An extended abstract of this paper appears in the Proceedings of the 7th Theory of Cryptography Conference (TCC 2010), Lecture Notes in Computer Science 5978, D. Micciancio ed., Springer, 2010. This is the full version.

Robust Encryption

Michel Abdallas ${ }^{1} \quad$ Mihir Bellare ${ }^{2} \quad$ Gregory Neven3 ${ }^{3}$

Abstract

We provide a provable-security treatment of "robust" encryption. Robustness means it is hard to produce a ciphertext that is valid for two different users. Robustness makes explicit a property that has been implicitly assumed in the past. We argue that it is an essential conjunct of anonymous encryption. We show that natural anonymity-preserving ways to achieve it, such as adding recipient identification information before encrypting, fail. We provide transforms that do achieve it, efficiently and provably. We assess the robustness of specific encryption schemes in the literature, providing simple patches for some that lack the property. We explain that robustness of the underlying anonymous IBE scheme is essential for PEKS (Public Key Encryption with Keyword Search) to be consistent (meaning, not have false positives), and our work provides the first generic conversions of anonymous IBE schemes to consistent (and secure) PEKS schemes. Overall our work enables safer and simpler use of encryption.

[^0]
Contents

1 Introduction 1)
2 Definitions 4
3 Robustness failures of encryption with redundancy 6
4 Transforms that work 8
5 A SROB-CCA version of Cramer-Shoup 11
A Hiding and blinding of commitment schemes 16
B More results on robustness of specific transforms and schemes 16
C Application to auctions 17
D Proofs of Theorems 4.1 and 4.2 18
E Proof of Theorem 5.1 22
F Applications to searchable encryption 26

1 Introduction

This paper provides a provable-security treatment of encryption "robustness." Robustness reflects the difficulty of producing a ciphertext valid under two different encryption keys. The value of robustness is conceptual, "naming" something that has been undefined yet at times implicitly (and incorrectly) assumed. Robustness helps make encryption more mis-use resistant. We provide formal definitions of several variants of the goal; consider and dismiss natural approaches to achieve it; provide two general robustness-adding transforms; test robustness of existing schemes and patch the ones that fail; and discuss some applications.

The definitions. Both the PKE and the IBE settings are of interest and the explication is simplified by unifying them as follows. Associate to each identity an encryption key, defined as the identity itself in the IBE case and its (honestly generated) public key in the PKE case. The adversary outputs a pair $i d_{0}, i d_{1}$ of distinct identities. For strong robustness it also outputs a ciphertext C^{*}; for weak, it outputs a message M^{*}, and C^{*} is defined as the encryption of M^{*} under the encryption key $e k_{1}$ of $i d_{1}$. The adversary wins if the decryptions of C^{*} under the decryption keys $d k_{0}, d k_{1}$ corresponding to $e k_{0}, e k_{1}$ are both non- \perp. Both weak and strong robustness can be considered under chosen plaintext or chosen ciphertext attacks, resulting in four notions (for each of PKE and IBE) that we denote WROB-CPA, WROB-CCA, SROB-CPA, SROB-CCA.

Why robustness? The primary security requirement for encryption is data-privacy, as captured by notions IND-CPA or IND-CCA GM84, RS92, DDN00, BDPR98, BF03. Increasingly, we are also seeing a market for anonymity, as captured by notions ANO-CPA and ANO-CCA [BBDP01, $\mathrm{ABC}^{+} 08$]. Anonymity asks that a ciphertext does not reveal the encryption key under which it was created.

Where you need anonymity, there is a good chance you need robustness too. Indeed, we would go so far as to say that robustness is an essential companion of anonymous encryption. The reason is that without it we would have security without basic communication correctness, likely upsetting our application. This is best illustrated by the following canonical application of anonymous encryption, but shows up also, in less direct but no less important ways, in other applications. A sender wants to send a message to a particular target recipient, but, to hide the identity of this target recipient, anonymously encrypts it under her key and broadcasts the ciphertext to a larger group. But as a member of this group I need, upon receiving a ciphertext, to know whether or not I am the target recipient. (The latter typically needs to act on the message.) Of course I can't tell whether the ciphertext is for me just by looking at it since the encryption is anonymous, but decryption should divulge this information. It does, unambiguously, if the encryption is robust (the ciphertext is for me iff my decryption of it is not \perp) but otherwise I might accept a ciphertext (and some resulting message) of which I am not the target, creating mis-communication. Natural "solutions," such as including the encryption key or identity of the target recipient in the plaintext before encryption and checking it upon decryption, are, in hindsight, just attempts to add robustness without violating anonymity and, as we will see, don't work.

We were lead to formulate robustness upon revisiting Public key Encryption with Keyword Search (PEKS) [BDOP04. In a clever usage of anonymity, Boneh, Di Crescenzo, Ostrovsky and Persiano (BDOP) [BDOP04] showed how this property in an IBE scheme allowed it to be turned into a privacyrespecting communications filter. But Abdalla et. al $\left[\mathrm{ABC}^{+} 08\right]$ noted that the BDOP filter could lack consistency, meaning turn up false positives. Their solution was to modify the construction. What we observed instead was that consistency would in fact be provided by the original construct if the IBE scheme was robust. PEKS consistency turns out to correspond exactly to communication correctness of the anonymous IBE scheme in the sense discussed above. (Because the PEKS messages in the BDOP scheme are the recipients identities from the IBE perspective.) Besides resurrecting the BDOP construct, the robustness approach allows us to obtain the first consistent IND-CCA secure PEKS without random oracles.

Sako's auction protocol Sak00] is important because it was the first truly practical one to hide the bids
of losers. It makes clever use of anonymous encryption for privacy. But we present an attack on fairness whose cause is ultimately a lack of robustness in the anonymous encryption scheme (cf. Appendix Cl).

All this underscores a number of the claims we are making about robustness: that it is of conceptual value; that it makes encryption more resistant to mis-use; that it has been implicitly (and incorrectly) assumed; and that there is value to making it explicit, formally defining and provably achieving it.
Weak versus strong. The above-mentioned auction protocol fails because an adversary can create a ciphertext that decrypts correctly under any decryption key. Strong robustness is needed to prevent this. Weak robustness (of the underlying IBE) will yield PEKS consistency for honestly-encrypted messages but may allow spammers to bypass all filters with a single ciphertext, something prevented by strong robustness. Strong robustness trumps weak for applications and goes farther towards making encryption mis-use resistant. We have defined and considered the weaker version because it can be more efficiently achieved, because some existing schemes achieve it and because attaining it is a crucial first step in our method for attaining strong robustness.

Achieving robustness. As the reader has surely already noted, robustness (even strong) is trivially achieved by appending the encryption key to the ciphertext and checking for it upon decryption. The problem is that the resulting scheme is not anonymous and, as we have seen above, it is exactly for anonymous schemes that robustness is important. Of course, data privacy is important too. Letting AI-ATK $=$ ANO-ATK + IND-ATK for ATK $\in\{\mathrm{CPA}, \mathrm{CCA}\}$, our goal is to achieve AI-ATK+XROB-ATK, ideally for both ATK $\in\{\mathrm{CPA}, \mathrm{CCA}\}$ and $\mathrm{X} \in\{\mathrm{W}, \mathrm{S}\}$. This is harder.

Transforms. It is natural to begin by seeking a general transform that takes an arbitrary AI-ATK scheme and returns a AI-ATK + XROB-ATK one. This allows us to exploit known constructions of AI-ATK schemes, supports modular protocol design and also helps understand robustness divorced from the algebra of specific schemes. Furthermore, there is a natural and promising transform to consider. Namely, before encrypting, append to the message some redundancy, such as the recipient encryption key, a constant, or even a hash of the message, and check for its presence upon decryption. (Adding the redundancy before encrypting rather than after preserves AI-ATK.) Intuitively this should provide robustness because decryption with the "wrong" key will result, if not in rejection, then in recovery of a garbled plaintext, unlikely to possess the correct redundancy.

The truth is more complex. We consider two versions of the paradigm and summarize our findings in Figure 1. In encryption with unkeyed redundancy, the redundancy is a function RC of the message and encryption key alone. In this case we show that the method fails spectacularly, not providing even weak robustness regardless of the choice of the function RC. In encryption with keyed redundancy, we allow RC to depend on a key K that is placed in the public parameters of the transformed scheme, out of direct reach of the algorithms of the original scheme. In this form, the method can easily provide weak robustness, and that too with a very simple redundancy function, namely the one that simply returns K.

But we show that even encryption with keyed redundancy fails to provide strong robustness. To achieve the latter we have to step outside the encryption with redundancy paradigm. We present a strong robustness conferring transform that uses a (non-interactive) commitment scheme. For subtle reasons, for this transform to work the starting scheme needs to already be weakly robust. If it isn't already, we can make it so via our weak robustness transform.

In summary, on the positive side we provide a transform conferring weak robustness and another conferring strong robustness. Given any AI-ATK scheme the first transform returns a WROB-ATK + AI-ATK one. Given any AI-ATK + WROB-ATK scheme the second transform returns a SROB-ATK + AI-ATK one. In both cases it is for both ATK = CPA and ATK = CCA and in both cases the transform applies to what we call general encryption schemes, of which both PKE and IBE are special cases, so both are covered.

Robustness of specific schemes. The robustness of existing schemes is important because they might be in use. We ask which specific existing schemes are robust, and, for those that are not, whether they

Transform	WROB-ATK	SROB-ATK
Encryption with unkeyed redundancy (EuR)	No	No
Encryption with keyed redundancy (EkR)	Yes	No

Scheme	setting	AI-CCA	WROB-CCA	SROB-CCA	RO model
$\mathcal{C S}$	PKE	Yes [CS03, BBDP01]	Yes	No	No
$\mathcal{C S}$	PKE	Yes	Yes	Yes	No
$\mathcal{D} \mathscr{H} I E S$	PKE	Yes [ABR01]	Yes	No	Yes
$\mathcal{D \mathcal { H I E S }}{ }^{*}$	PKE	Yes	Yes	Yes	Yes
$\mathcal{B \mathcal { F }}$	IBE	Yes [BF01, ABC $\left.^{+} 08\right]$	Yes	Yes	Yes
$\mathcal{B W}$	IBE	Yes [BW06]	No	No	No

Figure 1: Achieving Robustness. The first table summarizes our findings on the encryption with redundancy transform. "No" means the method fails to achieve the indicated robustness for all redundancy functions, while "yes" means there exists a redundancy function for which it works. The second table summarizes robustness results about some specific AI-CCA schemes.
can be made so at a cost lower than that of applying one of our general transforms. There is no reason to expect schemes that are only AI-CPA to be robust since the decryption algorithm may never reject, so we focus on schemes that are known to be AI-CCA. This narrows the field quite a bit. Our findings and results are summarized in Figure (1)

Canonical AI-CCA schemes in the PKE setting are Cramer-Shoup (CS) in the standard model CS03, BBDP01 and $\mathcal{D H} \operatorname{HES}$ in the random oracle (RO) model ABR01, BBDP01]. We show that both are WROB-CCA but neither is SROB-CCA, the latter because encryption with 0 randomness yields a ciphertext valid under any encryption key. We present modified versions $\mathcal{C S}{ }^{*}, \mathcal{D} \mathscr{H} I E S^{*}$ of the schemes that we show are SROB-CCA. Our proof that $C S^{*}$ is SROB-CCA builds on the information-theoretic part of the proof of CS03. The result does not need to assume hardness of DDH. It relies instead on pre-image security of the underlying hash function for random range points, something not implied by collision-resistance but seemingly possessed by candidate functions.

In the IBE setting, the CCA version $\mathcal{B F}$ of the RO model Boneh-Franklin scheme is AI-CCA BF01, $\mathrm{ABC}^{+} 08$], and we show it is SROB-CCA. The standard model Boyen-Waters scheme $\mathcal{B} \mathcal{W}$ is AI-CCA [BW06], and we show it is neither WROB-CCA nor SROB-CCA. It can be made either via our transforms but we don't know of any more direct way to do this.
$\mathcal{B F}$ is obtained via the Fujisaki-Okamoto (FO) transform FO99 and $\mathcal{B W}$ via the Canetti-HaleviKatz (CHK) transform CHK04, BCHK06. We can show that neither transform generically provides strong robustness. This doesn't say whether they do or not when applied to specific schemes, and indeed the first does for $\mathcal{B F}$ and the second does not for $\mathfrak{B} \mathcal{W}$.

Summary. Protocol design suggests that designers have the intuition that robustness is naturally present. This seems to be more often right than wrong when considering weak robustness of specific AI-CCA schemes. Prevailing intuition about generic ways to add even weak robustness is wrong, yet we show it can be done by an appropriate tweak of these ideas. Strong robustness is more likely to be absent than present in specific schemes, but important schemes can be patched. Strong robustness can also be added generically, but with more work.

Related work. There is growing recognition that robustness is important in applications and worth defining explicitly, supporting our own claims to this end. In particular the correctness requirement for predicate encryption KSW08 includes a form of weak robustness and, in recent work concurrent to, and independent of, ours, Hofheinz and Weinreb HW08 introduced a notion of well-addressedness of IBE schemes that is just like weak robustness except that the adversary gets the IBE master secret key.

proc Initialize	$\underline{\operatorname{proc}} \mathbf{\operatorname { D e c } (C , i d)}$
(pars, msk) $\stackrel{\&}{\leftarrow} \mathrm{PG} ; b \stackrel{\&}{\leftarrow}\{0,1\}$	If id $\notin U$ then return \perp
$S, T, U, V \leftarrow \emptyset \quad$ 何	If (id, C) $\in T$ then return \perp
Return pars	$M \leftarrow \operatorname{Dec}($ pars $, \mathrm{EK}[i d], \mathrm{DK}[i d], C)$
proc GetEK(id)	Return M $\operatorname{proc} \mathbf{L R}\left(i d_{0}^{*}, i d_{1}^{*}, M_{0}^{*}, M_{1}^{*}\right)$
\bar{U}	$\frac{\operatorname{proc} \mathbf{L R}\left(i d_{0}^{*}, i d_{1}^{*}, M_{0}^{*}, M_{1}^{*}\right)}{\text { If }\left(i d_{0}^{*} \notin U\right) \vee\left(i d_{1}^{*} \notin U\right) \text { then return } \perp}$
$(\mathrm{EK}[i d], \mathrm{DK}[i d]) \stackrel{\leftarrow}{\leftarrow} \mathrm{KG}($ pars,, ssk, id)	If $\left(i d_{0}^{*} \notin U\right) \vee\left(i d_{1}^{*} \notin U\right)$ then return \perp If $\left(i d_{0}^{*} \in V\right) \vee\left(i d_{1}^{*} \in V\right)$ then return \perp
Return EK[id]	If $\left\|M_{0}^{*}\right\| \neq\left\|M_{1}^{*}\right\|$ then return \perp
proc GetDK(id)	$C^{*} \stackrel{8}{\leftarrow} \mathrm{Enc}\left(\right.$ pars $\left., \mathrm{EK}\left[i d_{b}\right], M_{b}^{*}\right)$
If id $\notin U$ then return \perp	$S \leftarrow S \cup\left\{i d_{0}^{*}, i d_{1}^{*}\right\}$
If $i d \in S$ then return \perp	$T \leftarrow T \cup\left\{\left(i d_{0}^{*}, C^{*}\right),\left(i d_{1}^{*}, C^{*}\right)\right\}$
$V \leftarrow V \cup\{i d\}$	Return C^{*}
Return DK $[i d]$	proc Finalize $\left(b^{\prime}\right)$
	Return ($b^{\prime}=b$)

Figure 2: G ame $\mathrm{AI}_{\mathcal{G} \mathcal{E}}$ defining AI-ATK security of general encryption scheme $\mathcal{G} \mathcal{E}=(\mathrm{PG}, \mathrm{KG}$, Enc, Dec $)$.

Neither work considers or achieves strong robustness, and neither treats PKE.

2 Definitions

Notation and conventions. If x is a string then $|x|$ denotes its length, and if S is a set then $|S|$ denotes its size. The empty string is denoted ε. By $a_{1}\|\ldots\| a_{n}$, we denote a string encoding of a_{1}, \ldots, a_{n} from which a_{1}, \ldots, a_{n} are uniquely recoverable. (Usually, concatenation suffices.) By $a_{1}\|\ldots\| a_{n} \leftarrow a$, we mean that a is parsed into its constituents a_{1}, \ldots, a_{n}. Similarly, if $a=\left(a_{1}, \ldots, a_{n}\right)$ then $\left(a_{1}, \ldots, a_{n}\right) \leftarrow a$ means we parse a as shown. Unless otherwise indicated, an algorithm may be randomized. By $y \stackrel{\&}{\leftarrow} A\left(x_{1}, x_{2}, \ldots\right)$ we denote the operation of running A on inputs x_{1}, x_{2}, \ldots and fresh coins and letting y denote the output. We denote by $\left[A\left(x_{1}, x_{2}, \ldots\right)\right]$ the set of all possible outputs of A on inputs x_{1}, x_{2}, \ldots. We assume that an algorithm returns \perp if any of its inputs is \perp.

Games. Our definitions and proofs use code-based game-playing BR06. Recall that a game -look at Figure 2 for an example - has an Initialize procedure, procedures to respond to adversary oracle queries, and a Finalize procedure. A game G is executed with an adversary A as follows. First, Initialize executes and its outputs are the inputs to A. Then A executes, its oracle queries being answered by the corresponding procedures of G . When A terminates, its output becomes the input to the Finalize procedure. The output of the latter, denoted G^{A}, is called the output of the game, and we let " G^{A} " denote the event that this game output takes value true. Boolean flags are assumed initialized to false. Games $\mathrm{G}_{i}, \mathrm{G}_{j}$ are identical until bad if their code differs only in statements that follow the setting of bad to true. Our proofs will use the following.
Lemma 2.1 [BR06] Let $\mathrm{G}_{i}, \mathrm{G}_{j}$ be identical until bad games, and A an adversary. Then

$$
\left|\operatorname{Pr}\left[\mathrm{G}_{i}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{j}^{A}\right]\right| \leq \operatorname{Pr}\left[\mathrm{G}_{j}^{A} \text { sets bad }\right] . \
$$

The running time of an adversary is the worst case time of the execution of the adversary with the game defining its security, so that the execution time of the called game procedures is included.

General encryption. We introduce and use general encryption schemes, of which both PKE and IBE are special cases. This allows us to avoid repeating similar definitions and proofs. A general encryption (GE) scheme is a tuple $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}, \mathrm{Dec})$ of algorithms. The parameter generation algorithm PG takes no input and returns common parameter pars and a master secret key msk. On input pars, msk, id, the key generation algorithm KG produces an encryption key $e k$ and decryption key $d k$. On inputs

```
proc Initialize
(pars, \(m s k) \stackrel{\&}{\leftarrow} \mathrm{PG} ; U, V \leftarrow \emptyset\)
Return pars
proc GetEK \((i d)\)
\(U \leftarrow U \cup\{i d\}\)
\((\mathrm{EK}[i d], \mathrm{DK}[i d]) \stackrel{\&}{\leftarrow} \mathrm{KG}(\) pars \(, m s k, i d)\)
Return EK[id]
proc GetDK (id)
If \(i d \notin U\) then return \(\perp\)
\(V \leftarrow V \cup\{i d\}\)
Return DK \([i d]\)
proc \(\operatorname{Dec}(C, i d)\)
If \(i d \notin U\) then return \(\perp\)
\(M \leftarrow \operatorname{Dec}(\) pars \(, \operatorname{EK}[i d], \operatorname{DK}[i d], C)\)
Return \(M\)
```

proc Finalize $\left(M, i d_{0}, i d_{1}\right) \quad / / \mathrm{WROB}_{\mathcal{G} \mathcal{E}}$
If $\left(i d_{0} \notin U\right) \vee\left(i d_{1} \notin U\right)$ then return false
If $\left(i d_{0} \in V\right) \vee\left(i d_{1} \in V\right)$ then return false
If $\left(i d_{0}=i d_{1}\right)$ then return false
$M_{0} \leftarrow M ; C \stackrel{\&}{\leftarrow} \operatorname{Enc}\left(\right.$ pars, $\left.\operatorname{EK}\left[i d_{0}\right], M_{0}\right)$
$M_{1} \leftarrow \operatorname{Dec}\left(\right.$ pars $\left., \operatorname{EK}\left[i d_{1}\right], \operatorname{DK}\left[i d_{1}\right], C\right)$
Return $\left(M_{0} \neq \perp\right) \wedge\left(M_{1} \neq \perp\right)$
proc Finalize $\left(C, i d_{0}, i d_{1}\right) \quad / / \operatorname{SROB}_{G \in}$
If $\left(i d_{0} \notin U\right) \vee\left(i d_{1} \notin U\right)$ then return false
If $\left(i d_{0} \in V\right) \vee\left(i d_{1} \in V\right)$ then return false
If $\left(i d_{0}=i d_{1}\right)$ then return false
$M_{0} \leftarrow \operatorname{Dec}\left(\right.$ pars, $\left.\mathrm{EK}\left[i d_{0}\right], \mathrm{DK}\left[i d_{0}\right], C\right)$
$M_{1} \leftarrow \operatorname{Dec}\left(\right.$ pars $\left., \mathrm{EK}\left[i d_{1}\right], \mathrm{DK}\left[i d_{1}\right], C\right)$
Return $\left(M_{0} \neq \perp\right) \wedge\left(M_{1} \neq \perp\right)$

Figure 3: Games $\mathrm{WROB}_{\mathcal{G} \mathcal{E}}$ and $\operatorname{SROB}_{\mathcal{G} \mathcal{E}}$ defining WROB-ATK and SROB-ATK security (respectively) of general encryption scheme $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}$, Enc, Dec $)$. The procedures on the left are common to both games, which differ only in their Finalize procedures.
pars, ek, M, the encryption algorithm Enc produces a ciphertext C encrypting plaintext M. On input pars, $e k, d k, C$, the deterministic decryption algorithm Dec returns either a plaintext message M or \perp to indicate that it rejects. We say that $\mathcal{G E}$ is a public-key encryption (PKE) scheme if $m s k=\varepsilon$ and KG ignores its id input. To recover the usual syntax we may in this case write the output of PG as pars rather than (pars, msk) and omit $m s k$, $i d$ as inputs to KG . We say that $\mathcal{G E}$ is an identity-based encryption (IBE) scheme if $e k=i d$, meaning the encryption key created by KG on inputs pars, msk, id always equals $i d$. To recover the usual syntax we may in this case write the output of KG as $d k$ rather than $(e k, d k)$. It is easy to see that in this way we have recovered the usual primitives. But there are general encryption schemes that are neither PKE nor IBE schemes, meaning the primitive is indeed more general.

Correctness. Correctness of a general encryption scheme $\mathcal{G E}=(P G, K G, E n c, D e c)$ requires that, for all (pars, msk) $\in[\mathrm{PG}]$, all plaintexts M in the underlying message space associated to pars, all identities id, and all $(e k, d k) \in[\mathrm{KG}($ pars, $m s k, i d)]$, we have $\operatorname{Dec}($ pars, $e k, d k, \operatorname{Enc}($ pars, $e k, M))=M$ with probability one, where the probability is taken over the coins of Enc.

AI-ATK security. Historically, definitions of data privacy (IND) GM84, RS92, DDN00, BDPR98, BF03] and anonymity (ANON) BBDP01, $\mathrm{ABC}^{+} 08$ have been separate. We are interested in schemes that achieve both, so rather than use separate definitions we follow [BGH07] and capture both simultaneously via game $\mathrm{AI}_{\mathcal{G} E}$ of Figure 2, A cpa adversary is one that makes no Dec queries, and a cca adversary is one that might make such queries. The ai-advantage of such an adversary, in either case, is

$$
\operatorname{Adv}_{\mathcal{G} \mathcal{E}}^{\mathrm{ai}}(A)=2 \cdot \operatorname{Pr}\left[\mathrm{AI}_{\mathcal{G} \mathcal{E}}^{A}\right]-1 .
$$

We will assume an ai-adversary makes only one LR query, since a hybrid argument shows that making q of them can increase its ai-advantage by a factor of at most q.

Oracle GetDK represents the IBE key-extraction oracle [BF03]. In the PKE case it is superfluous in the sense that removing it results in a definition that is equivalent up to a factor depending on the number of GetDK queries. That's probably why the usual definition has no such oracle. But conceptually, if it is there for IBE, it ought to be there for PKE, and it does impact concrete security.
Robustness. Associated to general encryption scheme $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}, \mathrm{Dec})$ are games WROB,

Figure 4: Relations between notions. An arrow $A \rightarrow B$ is an implication, meaning every scheme that is A-secure is also B-secure, while a barred arrow $\mathrm{A} \nrightarrow \mathrm{B}$ is a separation, meaning that there is a A -secure scheme that is not B-secure. (Assuming of course that there exists a A-secure scheme in the first place.)

SROB of Figure 3, As before, a cpa adversary is one that makes no Dec queries, and a cca adversary is one that might make such queries. The wrob and srob advantages of an adversary, in either case, are

$$
\operatorname{Adv}_{\mathcal{G} E}^{\mathrm{wrob}}(A)=\operatorname{Pr}\left[\mathrm{WROB}_{\mathcal{G} E}^{A}\right] \quad \text { and } \quad \mathbf{A d v}_{\mathcal{G E}}^{\mathrm{srob}}(A)=\operatorname{Pr}\left[\operatorname{SROB}_{\mathcal{G} E}^{A}\right] .
$$

The difference between WROB and SROB is that in the former the adversary produces a message M, and C is its encryption under the encryption key of one of the given identities, while in the latter it produces C directly, and may not obtain it as an honest encryption. It is worth clarifying that in the PKE case the adversary does not get to choose the encryption (public) keys of the identities it is targeting. These are honestly and independently chosen, in real life by the identities themselves and in our formalization by the games.
Relations between notions. Figure 4 shows implications and separations in the style of BDPR98. We consider each robustness notion in conjunction with the corresponding AI one since robustness is interesting only in this case. The implications are all trivial. The first separation shows that the strongest notion of privacy fails to imply even the weakest type of robustness. The second separation shows that weak robustness, even under CCA, doesn't imply strong robustness. We stress that here an implication $\mathrm{A} \rightarrow \mathrm{B}$ means that any A-secure, unaltered, is B -secure. Correspondingly, a non-implication $\mathrm{A} \nrightarrow \mathrm{B}$ means that there is an A -secure that, unaltered, is not B -secure. (It doesn't mean that an A -secure scheme can't be transformed into a B-secure one.) Only a minimal set of arrows and barred arrows is shown; others can be inferred. The picture is complete in the sense that it implies either an implication or a separation between any pair of notions.

3 Robustness failures of encryption with redundancy

A natural privacy-and-anonymity-preserving approach to add robustness to an encryption scheme is to add redundancy before encrypting, and upon decryption reject if the redundancy is absent. Here we investigate the effectiveness of this encryption with redundancy approach, justifying the negative results discussed in Section 1 and summarized in the first table of Figure [1.

Redundancy codes and the transform. A redundancy code $\mathcal{R E D}=(\mathrm{RKG}, \mathrm{RC}, \mathrm{RV})$ is a triple of algorithms. The redundancy key generation algorithm RKG generates a key K. On input K and data x the redundancy computation algorithm RC returns redundancy r. Given K, x, and claimed redundancy r, the deterministic redundancy verification algorithm RV returns 0 or 1 . We say that $\mathcal{R E D}$ is unkeyed if the key K output by RKG is always equal to ε, and keyed otherwise. The correctness condition is that for all x we have $\operatorname{RV}(K, x, \operatorname{RC}(K, x))=1$ with probability one, where the probability is taken over the coins of RKG and RC. (We stress that the latter is allowed to be randomized.)

Given a general encryption scheme $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}, \mathrm{Dec})$ and a redundancy code $\mathcal{R E} \mathcal{D}=(\mathrm{RKG}, \mathrm{RC}$,

| RKG | $\mathrm{RC}(K, e k \\| M)$ | $\mathrm{RV}(K, e k \\| M, r)$ | | |
|---|---|---|---|---|---|---|
| Return $K \leftarrow \varepsilon$ | Return ε | Return 1 |
| Return $K \leftarrow \varepsilon$ | Return 0^{k} | Return $\left(r=0^{k}\right)$ |
| Return $K \leftarrow \varepsilon$ | Return $e k$ | Return $(r=e k)$ |
| Return $K \leftarrow \varepsilon$ | $L \stackrel{\&}{\leftarrow}\{0,1\}^{k} ;$ Return $L \\| H(L, e k \\| M)$ | $L \\| h \leftarrow r ; \operatorname{Return}(h=H(L, e k \\| M))$ |
| Return $K \stackrel{\leftarrow}{\leftarrow}\{0,1\}^{k}$ | Return K | Return $(r=K)$ |
| Return $K \stackrel{\&}{\leftarrow}\{0,1\}^{k}$ | Return $H(K, e k \\| M)$ | Return $(r=H(K, e k \\| M))$ |

Figure 5: Examples of redundancy codes, where the data x is of the form $e k \| M$. The first four are unkeyed and the last two are keyed.

```
Algorithm \(\overline{\mathrm{PG}}\)
(pars, msk) \(\stackrel{\&}{\leftarrow} \mathrm{PG} ; K \stackrel{\&}{\leftarrow} \mathrm{RKG}\)
Return ((pars, \(K\) ), msk)
```

Algorithm $\overline{\mathrm{KG}}(($ pars,$K)$, msk, $i d)$
$(e k, d k) \stackrel{\&}{\leftarrow} \mathrm{KG}($ pars $, m s k, i d)$
Return ek

```
Algorithm \(\overline{\operatorname{Enc}}((\) pars,\(K), e k, M)\)
\(r \stackrel{\&}{\leftarrow} \mathrm{RC}(K, e k \| M)\)
\(C \stackrel{\&}{\leftarrow} \operatorname{Enc}(\) pars \(, e k, M \| r)\)
Return \(C\)
```

Algorithm $\overline{\operatorname{Dec}}(($ pars,$K), e k, d k, C)$
$M \| r \leftarrow \operatorname{Dec}(p a r s, e k, d k, C)$
If $\operatorname{RV}(K, e k \| M, r)=1$ then return M
Else return \perp

Algorithm Enc (pars, $e k, M)$
$C \stackrel{\&}{\leftarrow} \mathrm{Enc}^{*}$ (pars, ek, M)
Return C
Algorithm $\operatorname{Dec}($ pars $, e k, d k, C)$
$M \leftarrow \operatorname{Dec}^{*}($ pars $, e k, d k, C)$
If $M=\perp$ then
$M \leftarrow M^{*}($ pars $) \| \operatorname{RC}\left(\varepsilon, e k \| M^{*}(\right.$ pars $\left.) ; 0^{l}\right)$
Return M

```
Algorithm Enc (pars, ek, M)
\(C^{*} \stackrel{\mathbb{8}}{\leftarrow} \operatorname{Enc}^{*}(\) pars \(, e k, M)\)
Return \(1 \| C^{*}\)
```

Algorithm $\operatorname{Dec}($ pars, $e k, d k, C)$
$b \| C^{*} \leftarrow C$
If $b=1$ then return $\operatorname{Dec}^{*}\left(\right.$ pars $\left., e k, d k, C^{*}\right)$
Else return $M^{*}($ pars $) \| \operatorname{RC}\left(C^{*}, e k \| M^{*}(\right.$ pars $\left.) ; 0^{l}\right)$

Figure 6: Left: Transformed scheme for the encryption with redundancy paradigm. Top Right: Counterexample for WROB. Bottom Right: Counterexample for SROB.

RV), the encryption with redundancy transform associates to them the general encryption scheme $\overline{\mathcal{G E}}=$ ($\overline{\mathrm{PG}}, \overline{\mathrm{KG}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}}$) whose algorithms are shown on the left side of Figure 6 . Note that the transform has the first of our desired properties, namely that it preserves AI-ATK. Also if $\mathcal{G E}$ is a PKE scheme then so is $\overline{\mathcal{G E}}$, and if $\mathcal{G E}$ is an IBE scheme then so is $\overline{\mathcal{G E}}$, which means the results we obtain here apply to both settings.

Figure 5 shows example redundancy codes for the transform. With the first, $\overline{\mathcal{G E}}$ is identical to $\mathcal{G E}$, so that the counterexample below shows that AI-CCA does not imply WROB-CPA, justifying the first separation of Figure 4 The second and third rows show redundancy equal to a constant or the encryption key as examples of (unkeyed) redundancy codes. The fourth row shows a code that is randomized but still unkeyed. The hash function H could be a MAC or a collision resistant function. The last two are keyed redundancy codes, the first the simple one that just always returns the key, and the second using a hash function. Obviously, there are many other examples.
SROB FAILURE. We show that encryption with redundancy fails to provide strong robustness for all redundancy codes, whether keyed or not. More precisely, we show that for any redundancy code $\mathcal{R E D}$ and both ATK $\in\{\mathrm{CPA}, \mathrm{CCA}\}$, there is an AI-ATK encryption scheme $\mathcal{G E}$ such that the scheme $\overline{\mathcal{G E}}$ resulting from the encryption-with-redundancy transform applied to $\mathcal{G E}, \mathcal{R E D}$ is not SROB-CPA. We build $\mathcal{G E}$ by modifying a given AI-ATK encryption scheme $\mathcal{G} \mathcal{E}^{*}=\left(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}^{*}\right.$, Dec $\left.^{*}\right)$. Let l be the
number of coins used by RC, and let $\mathrm{RC}(x ; \omega)$ denote the result of executing RC on input x with coins $\omega \in\{0,1\}^{l}$. Let M^{*} be a function that given pars returns a point in the message space associated to pars in $\mathcal{G} \mathcal{E}^{*}$. Then $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}, \mathrm{Dec})$ where the new algorithms are shown on the bottom right side of Figure 6. The reason we used 0^{l} as coins for RC here is that Dec is required to be deterministic.

Our first claim is that the assumption that $\mathcal{G E} \mathcal{E}^{*}$ is AI-ATK implies that $\mathcal{G E}$ is too. Our second claim, that $\overline{\mathcal{G E}}$ is not SROB-CPA, is demonstrated by the following attack. For a pair $i d_{0}, i d_{1}$ of distinct identities of its choice, the adversary A, on input (pars, K), begins with queries $e k_{0} \stackrel{\&}{\leftarrow}$ $\operatorname{GetEK}\left(i d_{0}\right)$ and $e k_{1} \stackrel{\&}{\leftarrow} \operatorname{GetEK}\left(i d_{1}\right)$. It then creates ciphertext $C \leftarrow 0 \| K$ and returns $\left(i d_{0}, i d_{1}, C\right)$. We claim that $\mathbf{A d v} \frac{\operatorname{srob}}{G \mathcal{E}}(A)=1$. Letting $d k_{0}, d k_{1}$ denote the decryption keys corresponding to $e k_{0}, e k_{1}$ respectively, the reason is the following. For both $b \in\{0,1\}$, the output of $\operatorname{Dec}\left(\right.$ pars, $\left.e k_{b}, d k_{b}, C\right)$ is $M^{*}($ pars $) \| r_{b}($ pars $)$ where $r_{b}($ pars $)=\mathrm{RC}\left(K, e k_{b} \| M^{*}\right.$ (pars $\left.) ; 0^{l}\right)$. But the correctness of $\mathcal{R E D}$ implies that $\operatorname{RV}\left(K, e k_{b} \| M^{*}(\right.$ pars $), r_{b}($ pars $\left.)\right)=1$ and hence $\overline{\operatorname{Dec}}\left((\right.$ pars,$\left.K), e k_{b}, d k_{b}, C\right)$ returns $M^{*}($ pars $)$ rather than \perp.

WROB FAILURE. We show that encryption with redundancy fails to provide even weak robustness for all unkeyed redundancy codes. This is still a powerful negative result because many forms of redundancy that might intuitively work, such the first four of Figure 5, are included. More precisely, we claim that for any unkeyed redundancy code $\mathcal{R E E D}$ and both ATK $\in\{\mathrm{CPA}, \mathrm{CCA}\}$, there is an AI-ATK encryption scheme $\mathcal{G E}$ such that the scheme $\overline{\mathcal{G E}}$ resulting from the encryption-with-redundancy transform applied to $\mathcal{G} \mathcal{E}, \mathcal{R E D}$ is not WROB-CPA. We build $\mathcal{G E}$ by modifying a given AI-ATK + WROB-CPA encryption scheme $\mathcal{G} \mathcal{E}^{*}=\left(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}^{*}\right.$, Dec $\left.{ }^{*}\right)$. With notation as above, the new algorithms for the scheme $\mathcal{G} \mathcal{E}=$ (PG, KG, Enc, Dec) are shown on the top right side of Figure 6 .

Our first claim is that the assumption that $\mathcal{G E} \mathcal{E}^{*}$ is AI-ATK implies that $\mathcal{G E}$ is too. Our second claim, that $\overline{\mathcal{G E}}$ is not WROB-CPA, is demonstrated by the following attack. For a pair $i d_{0}, i d_{1}$ of distinct identities of its choice, the adversary A, on input (pars, ε), makes queries $e k_{0} \stackrel{\&}{\leftarrow} \mathbf{G e t E K}\left(i d_{0}\right)$ and $e k_{1} \stackrel{\&}{\leftarrow}$ $\operatorname{GetEK}\left(i d_{1}\right)$ and returns $\left(i d_{0}, i d_{1}, M^{*}(\right.$ pars $\left.)\right)$. We claim that $\operatorname{Adv} \frac{\mathrm{wrob}}{\mathcal{G E}}(A)$ is high. Letting $d k_{1}$ denote the decryption key corresponding to $e k_{1}$, the reason is the following. Let $r_{0} \stackrel{\&}{\leftarrow} \mathrm{RC}\left(\varepsilon, e k_{0} \| M^{*}\right.$ (pars)) and $C \stackrel{\&}{\leftarrow} \operatorname{Enc}\left(\right.$ pars $, e k_{0}, M^{*}($ pars $\left.) \| r_{0}\right)$. The assumed WROB-CPA security of $\mathcal{G} \mathcal{E}^{*}$ implies that $\operatorname{Dec}($ pars, $\left.e k_{1}, d k_{1}, C\right)$ is most probably $M^{*}($ pars $) \| r_{1}($ pars $)$ where $r_{1}($ pars $)=\operatorname{RC}\left(\varepsilon, e k_{1} \| M^{*}(\right.$ pars $\left.) ; 0^{l}\right)$. But the correctness of $\mathcal{R E D}$ implies that $\operatorname{RV}\left(\varepsilon, e k_{1} \| M^{*}(\right.$ pars $), r_{1}($ pars $\left.)\right)=1$ and hence $\overline{\operatorname{Dec}}\left((\right.$ pars,$\left.\varepsilon), e k_{1}, d k_{1}, C\right)$ returns M^{*} (pars) rather than \perp.

4 Transforms that work

We present a transform that confers weak robustness and another that confers strong robustness. They preserve privacy and anonymity, work for PKE as well as IBE, and for CPA as well as CCA. In both cases the security proofs surface some delicate issues. Besides being useful in its own right, the weak robustness transform is a crucial step in obtaining strong robustness, so we begin there.

Weak robustness transform. We saw that encryption-with-redundancy fails to provide even weak robustness if the redundancy code is unkeyed. Here we show that if the redundancy code is keyed, even in the simplest possible way where the redundancy is just the key itself, the transform does provide weak robustness, turning any AI-ATK secure general encryption scheme into an AI-ATK + WROB-ATK one, for both ATK $\in\{\mathrm{CPA}, \mathrm{CCA}\}$.

The transformed scheme encrypts with the message a key K placed in the public parameters. In more detail, the weak robustness transform associates to a given general encryption scheme $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}$, Dec) and integer parameter k, representing the length of K, the general encryption scheme $\overline{\mathcal{G E}}=(\overline{\mathrm{PG}}$, $\overline{\mathrm{KG}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ whose algorithms are depicted in Figure 7 . Note that if $\mathcal{G \mathcal { E }}$ is a PKE scheme then so is $\overline{\mathcal{G E}}$ and if $\mathcal{G E}$ is an IBE scheme then so is $\overline{\mathcal{G E}}$, so that our results, captured by Theorem 4.1 below, cover

Algorithm $\overline{\mathrm{PG}}$
(pars, msk) $\stackrel{\&}{\leftarrow} \mathrm{PG}$
$K \stackrel{\&}{\leftarrow}\{0,1\}^{k}$
Return ((pars,K), msk)

Algorithm $\overline{\operatorname{Enc}}(($ pars,$K), e k, \bar{M})$ $C \stackrel{\&}{\leftarrow} \operatorname{Enc}($ pars $, e k, \bar{M} \| K)$)
Return C

Algorithm $\overline{\mathrm{KG}}(($ pars,$K), m s k, i d)$
$(e k, d k) \stackrel{\&}{\leftarrow} \mathrm{KG}($ pars $, m s k, i d)$
Return ($e k, d k$)
Algorithm $\overline{\operatorname{Dec}}(($ pars,$K), e k, d k, C)$
$M \leftarrow \operatorname{Dec}($ pars $, e k, d k, C)$
If $M=\perp$ then return \perp
$\bar{M} \| K^{*} \leftarrow M$
If $\left(K=K^{*}\right)$ then return \bar{M}
Else Return \perp

Figure 7: General encryption scheme $\overline{\mathcal{G E}}=(\overline{\mathrm{PG}}, \overline{\mathrm{KG}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ resulting from applying our weakrobustness transform to general encryption scheme $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}$, Enc, Dec) and integer parameter k.
both settings.
The intuition for the weak robustness of $\overline{\mathcal{G E}}$ is that the $\mathcal{G} \mathcal{E}$ decryption under one key, of an encryption of $\bar{M} \| K$ created under another key, cannot, by the assumed AI-ATK security of $\mathcal{G E}$, reveal K, and hence the check will fail. This is pretty much right for PKE, but the delicate issue is that for IBE, information about K can enter via the identities, which in this case are the encryption keys and are chosen by the adversary as a function of K. The AI-ATK security of $\mathcal{G} \mathcal{E}$ is no protection against this. We show however that this can be dealt with by making K sufficiently longer than the identities.

Theorem 4.1 Let $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}, \mathrm{Dec})$ be a general encryption scheme with identity space $\{0,1\}^{n}$, and let $\overline{\mathcal{G E}}=(\overline{\mathrm{PG}}, \overline{\mathrm{KG}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ be the general encryption scheme resulting from applying the weak robustness transform to $\mathcal{G E}$ and integer parameter k. Then

1. AI-ATK: Let A be an ai-adversary against $\overline{\mathcal{G E}}$. Then there is an ai-adversary B against $\mathcal{G E}$ such that

$$
\operatorname{Adv}_{\mathcal{G} \mathbb{E}}^{\mathrm{ai}}(A)=\mathbf{A d v}_{\mathcal{G} \mathcal{E}}^{\mathrm{ai}}(B) .
$$

Adversary B inherits the query profile of A and has the same running time as A. If A is a cpa adversary then so is B.
2. WROB-ATK: Let A be a wrob adversary against $\overline{\mathcal{G E}}$ with running time t, and let $\ell=2 n+\left\lceil\log _{2}(t)\right\rceil$. Then there is an ai-adversary B against $\mathcal{G E}$ such that

$$
\operatorname{Adv}_{\underline{\mathcal{G}}}^{\mathrm{wrob}}(A) \leq \operatorname{Adv}_{\mathcal{G} \mathscr{E}}^{\mathrm{ai}}(B)+2^{\ell-k}
$$

Adversary B inherits the query profile of A and has the same running time as A. If A is a cpa adversary then so is B. I

The first part of the theorem implies that if $\mathcal{G E}$ is AI-ATK then $\overline{\mathcal{G E}}$ is AI-ATK as well. The second part of the theorem implies that if $\mathcal{G E}$ is AI-ATK and k is chosen sufficiently larger than $2 n+\left\lceil\log _{2}(t)\right\rceil$ then $\overline{G E}$ is WROB-ATK. In both cases this is for both ATK $\in\{C P A, C C A\}$. The theorem says it directly for CCA, and for CPA by the fact that if A is a cpa adversary then so is B. When we say that B inherits the query profile of A we mean that for every oracle that B has, if A has an oracle of the same name and makes q queries to it, then this is also the number B makes. The proof of the first part of the theorem is straightforward and is omitted. The proof of the second part is given in Appendix D, It is well known that collision-resistant hashing of identities preserves AI-ATK and serves to make them of fixed length BB 04 so the assumption that the identity space is $\{0,1\}^{n}$ rather than $\{0,1\}^{*}$ is not really a restriction. In practice we might hash with SHA256 so that $n=256$, and, assuming $t \leq 2^{128}$, setting $k=768$ would make $2^{\ell-k}=2^{-128}$.

```
Algorithm \(\overline{\mathrm{PG}}\)
(pars, msk) \(\stackrel{\&}{\leftarrow} \mathrm{PG}\)
cpars \(\stackrel{\$}{\leftarrow} \mathrm{CPG}\)
Return ((pars, cpars), msk)
Algorithm \(\overline{\mathrm{PG}}\)
(pars, msk) \(\stackrel{\&}{\leftarrow} \mathrm{PG}\)
cpars \(\stackrel{\&}{\leftarrow}\) CPG
Return ((pars, cpars), msk)
```

```
Algorithm \(\overline{\operatorname{Enc}}((\) pars, cpars \(), e k, \bar{M})\)
```

Algorithm $\overline{\operatorname{Enc}}(($ pars, cpars $), e k, \bar{M})$
(com, dec) $\stackrel{\&}{\leftarrow} \operatorname{Com}($ cpars, ek)
(com, dec) $\stackrel{\&}{\leftarrow} \operatorname{Com}($ cpars, ek)
$C \stackrel{\S}{\leftarrow} \operatorname{Enc}($ pars $, e k, \bar{M} \| d e c))$
$C \stackrel{\S}{\leftarrow} \operatorname{Enc}($ pars $, e k, \bar{M} \| d e c))$
Return (C, com)

```
Return ( \(C\), com)
```

Algorithm $\overline{\mathrm{KG}}(($ pars, cpars $)$, msk, id $)$
(ek, $d k) \stackrel{₫}{\leftarrow} \mathrm{KG}$ (pars, msk, id)
Return ($e k, d k$)
Algorithm $\overline{\operatorname{Dec}}(($ pars, cpars $), e k, d k,(C, c o m))$
$M \leftarrow \operatorname{Dec}($ pars $, e k, d k, C)$
If $M=\perp$ then return \perp
$\bar{M} \|$ dec $\leftarrow M$
If $(\operatorname{Ver}(c p a r s, e k, c o m, d e c)=1)$ then return \bar{M}
Else Return \perp

Figure 8: General encryption scheme $\overline{\mathcal{G E}}=(\overline{\mathrm{PG}}, \overline{\mathrm{KG}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ resulting from applying our strong robustness transform to general encryption scheme $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}, \mathrm{Dec})$ and commitment scheme $\mathcal{C M T}=(\mathrm{CPG}$, Com, Ver $)$.

Commitment schemes. Our strong robustness transform will use commitments. A commitment scheme is a 3 -tuple $\mathcal{C M T}=(\mathrm{CPG}, \mathrm{Com}$, Ver $)$. The parameter generation algorithm CPG returns public parameters cpars. The committal algorithm Com takes cpars and data x as input and returns a commitment com to x along with a decommittal key dec. The deterministic verification algorithm Ver takes cpars, x, com, dec as input and returns 1 to indicate that accepts or 0 to indicate that it rejects. Correctness requires that, for any $x \in\{0,1\}^{*}$, any cpars $\in[\mathrm{CPG}]$, and any (com, dec) $\in[\operatorname{Com}($ cpars, $x)]$, we have that $\operatorname{Ver}($ cpars, $x, \operatorname{com}, d e c)=1$ with probability one, where the probability is taken over the coins of Com. We require the scheme to have the uniqueness property, which means that for any $x \in\{0,1\}^{*}$, any cpars $\in[\mathrm{CPG}]$, and any $($ com, dec $) \in[\operatorname{Com}($ cpars, $x)]$ it is the case that $\operatorname{Ver}\left(\right.$ cpars, x, com ${ }^{*}$, dec $)=0$ for all com ${ }^{*} \neq$ com. In most schemes the decommittal key is the randomness used by the committal algorithm and verification is by re-applying the committal function, which ensures uniqueness. The advantage measures $\mathbf{A d v} \mathbf{c M \mathcal { T }}_{\mathcal{T}}^{\text {hide }}(A)$ and $\mathbf{A d v} \mathbf{v}_{\mathcal{C M} \mathcal{T}}^{\text {bind }}(A)$, referring to the standard hiding and binding properties, are recalled in Appendix A. We refer to the corresponding notions as HIDE and BIND.
The strong robustness transform. The idea is for the ciphertext to include a commitment to the encryption key. The commitment is not encrypted, but the decommittal key is. In detail, given a general encryption scheme $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}$, Enc, Dec) and a commitment scheme $\mathcal{C M T}=(\mathrm{CPG}, \mathrm{Com}$, Ver $)$ the strong robustness transform associates to them the general encryption scheme $\overline{\mathcal{G E}}=(\overline{\mathrm{PG}}, \overline{\mathrm{KG}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ whose algorithms are depicted in Figure 8, Note that if $\mathcal{G E}$ is a PKE scheme then so is $\overline{\mathcal{G E}}$ and if $\mathcal{G E}$ is an IBE scheme then so is $\overline{\mathcal{G E}}$, so that our results, captured by the Theorem 4.2, cover both settings.

In this case the delicate issue is not the robustness but the AI-ATK security of $\overline{\mathcal{G E}}$ in the CCA case. Intuitively, the hiding security of the commitment scheme means that a $\overline{\mathcal{G E}}$ ciphertext does not reveal the encryption key. As a result, we would expect AI-ATK security of $\overline{\mathcal{G E}}$ to follow from the commitment hiding security and the assumed AI-ATK security of $\mathcal{G E}$. This turns out not to be true, and demonstrably so, meaning there is a counterexample to this claim. (See below.) What we show is that the claim is true if $\mathcal{G E}$ is additionally WROB-ATK. This property, if not already present, can be conferred by first applying our weak robustness transform.

Theorem 4.2 Let $\mathcal{G E}=(\mathrm{PG}, \mathrm{KG}, \mathrm{Enc}, \mathrm{Dec})$ be a general encryption scheme, and let $\overline{\mathcal{G E}}=(\overline{\mathrm{PG}}, \overline{\mathrm{KG}}, \overline{\mathrm{Enc}}$, $\overline{\mathrm{Dec}})$ be the general encryption scheme resulting from applying the strong robustness transform to $\mathcal{G E}$ and commitment scheme $\mathcal{C M T}=(\mathrm{CPG}, \mathrm{Com}, \mathrm{Ver})$. Then

1. AI-ATK: Let A be an ai-adversary against $\overline{\mathcal{G E}}$. Then there is a wrob adversary W against $\mathcal{G E}, a$ hiding adversary H against $\mathcal{C M T}$ and an ai-adversary B against $\mathcal{G E}$ such that

$$
\mathbf{A d v}_{\mathcal{G} \mathcal{E}}^{\mathrm{ai}}(A) \leq 2 \cdot \mathbf{A d v}_{\mathcal{G} \mathcal{E}}^{\mathrm{wrob}}(W)+2 \cdot \mathbf{A} \mathbf{d v}_{\mathcal{C M T}}^{\text {hide }}(H)+3 \cdot \mathbf{A d v}_{\mathcal{G} \mathcal{E}}^{\mathrm{a}}(B)
$$

Adversaries W, B inherit the query profile of A, and adversaries W, H, B have the same running time
as A. If A is a cpa adversary then so are W, B.
2. SROB-ATK: Let A be a srob adversary against $\overline{\mathcal{G E}}$ making q GetEK queries. Then there is a binding adversary B against $\mathcal{C M T}$ such that

$$
\mathbf{A d v} \frac{\mathrm{srob}}{\mathcal{G} \mathcal{E}}(A) \leq \mathbf{A d v}_{\mathcal{C M T}}^{\mathrm{bind}}(B)+\binom{q}{2} \cdot \operatorname{Coll}_{\mathcal{G} E}
$$

Adversary B has the same running time as A.】
The first part of the theorem implies that if $\mathcal{G E}$ is AI-ATK and WROB-ATK and $\mathcal{C M} \mathcal{M}$ is HIDE then $\overline{\mathcal{G E}}$ is AI-ATK, and the second part of the theorem implies that if $\mathcal{C M T}$ is BIND secure and $\mathcal{G E}$ has low encryption key collision probability then $\overline{\mathcal{G E}}$ is SROB-ATK. In both cases this is for both ATK $\in\{\mathrm{CPA}, \mathrm{CCA}\}$. We remark that the proof shows that in the CPA case the WROB-ATK assumption on $\mathcal{G} \mathcal{E}$ in the first part is actually not needed. The encryption key collision probability $\operatorname{Coll}_{\mathcal{G E}}$ of $\mathcal{G E}$ is defined as the maximum probability that $e k_{0}=e k_{1}$ in the experiment

$$
\text { (pars, msk) } \stackrel{\&}{\leftarrow} \mathrm{PG} ;\left(e k_{0}, d k_{0}\right) \stackrel{\&}{\leftarrow} \mathrm{KG}\left(\text { pars }, m s k, i d_{0}\right) ;\left(e k_{1}, d k_{1}\right) \stackrel{\&}{\leftarrow} \mathrm{KG}\left(\text { pars }, m s k, i d_{1}\right),
$$

where the maximum is over all distinct identities $i d_{0}, i d_{1}$. The collision probability is zero in the IBE case since $e k_{0}=i d_{0} \neq i d_{1}=e k_{1}$. It is easy to see that $\mathcal{G E}$ being AI implies Coll $_{\mathcal{G} \mathcal{E}}$ is negligible, so asking for low encryption key collision probability is in fact not an extra assumption. (For a general encryption scheme the adversary needs to have hardwired the identities that achieve the maximum, but this is not necessary for PKE because here the probability being maximized is the same for all pairs of distinct identities.) The reason we made the encryption key collision probability explicit is that for most schemes it is unconditionally low. For example, when $\mathcal{G E}$ is the ElGamal PKE scheme, it is $1 /|\mathbb{G}|$ where \mathbb{G} is the group being used. Proofs of both parts of the theorem are in Appendix D,
The need for weak-robustness. As we said above, the AI-ATK security of $\overline{\mathcal{G E}}$ won't be implied merely by that of $\mathcal{G} \mathcal{E}$. (We had to additionally assume that $\mathcal{G} \mathcal{E}$ is WROB-ATK.) Here we justify this somewhat counter-intuitive claim. This discussion is informal but can be turned into a formal counterexample. Imagine that the decryption algorithm of $\mathcal{G E}$ returns a fixed string of the form $(\hat{M}$, $\hat{\text { eec }})$ whenever the wrong key is used to decrypt. Moreover, imagine $\mathcal{C M T}$ is such that it is easy, given cpars, x, dec, to find com so that $\operatorname{Ver}(c p a r s, x, c o m, d e c)=1$. (This is true for any commitment scheme where dec is the coins used by the Com algorithm.) Consider then the AI-ATK adversary A against the transformed scheme that that receives a challenge ciphertext $\left(C^{*}, c o m^{*}\right)$ where $C^{*} \leftarrow \operatorname{Enc}\left(\right.$ pars, EK $\left.\left[i d_{b}\right], M^{*} \| d e c^{*}\right)$ for hidden bit $b \in\{0,1\}$. It then creates a commitment côm of EK $\left[i d_{1}\right]$ with opening information $\hat{d e c}$, and queries $\left(C^{*}\right.$, côm) to be decrypted under $\operatorname{DK}\left[i d_{0}\right]$. If $b=0$ this query will probably return \perp because $\operatorname{Ver}\left(\right.$ cpars, $\mathrm{EK}\left[i d_{0}\right]$, com, dec*) is unlikely to be 1 , but if $b=1$ it returns \hat{M}, allowing A to determine the value of b. The weak robustness of $\mathcal{G E}$ rules out such anomalies.

5 A SROB-CCA version of Cramer-Shoup

Let \mathbb{G} be a group of prime order p, and $H: \operatorname{Keys}(H) \times \mathbb{G}^{3} \rightarrow \mathbb{G}$ a family of functions. We assume \mathbb{G}, p, H are fixed and known to all parties. Figure 9 shows the Cramer-Shoup (CS) scheme and the variant Cs* scheme where 1 denotes the identity element of \mathbb{G}. The differences are boxed. Recall that the CS scheme was shown to be IND-CCA in [CS03] and ANO-CCA in BBDP01. However, for any message $M \in \mathbb{G}$ the ciphertext $(\mathbf{1}, \mathbf{1}, M, \mathbf{1})$ in the CS scheme decrypts to M under any pars, $p k$, and $s k$, meaning in particular that the scheme is not even SROB-CPA. The modified scheme $\mathcal{C S}{ }^{*}$-which continues to be IND-CCA and ANO-CCA - removes this pathological case by having Enc choose the randomness u to be non-zero -Enc draws u from \mathbb{Z}_{p}^{*} while the CS scheme draws it from \mathbb{Z}_{p} - and then having Dec reject $\left(a_{1}, a_{2}, c, d\right)$ if $a_{1}=1$. This thwarts the attack, but is there any other attack? We show that there is not by proving that $C S^{*}$ is actually SROB-CCA. Our proof of robustness relies only on the security -specifically, pre-image

$$
\begin{aligned}
& \text { Algorithm PG } \\
& K \stackrel{\&}{\leftarrow} \operatorname{Keys}(H) ; g_{1} \stackrel{\&}{\leftarrow} \mathbb{G}^{*} ; w \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*} \\
& g_{2} \leftarrow g_{1}^{w} ; \operatorname{Return}\left(g_{1}, g_{2}, K\right) \\
& \text { Algorithm Enc }\left(\left(g_{1}, g_{2}, K\right),(e, f, h), M\right) \\
& u \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*} \\
& a_{1} \leftarrow g_{1}^{u} ; a_{2} \leftarrow g_{2}^{u} ; b \leftarrow h^{u} \\
& c \leftarrow b \cdot M ; v \leftarrow H\left(K,\left(a_{1}, a_{2}, c\right)\right) \\
& d \leftarrow e^{u} f^{u v} ; \operatorname{Return}\left(a_{1}, a_{2}, c, d\right)
\end{aligned}
$$

Figure 9: The original CS scheme [CS03] does not contain the boxed code while the variant CS * does. Although not shown above, the decryption algorithm in both versions always checks to ensure that the ciphertext $C \in \mathbb{G}^{4}$. The message space is \mathbb{G}.
resistance - of the hash family H : it does not make the DDH assumption. Our proof uses ideas from the information-theoretic part of the proof of CS03.

We say that a family $H: \operatorname{Keys}(H) \times \operatorname{Dom}(H) \rightarrow \operatorname{Rng}(H)$ of functions is pre-image resistant if, given a key K and a random range element v^{*}, it is computationally infeasible to find a pre-image of v^{*} under $H(K, \cdot)$. The notion is captured formally by the following advantage measure for an adversary I :

$$
\operatorname{Adv}_{H}^{\text {pre-img }}(I)=\operatorname{Pr}\left[H(K, x)=v^{*}: K \stackrel{\&}{\leftarrow} \operatorname{Keys}(H) ; v^{*} \stackrel{\&}{\leftarrow} \operatorname{Rng}(H) ; x \stackrel{\&}{\leftarrow} I\left(K, v^{*}\right)\right] .
$$

Pre-image resistance is not implied by the standard notion of one-wayness, since in the latter the target v^{*} is the image under $H(K, \cdot)$ of a random domain point, which may not be a random range point. However, it seems like a fairly mild assumption on a practical cryptographic hash function and is implied by the notion of "everywhere pre-image resistance" of [RS04], the difference being that, for the latter, the advantage is the maximum probability over all $v^{*} \in \operatorname{Rng}(H)$. We now claim the following.

Theorem 5.1 Let B be an adversary making two GetEK queries, no GetDK queries and at most $q-1$ Dec queries, and having running time t. Then we can construct an adversary I such that

$$
\begin{equation*}
\mathbf{A d v}_{C S^{*}}^{\mathrm{srob}}(A) \leq \mathbf{A d v}_{H}^{\mathrm{pre-img}}(I)+\frac{2 q+1}{p} \tag{1}
\end{equation*}
$$

Furthermore, the running time of I is $t+q \cdot O\left(t_{\exp }\right)$ where $t_{\exp }$ denotes the time for one exponentiation in \mathbb{G}.

Since $\mathcal{C S}^{*}$ is a PKE scheme, the above automatically implies security even in the presence of multiple GetEK and GetDK queries as required by game $\operatorname{SROB}_{C S^{*}}$. Thus the theorem implies that $C S^{*}$ is SROB-CCA if H is pre-image resistant. A detailed proof of Theorem 5.1 is in Appendix E Here we sketch some intuition.

We begin by conveniently modifying the game interface. We replace B with an adversary A that gets input $\left(g_{1}, g_{2}, K\right),\left(e_{0}, f_{0}, h_{0}\right),\left(e_{1}, f_{1}, h_{1}\right)$ representing the parameters that would be input to B and the public keys returned in response to B 's two GetEK queries. Let ($x_{01}, x_{02}, y_{01}, y_{02}, z_{01}, z_{02}$) and (x_{11}, x_{12}, $y_{11}, y_{12}, z_{11}, z_{12}$) be the corresponding secret keys. The decryption oracle takes (only) a ciphertext and returns its decryption under both secret keys, setting a Win flag if these are both non- \perp. Adversary A no longer needs an output, since it can win via a Dec query.

Suppose A makes a Dec query $\left(a_{1}, a_{2}, c, d\right)$. Then the code of the decryption algorithm Dec from Figure 9 tells us that, for this to be a winning query, it must be that

$$
d=a_{1}^{x_{01}+y_{01} v} a_{2}^{x_{02}+y_{02} v}=a_{1}^{x_{11}+y_{11} v} a_{2}^{x_{12}+y_{12} v}
$$

where $v=H\left(K,\left(a_{1}, a_{2}, c\right)\right)$. Letting $u_{1}=\log _{g_{1}}\left(a_{1}\right), u_{2}=\log _{g_{2}}\left(a_{2}\right)$ and $s=\log _{g_{1}}(d)$, we have

$$
\begin{equation*}
s=u_{1}\left(x_{01}+y_{01} v\right)+w u_{2}\left(x_{02}+y_{02} v\right)=u_{1}\left(x_{11}+y_{11} v\right)+w u_{2}\left(x_{12}+y_{12} v\right) \tag{2}
\end{equation*}
$$

However, even acknowledging that A knows little about $x_{b 1}, x_{b 2}, y_{b 1}, y_{b 2}(b \in\{0,1\})$ through its Dec queries, it is unclear why Equation (2) is prevented by pre-image resistance -or in fact any property short of being a random oracle - of the hash function H. In particular, there seems no way to "plant" a target v^{*} as the value v of Equation (21) since the adversary controls u_{1} and u_{2}. However, suppose now that $a_{2}=a_{1}^{w}$. (We will discuss later why we can assume this.) This implies $w u_{2}=w u_{1}$ or $u_{2}=u_{1}$ since $w \neq 0$. Now from Equation (21) we have

$$
u_{1}\left(x_{01}+y_{01} v\right)+w u_{1}\left(x_{02}+y_{02} v\right)-u_{1}\left(x_{11}+y_{11} v\right)-w u_{1}\left(x_{12}+y_{12} v\right)=0
$$

We now see the value of enforcing $a_{1} \neq 1$, since this implies $u_{1} \neq 0$. After canceling u_{1} and re-arranging terms, we have

$$
\begin{equation*}
v\left(y_{01}+w y_{02}-y_{11}-w y_{12}\right)+\left(x_{01}+w x_{02}-x_{11}-w x_{12}\right)=0 \tag{3}
\end{equation*}
$$

Given that $x_{b 1}, x_{b 2}, y_{b 1}, y_{b 2}(b \in\{0,1\})$ and w are chosen by the game, there is at most one solution v (modulo p) to Equation (3). We would like now to design I so that on input K, v^{*} it chooses $x_{b 1}, x_{b 2}$, $y_{b 1}, y_{b 2}(b \in\{0,1\})$ so that the solution v to Equation (3) is v^{*}. Then $\left(a_{1}, a_{2}, c\right)$ will be a pre-image of v^{*} which I can output.

To make all this work, we need to resolve two problems. The first is why we may assume $a_{2}=a_{1}^{w}-$ which is what enables Equation (3) - given that a_{1}, a_{2} are chosen by A. The second is to properly design I and show that it can simulate A correctly with high probability. To solve these problems, we consider, as in [CS03], a modified check under which decryption, rather than rejecting when $d \neq a_{1}^{x_{1}+y_{1} v} a_{2}^{x_{2}+y_{2} v}$, rejects when $a_{2} \neq a_{1}^{w}$ or $d \neq a_{1}^{x+y v}$, where $x=x_{1}+w x_{2}, y=y_{1}+w y_{2}, v=H\left(K,\left(a_{1}, a_{2}, c\right)\right)$ and $\left(a_{1}, a_{2}, c, d\right)$ is the ciphertext being decrypted. In our proof in Appendix E games $\mathrm{G}_{0}-\mathrm{G}_{2}$ move us towards this perspective. Then, we fork off two game chains. Games $G_{3}-G_{6}$ are used to show that the modified decryption rule increases the adversary's advantage by at most $2 q / p$. Games $\mathrm{G}_{7}-\mathrm{G}_{11}$ show how to embed a target value v^{*} into the components of the secret key without significantly affecting the ability to answer Dec queries. Based on the latter, we then construct I as shown in Appendix E,

Acknowledgments

First and third authors were supported in part by the European Commission through the ICT Program under Contract ICT-2007-216646 ECRYPT II. First author was supported in part by the French ANR-07-SESU-008-01 PAMPA Project. Second author was supported in part by NSF grants CNS-0627779 and CCF-0915675. Third author was supported in part by a Postdoctoral Fellowship from the Research Foundation - Flanders (FWO - Vlaanderen) and by the European Community's Seventh Framework Programme project PrimeLife (grant agreement no. 216483).

We thank Chanathip Namprempre, who declined our invitation to be a co-author, for her participation and contributions in the early stage of this work.

References

$\left[\mathrm{ABC}^{+} 08\right]$ Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. Journal of Cryptology, 21(3):350-391, July 2008. (Cited on page 1. 3, (5, 27,)
[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS,
pages 143-158, San Francisco, CA, USA, April 8-12, 2001. Springer, Berlin, Germany. (Cited on page 3.)
[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 223-238, Interlaken, Switzerland, May 2-6, 2004. Springer, Berlin, Germany. (Cited on page 9.)
[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566-582, Gold Coast, Australia, December 9-13, 2001. Springer, Berlin, Germany. (Cited on page 1, 3, 5, 11,)
[BCHK06] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. SIAM Journal on Computing, 36(5):915-942, 2006. (Cited on page 3.)
[BDOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption with keyword search. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 506-522, Interlaken, Switzerland, May 2-6, 2004. Springer, Berlin, Germany. (Cited on page 1, 26, 27,)
[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of security for public-key encryption schemes. In Hugo Krawczyk, editor, CRYPTO'98, volume 1462 of LNCS, pages 26-45, Santa Barbara, CA, USA, August 23-27, 1998. Springer, Berlin, Germany. (Cited on page [1, [5, 6.)
[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213-229, Santa Barbara, CA, USA, August 19-23, 2001. Springer, Berlin, Germany. (Cited on page 3, 16)
[BF03] Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil pairing. SIAM Journal on Computing, 32(3):586-615, 2003. (Cited on page (1) (5.)
[BGH07] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption without pairings. In 48th FOCS, pages 647-657, Providence, USA, October 20-23, 2007. IEEE Computer Society Press. (Cited on page [5)
[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of $L N C S$, pages 409-426, St. Petersburg, Russia, May 28 - June 1, 2006. Springer, Berlin, Germany. (Cited on page 4.)
[BSNS06] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. On the integration of public key data encryption and public key encryption with keyword search. In Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart Preneel, editors, ISC 2006, volume 4176 of LNCS, pages 217-232, Samos Island, Greece, August 30 - September 2, 2006. Springer, Berlin, Germany. (Cited on page 28.)
[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random oracles). In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 290-307, Santa Barbara, CA, USA, August 20-24, 2006. Springer, Berlin, Germany. (Cited on page 3, 17.)
[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 207-222, Interlaken, Switzerland, May 2-6, 2004. Springer, Berlin, Germany. (Cited on page 34)
[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167-226, 2003. (Cited on page 3, 11, 12, 13.)
[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Journal on Computing, 30(2):391-437, 2000. (Cited on page 1, 5,)
[DK05] Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext security of multiple encryption. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 188-209, Cambridge, MA, USA, February 10-12, 2005. Springer, Berlin, Germany. (Cited on page 28.)
[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO'99, volume 1666 of LNCS, pages 537-554, Santa Barbara, CA, USA, August 15-19, 1999. Springer, Berlin, Germany. (Cited on page 3.)
[FP07] Thomas Fuhr and Pascal Paillier. Decryptable searchable encryption. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, Provable Security, First International Conference, ProvSec 2007, volume 4784 of $L N C S$, pages 228-236, Wollongong, Australia, November 1-2, 2007. Springer, Berlin, Germany. (Cited on page 27.)
[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 445-464, St. Petersburg, Russia, May 28 - June 1, 2006. Springer, Berlin, Germany. (Cited on page 17),
[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270-299, 1984. (Cited on page 1, 5.)
[HW08] Dennis Hofheinz and Enav Weinreb. Searchable encryption with decryption in the standard model. Cryptology ePrint Archive, Report 2008/423, 2008. http://eprint.iacr.org/. (Cited on page 34)
[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of $L N C S$, pages 146-162, Istanbul, Turkey, April 13-17, 2008. Springer, Berlin, Germany. (Cited on page 3)
[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO'91, volume 576 of LNCS, pages 433-444, Santa Barbara, CA, USA, August 11-15, 1992. Springer, Berlin, Germany. (Cited on page 1, 5,
[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In Bimal K. Roy and Willi Meier, editors, FSE 2004, volume 3017 of LNCS, pages 371-388, New Delhi, India, February 5-7, 2004. Springer, Berlin, Germany. (Cited on page 12.)

proc Initialize

$\underline{\operatorname{proc} \mathbf{L R}\left(x_{0}, x_{1}\right)}$
$\overline{(c o m, d e c) \stackrel{\&}{\leftarrow} \operatorname{Com}}\left(\right.$ cpars,$\left.x_{b}\right) ;$ Return com
proc Finalize $\left(b^{\prime}\right)$
Return ($b^{\prime}=b$)
Figure 10: Game $\operatorname{HIDE}_{\mathcal{C M T}}$ (left) captures the hiding property while Game $\mathrm{BIND}_{\mathcal{C M T}}$ (right) captures the binding property. The adversary may call $\mathbf{L R}$ only once.
[Sak00] Kazue Sako. An auction protocol which hides bids of losers. In Hideki Imai and Yuliang Zheng, editors, PKC 2000, volume 1751 of $L N C S$, pages 422-432, Melbourne, Victoria, Australia, January 18-20, 2000. Springer, Berlin, Germany. (Cited on page 1, 17,)
[Sho01] Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive, Report 2001/112, 2001. http://eprint.iacr.org/. (Cited on page 28,)
[ZI07] Rui Zhang and Hideki Imai. Generic combination of public key encryption with keyword search and public key encryption. In Feng Bao, San Ling, Tatsuaki Okamoto, Huaxiong Wang, and Chaoping Xing, editors, CANS 07, volume 4856 of $L N C S$, pages 159-174, Singapore, December 8-10, 2007. Springer, Berlin, Germany. (Cited on page 28.)

A Hiding and blinding of commitment schemes

The advantage measures

$$
\mathbf{A d v}_{C \mathcal{M T}}^{\text {hide }}(A)=2 \cdot \operatorname{Pr}\left[\operatorname{HIDE}_{\mathcal{C M T}}^{A} \Rightarrow \text { true }\right]-1 \quad \text { and } \quad \mathbf{A d v}_{C \mathcal{M T}}^{\text {bind }}(A)=\operatorname{Pr}\left[\operatorname{BIND}_{C \mathcal{M T}}^{A} \Rightarrow \text { true }\right]
$$

which refer to the games of Figure 10, capture, respectively, the standard hiding and binding properties of a commitment scheme. We refer to the corresponding notions as HIDE and BIND.

B More results on robustness of specific transforms and schemes

The Boneh-Franklin IBE. Boneh and Franklin proposed the first truly practical provably secure IBE scheme in BF01]. They also propose a variant that uses the FO transform to obtain provable IND-CCA security in the random oracle model under the bilinear Diffie-Hellman (BDH) assumption; we refer to it as the BF-IBE scheme here. A straightforward modification of the proof can be used to show that BF-IBE is also ANO-CCA in the random oracle model under the same assumption. We now give a proof sketch that BF-IBE is also (unconditionally) SROB-CCA in the random oracle model.

Let $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ be a non-degenerate bilinear map, where \mathbb{G}_{1} and \mathbb{G}_{2} are multiplicative cyclic groups of prime order p [BF01]. Let g be a generator of \mathbb{G}_{1}. The master secret key of the BF-IBE scheme is an exponent $s \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*}$, the public parameters contain $S \leftarrow g^{s}$. For random oracles $H_{1}:\{0,1\}^{*} \rightarrow \mathbb{G}_{1}^{*}$, $H_{2}: \mathbb{G}_{2} \rightarrow\{0,1\}^{k}, H_{3}:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow \mathbb{Z}_{p}^{*}$, and $H_{4}:\{0,1\}^{k} \rightarrow\{0,1\}^{\ell}$, the encryption of a message M under identity $i d$ is a tuple

$$
\left(g^{r}, x \oplus H_{2}\left(e\left(S, H_{1}(i d)\right)^{r}\right), M \oplus H_{4}(x)\right)
$$

where $x \stackrel{\&}{\leftarrow}\{0,1\}^{k}$ and $r \leftarrow H_{3}(x, M)$. To decrypt a ciphertext $\left(C_{1}, C_{2}, C_{3}\right)$, the user with identity $i d$ and decryption key usk $=H_{1}(i d)^{s}$ computes $x \leftarrow C_{2} \oplus H_{2}\left(e\left(C_{1}, u s k\right)\right), M \leftarrow C_{3} \oplus H_{4}(x)$, and $r \leftarrow H_{3}(x, M)$. If $C_{1} \neq g^{r}$ he rejects, otherwise he outputs M.

Let us now consider a SROB-CCA adversary A that even knows the master secret s (and therefore can derive all keys and decrypt all ciphertexts that it wants). Since H_{1} maps into \mathbb{G}_{1}^{*}, all its outputs are of full order p. The probability that A finds two identities $i d_{1}$ and $i d_{2}$ such that $H_{1}(i d)=H_{1}\left(i d_{2}\right)$ is negligible. Since $S \in \mathbb{G}_{1}^{*}$ and the map is non-degenerate, we therefore have that $g_{i d_{1}}=e\left(S, H_{1}\left(i d_{1}\right)\right)$ and $g_{i d_{2}}=e\left(S, H_{1}\left(i d_{2}\right)\right)$ are different and of full order p. Since H_{3} maps into \mathbb{Z}_{p}^{*}, we have that $r \neq 0$, and therefore that $g_{i d_{1}}^{r}$ and $g_{i d_{2}}^{r}$ are different. If the output of H_{2} is large enough to prevent collisions from being found, that also means that $H_{2}\left(g_{i d_{1}}^{r}\right)$ and $H_{2}\left(g_{i d_{2}}^{r}\right)$ are different. Decryption under both identities therefore yields two different values $x_{1} \neq x_{2}$, and possibly different messages M_{1}, M_{2}. In order for the ciphertext to be valid for both identities, we need that $r=H_{3}\left(x_{1}, M_{1}\right)=H_{3}\left(x_{2}, M_{2}\right)$, but the probability of this happening is again negligible in the random oracle model. As a result, it follows that the BF-IBE scheme is also SROB-CCA in the random oracle model.
The Boyen-Waters IBE. Boyen and Waters BW06 proposed a HIBE scheme which is IND-CPA and ANO-CPA in the standard model, and a variant that uses the CHK transform to achieve IND-CCA and ANO-CCA security. Decryption in the IND-CPA secure scheme never rejects, so it is definitely not SROB-CPA. Without going into details here, it is easy to see that the IND-CCA variant is not SROB-CPA either, because any ciphertext that is valid with respect to one identity will also be valid with respect to another identity, since the verification of the one-time signature does not depend on the identity of the recipient. (The natural fix to include the identity in the signed data may ruin anonymity.)

The IND-CCA-secure variant of Gentry's IBE scheme Gen06 falls to a similar robustness attack as the original Cramer-Shoup scheme, by choosing a random exponent $r=0$. We did not check whether explicitly forbidding this choice restores robustness, however.

C Application to auctions

Robustness of ElGamal. The parameters of the ElGamal encryption scheme consist of the description of a group \mathbb{G} of prime order p with generator g. The secret key of a user is $x \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}$, the corresponding public key is $X=g^{x}$. The encryption of a message M is the pair $\left(g^{r}, X^{r} \cdot M\right)$ for $r \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}$. A ciphertext (R, S) is decrypted as $M \leftarrow R / S^{x}$. Since the decryption algorithm never returns \perp, the ElGamal scheme is obviously not robust. Stronger even, the ciphertext $(1, M)$ decrypts to M under any secret key. It is this strong failure of robustness that opens the way to attacks on applications like Sako's auction protocol Sak00.
The protocol. Sako's auction protocol Sak00 is important because it is the first truly practical one to hide the bids of losers. Let $1, \ldots, N$ be the range of possible bidding prices. In an initialization step, the auctioneer generates N ElGamal key pairs $\left(x_{1}, X_{1}\right), \ldots,\left(x_{N}, X_{N}\right)$, and publishes g, X_{1}, \ldots, X_{N} and a fixed message $M \in \mathbb{G}$. A bidder places a bid of value $v \in\{1, \ldots, N\}$ by encrypting M under X_{v} and posting the ciphertext. Note that the privacy of the bids is guaranteed by the anonymity of ElGamal encryption. The authority opens bids $C_{1}=\left(R_{1}, S_{1}\right), \ldots, C_{n}=\left(R_{n}, S_{n}\right)$ by decrypting all bids under secret keys x_{N}, \ldots, x_{1}, until the highest index w where one or more bids decrypt to M. The auctioneer announces the identity of the winner(s), the price of the item w, and the secret key x_{w}. All auctioneers can then check that $S_{i} / R_{i}^{x_{w}}=M$ for all winners i.
An attack. Our attack permits a dishonest bidder and a colluding auctioneer to break the fairness of the protocol. (Security against colluding auctioneers was not considered in Sak00, so we do not disprove their results, but it is a property that one may expect the protocol to have.) Namely, a cheating bidder can place a bid $(1, M)$. If w is the highest honest bid, then the auctioneer can agree to open the corrupted bid to with x_{w+1}, thereby winning the auction for the cheating bidder at one dollar more than the second-highest bidder.

Sako came close to preventing this attack with an "incompatible encryption" property that avoids choosing $r=0$ at encryption. A dishonest bidder however may deviate from this encryption rule; the
problem is that the decryption algorithm does not reject ciphertexts (R, S) when $R=1$. The attack is easily prevented by using any of our robust encryption schemes, so that decryption under any other secret key than the intended one results in \perp being returned. Note that for this application we really need the strong robustness notion with adversarially generated ciphertexts.

It is worth noting that, to enforce that all bids are independent of each other even in the presence of a colluding auctioneer, all bidders would also need to commit to their sealed bids (using a non-malleable commitment scheme) during a first round of communication and only open their commitments once all commitments made public.

D Proofs of Theorems 4.1 and 4.2

The proof of Part 2 of Theorem 4.1 relies on the following information-theoretic lemma.
Lemma D. 1 Let $\ell \leq k$ be positive integers and let A_{1}, A_{2} be arbitrary algorithms with the length of the output of A_{1} always being ℓ. Let P denote the probability that $A_{2}\left(A_{1}(K)\right)=K$ where the probability is over K drawn at random from $\{0,1\}^{k}$ and the coins of A_{1}, A_{2}. Then $P \leq 2^{\ell-k}$.
Proof of Lemma D.1: We may assume A_{1}, A_{2} are deterministic for, if not, we can hardwire a "best" choice of coins for each. For each ℓ-bit string L let $S_{L}=\left\{K \in\{0,1\}^{k}: A_{1}(K)=L\right\}$ and let $s(L)=\left|S_{L}\right|$. Let \mathcal{L} be the set of all $L \in\{0,1\}^{\ell}$ such that $s(L)>0$. Then

$$
\begin{aligned}
P & =\sum_{L \in \mathcal{L}} \operatorname{Pr}\left[A_{2}(L)=K \mid A_{1}(K)=L\right] \cdot \operatorname{Pr}\left[A_{1}(K)=L\right] \\
& =\sum_{L \in \mathcal{L}} \frac{1}{s(L)} \cdot \frac{s(L)}{2^{k}} \\
& =\sum_{L \in \mathcal{L}} \frac{1}{2^{k}}
\end{aligned}
$$

which is at most $2^{\ell-k}$ as claimed.

Proof of Part 2 of Theorem 4.1: Games $\mathrm{G}_{0}, \mathrm{G}_{1}$ of Figure 11 differ only in their Finalize procedures, with the message encrypted at line 04 to create ciphertext C in G_{1} being a constant rather than \bar{M}_{0} in G_{0}. We have

$$
\operatorname{Adv} \frac{\mathrm{wrob}}{\mathcal{G E}}(A)=\operatorname{Pr}\left[\mathrm{G}_{0}^{A}\right]=\left(\operatorname{Pr}\left[\mathrm{G}_{0}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{1}^{A}\right]\right)+\operatorname{Pr}\left[\mathrm{G}_{1}^{A}\right] .
$$

we design B so that

$$
\operatorname{Pr}\left[\mathrm{G}_{0}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{1}^{A}\right] \leq \operatorname{Adv}_{\mathcal{G} \mathcal{E}}^{\mathrm{ai}}(B) .
$$

On input pars, adversary B executes lines 02,03 of Initialize and runs A on input (pars, K). It replies to GetEK, GetDK and Dec queries of A via its own oracles of the same name. When A halts with output $M, i d_{0}, i d_{1}$, adversary B queries its $\mathbf{L R}$ oracle with $i d_{0}, i d_{0}, 0^{|M|}\left\|0^{k}, M\right\| K$ to get back a ciphertext C. It then makes query $\operatorname{GetDK}\left(i d_{1}\right)$ to get back $\operatorname{DK}\left[i d_{1}\right]$. Note this is a legal query for B because $i d_{1}$ is not one of the challenge identities in its LR query, but it would not have been legal for A. Now B executes lines $01-09$ of the code of Finalize of G_{1}. If $\bar{M}_{1} \neq \perp$ it outputs 1 , else 0 .
To complete the proof we show that $\operatorname{Pr}\left[\mathrm{G}_{1}^{A}\right] \leq 2^{\ell-k}$. We observe that M as computed at line 05 of Finalize in G_{1} depends only on pars, $\operatorname{EK}\left[i d_{1}\right], \operatorname{EK}\left[i d_{0}\right], \operatorname{DK}\left[i d_{1}\right],\left|\bar{M}_{0}\right|, k$. We would have liked to say that none of these depend on K. This would mean that the probability that $M \neq \perp$ and parses as $\bar{M}_{1} \| K$ is at most 2^{-k}, making $\operatorname{Pr}\left[\mathrm{G}_{1}^{A}\right] \leq 2^{-k}$. In the PKE case, what we desire is almost true because the only item

```
proc Initialize // \(\mathrm{G}_{0}, \mathrm{G}_{1}\)
01 (pars, msk) \(\stackrel{\&}{\leftarrow} \mathrm{PG}\)
\(02 K \stackrel{\leftarrow}{\leftarrow}\{0,1\}^{k}\)
\(03 U, V \leftarrow \emptyset\)
04 Return (pars, K)
\(\underline{\text { proc } \operatorname{GetEK}(i d)} / / \mathrm{G}_{0}, \mathrm{G}_{1}\)
\(01 U \leftarrow U \cup\{i d\}\)
\(02(\mathrm{EK}[i d], \mathrm{DK}[i d]) \stackrel{\&}{\leftarrow} \mathrm{KG}(\) pars, msk, id)
03 Return EK[id]
proc \(\operatorname{GetDK}(i d) \quad / / \mathrm{G}_{0}, \mathrm{G}_{1}\)
01 If \(i d \notin U\) then return \(\perp\)
02 If \(i d \in\left\{i d_{0}^{*}, i d_{1}^{*}\right\}\) then return \(\perp\)
\(03 V \leftarrow V \cup\{i d\}\)
04 Return DK[id]
proc \(\operatorname{Dec}(C, i d) / / \mathrm{G}_{0}, \mathrm{G}_{1}\)
01 If \(i d \notin U\) then return \(\perp\)
\(02 M \leftarrow \operatorname{Dec}(\) pars \(, \mathrm{EK}[i d], \mathrm{DK}[i d], C)\)
03 If \(M=\perp\) then return \(\perp\)
\(04 \bar{M} \| K^{*} \leftarrow M\)
If ( \(K=K^{*}\) ) then return \(\bar{M}\)
05 Else Return \(\perp\)
```


Figure 11: Games for the proof of Part 2 of Theorem 4.1.
in our list that can depend on K is $\left|\bar{M}_{0}\right|$, which can carry at most $\log _{2}(t)$ bits of information about K. But $i d_{0}, i d_{1}$ could depend on K so in general, and in the IBE case in particular, $\operatorname{EK}\left[i d_{0}\right], \operatorname{EK}\left[i d_{1}\right], \operatorname{DK}\left[i d_{1}\right]$ could depend on K. However we assumed that identities are n bits, so the total amount of information about K in the list pars, $\operatorname{EK}\left[i d_{1}\right], \operatorname{EK}\left[i d_{0}\right], \operatorname{DK}\left[i d_{1}\right],\left|M_{0}\right|, k$ is at most $2 n+\log _{2}(t)$ bits. We conclude by applying Lemma D. 1 with $\ell=2 n+\left\lceil\log _{2}(t)\right\rceil$.

Proof of Part 1 of Theorem 4.2; Game G_{0} of Figure 12 is game WROB $_{\overline{G \mathcal{E}}}$ tailored to the case that A makes only one LR query, an assumption we explained we can make. If we wish to exploit the assumed AI-ATK security of $\mathcal{G E}$, we need to be able to answer Dec queries of A using the Dec oracle in game $\mathrm{AI}_{\mathcal{G E}}$. Thus we would like to substitute the $\operatorname{Dec}($ pars, $\mathrm{EK}[i d], \mathrm{DK}[i d], C)$ call in a $\operatorname{Dec}((C, c o m)$, id) query of G_{0} with a $\operatorname{Dec}(C, i d)$ call of an adversary B in $\mathrm{AI}_{\mathcal{G E}}$. The difficulty is that C might equal C^{*} but com \neq com *, so that the call is not legal for B. To get around this, the first part of our proof will show that the decryption procedure of G_{0} can be replaced by the alternative one of G_{4}, where this difficulty vanishes. This part exploits the uniqueness of the commitment scheme and the weak robustness of $\mathcal{G E}$. After that we will exploit the AI-ATK security of $\mathcal{G E}$ to remove dependence on $d e c^{*}$ in $\mathbf{L R}$, allowing us to exploit the HIDE security of $\mathcal{C M \mathcal { T }}$ to make the challenge commitment independent of EK $\left[i d_{b}^{*}\right]$. This allows us to conclude by again using the AI-ATK security of $\mathcal{G} \mathcal{E}$. We proceed to the details.

In game G_{0}, if A makes a $\operatorname{Dec}\left(\left(C^{*}, c o m\right), i d_{b}^{*}\right)$ query with $\operatorname{com} \neq$ com* * then the uniqueness of $\mathcal{C M T}$ implies that the procedure in question will return \perp. This means that line 02 of $\mathbf{D e c}$ in G_{0} can be rewritten as line 02 of $\mathbf{D e c}$ in G_{1} and the two procedures are equivalent. Procedure $\mathbf{D e c}$ of G_{2} includes
proc Initialize $/ / \mathrm{G}_{0}-\mathrm{G}_{6}$
01 (pars, msk) $\stackrel{\&}{\stackrel{ }{P} \mathrm{PG}}$
02 cpars $\stackrel{\stackrel{s}{\leftarrow} \mathrm{CPG}}{\leftarrow}$
$03 b \stackrel{\&}{\leftarrow}\{0,1\}$
$04 S, U, V \leftarrow \emptyset ; C^{*} \leftarrow \perp ;$ com $^{*} \leftarrow \perp$
$05 i d_{0}^{*} \leftarrow \perp$; $i d_{1}^{*} \leftarrow \perp$
06 Return (pars, cpars)
proc GetEK(id) $/ / \mathrm{G}_{0}-\mathrm{G}_{6}$
$01 U \leftarrow U \cup\{i d\}$
$02(\mathrm{EK}[i d], \mathrm{DK}[i d]) \stackrel{\&}{\leftarrow} \mathrm{KG}($ pars, msk, id $)$
03 Return EK[id]
proc GetDK(id) // G $\mathrm{G}_{0}-\mathrm{G}_{6}$
01 If $i d \notin U$ then return \perp
02 If $i d \in\left\{i d_{0}^{*}, i d_{1}^{*}\right\}$ then return \perp
$03 V \leftarrow V \cup\{i d\}$
04 Return DK[id]
proc Finalize $\left(b^{\prime}\right) \quad / / \mathrm{G}_{0}-\mathrm{G}_{6}$
01 Return ($b^{\prime}=b$)
proc LR $\left(i d_{0}^{*}, i d_{1}^{*}, \bar{M}_{0}^{*}, \bar{M}_{1}^{*}\right) / / \mathrm{G}_{0}-\mathrm{G}_{4}$ 01 If $\left(i d_{0}^{*} \notin U\right) \vee\left(i d_{1}^{*} \notin U\right)$ then return \perp 02 If $\left(i d_{0}^{*} \in V\right) \vee\left(i d_{1}^{*} \in V\right)$ then return \perp $03\left(\right.$ com *, dec $\left.^{*}\right) \stackrel{\stackrel{\varsigma}{\leftarrow}}{\leftarrow} \operatorname{Com}\left(\right.$ cpars, $\left.\mathrm{EK}\left[i d_{b}^{*}\right]\right)$ $04 C^{*} \stackrel{\&}{\leftarrow} \operatorname{Enc}\left(\right.$ pars $\left., \operatorname{EK}\left[i d_{b}^{*}\right], \bar{M}_{b}^{*} \| d e c^{*}\right)$ 05 Return (C^{*}, com ${ }^{*}$)
proc LR($\left.i d_{0}^{*}, i d_{1}^{*}, \bar{M}_{0}^{*}, \bar{M}_{1}^{*}\right) / / \mathrm{G}_{5}$
01 If $\left(i d_{0}^{*} \notin U\right) \vee\left(i d_{1}^{*} \notin U\right)$ then return \perp 02 If $\left(i d_{0}^{*} \in V\right) \vee\left(i d_{1}^{*} \in V\right)$ then return \perp $03\left(\mathrm{com}^{*}\right.$, dec $\left.^{*}\right) \stackrel{\stackrel{\leftrightarrow}{\bullet}}{\leftarrow} \operatorname{Com}\left(\right.$ cpars, $\left.\mathrm{EK}\left[i d_{b}^{*}\right]\right)$ $04 C^{*} \stackrel{\&}{\leftarrow} \operatorname{Enc}\left(\right.$ pars, $\left.\mathrm{EK}\left[i d_{b}^{*}\right], \bar{M}_{b}^{*} \| 0^{d}\right)$
05 Return (C^{*}, com*)
proc LR $\left(i d_{0}^{*}, i d_{1}^{*}, \bar{M}_{0}^{*}, \bar{M}_{1}^{*}\right) / / \mathrm{G}_{6}$
01 If $\left(i d_{0}^{*} \notin U\right) \vee\left(i d_{1}^{*} \notin U\right)$ then return \perp 02 If $\left(i d_{0}^{*} \in V\right) \vee\left(i d_{1}^{*} \in V\right)$ then return \perp
$03\left(\right.$ com *, dec $\left.^{*}\right) \stackrel{\&}{\leftarrow} \operatorname{Com}\left(\right.$ cpars, $\left.0^{e}\right)$
$04 C^{*} \stackrel{\&}{\leftarrow} \operatorname{Enc}\left(\right.$ pars $\left., \operatorname{EK}\left[i d_{b}^{*}\right], \bar{M}_{b}^{*} \| 0^{d}\right)$
05 Return (C^{*}, com*)

Figure 12: Games for the proof of Part 1 of Theorem 4.2.
the boxed code and hence is equivalent to procedure $\mathbf{D e c}$ of G_{1}. Hence

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{2} \mathbf{A d v} \frac{\mathrm{ai}}{\mathcal{G E}}(A)=\operatorname{Pr}\left[\mathrm{G}_{0}^{A}\right]=\operatorname{Pr}\left[\mathrm{G}_{1}^{A}\right] & =\operatorname{Pr}\left[\mathrm{G}_{2}^{A}\right] \\
& =\operatorname{Pr}\left[\mathrm{G}_{3}^{A}\right]+\operatorname{Pr}\left[\mathrm{G}_{2}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{3}^{A}\right] \\
& \leq \operatorname{Pr}\left[\mathrm{G}_{3}^{A}\right]+\operatorname{Pr}\left[\mathrm{G}_{3}^{A} \text { sets bad }\right]
\end{aligned}
$$

The inequality above is by Lemma 2.1 which applies because $\mathrm{G}_{2}, \mathrm{G}_{3}$ are identical until bad. We design W so that

$$
\operatorname{Pr}\left[\mathrm{G}_{3}^{A} \text { sets bad }\right] \leq \mathbf{A d} \mathbf{v}_{\mathcal{G} \mathcal{E}}^{\mathrm{wrob}}(W)
$$

On input pars, adversary W executes lines $02,03,04,05$ of Initialize and runs A on input (pars, cpars). It replies to GetEK, GetDK, Dec queries of A via its own oracles of the same name, as per the code of G_{3}. When A makes its LR query $i d_{0}^{*}, i d_{1}^{*}, \bar{M}_{0}^{*}, \bar{M}_{1}^{*}$, adversary W executes lines $01,02,03$ of the code of $\mathbf{L R}$ of G_{3}. It then outputs $\bar{M}_{b}^{*} \| d e c^{*}, i d_{b}^{*}, i d_{1-b}^{*}$ and halts.
Next we bound $\operatorname{Pr}\left[\mathrm{G}_{3}^{A}\right]$. Procedure $\mathbf{D e c}$ of G_{4} results from simplifying the code of procedure Dec of G_{3}, so

$$
\operatorname{Pr}\left[\mathrm{G}_{3}^{A}\right]=\operatorname{Pr}\left[\mathrm{G}_{4}^{A}\right]=\left(\operatorname{Pr}\left[\mathrm{G}_{4}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{5}^{A}\right]\right)+\operatorname{Pr}\left[\mathrm{G}_{5}^{A}\right]
$$

The step from G_{4} to G_{5} modifies only $\mathbf{L R}$, replacing dec* with a constant. We are assuming here that any decommitment key output by Com, regardless of the inputs to the latter, has length d bits. We design B_{1} so that

$$
\operatorname{Pr}\left[\mathrm{G}_{4}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{5}^{A}\right]=\mathbf{A d v}_{\mathcal{G} \mathcal{E}}^{\mathrm{ai}}\left(B_{1}\right)
$$

On input pars, adversary B_{1} executes lines $02,03,04,05$ of Initialize and runs A on input (pars, cpars). It replies to GetEK, GetDK, Dec queries of A via its own oracles of the same name, as per the code of G_{4}. Here we make crucial use of the fact that the alternative decryption rule of $\mathbf{D e c}$ of G_{4} allows B_{1} to respond to Dec queries of A without the need to query its own Dec oracle on $\left(C^{*}, i d_{0}^{*}\right)$ or $\left(C^{*}, i d_{1}^{*}\right)$. When A makes its LR query $i d_{0}^{*}, i d_{1}^{*}, \bar{M}_{0}^{*}, \bar{M}_{1}^{*}$, adversary B_{1} executes lines $01,02,03$ of the code of $\mathbf{L R}$ of G_{4}. It then queries $i d_{b}^{*}, i d_{b}^{*}, \bar{M}_{b}^{*}\left\|0^{d}, \bar{M}_{b}^{*}\right\| d e c^{*}$ to its own $\mathbf{L R}$ oracle to get back a ciphertext C^{*}, and returns $\left(C^{*}, c o m^{*}\right)$ to A. When A halts with outut a bit b^{\prime}, adversary B_{1} outputs 1 if $b=b^{\prime}$ and 0 otherwise.
Next we bound $\operatorname{Pr}\left[\mathrm{G}_{5}^{A}\right]$. Procedure $\mathbf{L R}$ of G_{6} uses a constant 0^{e} rather than $\operatorname{EK}\left[i d_{b}^{*}\right]$ as data for Com at line 03 . The value of e is arbitrary, and we can just let $e=1$. Then

$$
\operatorname{Pr}\left[\mathrm{G}_{5}^{A}\right]=\left(\operatorname{Pr}\left[\mathrm{G}_{5}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{6}^{A}\right]\right)+\operatorname{Pr}\left[\mathrm{G}_{6}^{A}\right]
$$

We design H so that

$$
\operatorname{Pr}\left[\mathrm{G}_{5}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{6}^{A}\right] \leq \mathbf{A d v}_{C \mathcal{M} \mathcal{T}}^{\operatorname{hide}}(H)
$$

On input cpars, adversary H executes lines $01,03,04,05$ of Initialize and runs A on input (pars, cpars). It replies to GetEK, GetDK, Dec queries of A by direct execution of the code of these procedures in G_{5}, possible since it knows $m s k$. When A makes its $\mathbf{L R}$ query $i d_{0}^{*}, i d_{1}^{*}, \bar{M}_{0}^{*}, \bar{M}_{1}^{*}$, adversary H executes lines 01,02 of the code of $\mathbf{L R}$ of G_{5}. It then queries $0^{e}, \mathrm{EK}\left[i d_{b}^{*}\right]$ to its own $\mathbf{L R}$ oracle to get back a commitment com*. It executes line 04 of $\mathbf{L R}$ of G_{5} and returns $\left(C^{*}\right.$, com*) to A. When A halts with outut a bit b^{\prime}, adversary H returns 1 if $b=b^{\prime}$ and 0 otherwise.

Finally we design B_{2} so that

$$
2 \cdot \operatorname{Pr}\left[\mathrm{G}_{6}^{A}\right]-1 \leq \mathbf{A d v}_{G \mathcal{E}}^{\mathrm{ai}}\left(B_{2}\right)
$$

On input pars, adversary B_{2} executes lines $02,04,05$ of Initialize and runs A on input (pars, cpars). It replies to GetEK, GetDK, Dec queries of A via its own oracles of the same name, as per the code of G_{6}. Again we make crucial use of the fact that the alternative decryption rule of $\mathbf{D e c}$ of G_{6} allows B_{2} to respond to Dec queries of A without the need to query its own Dec oracle on $\left(C^{*}, i d_{0}^{*}\right)$ or $\left(C^{*}, i d_{1}^{*}\right)$. When A makes its LR query $i d_{0}^{*}$, $i d_{1}^{*}, \bar{M}_{0}^{*}, \bar{M}_{1}^{*}$, adversary B_{2} executes lines $01,02,03$ of the code of $\mathbf{L R}$ of G_{6}. It then queries $i d_{0}^{*}, i d_{1}^{*}, \bar{M}_{0}^{*}\left\|0^{d}, \bar{M}_{1}^{*}\right\| d e c^{*}$ to its own LR oracle to get back a ciphertext C^{*}, and returns $\left(C^{*}, c o m^{*}\right)$ to A. When A halts with outut a bit b^{\prime}, adversary B_{2} outputs b^{\prime}.

Adversary B of the theorem statement runs B_{1} with probability $2 / 3$ and B_{2} with probability $1 / 3$.

Proof of Part 2 of Theorem 4.2; In the execution of A with game SROB $\overline{\mathcal{G E}_{\bar{E}}}$ let coll be the event that there exist distinct $i d_{0}, i d_{1}$ queried by A to its GetEK oracle such that the encryption keys returned in response are the same. Then

$$
\begin{aligned}
\operatorname{Adv} \frac{\operatorname{srob}}{G \mathcal{E}}(A) & =\operatorname{Pr}\left[\operatorname{SROB} \frac{A}{\overline{G \mathcal{E}}} \wedge \operatorname{COLL}\right]+\operatorname{Pr}\left[\operatorname{SROB} \frac{A}{\overline{G E}} \wedge \overline{\mathrm{COLL}}\right] \\
& \leq \operatorname{Pr}[\operatorname{COLL}]+\operatorname{Pr}\left[\operatorname{SROB} \frac{A}{\overline{G \mathcal{E}}} \wedge \overline{\mathrm{COLL}}\right] .
\end{aligned}
$$

But

$$
\operatorname{Pr}[\mathrm{COLL}] \leq\binom{ q}{2} \cdot \operatorname{Coll}_{\mathfrak{G E}}
$$

and we can design B such that

$$
\operatorname{Pr}\left[\operatorname{SROB} \frac{A}{G \mathcal{E}} \wedge \overline{\mathrm{COLL}}\right] \leq \operatorname{Adv}_{\mathcal{C \mathcal { M } T}}^{\mathrm{bind}}(B) .
$$

We omit the details.

E Proof of Theorem 5.1

The proof relies on Games $\mathrm{G}_{0}-\mathrm{G}_{11}$ of Figures 13 , 15 and the adversary I of Figure 16. See Section 5 for intuition.

We begin by transforming B into an adversary A such that

$$
\begin{equation*}
\mathbf{A d v}_{\mathcal{C S}}{ }^{\mathrm{srob}}(B) \leq \operatorname{Pr}\left[\mathrm{G}_{0}^{A}\right] . \tag{4}
\end{equation*}
$$

On input $\left(g_{1}, g_{2}, K\right),\left(e_{0}, f_{0}, h_{0}\right),\left(e_{1}, f_{1}, h_{1}\right)$, adversary A runs B on input $\left(g_{1}, g_{2}, K\right)$. Adversary A returns to B the public key (e_{0}, f_{0}, h_{0}) in response to B 's first GetEK query $i d_{0}$, and (e_{1}, f_{1}, h_{1}) in response to its second GetEK query $i d_{1}$. When B makes a Dec query, which can be assumed to have the form $\left(a_{1}, a_{2}, c, d\right), i d_{b}$ for some $b \in\{0,1\}$, adversary A queries $\left(a_{1}, a_{2}, c, d\right)$ to its own Dec oracle to get back (M_{0}, M_{1}) and returns M_{b} to B. When B halts, with output that can be assumed to have the form ($\left.\left(a_{1}, a_{2}, c, d\right), i d_{0}, i d_{1}\right)$, adversary A makes a final query $\left(a_{1}, a_{2}, c, d\right)$ to its Dec oracle and also halts.

We assume that every Dec query $\left(a_{1}, a_{2}, c, d\right)$ of A satisfies $a_{1} \neq \mathbf{1}$. This is without loss of generality because the decryption algorithm rejects otherwise. This will be crucial below. Similarly, we assume $\left(a_{1}, a_{2}, c, d\right) \in \mathbb{G}^{4}$. We now proceed to the analysis.

Games $\mathrm{G}_{1}, \mathrm{G}_{2}$ start to move us to the alternative decryption rule. In G_{1}, if $a_{2}=a_{1}^{w}$ and $d=a_{1}^{x_{b}+y_{b} v}$ then $d=a_{1}^{x_{b 1}+y_{b 1} v} a_{2}^{x_{62}+y_{b 2} v}$, so Dec in G_{1} returns the correct decryption, like in G_{0}. If $a_{2} \neq a_{1}^{w}$ or $d \neq a_{1}^{x_{b}+y_{b} v}$ then, if $d \neq a_{1}^{x_{b 1}+y_{b 1} v} \cdot a_{2}^{x_{b 2}+y_{b 2} v}$, then Dec in G_{1} returns \perp, else it returns $c a_{1}^{-z_{b 1}} a_{2}^{-z_{b 2}}$, so

Figure 13: Games $G_{0}, G_{1}, G_{2}, G_{3}$, and G_{4} for proof of Theorem 5.1. G_{1} includes the boxed code at line 116 but G_{2} does not.
again is correct either way. Thus,

$$
\begin{align*}
\operatorname{Pr}\left[\mathrm{G}_{0}^{A}\right] & =\operatorname{Pr}\left[\mathrm{G}_{1}^{A}\right] \\
& =\operatorname{Pr}\left[\mathrm{G}_{2}^{A}\right]+\left(\operatorname{Pr}\left[\mathrm{G}_{1}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{2}^{A}\right]\right) \\
& \leq \operatorname{Pr}\left[\mathrm{G}_{2}^{A}\right]+\operatorname{Pr}\left[\mathrm{G}_{2}^{A} \text { sets bad }\right], \tag{5}
\end{align*}
$$

where the last line is by Lemma 2.1 since $\mathrm{G}_{1}, \mathrm{G}_{2}$ are identical until bad. We now fork off two game chains, one to bound each term above.

First, we will bound the second term in the right-hand side of Inequality (5). Our goal is to move the choices of $x_{b 1}, x_{b 2}, y_{b 1}, y_{b 2}, z_{b 1}, z_{b 2}(b=0,1)$ and the setting of bad into Finalize while still being able to answer Dec queries. We will then be able to bound the probability that bad is set by a static analysis. Consider Game G_{3}. If $a_{2} \neq a_{1}^{w}$ and $d=a_{1}^{x_{b 1}+y_{b 1} v} a_{2}^{x_{b 2}+y_{b 2} v}$ then bad is set in G_{2}. But $a_{2}=a_{1}^{w}$ and $d \neq a_{1}^{x_{b}+y_{b} v}$ implies $d \neq a_{1}^{x_{b 1}+y_{b 1} v} a_{2}^{x_{b 2}+y_{b 2} v}$, so bad is not set in G_{2}. So,

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{G}_{2}^{A} \text { sets bad }\right]=\operatorname{Pr}\left[\mathrm{G}_{3}^{A} \text { sets bad }\right] . \tag{6}
\end{equation*}
$$

Since we are only interested in the probability that G_{3} sets bad, we have it always return true. The flag bad may be set at line 315, but is not used, so we move the setting of bad into the Finalize procedure in G_{4}. This requires that G_{4} do some bookkeeping. We have also done some restructuring, moving some loop invariants out of the loop in Dec. We have

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{G}_{3}^{A} \text { sets bad }\right]=\operatorname{Pr}\left[\mathrm{G}_{4}^{A} \text { sets bad }\right] . \tag{7}
\end{equation*}
$$

The choice of $x_{b 1}, x_{b 2}, x_{b}$ at lines 404, 405 can equivalently be written as first choosing x_{b} and $x_{b 2}$ at random and then setting $x_{b 1}=x_{b}-w x_{b 2}$. This is true because w is not equal to 0 modulo p. The same is true for $y_{b 1}, y_{b 2}, y_{b}$. Once this is done, $x_{b 1}, x_{b 2}, y_{b 1}, y_{b 2}$ are not used until Finalize, so their choice can be delayed. Game G_{5} makes these changes, so we have

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{G}_{4}^{A} \text { sets bad }\right]=\operatorname{Pr}\left[\mathrm{G}_{5}^{A} \text { sets bad }\right] . \tag{8}
\end{equation*}
$$

Game G_{6} simply writes the test of line 524 in terms of the exponents. Note that this game computes discrete logarithms, but it is only used in the analysis and does not have to be efficient. We have

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{G}_{5}^{A} \text { sets bad }\right]=\operatorname{Pr}\left[\mathrm{G}_{6}^{A} \text { sets bad }\right] . \tag{9}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{G}_{6}^{A} \text { sets bad }\right] \leq \frac{2 q}{p} \tag{10}
\end{equation*}
$$

(Recall q is the number of Dec queries made by A.) We now justify Equation (10). By the time we reach Finalize in G_{6}, we can consider the adversary coins, all random choices of Initialize, and all random choices of Dec to be fixed. We will take probability only over the choice of $x_{b 2}, y_{b 2}$ made at line 621 . Consider a particular $\left(a_{1}, a_{2}, c, d, v\right) \in S$. This is now fixed, and so are the quantities $u_{1}, u_{2}, s, t_{0}, t_{1}, \alpha$ and β as computed at lines $624-626$. So we want to bound the probability that bad is set at line 627 when we regard t_{b}, α, β as fixed and take the probability over the random choices of $x_{b 2}, y_{b 2}$. The crucial fact is that $u_{2} \neq u_{1}$ because $\left(a_{1}, a_{2}, c, d, v\right) \in S$, and lines 612,613 only put a tuple in S if $a_{2} \neq a_{1}^{w}$. So α and β are not 0 modulo p, and the probability that $t_{b}=\alpha x_{b 2}+\beta y_{b 2}$ is thus $1 / p$. The size of S is at most q so line 627 is executed at most $2 q$ times. Equation (10) follows from the union bound.

We now return to Equation (5) to bound the first term. Game G_{7} removes from G_{2} code that does not affect outcome of the game. Once this is done, $x_{b 1}, y_{b 1}, x_{b 2}, y_{b 2}$ are used only to define x_{b}, y_{b}, so G_{7} picks only the latter. So we have

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{G}_{2}^{A}\right]=\operatorname{Pr}\left[\mathrm{G}_{7}^{A}\right] . \tag{11}
\end{equation*}
$$

505 Return $\left(g_{1}, g_{2}, K\right),\left(e_{0}, f_{0}, h_{0}\right),\left(e_{1}, f_{1}, h_{1}\right)$
proc $\operatorname{Dec}\left(\left(a_{1}, a_{2}, c, d\right)\right) \quad$ Games $\mathrm{G}_{5}, \mathrm{G}_{6}$
$510 \quad v \leftarrow H\left(K,\left(a_{1}, a_{2}, c\right)\right)$
511 For $b=0,1$ do $M_{b} \leftarrow c \cdot a_{1}^{-z_{b 1}} a_{2}^{-z_{b 2}}$
512 If $\left(a_{2} \neq a_{1}^{w}\right)$ Then
$513 \quad S \leftarrow S \cup\left\{\left(a_{1}, a_{2}, c, d, v\right)\right\} ; M_{0}, M_{1} \leftarrow \perp$
514 Return $\left(M_{0}, M_{1}\right)$
proc Finalize
Game G_{5}
520 For $b=0,1$ do

$$
\begin{array}{ll}
521 & x_{b 2}, y_{b 2} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p} \\
522 & x_{b 1} \leftarrow x_{b}-w x_{b 2} ; y_{b 1} \leftarrow y_{b}-w y_{b 2}
\end{array}
$$

523 For all $\left(a_{1}, a_{2}, c, d, v\right) \in S$ do
524 If $d=a_{1}^{x_{b 1}+y_{b 1} v} \cdot a_{2}^{x_{b 2}+y_{b 2} v}$ Then bad \leftarrow true
525 Return true
proc Finalize \quad Game G_{6}
620 For $b=0,1$ do
$621 \quad x_{b 2}, y_{b 2} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}$
$622 \quad x_{b 1} \leftarrow x_{b}-w x_{b 2} ; y_{b 1} \leftarrow y_{b}-w y_{b 2}$ For all $\left(a_{1}, a_{2}, c, d, v\right) \in S$ do
$u_{1} \leftarrow \log _{g_{1}}\left(a_{1}\right) ; u_{2} \leftarrow \log _{g_{2}}\left(a_{2}\right)$
$s \leftarrow \log _{g_{1}}(d) ; t_{b} \leftarrow s-u_{1} x_{b}+u_{1} y_{b} v$
$\alpha \leftarrow w\left(u_{2}-u_{1}\right) ; \beta \leftarrow w v\left(u_{2}-u_{1}\right)$
If $t_{b}=\alpha x_{b 2}+\beta y_{b 2}$ Then bad \leftarrow true
628 Return true

Figure 14: Games G_{5} and G_{6} for proof of Theorem 5.1.

proc Initialize \quad Game G_{7}	proc Initialize \quad Game $\mathrm{G}_{8} / \mathrm{G}_{9}$
$700 g_{1} \stackrel{\&}{\leftarrow} \mathbb{G}^{*} ; w \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*} ; g_{2} \leftarrow g_{1}^{w}$	$800 g_{1} \stackrel{\&}{\leftarrow} \mathbb{G}^{*} ; w \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*} ; g_{2} \leftarrow g_{1}^{w} ; K \stackrel{\&}{\leftarrow} \operatorname{Keys}(H)$
$701 \mathrm{~K} \stackrel{\S}{\leftarrow} \mathrm{Keys}(H)$	801 For $b=0,1$ do
702 For $b=0,1$ do	$802 \quad x_{b}, y_{b}, z_{b 1}, z_{b 2} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}$
$703 \quad x_{b}, y_{b}, z_{b 1}, z_{b 2} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}$	$803 \quad e_{b} \leftarrow g_{1}^{x_{b}} ; f_{b} \leftarrow g_{1}^{y_{b}} ; h_{b} \leftarrow g_{1}^{z_{b 1}} g_{2}^{z_{b 2}}$
$704 \quad e_{b} \leftarrow g_{1}^{x_{b}} ; f_{b} \leftarrow g_{1}^{y_{b}} ; h_{b} \leftarrow g_{1}^{z_{b_{1} 1}} g_{2}^{z_{b 2}}$	804 If $y_{1}=y_{0}$ Then
705 Return $\left(g_{1}, g_{2}, K\right),\left(e_{0}, f_{0}, h_{0}\right),\left(e_{1}, f_{1}, h_{1}\right)$	$805 \quad \text { bad } \leftarrow \text { true } ; y_{1} \stackrel{\&}{\leftarrow} \mathbb{Z}_{q}-\left\{y_{0}\right\}$
$\frac{\text { proc Dec }\left(\left(a_{1}, a_{2}, c, d\right)\right)}{710 \quad v \leftarrow H\left(K,\left(a_{1}, a_{2}, c\right)\right)} \quad$ Games $\mathrm{G}_{7}-\mathrm{G}_{11}$	806 Return $\left(g_{1}, g_{2}, K\right),\left(e_{0}, f_{0}, h_{0}\right),\left(e_{1}, f_{1}, h_{1}\right)$
711 For $b=0,1$ do	proc Initialize \quad Game G_{10}
$712 \quad M_{b} \leftarrow c \cdot a_{1}^{-z_{b 1}} a_{2}^{-z_{b 2}}$	$1000 g_{1} \stackrel{\oplus}{\leftarrow} \mathbb{G}^{*} ; w \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*} ; g_{2} \leftarrow g_{1}^{w} ; K \stackrel{\&}{\leftarrow} \operatorname{Keys}(H)$
713 If ($\left.a_{2} \neq a_{1}^{w} \vee d \neq a_{1}^{x_{b}+y_{b} v}\right)$ Then $M_{b} \leftarrow \perp$	$1001 x_{0}, y_{0}, x_{1} \stackrel{\&}{\leftarrow} \mathbb{Z}_{q} ; y_{1} \stackrel{\&}{\leftarrow} \mathbb{Z}_{q}-\left\{y_{0}\right\}$
714 If $\left(M_{0} \neq \perp\right) \wedge\left(M_{1} \neq \perp\right)$ Then Win \leftarrow true	1002 For $b=0,1$ do
715 Return (M_{0}, M_{1})	$1003 \quad z_{b 1}, z_{b 2} \stackrel{\oiint}{\leftarrow} \mathbb{Z}_{p} ; e_{b} \leftarrow g_{1}^{x_{b}}$
proc Finalize \quad Games $\mathrm{G}_{7}-\mathrm{G}_{11}$	$1004 \quad f_{b} \leftarrow g_{1}^{y_{b}} ; h_{b} \leftarrow g_{1}^{z_{b 1}} g_{2}^{z_{b 2}}$
720 Return W ${ }_{\text {IN }}$	1005 Return $\left(g_{1}, g_{2}, K\right),\left(e_{0}, f_{0}, h_{0}\right),\left(e_{1}, f_{1}, h_{1}\right)$
proc Initialize \quad Game G_{11}	
$1100 g_{1} \stackrel{\&}{\leftarrow} \mathbb{G}^{*} ; w \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*} ; g_{2} \leftarrow g_{1}^{w} ; K \stackrel{\S}{\leftarrow} \operatorname{Keys}(H) ; v^{*} \stackrel{\&}{\leftarrow} \mathbb{Z}_{q}$	
$1101 x_{0}, y_{0} \stackrel{\&}{\leftarrow} \mathbb{Z}_{q} ; y_{1} \stackrel{\&}{\leftarrow} \mathbb{Z}_{q}-\left\{y_{0}\right\} ; x_{1} \leftarrow x_{0}-\left(y_{1}\right.$	$\left.-y_{0}\right) v^{*}$
1102 For $b=0,1$ do $z_{b 1}, z_{b 2} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p} ; e_{b} \leftarrow g_{1}^{x_{b}} ; f_{b} \leftarrow g_{1}^{y_{b}} ; h_{b} \leftarrow g_{1}^{z_{b 1}} g_{2}^{z_{b 2}}$	
1103 Return $\left(g_{1}, g_{2}, K\right),\left(e_{0}, f_{0}, h_{0}\right),\left(e_{1}, f_{1}, h_{1}\right)$	

Figure 15: Games $\mathrm{G}_{7}-\mathrm{G}_{11}$ for proof of Theorem 5.1. G_{9} includes the boxed code at line 805 but G_{8} does not.

Game G_{8} is the same as G_{7} barring setting a flag that does not affect the game outcome, so

$$
\begin{align*}
\operatorname{Pr}\left[\mathrm{G}_{7}^{A}\right] & =\operatorname{Pr}\left[\mathrm{G}_{8}^{A}\right] \\
& =\operatorname{Pr}\left[\mathrm{G}_{9}^{A}\right]+\operatorname{Pr}\left[\mathrm{G}_{8}^{A}\right]-\operatorname{Pr}\left[\mathrm{G}_{9}^{A}\right] \\
& \leq \operatorname{Pr}\left[\mathrm{G}_{9}^{A}\right]+\operatorname{Pr}\left[\mathrm{G}_{8}^{A} \text { sets bad }\right] \tag{12}\\
& \leq \operatorname{Pr}\left[\mathrm{G}_{9}^{A}\right]+\frac{1}{p} . \tag{13}
\end{align*}
$$

Equation (12) is by Lemma 2.1 since $\mathrm{G}_{8}, \mathrm{G}_{9}$ are identical until bad. The probability that G_{8} sets bad is the probability that $y_{1}=y_{0}$ at line 805 , and this is $1 / p$ since y is chosen at random from \mathbb{Z}_{p}, justifying Equation (13). The distribution of y_{1} in G_{9} is always uniform over $\mathbb{Z}_{q}-\left\{y_{0}\right\}$, and the setting of bad at line 805 does not affect the game outcome, so

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{G}_{9}^{A}\right]=\operatorname{Pr}\left[\mathrm{G}_{10}^{A}\right] . \tag{14}
\end{equation*}
$$

Game G_{11} picks x_{b}, y_{b} differently from G_{10}, but since $y_{1}-y_{0} \neq 0$, the two ways induce the same distribution on $x_{0}, x_{1}, y_{0}, y_{1}$. Thus,

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{G}_{10}^{A}\right]=\operatorname{Pr}\left[\mathrm{G}_{11}^{A}\right] . \tag{15}
\end{equation*}
$$

We now claim that

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{G}_{11}^{A}\right] \leq \operatorname{Adv}_{H}^{\mathrm{pre-img}}(I) \tag{16}
\end{equation*}
$$

where I is depicted in Figure 16. To justify this, say that the A makes a Dec query (a_{1}, a_{2}, c, d) which returns (M_{0}, M_{1}) with $M_{0} \neq \perp$ and $M_{1} \neq \perp$. This means we must have

$$
\begin{equation*}
d=a_{1}^{x_{0}+y_{0} v}=a_{1}^{x_{1}+y_{1} v}, \tag{17}
\end{equation*}
$$

where $v=H\left(K,\left(a_{1}, a_{2}, c\right)\right)$. Let $u_{1}=\log _{g_{1}}\left(a_{1}\right)$ and $s=\log _{g_{1}}(d)$. Now, the above implies $u_{1}\left(x_{0}+y_{0} v\right)=$ $u_{1}\left(x_{1}+y_{1} v\right)$. But $\left(a_{1}, a_{2}, c, d\right)$ is a Dec query, and we know that $a_{1} \neq \mathbf{1}$, so $u_{1} \neq 0$. (This is a crucial point. Recall the reason we can without loss of generality assume $a_{1} \neq \mathbf{1}$ is that the decryption algorithm of $C S^{*}$ rejects otherwise.) Dividing u_{1} out, we get $x_{0}+y_{0} v=x_{1}+y_{1} v$. Rearranging terms, we get $\left(y_{1}-y_{0}\right) v=x_{0}-x_{1}$. However, we know that $y_{1} \neq y_{0}$, so $v=\left(y_{1}-y_{0}\right)^{-1}\left(x_{0}-x_{1}\right)$. However, this is exactly the value v^{*} due to the way I and Game G_{11} define $x_{0}, y_{0}, x_{1}, y_{1}$. Thus, we have $H\left(K,\left(a_{1}, a_{2}, c\right)\right)=v^{*}$, meaning I will be successful. Putting together Equations (4)-(11), (13)-(16) concludes the proof of Theorem 5.1

F Applications to searchable encryption

Public-key encryption with keyword search. A public key encryption with keyword search (PEKS) scheme $[\mathrm{BDOP} 04$ is a tuple $\mathcal{P E} \mathcal{K} S=(\mathrm{KG}, \mathrm{PEKS}, \mathrm{Td}$, Test $)$ of algorithms. Via $(p k, s k) \stackrel{\&}{\leftarrow} \mathrm{KG}$, the key generation algorithm produces a pair of public and private keys. Via $C \stackrel{\&}{\leftarrow} \operatorname{PEKS}(p k, w)$, the encryption algorithm encrypts a keyword w to get a ciphertext under the public key $p k$. Via $t_{w} \stackrel{\&}{\leftarrow} \operatorname{Td}(s k, w)$, the trapdoor extraction algorithm computes a trapdoor t_{w} for keyword w. The deterministic test algorithm $\operatorname{Test}\left(t_{w}, C\right)$ returns 1 if C is an encryption of w and 0 otherwise. Privacy and consistency of PEKS schemes. We formulate privacy notions for PEKS using the games of Figure 17, Let ATK $\in\{\mathrm{CPA}, \mathrm{CCA}\}$. We define the advantage of an adversary A against the indistinguishability of PEKS as follows:

$$
\operatorname{Adv}_{P E K S}^{\text {ind }} \mathbf{\text { itk }}(A)=\operatorname{Pr}\left[\operatorname{IND}-\operatorname{ATK}_{P E X S}^{A} \Rightarrow \text { true }\right] .
$$

```
Adversary \(I\left(K, v^{*}\right)\)
    \(g_{1} \stackrel{\&}{\leftarrow} \mathbb{G}^{*} ; w \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*} ; g_{2} \leftarrow g_{1}^{w} ; x_{0}, y_{0} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p} ; y_{1} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}-\left\{y_{0}\right\} ; x_{1} \leftarrow x_{0}-\left(y_{1}-y_{0}\right) v^{*}\)
    For \(b=0,1\) do
    \(z_{b 1}, z_{b 2} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p} ; e_{b} \leftarrow g_{1}^{x_{b}} ; f_{b} \leftarrow g_{1}^{y_{b}} ; h_{b} \leftarrow g_{1}^{z_{b 1}} g_{2}^{z_{b 2}}\)
    Run \(A\) on \(\left(g_{1}, g_{2}, K\right),\left(e_{0}, f_{0}, h_{0}\right),\left(e_{1}, f_{1}, h_{1}\right)\)
    On query \(\operatorname{Dec}\left(\left(a_{1}, a_{2}, c, d\right)\right)\)
    \(v \leftarrow H\left(K,\left(a_{1}, a_{2}, c\right)\right)\)
    For \(b=0,1\) do
        \(M_{b} \leftarrow c \cdot a_{1}^{-z_{b 1}} a_{2}^{-z_{b 2}}\)
        If ( \(a_{2} \neq a_{1}^{w} \vee d \neq a_{1}^{x_{b}+y_{b} v}\) ) Then \(M_{b} \leftarrow \perp\)
        If \(\left(M_{0} \neq \perp\right) \wedge\left(M_{1} \neq \perp\right)\) Then \(\left(a_{1}^{*}, a_{2}^{*}, c^{*}\right) \leftarrow\left(a_{1}, a_{2}, c\right)\)
    Return \(\left(M_{0}, M_{1}\right)\) to \(A\)
Until \(A\) halts
Return \(\left(a_{1}^{*}, a_{2}^{*}, c^{*}\right)\)
```

Figure 16: Adversary I for proof of Theorem 5.1 .

We re-formulate the consistency definition of PEKS schemes of [$\left.\mathrm{ABC}^{+} 08\right]$ using the game of Figure 17 . We define the advantage of an adversary A against the consistency of $\mathscr{P E X S}$ as follows:

$$
\mathbf{A d v}_{P E K S}^{\text {consist }}(A)=\operatorname{Pr}\left[\operatorname{CONSIST}_{\text {PEKS }}^{A} \Rightarrow \text { true }\right] .
$$

Furthermore, we also recall the advantage measure $\operatorname{Adv}_{\mathcal{P E K} \mathcal{E S}_{S}}^{\text {consist }}(A)$, which captures the notion CONSIST of computational consistency of PEKS scheme $\mathcal{P E} \mathcal{K} S$.
Transforming IBE to PEKS. The bdop-ibe-2-peks transform of BDOP04 transforms an IBE scheme into a PEKS scheme. Given an IBE scheme $I \mathcal{B E}=$ (Setup, Ext, Enc, Dec), the transform associates to it the PEKS scheme $P \mathcal{E} \mathcal{S} S=($ KG, PEKS, Td, Test $)$, where the key-generation algorithm KG returns $(p k, s k) \stackrel{\&}{\leftarrow}$ Setup; the encryption algorithm $\operatorname{PEKS}(p k, w)$ returns $C \leftarrow \operatorname{Enc}\left(p k, w, 0^{k}\right)$; the trapdoor extraction algorithm $\operatorname{Td}(s k, w)$ returns $t \stackrel{\&}{\leftarrow} \operatorname{Ext}(p k, s k, w)$; the test algorithm $\operatorname{Test}(t, C)$ returns 1 if and only if $\operatorname{Dec}(p k, t, C)=0^{k}$. Abdalla et al. $\left[\mathrm{ABC}^{+} 08\right]$ showed that this transform generally does not provide consistency, and presented the consistency-providing new-ibe-2-peks transform as an alternative. We now show that the original bdop-ibe-2-peks transform does yield a consistent PEKS if the underlying IBE scheme is robust. We also show that if the base IBE scheme is ANO-CCA, then the PEKS scheme is IND-CCA, thereby yielding the first IND-CCA-secure PEKS schemes in the standard model, and the first consistent IND-CCA-secure PEKS schemes in the RO model. (Non-consistent IND-CCA-secure PEKS schemes in the RO model are easily derived from [FP07].)
Proposition F. 1 Let IBE be an IBE scheme, and let $\mathcal{P E} \mathcal{K} S$ be the PEKS scheme associated to it per the bdop-ibe-2-peks transform. Given any adversary A running in time t, we can construct an adversary B running in time $t+O(t)$ executions of the algorithms of $I \mathcal{B E}$ such that

$$
\mathbf{A d v}_{\mathcal{P E K S}}^{\text {consist }}(A) \leq \mathbf{A d v}_{I \mathcal{E E}}^{\text {srob-cpa }}(B) \quad \text { and } \quad \operatorname{Adv}_{\mathscr{P E K S}}^{\text {ind-cca }}(A) \leq \mathbf{A d v}_{I \mathscr{B E}}^{\mathrm{ano}-\mathrm{cca}}(B)
$$

To see why the first inequality is true, it suffices to consider the adversary B that on input pars runs $\left(w, w^{\prime}\right) \stackrel{\&}{\leftarrow} A($ pars $)$ and outputs $C \stackrel{\&}{\leftarrow} \operatorname{Enc}($ pars,$w)$. The proof of the second inequality is an easy adaptation of the proof of the new-ibe-2-peks transform in [$\left.\mathrm{ABC}^{+} 08\right]$, where B answers A 's Test queries using its own Dec oracle.
Securely combining PKE and PEKS. Searchable encryption by itself is only of limited use since it can only encrypt individual keywords, and since it does not allow decryption. Fuhr and Paillier [FP07] introduce a more flexible variant that allows decryption of the keyword. An even more powerful (and

proc Initialize

$$
\begin{aligned}
& (p k, s k) \stackrel{\$}{\leftarrow} \mathrm{KG} ; b \stackrel{\$}{\leftarrow}\{0,1\} \\
& W \leftarrow \emptyset ; C^{*} \leftarrow \perp ; \text { Return } p k
\end{aligned}
$$

proc $\mathbf{T D}(w)$
$\overline{\mathrm{TT}}[w] \stackrel{\&}{\leftarrow} \mathrm{Td}(s k, w) ; W \leftarrow W \cup\{w\} ;$ Return TT $[w]$
proc LR($\left.w_{0}^{*}, w_{1}^{*}\right)$
$C^{*} \stackrel{\$}{\leftarrow} \operatorname{PEKS}\left(p k, w_{b}^{*}\right) ; \operatorname{Return} C^{*}$
proc $\operatorname{Test}(w, C)$
If $\left(C=C^{*}\right) \wedge\left(w \in\left\{w_{0}^{*}, w_{1}^{*}\right\}\right)$ Then return \perp
If $\mathrm{TT}[w]=\perp$ Then $\mathrm{TT}[w] \stackrel{\&}{\leftarrow} \mathrm{Td}(s k, w)$
Return Test(TT[$w], C)$
proc Finalize $\left(b^{\prime}\right)$
Return $\left(b=b^{\prime}\right) \wedge\left(\left\{w_{0}^{*}, w_{1}^{*}\right\} \cap W=\emptyset\right)$
$\underline{\text { proc Initialize }}$
$(p k, s k) \stackrel{\$}{\leftarrow} \mathrm{KG}($ pars $)$
Return $p k$
$\underline{\text { proc Finalize }\left(w, w^{\prime}\right)}$
$C \stackrel{\$}{\leftarrow} \operatorname{PEKS}(p k, w)$
$t^{\prime} \stackrel{\$}{\leftarrow} \operatorname{Td}\left(s k, w^{\prime}\right)$
$\operatorname{Return}\left(w \neq w^{\prime}\right) \wedge\left(\operatorname{Test}\left(t^{\prime}, C\right)\right)$

Figure 17: $\mathcal{P E} \mathcal{K} S=(\mathrm{PG}, \mathrm{KG}, \mathrm{PEKS}, \mathrm{Td}$, Test $)$ is a PEKS scheme. Games IND-CCA $\mathcal{P E X S}$ and $I^{\prime} D-\mathrm{CPA}_{\text {PEKS }}$ are on the left, where the latter omits procedure Test. The $\mathbf{L R}$ procedure may be called only once. Game CONSIST PEEXS is on the right.
general) primitive can be obtained by combining PEKS with PKE to encrypt non-searchable but recoverable content. For example, one could encrypt the body of an email using a PKE scheme, and append a list of PEKS-encrypted keywords. The straightforward approach of concatenating ciphertexts works fine for CPA security, but is insufficient for a strong, combined IND-CCA security model where the adversary has access to both a decryption oracle and a testing oracle. Earlier attempts to combine PKE and PEKS BSNS06, ZI07] do not give the adversary access to the latter. A full IND-CCA-secure PKE/PEKS scheme in the standard model can be obtained by combining the IND-CCA-secure PEKS schemes obtained through our transformation with the techniques of [DK05]. Namely, one can consider label-based Sho01] variants of the PKE and PEKS primitives, tie the different components of a ciphertext together by using as a common label the verification key of a one-time signature scheme, and append to the ciphertext a signature of all components under the corresponding signing key. We omit the details.

[^0]: ${ }^{1}$ Departement d'Informatique, École normale supérieure, 45 Rue d'Ulm, 75230 Paris Cedex 05, France. Email: Michel.Abdalla@ens.fr. URL: http://www.di.ens.fr/users/mabdalla. Supported in part by the European Commission through the ICT Program under Contract ICT-2007-216646 ECRYPT II and the French ANR-07-SESU-008-01 PAMPA Project.
 ${ }^{2}$ Department of Computer Science \& Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. Email: mihir@cs.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by NSF grants CNS-0627779 and CCF-0915675.
 ${ }^{3}$ Department of Electrical Engineering, Katholieke Universiteit Leuven, and IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland. Email: nev@zurich.ibm.com. URL: http://www.neven.org. Supported in part by the European Commission through the ICT Program under Contract ICT-2007-216646 ECRYPT II, a Postdoctoral Fellowship from the Research Foundation - Flanders (FWO - Vlaanderen) and by the European Community's Seventh Framework Programme project PrimeLife (grant agreement no. 216483).

