets bad
]
. (24)

Game G6 simply writes the test of line 524 in terms of the exponents. Note that this game computes
discrete logarithms, but it is only used in the analysis and does not have to be efficient. We have

Pr
[

GA5 sets bad
]

= Pr
[

GA6 sets bad
]
. (25)

We claim that

Pr
[

GA6 sets bad
]
≤ 2q

p
, (26)

(Recall q is the number of Dec queries made by A.) We now justify Equation (26). By the time we
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proc Initialize Game G0

000 g1
$← G∗ ; w $← Z∗p ; g2 ← gw1

001 K
$← Keys(H)

002 For b = 0, 1 do
003 xb1, xb2, yb1, yb2, zb1, zb2

$← Zp
004 eb ← gxb1

1 gxb2
2

005 fb ← gyb1
1 gyb2

2

006 hb ← gzb1
1 gzb2

2

007 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Initialize Games G1,G2,G3,G4

100 g1
$← G∗ ; w $← Z∗p ; g2 ← gw1

101 K
$← Keys(H)

102 For b = 0, 1 do
103 xb1, xb2, yb1, yb2, zb1, zb2

$← Zp
104 xb ← xb1 + wxb2 ; yb ← yb1 + wyb2
105 eb ← gxb

1 ; fb ← gyb
1 ; hb ← gzb1

1 gzb2
2

106 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Finalize Games G0,G1,G2

020 Return Win

proc Finalize Game G3

320 Return true

proc Finalize Game G4

420 For b = 0, 1 do
421 For all (a1, a2, c, d, v) ∈ S do
422 If d = axb1+yb1v

1 · axb2+yb2v
2 Then

423 bad← true
424 Return true

proc Dec((a1, a2, c, d)) Game G0

010 v ← H(K, (a1, a2, c))
011 For b = 0, 1 do
012 Mb ← c · a−zb1

1 a−zb2
2

013 If d 6= axb1+yb1v
1 · axb2+yb2v

2 Then Mb ← ⊥
014 If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true
015 Return (M0,M1)

proc Dec((a1, a2, c, d)) Games G1 ,G2

110 v ← H(K, (a1, a2, c))
111 For b = 0, 1 do
112 Mb ← c · a−zb1

1 a−zb2
2

113 If (a2 6= aw1 ∨ d 6= axb+ybv
1 ) Then

114 Mb ← ⊥
115 If d = axb1+yb1v

1 · axb2+yb2v
2 Then

116 bad← true ; Mb ← ca−zb1
1 a−zb2

2

117 If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true
118 Return (M0,M1)

proc Dec((a1, a2, c, d)) Game G3

310 v ← H(K, (a1, a2, c))
311 For b = 0, 1 do
312 Mb ← c · a−zb1

1 a−zb2
2

313 If (a2 6= aw1 ) Then
314 Mb ← ⊥
315 If d = axb1+yb1v

1 · axb2+yb2v
2 Then bad← true

316 Return (M0,M1)

proc Dec((a1, a2, c, d)) Game G4

410 v ← H(K, (a1, a2, c))
411 For b = 0, 1 do Mb ← c · a−zb1

1 a−zb2
2

412 If (a2 6= aw1 ) Then
413 S ← S ∪ {(a1, a2, c, d, v)} ; M0,M1 ← ⊥
414 Return (M0,M1)

Figure 7: Games G0,G1,G2,G3, and G4 for proof of Theorem 6.1. G1 includes the boxed code at
line 116 but G2 does not.
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proc Initialize Games G5,G6

500 g1
$← G∗ ; w $← Z∗p ; g2 ← gw1

501 K
$← Keys(H) ; S ← ∅

502 For b = 0, 1 do
503 xb, yb, zb1, zb2

$← Zp
504 eb ← gxb

1 ; fb ← gyb
1 ; hb ← gzb1

1 gzb2
2

505 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Dec((a1, a2, c, d)) Games G5,G6

510 v ← H(K, (a1, a2, c))
511 For b = 0, 1 do Mb ← c · a−zb1

1 a−zb2
2

512 If (a2 6= aw1 ) Then
513 S ← S ∪ {(a1, a2, c, d, v)} ; M0,M1 ← ⊥
514 Return (M0,M1)

proc Finalize Game G5

520 For b = 0, 1 do
521 xb2, yb2

$← Zp
522 xb1 ← xb − wxb2 ; yb1 ← yb − wyb2
523 For all (a1, a2, c, d, v) ∈ S do
524 If d = axb1+yb1v

1 · axb2+yb2v
2 Then bad← true

525 Return true

proc Finalize Game G6

620 For b = 0, 1 do
621 xb2, yb2

$← Zp
622 xb1 ← xb − wxb2 ; yb1 ← yb − wyb2
623 For all (a1, a2, c, d, v) ∈ S do
624 u1 ← logg1(a1) ; u2 ← logg2(a2)
625 s← logg1(d) ; tb ← s− u1xb + u1ybv

626 α← w(u2 − u1) ; β ← wv(u2 − u1)
627 If tb = αxb2 + βyb2 Then bad← true
628 Return true

Figure 8: Games G5 and G6 for proof of Theorem 6.1.

reach Finalize in G6, we can consider the adversary coins, all random choices of Initialize, and all
random choices of Dec to be fixed. We will take probability only over the choice of xb2, yb2 made
at line 621. Consider a particular (a1, a2, c, d, v) ∈ S. This is now fixed, and so are the quantities
u1, u2, s, t0, t1, α and β as computed at lines 624–626. So we want to bound the probability that bad
is set at line 627 when we regard tb, α, β as fixed and take the probability over the random choices of
xb2, yb2. The crucial fact is that u2 6= u1 because (a1, a2, c, d, v) ∈ S, and lines 612, 613 only put a
tuple in S if a2 6= aw1 . So α and β are not 0 modulo p, and the probability that tb = αxb2 + βyb2 is
thus 1/p. The size of S is at most q so line 627 is executed at most 2q times. Equation (26) follows
from the union bound.

We now return to Equation (21) to bound the first term. Game G7 removes from G2 code that
does not affect outcome of the game. Once this is done, xb1, yb1, xb2, yb2 are used only to define xb, yb,
so G7 picks only the latter. So we have

Pr
[

GA2 ⇒ true
]

= Pr
[

GA7 ⇒ true
]
. (27)

Game G8 is the same as G7 barring setting a flag that does not affect the game outcome, so

Pr
[

GA7 ⇒ true
]

= Pr
[

GA8 ⇒ true
]

= Pr
[

GA9 ⇒ true
]

+ Pr
[

GA8 ⇒ true
]
− Pr

[
GA9 ⇒ true

]
≤ Pr

[
GA9 ⇒ true

]
+ Pr

[
GA8 sets bad

]
(28)

≤ Pr
[

GA9 ⇒ true
]

+
1
p
. (29)

Equation (28) is by Lemma A.1 since G8,G9 are identical until bad. The probability that G8 sets
bad is the probability that y1 = y0 at line 805, and this is 1/p since y is chosen at random from Zp,
justifying Equation (29). The distribution of y1 in G9 is always uniform over Zq−{y0}, and the setting
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proc Initialize Game G7

700 g1
$← G∗ ; w $← Z∗p ; g2 ← gw1

701 K
$← Keys(H)

702 For b = 0, 1 do
703 xb, yb, zb1, zb2

$← Zp
704 eb ← gxb

1 ; fb ← gyb
1 ; hb ← gzb1

1 gzb2
2

705 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Dec((a1, a2, c, d)) Games G7–G11

710 v ← H(K, (a1, a2, c))
711 For b = 0, 1 do
712 Mb ← c · a−zb1

1 a−zb2
2

713 If (a2 6= aw1 ∨ d 6= axb+ybv
1 ) Then Mb ← ⊥

714 If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true
715 Return (M0,M1)

proc Finalize Games G7–G11

720 Return Win

proc Initialize Game G8/ G9

800 g1
$← G∗ ; w $← Z∗p ; g2 ← gw1 ; K $← Keys(H)

801 For b = 0, 1 do
802 xb, yb, zb1, zb2

$← Zp
803 eb ← gxb

1 ; fb ← gyb
1 ; hb ← gzb1

1 gzb2
2

804 If y1 = y0 Then

805 bad← true ; y1
$← Zq − {y0}

806 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Initialize Game G10

1000 g1
$← G∗ ; w $← Z∗p ; g2 ← gw1 ; K $← Keys(H)

1001 x0, y0, x1
$← Zq ; y1

$← Zq − {y0}
1002 For b = 0, 1 do
1003 zb1, zb2

$← Zp ; eb ← gxb
1

1004 fb ← gyb
1 ; hb ← gzb1

1 gzb2
2

1005 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Initialize Game G11

1100 g1
$← G∗ ; w $← Z∗p ; g2 ← gw1 ; K $← Keys(H) ; v∗ $← Zq

1101 x0, y0
$← Zq ; y1

$← Zq − {y0} ; x1 ← x0 − (y1 − y0)v∗

1102 For b = 0, 1 do zb1, zb2
$← Zp ; eb ← gxb

1 ; fb ← gyb
1 ; hb ← gzb1

1 gzb2
2

1103 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

Figure 9: Games G7–G11 for proof of Theorem 6.1. G9 includes the boxed code at line 805 but G8

does not.
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Adversary I(K, v∗)
g1

$← G∗ ; w $← Z∗p ; g2 ← gw1 ; x0, y0
$← Zp ; y1

$← Zp − {y0} ; x1 ← x0 − (y1 − y0)v∗

For b = 0, 1 do
zb1, zb2

$← Zp ; eb ← gxb
1 ; fb ← gyb

1 ; hb ← gzb1
1 gzb2

2

Run A on (g1, g2,K), (e0, f0, h0), (e1, f1, h1)
On query Dec((a1, a2, c, d))
v ← H(K, (a1, a2, c))
For b = 0, 1 do
Mb ← c · a−zb1

1 a−zb2
2

If (a2 6= aw1 ∨ d 6= axb+ybv
1 ) Then Mb ← ⊥

If (M0 6= ⊥) ∧ (M1 6= ⊥) Then (a∗1, a
∗
2, c
∗)← (a1, a2, c)

Return (M0,M1) to A
Until A halts
Return (a∗1, a

∗
2, c
∗)

Figure 10: Adversary I for proof of Theorem 6.1.

of bad at line 805 does not affect the game outcome, so

Pr
[

GA9 ⇒ true
]

= Pr
[

GA10⇒ true
]
. (30)

Game G11 picks xb, yb differently from G10, but since y1 − y0 6= 0, the two ways induce the same
distribution on x0, x1, y0, y1. Thus,

Pr
[

GA10⇒ true
]

= Pr
[

GA11⇒ true
]
. (31)

We now claim that

Pr
[

GA11⇒ true
]
≤ Advpre-img

H (I) (32)

where I is depicted in Figure 10. To justify this, say that the A makes a Dec query (a1, a2, c, d) which
returns (M0,M1) with M0 6= ⊥ and M1 6= ⊥. This means we must have

d = ax0+y0v
1 = ax1+y1v

1 , (33)

where v = H(K, (a1, a2, c)). Let u1 = logg1(a1) and s = logg1(d). Now, the above implies u1(x0 +
y0v) = u1(x1 + y1v). But (a1, a2, c, d) is a Dec query, and we know that a1 6= 1, so u1 6= 0. (This is a
crucial point. Recall the reason we can without loss of generality assume a1 6= 1 is that the decryption
algorithm of CS∗ rejects otherwise.) Dividing u1 out, we get x0 + y0v = x1 + y1v. Rearranging terms,
we get (y1 − y0)v = x0 − x1. However, we know that y1 6= y0, so v = (y1 − y0)−1(x0 − x1). However,
this is exactly the value v∗ due to the way I and Game G11 define x0, y0, x1, y1. Thus, we have
H(K, (a1, a2, c)) = v∗, meaning I will be successful. Putting together Equations (20)–(27), (29)–(32)
concludes the proof of Theorem 6.1.

F Application to auctions

Robustness of ElGamal. The parameters of the ElGamal encryption scheme consist of the de-
scription of a group G of prime order p with generator g. The secret key of a user is x $← Zp, the
corresponding public key is X = gx. The encryption of a message M is the pair (gr, Xr ·M ) for r $← Zp.
A ciphertext (R,S) is decrypted as M ← R/Sx. Since the decryption algorithm never returns ⊥, the
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ElGamal scheme is obviously not robust. Stronger even, the ciphertext (1,M ) decrypts to M under
any secret key. It is this strong failure of robustness that opens the way to attacks on applications
like Sako’s auction protocol [Sak00].

The protocol. Sako’s auction protocol [Sak00] is important because it is the first truly practical one
to hide the bids of losers. Let 1, . . . , N be the range of possible bidding prices. In an initialization step,
the auctioneer generates N ElGamal key pairs (x1, X1), . . . , (xN , XN ), and publishes g,X1, . . . , XN

and a fixed message M ∈ G. A bidder places a bid of value v ∈ {1, . . . , N} by encrypting M under
Xv and posting the ciphertext. Note that the privacy of the bids is guaranteed by the anonymity of
ElGamal encryption. The authority opens bids C1 = (R1, S1), . . . ,Cn = (Rn, Sn) by decrypting all
bids under secret keys xN , . . . , x1, until the highest index w where one or more bids decrypt to M .
The auctioneer announces the identity of the winner(s), the price of the item w, and the secret key
xw. All auctioneers can then check that Si/Rxw

i = M for all winners i.

An attack. Our attack permits a dishonest bidder and a colluding auctioneer to break the fairness
of the protocol. (Security against colluding auctioneers was not considered in [Sak00], so we do not
disprove their results, but it is a property that one may expect the protocol to have.) Namely, a
cheating bidder can place a bid (1,M ). If w is the highest honest bid, then the auctioneer can agree
to open the corrupted bid to with xw+1, thereby winning the auction for the cheating bidder at one
dollar more than the second-highest bidder.

Sako came close to preventing this attack with an “incompatible encryption” property that avoids
choosing r = 0 at encryption. A dishonest bidder however may deviate from this encryption rule; the
problem is that the decryption algorithm does not reject ciphertexts (R,S) when R = 1. The attack
is easily prevented by using any of our robust encryption schemes, so that decryption under any other
secret key than the intended one results in ⊥ being returned. Note that for this application we really
need the strong robustness notion with adversarially generated ciphertexts.

It is worth noting that, to enforce that all bids are independent of each other even in the presence of
a colluding auctioneer, all bidders would also need to commit to their sealed bids (using a non-malleable
commitment scheme) during a first round of communication and only open their commitments once
all commitments made public.
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