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Abstract

We provide a provable-security treatment of “robust” encryption. Robustness means it is hard to
produce a ciphertext that is valid for two different users. Robustness makes explicit a property that has
been implicitly assumed in the past. We argue that it is an essential conjunct of anonymous encryption.
We show that natural anonymity-preserving ways to achieve it, such as adding recipient identification
information before encrypting, fail. We provide transforms that do achieve it, efficiently and provably.
We assess the robustness of specific encryption schemes in the literature, providing simple patches for
some that lack the property. We explain that robustness of the underlying anonymous IBE scheme
is essential for the PEKS (Public Key Encryption with Keyword Search) scheme resulting from the
transform of Boneh, Di Crescenzo, Ostrovsky and Persiano to be consistent (meaning, not have false
positives), resulting in a simple and generic way to get secure and consistent PEKS via this transform.
Overall our work enables safer and simpler use of encryption.
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1 Introduction

This paper provides a provable-security treatment of encryption “robustness.” Robustness reflects the
difficulty of producing a ciphertext valid under two different encryption keys. The value of robustness
is conceptual, “naming” something that has been undefined yet at times implicitly (and incorrectly)
assumed. Robustness helps make encryption more mis-use resistant. We provide formal definitions of
several variants of the goal; consider and dismiss natural approaches to achieve it; provide two general
robustness-adding transforms; test robustness of existing schemes and patch the ones that fail; and discuss
some applications.

The definitions. Both the PKE and the IBE settings are of interest and the explication is simplified
by unifying them as follows. Associate to each identity an encryption key, defined as the identity itself
in the IBE case and its (honestly generated) public key in the PKE case. The adversary outputs a pair
id0, id1 of distinct identities. For strong robustness it also outputs a ciphertext C∗; for weak, it outputs
a message M∗, and C∗ is defined as the encryption of M∗ under the encryption key ek1 of id1. The
adversary wins if the decryptions of C∗ under the decryption keys dk0, dk1 corresponding to ek0, ek1

are both non-⊥. Both weak and strong robustness can be considered under chosen plaintext or chosen
ciphertext attacks, resulting in four notions (for each of PKE and IBE) that we denote WROB-CPA,
WROB-CCA, SROB-CPA, SROB-CCA.

Why robustness? The primary security requirement for encryption is data-privacy, as captured by
notions IND-CPA or IND-CCA [GM84, RS92, DDN00, BDPR98, BF03]. Increasingly, we are also see-
ing a market for anonymity, as captured by notions ANO-CPA and ANO-CCA [BBDP01, ABC+08].
Anonymity asks that a ciphertext does not reveal the encryption key under which it was created.

Where you need anonymity, there is a good chance you need robustness too. Indeed, we would go
so far as to say that robustness is an essential companion of anonymous encryption. The reason is
that without it we would have security without basic communication correctness, likely upsetting our
application. This is best illustrated by the following canonical application of anonymous encryption, but
shows up also, in less direct but no less important ways, in other applications. A sender wants to send
a message to a particular target recipient, but, to hide the identity of this target recipient, anonymously
encrypts it under her key and broadcasts the ciphertext to a larger group. But as a member of this
group I need, upon receiving a ciphertext, to know whether or not I am the target recipient. (The latter
typically needs to act on the message.) Of course I can’t tell whether the ciphertext is for me just by
looking at it since the encryption is anonymous, but decryption should divulge this information. It does,
unambiguously, if the encryption is robust (the ciphertext is for me iff my decryption of it is not ⊥)
but otherwise I might accept a ciphertext (and some resulting message) of which I am not the target,
creating mis-communication. Natural “solutions,” such as including the encryption key or identity of the
target recipient in the plaintext before encryption and checking it upon decryption, are, in hindsight, just
attempts to add robustness without violating anonymity and, as we will see, don’t work.

We were lead to formulate robustness upon revisiting Public key Encryption with Keyword Search
(PEKS) [BDOP04]. In a clever usage of anonymity, Boneh, Di Crescenzo, Ostrovsky and Persiano
(BDOP) [BDOP04] showed how this property in an IBE scheme allowed it to be turned into a privacy-
respecting communications filter. But Abdalla et. al [ABC+08] noted that the BDOP filter could lack
consistency, meaning turn up false positives. Their solution was to modify the construction. What we
observed instead was that consistency would in fact be provided by the original construct if the IBE
scheme was robust. PEKS consistency turns out to correspond exactly to communication correctness of
the anonymous IBE scheme in the sense discussed above. (Because the PEKS messages in the BDOP
scheme are the recipients identities from the IBE perspective.) Besides resurrecting the BDOP construct,
the robustness approach allows us to obtain the first consistent IND-CCA secure PEKS without random
oracles.

Sako’s auction protocol [Sak00] is important because it was the first truly practical one to hide the bids
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of losers. It makes clever use of anonymous encryption for privacy. But we present an attack on fairness
whose cause is ultimately a lack of robustness in the anonymous encryption scheme (cf. Appendix C).

All this underscores a number of the claims we are making about robustness: that it is of conceptual
value; that it makes encryption more resistant to mis-use; that it has been implicitly (and incorrectly)
assumed; and that there is value to making it explicit, formally defining and provably achieving it.

Weak versus strong. The above-mentioned auction protocol fails because an adversary can create a
ciphertext that decrypts correctly under any decryption key. Strong robustness is needed to prevent this.
Weak robustness (of the underlying IBE) will yield PEKS consistency for honestly-encrypted messages
but may allow spammers to bypass all filters with a single ciphertext, something prevented by strong
robustness. Strong robustness trumps weak for applications and goes farther towards making encryption
mis-use resistant. We have defined and considered the weaker version because it can be more efficiently
achieved, because some existing schemes achieve it and because attaining it is a crucial first step in our
method for attaining strong robustness.

Achieving robustness. As the reader has surely already noted, robustness (even strong) is trivially
achieved by appending the encryption key to the ciphertext and checking for it upon decryption. The
problem is that the resulting scheme is not anonymous and, as we have seen above, it is exactly for
anonymous schemes that robustness is important. Of course, data privacy is important too. Letting
AI-ATK = ANO-ATK+IND-ATK for ATK ∈ {CPA,CCA}, our goal is to achieve AI-ATK+XROB-ATK,
ideally for both ATK ∈ {CPA,CCA} and X ∈ {W,S}. This is harder.

Transforms. It is natural to begin by seeking a general transform that takes an arbitrary AI-ATK
scheme and returns a AI-ATK + XROB-ATK one. This allows us to exploit known constructions of
AI-ATK schemes, supports modular protocol design and also helps understand robustness divorced from
the algebra of specific schemes. Furthermore, there is a natural and promising transform to consider.
Namely, before encrypting, append to the message some redundancy, such as the recipient encryption
key, a constant, or even a hash of the message, and check for its presence upon decryption. (Adding
the redundancy before encrypting rather than after preserves AI-ATK.) Intuitively this should provide
robustness because decryption with the “wrong” key will result, if not in rejection, then in recovery of a
garbled plaintext, unlikely to possess the correct redundancy.

The truth is more complex. We consider two versions of the paradigm and summarize our findings
in Figure 1. In encryption with unkeyed redundancy, the redundancy is a function RC of the message
and encryption key alone. In this case we show that the method fails spectacularly, not providing even
weak robustness regardless of the choice of the function RC. In encryption with keyed redundancy, we
allow RC to depend on a key K that is placed in the public parameters of the transformed scheme, out of
direct reach of the algorithms of the original scheme. In this form, the method can easily provide weak
robustness, and that too with a very simple redundancy function, namely the one that simply returns K.

But we show that even encryption with keyed redundancy fails to provide strong robustness. To
achieve the latter we have to step outside the encryption with redundancy paradigm. We present a
strong robustness conferring transform that uses a (non-interactive) commitment scheme. For subtle
reasons, for this transform to work the starting scheme needs to already be weakly robust. If it isn’t
already, we can make it so via our weak robustness transform.

In summary, on the positive side we provide a transform conferring weak robustness and another
conferring strong robustness. Given any AI-ATK scheme the first transform returns a WROB-ATK +
AI-ATK one. Given any AI-ATK + WROB-ATK scheme the second transform returns a SROB-ATK +
AI-ATK one. In both cases it is for both ATK = CPA and ATK = CCA and in both cases the transform
applies to what we call general encryption schemes, of which both PKE and IBE are special cases, so
both are covered.

Robustness of specific schemes. The robustness of existing schemes is important because they might
be in use. We ask which specific existing schemes are robust, and, for those that are not, whether they
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Transform WROB-ATK SROB-ATK

Encryption with unkeyed redundancy (EuR) No No

Encryption with keyed redundancy (EkR) Yes No

Scheme setting AI-CCA WROB-CCA SROB-CCA RO model

CS PKE Yes [CS03, BBDP01] Yes No No

CS ∗ PKE Yes Yes Yes No

DHIES PKE Yes [ABR01] Yes No Yes

DHIES ∗ PKE Yes Yes Yes Yes

BF IBE Yes [BF01, ABC+08] Yes Yes Yes

BW IBE Yes [BW06] No No No

Figure 1: Achieving Robustness. The first table summarizes our findings on the encryption with re-
dundancy transform. “No” means the method fails to achieve the indicated robustness for all redundancy
functions, while “yes” means there exists a redundancy function for which it works. The second table
summarizes robustness results about some specific AI-CCA schemes.

can be made so at a cost lower than that of applying one of our general transforms. There is no reason
to expect schemes that are only AI-CPA to be robust since the decryption algorithm may never reject,
so we focus on schemes that are known to be AI-CCA. This narrows the field quite a bit. Our findings
and results are summarized in Figure 1.

Canonical AI-CCA schemes in the PKE setting are Cramer-Shoup (CS ) in the standard model [CS03,
BBDP01] and DHIES in the random oracle (RO) model [ABR01, BBDP01]. We show that both are
WROB-CCA but neither is SROB-CCA, the latter because encryption with 0 randomness yields a ci-
phertext valid under any encryption key. We present modified versions CS ∗,DHIES ∗ of the schemes
that we show are SROB-CCA. Our proof that CS ∗ is SROB-CCA builds on the information-theoretic
part of the proof of [CS03]. The result does not need to assume hardness of DDH. It relies instead on
pre-image security of the underlying hash function for random range points, something not implied by
collision-resistance but seemingly possessed by candidate functions.

In the IBE setting, the CCA version BF of the RO model Boneh-Franklin scheme is AI-CCA [BF01,
ABC+08], and we show it is SROB-CCA. The standard model Boyen-Waters scheme BW is AI-CCA [BW06],
and we show it is neither WROB-CCA nor SROB-CCA. It can be made either via our transforms but
we don’t know of any more direct way to do this.

BF is obtained via the Fujisaki-Okamoto (FO) transform [FO99] and BW via the Canetti-Halevi-
Katz (CHK) transform [CHK04, BCHK06]. We can show that neither transform generically provides
strong robustness. This doesn’t say whether they do or not when applied to specific schemes, and indeed
the first does for BF and the second does not for BW .

Summary. Protocol design suggests that designers have the intuition that robustness is naturally present.
This seems to be more often right than wrong when considering weak robustness of specific AI-CCA
schemes. Prevailing intuition about generic ways to add even weak robustness is wrong, yet we show it
can be done by an appropriate tweak of these ideas. Strong robustness is more likely to be absent than
present in specific schemes, but important schemes can be patched. Strong robustness can also be added
generically, but with more work.

Related work. There is growing recognition that robustness is important in applications and worth
defining explicitly, supporting our own claims to this end. In particular the correctness requirement for
predicate encryption [KSW08] includes a form of weak robustness and, in recent work concurrent to,
and independent of, ours, Hofheinz and Weinreb [HW08] introduced a notion of well-addressedness of
IBE schemes that is just like weak robustness except that the adversary gets the IBE master secret key.
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proc Initialize

(pars ,msk)
$

← PG ; b
$

← {0, 1}
S, T, U, V ← ∅
Return pars

proc GetEK(id)

U ← U ∪ {id}

(EK[id ], DK[id ])
$

← KG(pars ,msk , id)
Return EK[id ]

proc GetDK(id)

If id 6∈ U then return ⊥
If id ∈ S then return ⊥
V ← V ∪ {id}
Return DK[id ]

proc Dec(C, id)

If id 6∈ U then return ⊥
If (id , C) ∈ T then return ⊥
M ← Dec(pars , EK[id ], DK[id ], C)
Return M

proc LR(id∗
0, id

∗
1, M

∗
0 , M∗

1 )

If (id∗
0
6∈ U) ∨ (id∗

1
6∈ U) then return ⊥

If (id∗
0 ∈ V ) ∨ (id∗

1 ∈ V ) then return ⊥
If |M∗

0 | 6= |M
∗
1 | then return ⊥

C∗ $

← Enc(pars , EK[id b], M
∗
b
)

S ← S ∪ {id∗
0, id

∗
1}

T ← T ∪ {(id∗
0
, C∗), (id∗

1
, C∗)}

Return C∗

proc Finalize(b′)

Return (b′ = b)

Figure 2: Game AIGE defining AI-ATK security of general encryption scheme GE = (PG,KG,Enc,Dec).

Neither work considers or achieves strong robustness, and neither treats PKE.

2 Definitions

Notation and conventions. If x is a string then |x| denotes its length, and if S is a set then |S| denotes
its size. The empty string is denoted ε. By a1‖ . . . ‖an, we denote a string encoding of a1, . . . , an from
which a1, . . . , an are uniquely recoverable. (Usually, concatenation suffices.) By a1‖ . . . ‖an ← a, we mean
that a is parsed into its constituents a1, . . . , an. Similarly, if a = (a1, . . . , an) then (a1, . . . , an)← a means

we parse a as shown. Unless otherwise indicated, an algorithm may be randomized. By y
$

← A(x1, x2, . . .)
we denote the operation of running A on inputs x1, x2, . . . and fresh coins and letting y denote the output.
We denote by [A(x1, x2, . . .)] the set of all possible outputs of A on inputs x1, x2, . . .. We assume that an
algorithm returns ⊥ if any of its inputs is ⊥.

Games. Our definitions and proofs use code-based game-playing [BR06]. Recall that a game —look at
Figure 2 for an example— has an Initialize procedure, procedures to respond to adversary oracle queries,
and a Finalize procedure. A game G is executed with an adversary A as follows. First, Initialize
executes and its outputs are the inputs to A. Then A executes, its oracle queries being answered by
the corresponding procedures of G. When A terminates, its output becomes the input to the Finalize
procedure. The output of the latter, denoted GA, is called the output of the game, and we let “GA”
denote the event that this game output takes value true. Boolean flags are assumed initialized to false.
Games Gi,Gj are identical until bad if their code differs only in statements that follow the setting of bad

to true. Our proofs will use the following.

Lemma 2.1 [BR06] Let Gi,Gj be identical until bad games, and A an adversary. Then
∣

∣Pr
[

GA
i

]

− Pr
[

GA
j

]∣

∣ ≤ Pr
[

GA
j sets bad

]

.

The running time of an adversary is the worst case time of the execution of the adversary with the game
defining its security, so that the execution time of the called game procedures is included.

General encryption. We introduce and use general encryption schemes, of which both PKE and IBE
are special cases. This allows us to avoid repeating similar definitions and proofs. A general encryption

(GE) scheme is a tuple GE = (PG,KG,Enc,Dec) of algorithms. The parameter generation algorithm PG

takes no input and returns common parameter pars and a master secret key msk . On input pars ,msk , id ,
the key generation algorithm KG produces an encryption key ek and decryption key dk . On inputs
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proc Initialize

(pars ,msk)
$

← PG ; U, V ← ∅
Return pars

proc GetEK(id)

U ← U ∪ {id}

(EK[id ], DK[id ])
$

← KG(pars ,msk , id)
Return EK[id ]

proc GetDK(id)

If id 6∈ U then return ⊥
V ← V ∪ {id}
Return DK[id ]

proc Dec(C, id)

If id 6∈ U then return ⊥
M ← Dec(pars , EK[id ], DK[id ], C)
Return M

proc Finalize(M, id0, id1) // WROBGE
If (id0 6∈ U) ∨ (id1 6∈ U) then return false

If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false

If (id0 = id1) then return false

M0 ←M ; C
$

← Enc(pars , EK[id0], M0)
M1 ← Dec(pars , EK[id1], DK[id1], C)
Return (M0 6= ⊥) ∧ (M1 6= ⊥)

proc Finalize(C, id0, id1) // SROBGE
If (id0 6∈ U) ∨ (id1 6∈ U) then return false

If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false

If (id0 = id1) then return false

M0 ← Dec(pars , EK[id0], DK[id0], C)
M1 ← Dec(pars , EK[id1], DK[id1], C)
Return (M0 6= ⊥) ∧ (M1 6= ⊥)

Figure 3: Games WROBGE and SROBGE defining WROB-ATK and SROB-ATK security (respectively)
of general encryption scheme GE = (PG,KG,Enc,Dec). The procedures on the left are common to both
games, which differ only in their Finalize procedures.

pars , ek ,M , the encryption algorithm Enc produces a ciphertext C encrypting plaintext M . On input
pars , ek , dk ,C , the deterministic decryption algorithm Dec returns either a plaintext message M or ⊥
to indicate that it rejects. We say that GE is a public-key encryption (PKE) scheme if msk = ε and
KG ignores its id input. To recover the usual syntax we may in this case write the output of PG as
pars rather than (pars ,msk) and omit msk , id as inputs to KG. We say that GE is an identity-based
encryption (IBE) scheme if ek = id , meaning the encryption key created by KG on inputs pars ,msk , id
always equals id . To recover the usual syntax we may in this case write the output of KG as dk rather
than (ek , dk). It is easy to see that in this way we have recovered the usual primitives. But there are
general encryption schemes that are neither PKE nor IBE schemes, meaning the primitive is indeed more
general.

Correctness. Correctness of a general encryption scheme GE = (PG,KG,Enc,Dec) requires that, for all
(pars ,msk) ∈ [PG], all plaintexts M in the underlying message space associated to pars , all identities id ,
and all (ek , dk ) ∈ [KG(pars ,msk , id)], we have Dec(pars , ek , dk ,Enc(pars , ek ,M )) = M with probability
one, where the probability is taken over the coins of Enc.

AI-ATK security. Historically, definitions of data privacy (IND) [GM84, RS92, DDN00, BDPR98,
BF03] and anonymity (ANON) [BBDP01, ABC+08] have been separate. We are interested in schemes that
achieve both, so rather than use separate definitions we follow [BGH07] and capture both simultaneously
via game AIGE of Figure 2. A cpa adversary is one that makes no Dec queries, and a cca adversary is
one that might make such queries. The ai-advantage of such an adversary, in either case, is

Advai
GE (A) = 2 · Pr

[

AIAGE

]

− 1.

We will assume an ai-adversary makes only one LR query, since a hybrid argument shows that making
q of them can increase its ai-advantage by a factor of at most q.

Oracle GetDK represents the IBE key-extraction oracle [BF03]. In the PKE case it is superfluous in
the sense that removing it results in a definition that is equivalent up to a factor depending on the number
of GetDK queries. That’s probably why the usual definition has no such oracle. But conceptually, if it
is there for IBE, it ought to be there for PKE, and it does impact concrete security.

Robustness. Associated to general encryption scheme GE = (PG,KG,Enc,Dec) are games WROB,
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AI-CCA WROB-CCA + AI-CCA SROB-CCA + AI-CCA

AI-CPA WROB-CPA + AI-CPA SROB-CPA + AI-CPA

Figure 4: Relations between notions. An arrow A→ B is an implication, meaning every scheme that
is A-secure is also B-secure, while a barred arrow A 6→ B is a separation, meaning that there is a A-secure
scheme that is not B-secure. (Assuming of course that there exists a A-secure scheme in the first place.)

SROB of Figure 3. As before, a cpa adversary is one that makes no Dec queries, and a cca adversary is
one that might make such queries. The wrob and srob advantages of an adversary, in either case, are

Advwrob
GE (A) = Pr

[

WROBA
GE

]

and Advsrob
GE (A) = Pr

[

SROBA
GE

]

.

The difference between WROB and SROB is that in the former the adversary produces a message M , and
C is its encryption under the encryption key of one of the given identities, while in the latter it produces
C directly, and may not obtain it as an honest encryption. It is worth clarifying that in the PKE case
the adversary does not get to choose the encryption (public) keys of the identities it is targeting. These
are honestly and independently chosen, in real life by the identities themselves and in our formalization
by the games.

Relations between notions. Figure 4 shows implications and separations in the style of [BDPR98].
We consider each robustness notion in conjunction with the corresponding AI one since robustness is
interesting only in this case. The implications are all trivial. The first separation shows that the strongest
notion of privacy fails to imply even the weakest type of robustness. The second separation shows that
weak robustness, even under CCA, doesn’t imply strong robustness. We stress that here an implication
A → B means that any A-secure, unaltered, is B-secure. Correspondingly, a non-implication A 6→ B
means that there is an A-secure that, unaltered, is not B-secure. (It doesn’t mean that an A-secure
scheme can’t be transformed into a B-secure one.) Only a minimal set of arrows and barred arrows is
shown; others can be inferred. The picture is complete in the sense that it implies either an implication
or a separation between any pair of notions.

3 Robustness failures of encryption with redundancy

A natural privacy-and-anonymity-preserving approach to add robustness to an encryption scheme is to
add redundancy before encrypting, and upon decryption reject if the redundancy is absent. Here we
investigate the effectiveness of this encryption with redundancy approach, justifying the negative results
discussed in Section 1 and summarized in the first table of Figure 1.

Redundancy codes and the transform. A redundancy code RED = (RKG,RC,RV) is a triple of
algorithms. The redundancy key generation algorithm RKG generates a key K. On input K and data x
the redundancy computation algorithm RC returns redundancy r. Given K, x, and claimed redundancy
r, the deterministic redundancy verification algorithm RV returns 0 or 1. We say that RED is unkeyed
if the key K output by RKG is always equal to ε, and keyed otherwise. The correctness condition is that
for all x we have RV(K,x,RC(K,x)) = 1 with probability one, where the probability is taken over the
coins of RKG and RC. (We stress that the latter is allowed to be randomized.)

Given a general encryption scheme GE = (PG,KG,Enc,Dec) and a redundancy code RED = (RKG,RC,
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RKG RC(K, ek‖M) RV(K, ek‖M, r)

Return K ← ε Return ε Return 1

Return K ← ε Return 0k Return (r = 0k)
Return K ← ε Return ek Return (r = ek)

Return K ← ε L
$

← {0, 1}k ; Return L‖H(L, ek‖M) L‖h← r ; Return (h = H(L, ek‖M))

Return K
$

← {0, 1}k Return K Return (r = K)

Return K
$

← {0, 1}k Return H(K, ek‖M) Return (r = H(K, ek‖M))

Figure 5: Examples of redundancy codes, where the data x is of the form ek‖M . The first four are
unkeyed and the last two are keyed.

Algorithm PG

(pars ,msk )
$

← PG ; K
$

← RKG

Return ((pars ,K),msk )

Algorithm KG((pars ,K),msk , id)

(ek , dk)
$

← KG(pars ,msk , id)
Return ek

Algorithm Enc((pars ,K), ek ,M )

r
$

← RC(K, ek‖M )

C
$

← Enc(pars , ek ,M ‖r)
Return C

Algorithm Dec((pars ,K), ek , dk ,C )

M ‖r← Dec(pars , ek , dk ,C )
If RV(K, ek‖M, r) = 1 then return M

Else return ⊥

Algorithm Enc(pars , ek ,M )

C
$

← Enc∗(pars , ek ,M )
Return C

Algorithm Dec(pars , ek , dk ,C )
M ← Dec∗(pars , ek , dk ,C )
If M = ⊥ then

M ← M ∗(pars)‖RC(ε, ek‖M ∗(pars); 0l)
Return M

Algorithm Enc(pars , ek ,M )

C ∗ $

← Enc∗(pars , ek ,M )
Return 1‖C ∗

Algorithm Dec(pars , ek , dk ,C )
b‖C ∗ ← C
If b = 1 then return Dec∗(pars , ek , dk ,C ∗)
Else return M ∗(pars)‖RC(C ∗, ek‖M ∗(pars); 0l)

Figure 6: Left: Transformed scheme for the encryption with redundancy paradigm. Top Right: Coun-
terexample for WROB. Bottom Right: Counterexample for SROB.

RV), the encryption with redundancy transform associates to them the general encryption scheme GE =
(PG,KG,Enc,Dec) whose algorithms are shown on the left side of Figure 6. Note that the transform has
the first of our desired properties, namely that it preserves AI-ATK. Also if GE is a PKE scheme then
so is GE , and if GE is an IBE scheme then so is GE , which means the results we obtain here apply to
both settings.

Figure 5 shows example redundancy codes for the transform. With the first, GE is identical to GE ,
so that the counterexample below shows that AI-CCA does not imply WROB-CPA , justifying the first
separation of Figure 4.The second and third rows show redundancy equal to a constant or the encryption
key as examples of (unkeyed) redundancy codes. The fourth row shows a code that is randomized but
still unkeyed. The hash function H could be a MAC or a collision resistant function. The last two are
keyed redundancy codes, the first the simple one that just always returns the key, and the second using
a hash function. Obviously, there are many other examples.

SROB failure. We show that encryption with redundancy fails to provide strong robustness for all

redundancy codes, whether keyed or not. More precisely, we show that for any redundancy code RED
and both ATK ∈ {CPA,CCA}, there is an AI-ATK encryption scheme GE such that the scheme GE
resulting from the encryption-with-redundancy transform applied to GE ,RED is not SROB-CPA. We
build GE by modifying a given AI-ATK encryption scheme GE ∗ = (PG,KG,Enc∗,Dec∗). Let l be the

7



number of coins used by RC, and let RC(x;ω) denote the result of executing RC on input x with coins
ω ∈ {0, 1}l. Let M∗ be a function that given pars returns a point in the message space associated to pars

in GE ∗. Then GE = (PG,KG,Enc,Dec) where the new algorithms are shown on the bottom right side of
Figure 6. The reason we used 0l as coins for RC here is that Dec is required to be deterministic.

Our first claim is that the assumption that GE ∗ is AI-ATK implies that GE is too. Our sec-
ond claim, that GE is not SROB-CPA, is demonstrated by the following attack. For a pair id0, id1

of distinct identities of its choice, the adversary A, on input (pars ,K), begins with queries ek0
$

←

GetEK(id0) and ek1
$

← GetEK(id1). It then creates ciphertext C ← 0 ‖K and returns (id0, id1, C).
We claim that Advsrob

GE
(A) = 1. Letting dk0, dk1 denote the decryption keys corresponding to ek0, ek1

respectively, the reason is the following. For both b ∈ {0, 1}, the output of Dec(pars , ek b, dk b,C ) is
M ∗(pars)‖rb(pars) where rb(pars) = RC(K, ek b‖M

∗(pars); 0l). But the correctness of RED implies that
RV(K, ek b‖M

∗(pars), rb(pars)) = 1 and hence Dec((pars ,K), ek b, dk b,C ) returns M ∗(pars) rather than
⊥.

WROB failure. We show that encryption with redundancy fails to provide even weak robustness for
all unkeyed redundancy codes. This is still a powerful negative result because many forms of redundancy
that might intuitively work, such the first four of Figure 5, are included. More precisely, we claim that
for any unkeyed redundancy code RED and both ATK ∈ {CPA,CCA}, there is an AI-ATK encryption
scheme GE such that the scheme GE resulting from the encryption-with-redundancy transform applied
to GE ,RED is not WROB-CPA. We build GE by modifying a given AI-ATK + WROB-CPA encryption
scheme GE ∗ = (PG,KG,Enc∗,Dec∗). With notation as above, the new algorithms for the scheme GE =
(PG,KG,Enc,Dec) are shown on the top right side of Figure 6.

Our first claim is that the assumption that GE ∗ is AI-ATK implies that GE is too. Our second claim,
that GE is not WROB-CPA, is demonstrated by the following attack. For a pair id0, id1 of distinct

identities of its choice, the adversary A, on input (pars , ε), makes queries ek0
$

← GetEK(id0) and ek1
$

←
GetEK(id1) and returns (id0, id1,M

∗(pars)). We claim that Advwrob

GE
(A) is high. Letting dk 1 denote

the decryption key corresponding to ek1, the reason is the following. Let r0
$

← RC(ε, ek 0‖M
∗(pars)) and

C
$

← Enc(pars , ek0,M
∗(pars)‖r0). The assumed WROB-CPA security of GE ∗ implies that Dec(pars ,

ek1, dk1,C ) is most probably M ∗(pars)‖r1(pars) where r1(pars) = RC(ε, ek 1‖M
∗(pars); 0l). But the

correctness of RED implies that RV(ε, ek 1‖M
∗(pars), r1(pars)) = 1 and hence Dec((pars , ε), ek 1, dk 1,C )

returns M ∗(pars) rather than ⊥.

4 Transforms that work

We present a transform that confers weak robustness and another that confers strong robustness. They
preserve privacy and anonymity, work for PKE as well as IBE, and for CPA as well as CCA. In both
cases the security proofs surface some delicate issues. Besides being useful in its own right, the weak
robustness transform is a crucial step in obtaining strong robustness, so we begin there.

Weak robustness transform. We saw that encryption-with-redundancy fails to provide even weak
robustness if the redundancy code is unkeyed. Here we show that if the redundancy code is keyed, even
in the simplest possible way where the redundancy is just the key itself, the transform does provide weak
robustness, turning any AI-ATK secure general encryption scheme into an AI-ATK + WROB-ATK one,
for both ATK ∈ {CPA,CCA}.

The transformed scheme encrypts with the message a key K placed in the public parameters. In more
detail, the weak robustness transform associates to a given general encryption scheme GE = (PG,KG,Enc,
Dec) and integer parameter k, representing the length of K, the general encryption scheme GE = (PG,
KG,Enc,Dec) whose algorithms are depicted in Figure 7. Note that if GE is a PKE scheme then so is GE
and if GE is an IBE scheme then so is GE , so that our results, captured by Theorem 4.1 below, cover
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Algorithm PG

(pars ,msk )
$

← PG

K
$

← {0, 1}k

Return ((pars ,K),msk )

Algorithm Enc((pars ,K), ek ,M )

C
$

← Enc(pars , ek ,M ‖K))
Return C

Algorithm KG((pars ,K),msk , id)

(ek , dk )
$

← KG(pars ,msk , id)
Return (ek , dk)

Algorithm Dec((pars ,K), ek , dk ,C )
M ← Dec(pars , ek , dk ,C )
If M = ⊥ then return ⊥
M ‖K∗ ←M

If (K = K∗) then return M

Else Return ⊥

Figure 7: General encryption scheme GE = (PG,KG,Enc,Dec) resulting from applying our weak-
robustness transform to general encryption scheme GE = (PG,KG,Enc,Dec) and integer parameter k.

both settings.

The intuition for the weak robustness of GE is that the GE decryption under one key, of an encryption
of M ‖K created under another key, cannot, by the assumed AI-ATK security of GE , reveal K, and hence
the check will fail. This is pretty much right for PKE, but the delicate issue is that for IBE, information
about K can enter via the identities, which in this case are the encryption keys and are chosen by the
adversary as a function of K. The AI-ATK security of GE is no protection against this. We show however
that this can be dealt with by making K sufficiently longer than the identities.

Theorem 4.1 Let GE = (PG,KG,Enc,Dec) be a general encryption scheme with identity space {0, 1}n,

and let GE = (PG,KG,Enc,Dec) be the general encryption scheme resulting from applying the weak

robustness transform to GE and integer parameter k. Then

1. AI-ATK: Let A be an ai-adversary against GE . Then there is an ai-adversary B against GE such

that

Advai

GE
(A) = Advai

GE (B) .

Adversary B inherits the query profile of A and has the same running time as A. If A is a cpa

adversary then so is B.

2. WROB-ATK: Let A be a wrob adversary against GE with running time t, and let ℓ = 2n+ ⌈log2(t)⌉.
Then there is an ai-adversary B against GE such that

Advwrob

GE
(A) ≤ Advai

GE (B) + 2ℓ−k .

Adversary B inherits the query profile of A and has the same running time as A. If A is a cpa

adversary then so is B.

The first part of the theorem implies that if GE is AI-ATK then GE is AI-ATK as well. The second part
of the theorem implies that if GE is AI-ATK and k is chosen sufficiently larger than 2n + ⌈log2(t)⌉ then
GE is WROB-ATK. In both cases this is for both ATK ∈ {CPA,CCA}. The theorem says it directly
for CCA, and for CPA by the fact that if A is a cpa adversary then so is B. When we say that B
inherits the query profile of A we mean that for every oracle that B has, if A has an oracle of the same
name and makes q queries to it, then this is also the number B makes. The proof of the first part of
the theorem is straightforward and is omitted. The proof of the second part is given in Appendix D. It
is well known that collision-resistant hashing of identities preserves AI-ATK and serves to make them of
fixed length [BB04] so the assumption that the identity space is {0, 1}n rather than {0, 1}∗ is not really
a restriction. In practice we might hash with SHA256 so that n = 256, and, assuming t ≤ 2128, setting
k = 768 would make 2ℓ−k = 2−128.
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Algorithm PG

(pars ,msk )
$

← PG

cpars
$

← CPG

Return ((pars , cpars),msk )

Algorithm Enc((pars , cpars), ek ,M )

(com , dec)
$

← Com(cpars , ek)

C
$

← Enc(pars , ek ,M ‖dec))
Return (C , com)

Algorithm KG((pars , cpars),msk , id)

(ek , dk)
$

← KG(pars ,msk , id)
Return (ek , dk )

Algorithm Dec((pars , cpars), ek , dk , (C , com))
M ← Dec(pars , ek , dk ,C )
If M = ⊥ then return ⊥
M ‖dec ←M

If (Ver(cpars , ek , com , dec) = 1) then return M

Else Return ⊥

Figure 8: General encryption scheme GE = (PG,KG,Enc,Dec) resulting from applying our strong ro-
bustness transform to general encryption scheme GE = (PG,KG,Enc,Dec) and commitment scheme
CMT = (CPG,Com,Ver).

Commitment schemes. Our strong robustness transform will use commitments. A commitment scheme
is a 3-tuple CMT = (CPG,Com,Ver). The parameter generation algorithm CPG returns public parameters
cpars . The committal algorithm Com takes cpars and data x as input and returns a commitment com

to x along with a decommittal key dec. The deterministic verification algorithm Ver takes cpars , x , com ,
dec as input and returns 1 to indicate that accepts or 0 to indicate that it rejects. Correctness requires
that, for any x ∈ {0, 1}∗, any cpars ∈ [CPG], and any (com , dec) ∈ [Com(cpars , x )], we have that
Ver(cpars , x , com , dec) = 1 with probability one, where the probability is taken over the coins of Com.
We require the scheme to have the uniqueness property, which means that for any x ∈ {0, 1}∗, any
cpars ∈ [CPG], and any (com , dec) ∈ [Com(cpars , x )] it is the case that Ver(cpars , x , com∗, dec) = 0 for all
com∗ 6= com . In most schemes the decommittal key is the randomness used by the committal algorithm
and verification is by re-applying the committal function, which ensures uniqueness. The advantage
measures Advhide

CMT (A) and Advbind
CMT (A), referring to the standard hiding and binding properties, are

recalled in Appendix A. We refer to the corresponding notions as HIDE and BIND.

The strong robustness transform. The idea is for the ciphertext to include a commitment to the
encryption key. The commitment is not encrypted, but the decommittal key is. In detail, given a general
encryption scheme GE = (PG,KG,Enc,Dec) and a commitment scheme CMT = (CPG,Com,Ver) the
strong robustness transform associates to them the general encryption scheme GE = (PG,KG,Enc,Dec)
whose algorithms are depicted in Figure 8. Note that if GE is a PKE scheme then so is GE and if GE
is an IBE scheme then so is GE , so that our results, captured by the Theorem 4.2, cover both settings.

In this case the delicate issue is not the robustness but the AI-ATK security of GE in the CCA case.
Intuitively, the hiding security of the commitment scheme means that a GE ciphertext does not reveal
the encryption key. As a result, we would expect AI-ATK security of GE to follow from the commitment
hiding security and the assumed AI-ATK security of GE . This turns out not to be true, and demonstrably
so, meaning there is a counterexample to this claim. (See below.) What we show is that the claim is
true if GE is additionally WROB-ATK. This property, if not already present, can be conferred by first
applying our weak robustness transform.

Theorem 4.2 Let GE = (PG,KG,Enc,Dec) be a general encryption scheme, and let GE = (PG,KG,Enc,
Dec) be the general encryption scheme resulting from applying the strong robustness transform to GE and

commitment scheme CMT = (CPG,Com,Ver). Then

1. AI-ATK: Let A be an ai-adversary against GE . Then there is a wrob adversary W against GE , a

hiding adversary H against CMT and an ai-adversary B against GE such that

Advai

GE
(A) ≤ 2 ·Advwrob

GE (W ) + 2 ·Advhide
CMT (H) + 3 ·Advai

GE (B) .

Adversaries W,B inherit the query profile of A, and adversaries W,H,B have the same running time
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as A. If A is a cpa adversary then so are W,B.

2. SROB-ATK: Let A be a srob adversary against GE making q GetEK queries. Then there is a

binding adversary B against CMT such that

Advsrob

GE
(A) ≤ Advbind

CMT (B) +

(

q

2

)

·CollGE .

Adversary B has the same running time as A.

The first part of the theorem implies that if GE is AI-ATK and WROB-ATK and CMT is HIDE then
GE is AI-ATK, and the second part of the theorem implies that if CMT is BIND secure and GE
has low encryption key collision probability then GE is SROB-ATK. In both cases this is for both
ATK ∈ {CPA,CCA}. We remark that the proof shows that in the CPA case the WROB-ATK assumption
on GE in the first part is actually not needed. The encryption key collision probability CollGE of GE is
defined as the maximum probability that ek0 = ek1 in the experiment

(pars ,msk)
$

← PG ; (ek0, dk0)
$

← KG(pars ,msk , id0) ; (ek1, dk1)
$

← KG(pars ,msk , id1) ,

where the maximum is over all distinct identities id0, id1. The collision probability is zero in the IBE
case since ek0 = id0 6= id1 = ek1. It is easy to see that GE being AI implies CollGE is negligible, so
asking for low encryption key collision probability is in fact not an extra assumption. (For a general
encryption scheme the adversary needs to have hardwired the identities that achieve the maximum, but
this is not necessary for PKE because here the probability being maximized is the same for all pairs of
distinct identities.) The reason we made the encryption key collision probability explicit is that for most
schemes it is unconditionally low. For example, when GE is the ElGamal PKE scheme, it is 1/|G| where
G is the group being used. Proofs of both parts of the theorem are in Appendix D.

The need for weak-robustness. As we said above, the AI-ATK security of GE won’t be implied
merely by that of GE . (We had to additionally assume that GE is WROB-ATK.) Here we justify this
somewhat counter-intuitive claim. This discussion is informal but can be turned into a formal counterex-
ample. Imagine that the decryption algorithm of GE returns a fixed string of the form (M̂ , ˆdec) whenever
the wrong key is used to decrypt. Moreover, imagine CMT is such that it is easy, given cpars , x , dec,
to find com so that Ver(cpars , x , com , dec) = 1. (This is true for any commitment scheme where dec is
the coins used by the Com algorithm.) Consider then the AI-ATK adversary A against the transformed
scheme that that receives a challenge ciphertext (C∗, com∗) where C∗ ← Enc(pars ,EK[id b],M

∗‖dec∗) for
hidden bit b ∈ {0, 1}. It then creates a commitment ˆcom of EK[id1] with opening information ˆdec, and
queries (C∗, ˆcom) to be decrypted under DK[id0]. If b = 0 this query will probably return ⊥ because
Ver(cpars ,EK[id0], ˆcom , dec∗) is unlikely to be 1, but if b = 1 it returns M̂ , allowing A to determine the
value of b. The weak robustness of GE rules out such anomalies.

5 A SROB-CCA version of Cramer-Shoup

Let G be a group of prime order p, and H: Keys(H)×G
3 → G a family of functions. We assume G, p,H

are fixed and known to all parties. Figure 9 shows the Cramer-Shoup (CS) scheme and the variant CS ∗

scheme where 1 denotes the identity element of G. The differences are boxed. Recall that the CS scheme
was shown to be IND-CCA in [CS03] and ANO-CCA in [BBDP01]. However, for any message M ∈ G the
ciphertext (1,1,M ,1) in the CS scheme decrypts to M under any pars , pk , and sk , meaning in particular
that the scheme is not even SROB-CPA. The modified scheme CS ∗ —which continues to be IND-CCA
and ANO-CCA— removes this pathological case by having Enc choose the randomness u to be non-zero
—Enc draws u from Z

∗
p while the CS scheme draws it from Zp— and then having Dec reject (a1, a2, c, d) if

a1 = 1. This thwarts the attack, but is there any other attack? We show that there is not by proving that
CS ∗ is actually SROB-CCA. Our proof of robustness relies only on the security —specifically, pre-image

11



Algorithm PG

K
$

← Keys(H) ; g1
$

← G
∗ ; w

$

← Z
∗
p

g2 ← gw
1 ; Return (g1, g2,K)

Algorithm Enc((g1, g2,K), (e, f, h),M )

u
$

← Z
*
p

a1 ← gu
1 ; a2 ← gu

2 ; b← hu

c← b ·M ; v ← H(K, (a1, a2, c))
d← eufuv ; Return (a1, a2, c, d)

Algorithm KG(g1, g2,K)

x1, x2, y1, y2, z1, z2
$

← Zp

e← gx1

1 gx2

2 ; f ← gy1

1 gy2

2 ; h← gz1

1 gz2

2

Return ((e, f, h), (x1, x2, y1, y2, z1, z2))

Algorithm Dec((g1, g2,K), (e, f, h), (x1, x2, y1, y2, z1, z2),C )

(a1, a2, c, d)← C ; v ← H(K, (a1, a2, c)) ; M ← c · a−z1

1 a−z2

2

If d 6= ax1+y1v
1 ax2+y2v

2 Then M ← ⊥

If a1 = 1 Then M ← ⊥

Return M

Figure 9: The original CS scheme [CS03] does not contain the boxed code while the variant CS ∗ does.
Although not shown above, the decryption algorithm in both versions always checks to ensure that the
ciphertext C ∈ G

4. The message space is G.

resistance— of the hash family H: it does not make the DDH assumption. Our proof uses ideas from
the information-theoretic part of the proof of [CS03].

We say that a family H: Keys(H) × Dom(H) → Rng(H) of functions is pre-image resistant if, given
a key K and a random range element v∗, it is computationally infeasible to find a pre-image of v∗ under
H(K, ·). The notion is captured formally by the following advantage measure for an adversary I:

Advpre-img
H (I) = Pr

[

H(K,x) = v∗ : K
$

← Keys(H) ; v∗
$

← Rng(H) ; x
$

← I(K, v∗)
]

.

Pre-image resistance is not implied by the standard notion of one-wayness, since in the latter the target
v∗ is the image under H(K, ·) of a random domain point, which may not be a random range point.
However, it seems like a fairly mild assumption on a practical cryptographic hash function and is implied
by the notion of “everywhere pre-image resistance” of [RS04], the difference being that, for the latter,
the advantage is the maximum probability over all v∗ ∈ Rng(H). We now claim the following.

Theorem 5.1 Let B be an adversary making two GetEK queries, no GetDK queries and at most q−1
Dec queries, and having running time t. Then we can construct an adversary I such that

Advsrob
CS ∗ (A) ≤ Advpre-img

H (I) +
2q + 1

p
. (1)

Furthermore, the running time of I is t + q ·O(texp) where texp denotes the time for one exponentiation

in G.

Since CS ∗ is a PKE scheme, the above automatically implies security even in the presence of multiple
GetEK and GetDK queries as required by game SROBCS ∗. Thus the theorem implies that CS ∗ is
SROB-CCA if H is pre-image resistant. A detailed proof of Theorem 5.1 is in Appendix E. Here we
sketch some intuition.

We begin by conveniently modifying the game interface. We replace B with an adversary A that gets
input (g1, g2,K), (e0, f0, h0), (e1, f1, h1) representing the parameters that would be input to B and the
public keys returned in response to B’s two GetEK queries. Let (x01, x02, y01, y02, z01, z02) and (x11, x12,
y11, y12, z11, z12) be the corresponding secret keys. The decryption oracle takes (only) a ciphertext and
returns its decryption under both secret keys, setting a Win flag if these are both non-⊥. Adversary A
no longer needs an output, since it can win via a Dec query.

Suppose A makes a Dec query (a1, a2, c, d). Then the code of the decryption algorithm Dec from
Figure 9 tells us that, for this to be a winning query, it must be that

d = ax01+y01v
1 ax02+y02v

2 = ax11+y11v
1 ax12+y12v

2
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where v = H(K, (a1, a2, c)). Letting u1 = logg1
(a1), u2 = logg2

(a2) and s = logg1
(d), we have

s = u1(x01 + y01v) + wu2(x02 + y02v) = u1(x11 + y11v) + wu2(x12 + y12v) (2)

However, even acknowledging that A knows little about xb1, xb2, yb1, yb2 (b ∈ {0, 1}) through its Dec
queries, it is unclear why Equation (2) is prevented by pre-image resistance —or in fact any property
short of being a random oracle— of the hash function H. In particular, there seems no way to “plant” a
target v∗ as the value v of Equation (2) since the adversary controls u1 and u2. However, suppose now
that a2 = aw

1 . (We will discuss later why we can assume this.) This implies wu2 = wu1 or u2 = u1 since
w 6= 0. Now from Equation (2) we have

u1(x01 + y01v) + wu1(x02 + y02v)− u1(x11 + y11v)−wu1(x12 + y12v) = 0 .

We now see the value of enforcing a1 6= 1, since this implies u1 6= 0. After canceling u1 and re-arranging
terms, we have

v(y01 + wy02 − y11 − wy12) + (x01 + wx02 − x11 − wx12) = 0 . (3)

Given that xb1, xb2, yb1, yb2 (b ∈ {0, 1}) and w are chosen by the game, there is at most one solution v
(modulo p) to Equation (3). We would like now to design I so that on input K, v∗ it chooses xb1, xb2,
yb1, yb2 (b ∈ {0, 1}) so that the solution v to Equation (3) is v∗. Then (a1, a2, c) will be a pre-image of v∗

which I can output.

To make all this work, we need to resolve two problems. The first is why we may assume a2 = aw
1 —

which is what enables Equation (3)— given that a1, a2 are chosen by A. The second is to properly design
I and show that it can simulate A correctly with high probability. To solve these problems, we consider,
as in [CS03], a modified check under which decryption, rather than rejecting when d 6= ax1+y1v

1 ax2+y2v
2 ,

rejects when a2 6= aw
1 or d 6= ax+yv

1 , where x = x1 + wx2, y = y1 + wy2, v = H(K, (a1, a2, c)) and
(a1, a2, c, d) is the ciphertext being decrypted. In our proof in Appendix E, games G0–G2 move us
towards this perspective. Then, we fork off two game chains. Games G3–G6 are used to show that the
modified decryption rule increases the adversary’s advantage by at most 2q/p. Games G7–G11 show how
to embed a target value v∗ into the components of the secret key without significantly affecting the ability
to answer Dec queries. Based on the latter, we then construct I as shown in Appendix E.
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proc Initialize

cpars
$

← CPG ; b
$

← {0, 1} ; Return cpars

proc LR(x0, x1)

(com , dec)
$

← Com(cpars , xb) ; Return com

proc Finalize(b′)

Return (b′ = b)

proc Initialize

cpars
$

← CPG ; Return cpars

proc Finalize(com , x0, dec0, x1, dec1)

d0 ← Ver(cpars , x0, com , dec0)
d1 ← Ver(cpars , x1, com , dec1)
Return (x0 6= x1 ∧ d0 = 1 ∧ d1 = 1)

Figure 10: Game HIDECMT (left) captures the hiding property while Game BINDCMT (right) captures
the binding property. The adversary may call LR only once.
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A Hiding and blinding of commitment schemes

The advantage measures

Advhide
CMT (A) = 2 · Pr

[

HIDEA
CMT ⇒ true

]

− 1 and Advbind
CMT (A) = Pr

[

BINDA
CMT ⇒ true

]

,

which refer to the games of Figure 10, capture, respectively, the standard hiding and binding properties
of a commitment scheme. We refer to the corresponding notions as HIDE and BIND.

B More results on robustness of specific transforms and schemes

The Boneh-Franklin IBE. Boneh and Franklin proposed the first truly practical provably secure IBE
scheme in [BF01]. They also propose a variant that uses the FO transform to obtain provable IND-CCA
security in the random oracle model under the bilinear Diffie-Hellman (BDH) assumption; we refer to
it as the BF-IBE scheme here. A straightforward modification of the proof can be used to show that
BF-IBE is also ANO-CCA in the random oracle model under the same assumption. We now give a proof
sketch that BF-IBE is also (unconditionally) SROB-CCA in the random oracle model.

Let e: G1 × G1 → G2 be a non-degenerate bilinear map, where G1 and G2 are multiplicative cyclic
groups of prime order p [BF01]. Let g be a generator of G1. The master secret key of the BF-IBE scheme

is an exponent s
$

← Z
∗
p, the public parameters contain S ← gs. For random oracles H1 : {0, 1}∗ → G

∗
1,

H2 : G2 → {0, 1}
k , H3 : {0, 1}k × {0, 1}ℓ → Z

∗
p, and H4 : {0, 1}k → {0, 1}ℓ, the encryption of a message

M under identity id is a tuple

(

gr , x⊕H2(e(S,H1(id))r) , M ⊕H4(x)
)

,

where x
$

← {0, 1}k and r← H3(x,M ). To decrypt a ciphertext (C1,C2,C3), the user with identity id and
decryption key usk = H1(id)s computes x← C2⊕H2(e(C1, usk)), M ← C3⊕H4(x), and r ← H3(x,M ).
If C1 6= gr he rejects, otherwise he outputs M .

Let us now consider a SROB-CCA adversary A that even knows the master secret s (and therefore
can derive all keys and decrypt all ciphertexts that it wants). Since H1 maps into G

∗
1, all its outputs are

of full order p. The probability that A finds two identities id1 and id2 such that H1(id) = H1(id2) is
negligible. Since S ∈ G

∗
1 and the map is non-degenerate, we therefore have that gid1

= e(S,H1(id1)) and
gid2

= e(S,H1(id2)) are different and of full order p. Since H3 maps into Z
∗
p, we have that r 6= 0, and
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therefore that gr
id1

and gr
id2

are different. If the output of H2 is large enough to prevent collisions from
being found, that also means that H2(g

r
id1

) and H2(g
r
id2

) are different. Decryption under both identities
therefore yields two different values x1 6= x2, and possibly different messages M1,M2. In order for the
ciphertext to be valid for both identities, we need that r = H3(x1,M1) = H3(x2,M2), but the probability
of this happening is again negligible in the random oracle model. As a result, it follows that the BF-IBE
scheme is also SROB-CCA in the random oracle model.

The Boyen-Waters IBE. Boyen and Waters [BW06] proposed a HIBE scheme which is IND-CPA
and ANO-CPA in the standard model, and a variant that uses the CHK transform to achieve IND-CCA
and ANO-CCA security. Decryption in the IND-CPA secure scheme never rejects, so it is definitely
not SROB-CPA. Without going into details here, it is easy to see that the IND-CCA variant is not
SROB-CPA either, because any ciphertext that is valid with respect to one identity will also be valid
with respect to another identity, since the verification of the one-time signature does not depend on the
identity of the recipient. (The natural fix to include the identity in the signed data may ruin anonymity.)

The IND-CCA-secure variant of Gentry’s IBE scheme [Gen06] falls to a similar robustness attack as
the original Cramer-Shoup scheme, by choosing a random exponent r = 0. We did not check whether
explicitly forbidding this choice restores robustness, however.

C Application to auctions

Robustness of ElGamal. The parameters of the ElGamal encryption scheme consist of the description

of a group G of prime order p with generator g. The secret key of a user is x
$

← Zp, the corresponding

public key is X = gx. The encryption of a message M is the pair (gr,Xr ·M ) for r
$

← Zp. A ciphertext
(R,S) is decrypted as M ← R/Sx. Since the decryption algorithm never returns ⊥, the ElGamal scheme
is obviously not robust. Stronger even, the ciphertext (1,M ) decrypts to M under any secret key. It
is this strong failure of robustness that opens the way to attacks on applications like Sako’s auction
protocol [Sak00].

The protocol. Sako’s auction protocol [Sak00] is important because it is the first truly practical one
to hide the bids of losers. Let 1, . . . , N be the range of possible bidding prices. In an initialization step,
the auctioneer generates N ElGamal key pairs (x1,X1), . . . , (xN ,XN ), and publishes g,X1, . . . ,XN and
a fixed message M ∈ G. A bidder places a bid of value v ∈ {1, . . . , N} by encrypting M under Xv and
posting the ciphertext. Note that the privacy of the bids is guaranteed by the anonymity of ElGamal
encryption. The authority opens bids C1 = (R1, S1), . . . ,Cn = (Rn, Sn) by decrypting all bids under
secret keys xN , . . . , x1, until the highest index w where one or more bids decrypt to M . The auctioneer
announces the identity of the winner(s), the price of the item w, and the secret key xw. All auctioneers
can then check that Si/R

xw

i = M for all winners i.

An attack. Our attack permits a dishonest bidder and a colluding auctioneer to break the fairness
of the protocol. (Security against colluding auctioneers was not considered in [Sak00], so we do not
disprove their results, but it is a property that one may expect the protocol to have.) Namely, a cheating
bidder can place a bid (1,M ). If w is the highest honest bid, then the auctioneer can agree to open the
corrupted bid to with xw+1, thereby winning the auction for the cheating bidder at one dollar more than
the second-highest bidder.

Sako came close to preventing this attack with an “incompatible encryption” property that avoids
choosing r = 0 at encryption. A dishonest bidder however may deviate from this encryption rule; the
problem is that the decryption algorithm does not reject ciphertexts (R,S) when R = 1. The attack
is easily prevented by using any of our robust encryption schemes, so that decryption under any other
secret key than the intended one results in ⊥ being returned. Note that for this application we really
need the strong robustness notion with adversarially generated ciphertexts.
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It is worth noting that, to enforce that all bids are independent of each other even in the presence of
a colluding auctioneer, all bidders would also need to commit to their sealed bids (using a non-malleable
commitment scheme) during a first round of communication and only open their commitments once all
commitments made public.

D Proofs of Theorems 4.1 and 4.2

The proof of Part 2 of Theorem 4.1 relies on the following information-theoretic lemma.

Lemma D.1 Let ℓ ≤ k be positive integers and let A1, A2 be arbitrary algorithms with the length of the

output of A1 always being ℓ. Let P denote the probability that A2(A1(K)) = K where the probability is

over K drawn at random from {0, 1}k and the coins of A1, A2. Then P ≤ 2ℓ−k.

Proof of Lemma D.1: We may assume A1, A2 are deterministic for, if not, we can hardwire a “best”
choice of coins for each. For each ℓ-bit string L let SL = {K ∈ {0, 1}k : A1(K) = L} and let s(L) = |SL|.
Let L be the set of all L ∈ {0, 1}ℓ such that s(L) > 0. Then

P =
∑

L∈L

Pr [ A2(L) = K | A1(K) = L ] · Pr [ A1(K) = L ]

=
∑

L∈L

1

s(L)
·
s(L)

2k

=
∑

L∈L

1

2k

which is at most 2ℓ−k as claimed.

Proof of Part 2 of Theorem 4.1: Games G0,G1 of Figure 11 differ only in their Finalize procedures,
with the message encrypted at line 04 to create ciphertext C in G1 being a constant rather than M 0 in
G0. We have

Advwrob

GE
(A) = Pr

[

GA
0

]

=
(

Pr
[

GA
0

]

− Pr
[

GA
1

])

+ Pr
[

GA
1

]

.

we design B so that

Pr
[

GA
0

]

− Pr
[

GA
1

]

≤ Advai
GE (B) .

On input pars , adversary B executes lines 02,03 of Initialize and runs A on input (pars ,K). It replies to
GetEK,GetDK and Dec queries of A via its own oracles of the same name. When A halts with output
M, id0, id1, adversary B queries its LR oracle with id0, id0, 0

|M |‖0k,M‖K to get back a ciphertext C. It
then makes query GetDK(id1) to get back DK[id1]. Note this is a legal query for B because id1 is not
one of the challenge identities in its LR query, but it would not have been legal for A. Now B executes
lines 01–09 of the code of Finalize of G1. If M 1 6= ⊥ it outputs 1, else 0.

To complete the proof we show that Pr[GA
1 ] ≤ 2ℓ−k. We observe that M as computed at line 05 of

Finalize in G1 depends only on pars ,EK[id1],EK[id0],DK[id1], |M 0|, k. We would have liked to say that
none of these depend on K. This would mean that the probability that M 6= ⊥ and parses as M 1‖K is at
most 2−k, making Pr[GA

1 ] ≤ 2−k. In the PKE case, what we desire is almost true because the only item
in our list that can depend on K is |M 0|, which can carry at most log2(t) bits of information about K.
But id0, id1 could depend on K so in general, and in the IBE case in particular, EK[id0],EK[id1],DK[id1]
could depend on K. However we assumed that identities are n bits, so the total amount of information
about K in the list pars ,EK[id1],EK[id0],DK[id1], |M0|, k is at most 2n + log2(t) bits. We conclude by
applying Lemma D.1 with ℓ = 2n + ⌈log2(t)⌉.
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proc Initialize // G0, G1

01 (pars ,msk)
$

← PG

02 K
$

← {0, 1}k

03 U, V ← ∅
04 Return (pars , K)

proc GetEK(id) // G0, G1

01 U ← U ∪ {id}

02 (EK[id ], DK[id ])
$

← KG(pars ,msk , id)
03 Return EK[id ]

proc GetDK(id) // G0, G1

01 If id 6∈ U then return ⊥
02 If id ∈ {id∗

0, id
∗
1} then return ⊥

03 V ← V ∪ {id}
04 Return DK[id ]

proc Dec(C, id) // G0, G1

01 If id 6∈ U then return ⊥
02 M ← Dec(pars , EK[id ], DK[id ],C )
03 If M = ⊥ then return ⊥
04 M ‖K∗ ←M
If (K = K∗) then return M

05 Else Return ⊥

proc Finalize(M , id0, id1) // G0

01 If (id0 6∈ U) ∨ (id1 6∈ U) then return false

02 If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false

03 If (id0 = id1) then return false

04 M 0 ← M ; C
$

← Enc(pars , EK[id0],M 0‖K)
05 M ← Dec(pars , EK[id1], DK[id1],C )
06 If M = ⊥ then M 1 ← ⊥
07 Else
08 M 1‖K∗ ←M
09 If (K 6= K∗) then M 1 ← ⊥
10 Return (M 0 6= ⊥) ∧ (M 1 6= ⊥)

proc Finalize(M , id0, id1) // G1

01 If (id0 6∈ U) ∨ (id1 6∈ U) then return false

02 If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false

03 If (id0 = id1) then return false

04 M 0 ← M ; C
$

← Enc(pars , EK[id0], 0
|M0|‖0k)

05 M ← Dec(pars , EK[id1], DK[id1],C )
06 If M = ⊥ then M 1 ← ⊥
07 Else

08 M 1‖K∗ ←M
09 If (K 6= K∗) then M 1 ← ⊥
10 Return (M 0 6= ⊥) ∧ (M 1 6= ⊥)

Figure 11: Games for the proof of Part 2 of Theorem 4.1.

Proof of Part 1 of Theorem 4.2: Game G0 of Figure 12 is game WROBGE tailored to the case that
A makes only one LR query, an assumption we explained we can make. If we wish to exploit the assumed
AI-ATK security of GE , we need to be able to answer Dec queries of A using the Dec oracle in game
AIGE . Thus we would like to substitute the Dec(pars ,EK[id ],DK[id ], C) call in a Dec((C, com), id) query
of G0 with a Dec(C, id) call of an adversary B in AIGE . The difficulty is that C might equal C∗ but
com 6= com∗, so that the call is not legal for B. To get around this, the first part of our proof will show
that the decryption procedure of G0 can be replaced by the alternative one of G4, where this difficulty
vanishes. This part exploits the uniqueness of the commitment scheme and the weak robustness of GE .
After that we will exploit the AI-ATK security of GE to remove dependence on dec∗ in LR, allowing us
to exploit the HIDE security of CMT to make the challenge commitment independent of EK[id∗

b ]. This
allows us to conclude by again using the AI-ATK security of GE . We proceed to the details.

In game G0, if A makes a Dec((C∗, com), id∗
b) query with com 6= com∗ then the uniqueness of CMT

implies that the procedure in question will return ⊥. This means that line 02 of Dec in G0 can be
rewritten as line 02 of Dec in G1 and the two procedures are equivalent. Procedure Dec of G2 includes
the boxed code and hence is equivalent to procedure Dec of G1. Hence

1

2
+

1

2
Advai

GE
(A) = Pr

[

GA
0

]

= Pr
[

GA
1

]

= Pr
[

GA
2

]

= Pr
[

GA
3

]

+ Pr
[

GA
2

]

− Pr
[

GA
3

]

≤ Pr
[

GA
3

]

+ Pr
[

GA
3 sets bad

]

.

The inequality above is by Lemma 2.1 which applies because G2,G3 are identical until bad. We design
W so that

Pr
[

GA
3 sets bad

]

≤ Advwrob
GE (W ) .
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proc Initialize // G0–G6

01 (pars ,msk)
$

← PG

02 cpars
$

← CPG

03 b
$

← {0, 1}
04 S, U, V ← ∅ ; C∗ ← ⊥ ; com∗ ← ⊥
05 id∗

0 ← ⊥ ; id∗
1 ← ⊥

06 Return (pars , cpars)

proc GetEK(id) // G0–G6

01 U ← U ∪ {id}

02 (EK[id ], DK[id ])
$

← KG(pars ,msk , id)
03 Return EK[id ]

proc GetDK(id) // G0–G6

01 If id 6∈ U then return ⊥
02 If id ∈ {id∗

0
, id∗

1
} then return ⊥

03 V ← V ∪ {id}
04 Return DK[id ]

proc Finalize(b′) // G0–G6

01 Return (b′ = b)

proc LR(id∗
0, id

∗
1,M

∗

0,M
∗

1) // G0–G4

01 If (id∗
0
6∈ U) ∨ (id∗

1
6∈ U) then return ⊥

02 If (id∗
0 ∈ V ) ∨ (id∗

1 ∈ V ) then return ⊥

03 (com∗, dec∗)
$

← Com(cpars , EK[id∗
b
])

04 C∗ $

← Enc(pars , EK[id∗
b ],M

∗

b‖dec
∗)

05 Return (C∗, com∗)

proc LR(id∗
0
, id∗

1
,M

∗

0
,M

∗

1
) // G5

01 If (id∗
0 6∈ U) ∨ (id∗

1 6∈ U) then return ⊥
02 If (id∗

0
∈ V ) ∨ (id∗

1
∈ V ) then return ⊥

03 (com∗, dec∗)
$

← Com(cpars , EK[id∗
b ])

04 C∗ $

← Enc(pars , EK[id∗
b ],M

∗

b‖0
d)

05 Return (C∗, com∗)

proc LR(id∗
0
, id∗

1
,M

∗

0
,M

∗

1
) // G6

01 If (id∗
0 6∈ U) ∨ (id∗

1 6∈ U) then return ⊥
02 If (id∗

0 ∈ V ) ∨ (id∗
1 ∈ V ) then return ⊥

03 (com∗, dec∗)
$

← Com(cpars , 0e)

04 C∗ $

← Enc(pars , EK[id∗
b
],M

∗

b
‖0d)

05 Return (C∗, com∗)

proc Dec((C, com), id) // G0

01 If id 6∈ U then return ⊥
02 If (id = id∗

b) ∧ (C, com) = (C∗, com∗) then return ⊥
03 If (id = id∗

1−b
6= id∗

b
) ∧ (C, com) = (C∗, com∗) then

04 Return ⊥
05 M ← Dec(pars , EK[id ], DK[id ], C)
06 If M = ⊥ then return ⊥
07 M‖dec ←M
08 If Ver(cpars , EK[id ], com , dec) = 1 then return M
09 Else return ⊥

proc Dec((C, com), id) // G1

01 If id 6∈ U then return ⊥
02 If (id = id∗

b
) ∧ (C = C∗) then return ⊥

03 If (id = id∗
1−b 6= id∗

b ) ∧ (C, com) = (C∗, com∗) then
04 Return ⊥
05 M ← Dec(pars , EK[id ], DK[id ], C)
06 If M = ⊥ then return ⊥
07 M‖dec ←M
08 If Ver(cpars , EK[id ], com , dec) = 1 then return M
09 Else return ⊥

proc Dec((C, com), id) // G2 ,G3

01 If id 6∈ U then return ⊥
02 If (id = id∗

b
) ∧ (C = C∗) then return ⊥

03 If (id = id∗
1−b 6= id∗

b ) ∧ (C, com) = (C∗, com∗) then
04 Return ⊥
05 M ← Dec(pars , EK[id ], DK[id ], C)
06 If (id = id∗

1−b 6= id∗
b ) ∧ (C = C∗) ∧ (com 6= com∗) then

07 M∗ ←M

08 If M 6= ⊥ then bad← true ; M ← ⊥ ; M ←M∗

09 If M = ⊥ then return ⊥
10 M‖dec ←M

11 If Ver(cpars , EK[id ], com , dec) = 1 then return M
12 Else return ⊥

proc Dec((C, com), id) // G4–G6

01 If id 6∈ U then return ⊥
02 If (id = id∗

0
) ∧ (C = C∗) then return ⊥

03 If (id = id∗
1) ∧ (C = C∗) then return ⊥

04 M ← Dec(pars , EK[id ], DK[id ], C)
05 If M = ⊥ then return ⊥
06 M‖dec ←M

07 If Ver(cpars , EK[id ], com , dec) = 1 then return M
08 Else return ⊥

Figure 12: Games for the proof of Part 1 of Theorem 4.2.
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On input pars , adversary W executes lines 02,03,04,05 of Initialize and runs A on input (pars , cpars).
It replies to GetEK,GetDK,Dec queries of A via its own oracles of the same name, as per the code of
G3. When A makes its LR query id∗

0, id
∗
1,M

∗
0,M

∗
1, adversary W executes lines 01,02,03 of the code of

LR of G3. It then outputs M
∗
b‖dec

∗, id∗
b , id

∗
1−b and halts.

Next we bound Pr[GA
3 ]. Procedure Dec of G4 results from simplifying the code of procedure Dec of G3,

so

Pr
[

GA
3

]

= Pr
[

GA
4

]

=
(

Pr
[

GA
4

]

− Pr
[

GA
5

])

+ Pr
[

GA
5

]

.

The step from G4 to G5 modifies only LR, replacing dec∗ with a constant. We are assuming here that
any decommitment key output by Com, regardless of the inputs to the latter, has length d bits. We
design B1 so that

Pr
[

GA
4

]

− Pr
[

GA
5

]

= Advai
GE (B1) .

On input pars , adversary B1 executes lines 02,03,04,05 of Initialize and runs A on input (pars , cpars).
It replies to GetEK,GetDK,Dec queries of A via its own oracles of the same name, as per the code
of G4. Here we make crucial use of the fact that the alternative decryption rule of Dec of G4 allows B1

to respond to Dec queries of A without the need to query its own Dec oracle on (C∗, id∗
0) or (C∗, id∗

1).
When A makes its LR query id∗

0, id
∗
1,M

∗
0,M

∗
1, adversary B1 executes lines 01,02,03 of the code of LR

of G4. It then queries id∗
b , id

∗
b ,M

∗
b‖0

d,M
∗
b‖dec

∗ to its own LR oracle to get back a ciphertext C∗, and
returns (C∗, com∗) to A. When A halts with outut a bit b′, adversary B1 outputs 1 if b = b′ and 0
otherwise.

Next we bound Pr[GA
5 ]. Procedure LR of G6 uses a constant 0e rather than EK[id∗

b ] as data for Com at
line 03. The value of e is arbitrary, and we can just let e = 1. Then

Pr
[

GA
5

]

=
(

Pr
[

GA
5

]

− Pr
[

GA
6

])

+ Pr
[

GA
6

]

.

We design H so that

Pr
[

GA
5

]

− Pr
[

GA
6

]

≤ Advhide
CMT (H) .

On input cpars , adversary H executes lines 01,03,04,05 of Initialize and runs A on input (pars , cpars).
It replies to GetEK,GetDK,Dec queries of A by direct execution of the code of these procedures in G5,
possible since it knows msk . When A makes its LR query id∗

0, id
∗
1,M

∗
0,M

∗
1, adversary H executes lines

01,02 of the code of LR of G5. It then queries 0e,EK[id∗
b ] to its own LR oracle to get back a commitment

com∗. It executes line 04 of LR of G5 and returns (C∗, com∗) to A. When A halts with outut a bit b′,
adversary H returns 1 if b = b′ and 0 otherwise.

Finally we design B2 so that

2 · Pr
[

GA
6

]

− 1 ≤ Advai
GE (B2) .

On input pars , adversary B2 executes lines 02,04,05 of Initialize and runs A on input (pars , cpars). It
replies to GetEK,GetDK,Dec queries of A via its own oracles of the same name, as per the code of
G6. Again we make crucial use of the fact that the alternative decryption rule of Dec of G6 allows B2

to respond to Dec queries of A without the need to query its own Dec oracle on (C∗, id∗
0) or (C∗, id∗

1).
When A makes its LR query id∗

0, id
∗
1,M

∗
0,M

∗
1, adversary B2 executes lines 01,02,03 of the code of LR

of G6. It then queries id∗
0, id

∗
1,M

∗
0‖0

d,M
∗
1‖dec

∗ to its own LR oracle to get back a ciphertext C∗, and
returns (C∗, com∗) to A. When A halts with outut a bit b′, adversary B2 outputs b′.

Adversary B of the theorem statement runs B1 with probability 2/3 and B2 with probability 1/3.

Proof of Part 2 of Theorem 4.2: In the execution of A with game SROBGE let coll be the event
that there exist distinct id0, id1 queried by A to its GetEK oracle such that the encryption keys returned
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in response are the same. Then

Advsrob

GE
(A) = Pr

[

SROBA

GE
∧ coll

]

+ Pr
[

SROBA

GE
∧ coll

]

≤ Pr [coll ] + Pr
[

SROBA

GE
∧ coll

]

.

But

Pr [coll ] ≤

(

q

2

)

·CollGE

and we can design B such that

Pr
[

SROBA

GE
∧ coll

]

≤ Advbind
CMT (B) .

We omit the details.

E Proof of Theorem 5.1

The proof relies on Games G0–G11 of Figures 13–15 and the adversary I of Figure 16. See Section 5 for
intuition.

We begin by transforming B into an adversary A such that

Advsrob
CS ∗ (B) ≤ Pr

[

GA
0

]

. (4)

On input (g1, g2,K), (e0, f0, h0), (e1, f1, h1), adversary A runs B on input (g1, g2,K). Adversary A returns
to B the public key (e0, f0, h0) in response to B’s first GetEK query id0, and (e1, f1, h1) in response
to its second GetEK query id1. When B makes a Dec query, which can be assumed to have the form
(a1, a2, c, d), id b for some b ∈ {0, 1}, adversary A queries (a1, a2, c, d) to its own Dec oracle to get back
(M0,M1) and returns Mb to B. When B halts, with output that can be assumed to have the form
((a1, a2, c, d), id 0, id1), adversary A makes a final query (a1, a2, c, d) to its Dec oracle and also halts.

We assume that every Dec query (a1, a2, c, d) of A satisfies a1 6= 1. This is without loss of generality
because the decryption algorithm rejects otherwise. This will be crucial below. Similarly, we assume
(a1, a2, c, d) ∈ G

4. We now proceed to the analysis.

Games G1,G2 start to move us to the alternative decryption rule. In G1, if a2 = aw
1 and d = axb+ybv

1

then d = axb1+yb1v
1 axb2+yb2v

2 , so Dec in G1 returns the correct decryption, like in G0. If a2 6= aw
1 or

d 6= axb+ybv
1 then, if d 6= axb1+yb1v

1 · axb2+yb2v
2 , then Dec in G1 returns ⊥, else it returns ca−zb1

1 a−zb2

2 , so
again is correct either way. Thus,

Pr
[

GA
0

]

= Pr
[

GA
1

]

= Pr
[

GA
2

]

+ (Pr
[

GA
1

]

− Pr
[

GA
2

]

)

≤ Pr
[

GA
2

]

+ Pr
[

GA
2 sets bad

]

, (5)

where the last line is by Lemma 2.1 since G1,G2 are identical until bad. We now fork off two game chains,
one to bound each term above.

First, we will bound the second term in the right-hand side of Inequality (5). Our goal is to move
the choices of xb1, xb2, yb1, yb2, zb1, zb2 (b = 0, 1) and the setting of bad into Finalize while still being
able to answer Dec queries. We will then be able to bound the probability that bad is set by a static
analysis. Consider Game G3. If a2 6= aw

1 and d = axb1+yb1v
1 axb2+yb2v

2 then bad is set in G2. But a2 = aw
1

and d 6= axb+ybv
1 implies d 6= axb1+yb1v

1 axb2+yb2v
2 , so bad is not set in G2. So,

Pr
[

GA
2 sets bad

]

= Pr
[

GA
3 sets bad

]

. (6)
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proc Initialize Game G0

000 g1
$

← G
∗ ; w

$

← Z
∗
p ; g2 ← gw

1

001 K
$

← Keys(H)
002 For b = 0, 1 do

003 xb1, xb2, yb1, yb2, zb1, zb2
$

← Zp

004 eb ← gxb1

1 gxb2

2

005 fb ← gyb1

1 gyb2

2

006 hb ← gzb1

1 gzb2

2

007 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Initialize Games G1,G2,G3,G4

100 g1
$

← G
∗ ; w

$

← Z
∗
p ; g2 ← gw

1

101 K
$

← Keys(H)
102 For b = 0, 1 do

103 xb1, xb2, yb1, yb2, zb1, zb2
$

← Zp

104 xb ← xb1 + wxb2 ; yb ← yb1 + wyb2

105 eb ← gxb

1 ; fb ← gyb

1 ; hb ← gzb1

1 gzb2

2

106 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Finalize Games G0,G1,G2

020 Return Win

proc Finalize Game G3

320 Return true

proc Finalize Game G4

420 For b = 0, 1 do
421 For all (a1, a2, c, d, v) ∈ S do

422 If d = axb1+yb1v
1 · axb2+yb2v

2 Then
423 bad← true

424 Return true

proc Dec((a1, a2, c, d)) Game G0

010 v ← H(K, (a1, a2, c))
011 For b = 0, 1 do

012 Mb ← c · a−zb1

1 a−zb2

2

013 If d 6= axb1+yb1v
1 · axb2+yb2v

2 Then Mb ← ⊥
014 If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true

015 Return (M0,M1)

proc Dec((a1, a2, c, d)) Games G1 ,G2

110 v ← H(K, (a1, a2, c))
111 For b = 0, 1 do

112 Mb ← c · a−zb1

1 a−zb2

2

113 If (a2 6= aw
1 ∨ d 6= axb+ybv

1 ) Then
114 Mb ← ⊥

115 If d = axb1+yb1v
1 · axb2+yb2v

2 Then

116 bad← true ; Mb ← ca−zb1

1 a−zb2

2

117 If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true

118 Return (M0,M1)

proc Dec((a1, a2, c, d)) Game G3

310 v ← H(K, (a1, a2, c))
311 For b = 0, 1 do

312 Mb ← c · a−zb1

1 a−zb2

2

313 If (a2 6= aw
1 ) Then

314 Mb ← ⊥

315 If d = axb1+yb1v
1 · axb2+yb2v

2 Then bad← true

316 Return (M0,M1)

proc Dec((a1, a2, c, d)) Game G4

410 v ← H(K, (a1, a2, c))

411 For b = 0, 1 do Mb ← c · a−zb1

1 a−zb2

2

412 If (a2 6= aw
1 ) Then

413 S ← S ∪ {(a1, a2, c, d, v)} ; M0,M1 ← ⊥
414 Return (M0,M1)

Figure 13: Games G0,G1,G2,G3, and G4 for proof of Theorem 5.1. G1 includes the boxed code at
line 116 but G2 does not.
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Since we are only interested in the probability that G3 sets bad, we have it always return true. The flag
bad may be set at line 315, but is not used, so we move the setting of bad into the Finalize procedure
in G4. This requires that G4 do some bookkeeping. We have also done some restructuring, moving some
loop invariants out of the loop in Dec. We have

Pr
[

GA
3 sets bad

]

= Pr
[

GA
4 sets bad

]

. (7)

The choice of xb1, xb2, xb at lines 404, 405 can equivalently be written as first choosing xb and xb2 at
random and then setting xb1 = xb − wxb2. This is true because w is not equal to 0 modulo p. The same
is true for yb1, yb2, yb. Once this is done, xb1, xb2, yb1, yb2 are not used until Finalize, so their choice can
be delayed. Game G5 makes these changes, so we have

Pr
[

GA
4 sets bad

]

= Pr
[

GA
5 sets bad

]

. (8)

Game G6 simply writes the test of line 524 in terms of the exponents. Note that this game computes
discrete logarithms, but it is only used in the analysis and does not have to be efficient. We have

Pr
[

GA
5 sets bad

]

= Pr
[

GA
6 sets bad

]

. (9)

We claim that

Pr
[

GA
6 sets bad

]

≤
2q

p
, (10)

(Recall q is the number of Dec queries made by A.) We now justify Equation (10). By the time we reach
Finalize in G6, we can consider the adversary coins, all random choices of Initialize, and all random
choices of Dec to be fixed. We will take probability only over the choice of xb2, yb2 made at line 621.
Consider a particular (a1, a2, c, d, v) ∈ S. This is now fixed, and so are the quantities u1, u2, s, t0, t1, α
and β as computed at lines 624–626. So we want to bound the probability that bad is set at line 627
when we regard tb, α, β as fixed and take the probability over the random choices of xb2, yb2. The crucial
fact is that u2 6= u1 because (a1, a2, c, d, v) ∈ S, and lines 612, 613 only put a tuple in S if a2 6= aw

1 . So α
and β are not 0 modulo p, and the probability that tb = αxb2 + βyb2 is thus 1/p. The size of S is at most
q so line 627 is executed at most 2q times. Equation (10) follows from the union bound.

We now return to Equation (5) to bound the first term. Game G7 removes from G2 code that does
not affect outcome of the game. Once this is done, xb1, yb1, xb2, yb2 are used only to define xb, yb, so G7

picks only the latter. So we have

Pr
[

GA
2

]

= Pr
[

GA
7

]

. (11)

Game G8 is the same as G7 barring setting a flag that does not affect the game outcome, so

Pr
[

GA
7

]

= Pr
[

GA
8

]

= Pr
[

GA
9

]

+ Pr
[

GA
8

]

− Pr
[

GA
9

]

≤ Pr
[

GA
9

]

+ Pr
[

GA
8 sets bad

]

(12)

≤ Pr
[

GA
9

]

+
1

p
. (13)

Equation (12) is by Lemma 2.1 since G8,G9 are identical until bad. The probability that G8 sets bad is
the probability that y1 = y0 at line 805, and this is 1/p since y is chosen at random from Zp, justifying
Equation (13). The distribution of y1 in G9 is always uniform over Zq − {y0}, and the setting of bad at
line 805 does not affect the game outcome, so

Pr
[

GA
9

]

= Pr
[

GA
10

]

. (14)

Game G11 picks xb, yb differently from G10, but since y1−y0 6= 0, the two ways induce the same distribution
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proc Initialize Games G5,G6

500 g1
$

← G
∗ ; w

$

← Z
∗
p ; g2 ← gw

1

501 K
$

← Keys(H) ; S ← ∅
502 For b = 0, 1 do

503 xb, yb, zb1, zb2
$

← Zp

504 eb ← gxb

1 ; fb ← gyb

1 ; hb ← gzb1

1 gzb2

2

505 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Dec((a1, a2, c, d)) Games G5,G6

510 v ← H(K, (a1, a2, c))

511 For b = 0, 1 do Mb ← c · a−zb1

1 a−zb2

2

512 If (a2 6= aw
1 ) Then

513 S ← S ∪ {(a1, a2, c, d, v)} ; M0,M1 ← ⊥
514 Return (M0,M1)

proc Finalize Game G5

520 For b = 0, 1 do

521 xb2, yb2
$

← Zp

522 xb1 ← xb − wxb2 ; yb1 ← yb − wyb2

523 For all (a1, a2, c, d, v) ∈ S do

524 If d = axb1+yb1v
1 · axb2+yb2v

2 Then bad← true

525 Return true

proc Finalize Game G6

620 For b = 0, 1 do

621 xb2, yb2
$

← Zp

622 xb1 ← xb − wxb2 ; yb1 ← yb − wyb2

623 For all (a1, a2, c, d, v) ∈ S do
624 u1 ← logg1

(a1) ; u2 ← logg2
(a2)

625 s← logg1
(d) ; tb ← s− u1xb + u1ybv

626 α← w(u2 − u1) ; β ← wv(u2 − u1)
627 If tb = αxb2 + βyb2 Then bad← true

628 Return true

Figure 14: Games G5 and G6 for proof of Theorem 5.1.

proc Initialize Game G7

700 g1
$

← G
∗ ; w

$

← Z
∗
p ; g2 ← gw

1

701 K
$

← Keys(H)
702 For b = 0, 1 do

703 xb, yb, zb1, zb2
$

← Zp

704 eb ← gxb

1 ; fb ← gyb

1 ; hb ← gzb1

1 gzb2

2

705 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Dec((a1, a2, c, d)) Games G7–G11

710 v ← H(K, (a1, a2, c))
711 For b = 0, 1 do

712 Mb ← c · a−zb1

1 a−zb2

2

713 If (a2 6= aw
1 ∨ d 6= axb+ybv

1 ) Then Mb ← ⊥
714 If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true

715 Return (M0,M1)

proc Finalize Games G7–G11

720 Return Win

proc Initialize Game G8/ G9

800 g1
$

← G
∗ ; w

$

← Z
∗
p ; g2 ← gw

1 ; K
$

← Keys(H)

801 For b = 0, 1 do

802 xb, yb, zb1, zb2
$

← Zp

803 eb ← gxb

1 ; fb ← gyb

1 ; hb ← gzb1

1 gzb2

2

804 If y1 = y0 Then

805 bad← true ; y1
$

← Zq − {y0}

806 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Initialize Game G10

1000 g1
$

← G
∗ ; w

$

← Z
∗
p ; g2 ← gw

1 ; K
$

← Keys(H)

1001 x0, y0, x1
$

← Zq ; y1
$

← Zq − {y0}
1002 For b = 0, 1 do

1003 zb1, zb2
$

← Zp ; eb ← gxb

1

1004 fb ← gyb

1 ; hb ← gzb1

1 gzb2

2

1005 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

proc Initialize Game G11

1100 g1
$

← G
∗ ; w

$

← Z
∗
p ; g2 ← gw

1 ; K
$

← Keys(H) ; v∗
$

← Zq

1101 x0, y0
$

← Zq ; y1
$

← Zq − {y0} ; x1 ← x0 − (y1 − y0)v
∗

1102 For b = 0, 1 do zb1, zb2
$

← Zp ; eb ← gxb

1 ; fb ← gyb

1 ; hb ← gzb1

1 gzb2

2

1103 Return (g1, g2,K), (e0, f0, h0), (e1, f1, h1)

Figure 15: Games G7–G11 for proof of Theorem 5.1. G9 includes the boxed code at line 805 but G8 does
not.
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Adversary I(K, v∗)

g1
$

← G
∗ ; w

$

← Z
∗
p ; g2 ← gw

1 ; x0, y0
$

← Zp ; y1
$

← Zp − {y0} ; x1 ← x0 − (y1 − y0)v
∗

For b = 0, 1 do

zb1, zb2
$

← Zp ; eb ← gxb

1 ; fb ← gyb

1 ; hb ← gzb1

1 gzb2

2

Run A on (g1, g2,K), (e0, f0, h0), (e1, f1, h1)
On query Dec((a1, a2, c, d))

v ← H(K, (a1, a2, c))
For b = 0, 1 do

Mb ← c · a−zb1

1 a−zb2

2

If (a2 6= aw
1 ∨ d 6= axb+ybv

1 ) Then Mb ← ⊥
If (M0 6= ⊥) ∧ (M1 6= ⊥) Then (a∗1, a

∗
2, c

∗)← (a1, a2, c)
Return (M0,M1) to A

Until A halts
Return (a∗1, a

∗
2, c

∗)

Figure 16: Adversary I for proof of Theorem 5.1.

on x0, x1, y0, y1. Thus,

Pr
[

GA
10

]

= Pr
[

GA
11

]

. (15)

We now claim that

Pr
[

GA
11

]

≤ Advpre-img
H (I) (16)

where I is depicted in Figure 16. To justify this, say that the A makes a Dec query (a1, a2, c, d) which
returns (M0,M1) with M0 6= ⊥ and M1 6= ⊥. This means we must have

d = ax0+y0v
1 = ax1+y1v

1 , (17)

where v = H(K, (a1, a2, c)). Let u1 = logg1
(a1) and s = logg1

(d). Now, the above implies u1(x0 + y0v) =
u1(x1 + y1v). But (a1, a2, c, d) is a Dec query, and we know that a1 6= 1, so u1 6= 0. (This is a crucial
point. Recall the reason we can without loss of generality assume a1 6= 1 is that the decryption algorithm
of CS ∗ rejects otherwise.) Dividing u1 out, we get x0 + y0v = x1 + y1v. Rearranging terms, we get
(y1−y0)v = x0−x1. However, we know that y1 6= y0, so v = (y1−y0)

−1(x0−x1). However, this is exactly
the value v∗ due to the way I and Game G11 define x0, y0, x1, y1. Thus, we have H(K, (a1, a2, c)) = v∗,
meaning I will be successful. Putting together Equations (4)–(11), (13)–(16) concludes the proof of
Theorem 5.1.

F Applications to searchable encryption

Public-key encryption with keyword search. A public key encryption with keyword search

(PEKS) scheme [BDOP04] is a tuple PEKS = (KG,PEKS,Td,Test) of algorithms. Via (pk , sk)
$

← KG, the

key generation algorithm produces a pair of public and private keys. Via C
$

← PEKS(pk ,w), the encryp-

tion algorithm encrypts a keyword w to get a ciphertext under the public key pk . Via tw
$

← Td(sk ,w),
the trapdoor extraction algorithm computes a trapdoor tw for keyword w . The deterministic test al-
gorithm Test(tw ,C ) returns 1 if C is an encryption of w and 0 otherwise. Privacy and consis-

tency of PEKS schemes. We formulate privacy notions for PEKS using the games of Figure 17. Let
ATK ∈ {CPA,CCA}. We define the advantage of an adversary A against the indistinguishability of
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proc Initialize

(pk , sk)
$

← KG ; b
$

← {0, 1}
W ← ∅ ; C∗ ← ⊥ ; Return pk

proc TD(w)

TT[w ]
$

← Td(sk ,w) ; W ←W ∪ {w} ; Return TT[w ]

proc LR(w∗
0 ,w∗

1 )

C∗ $

← PEKS(pk ,w∗
b ) ; Return C∗

proc Test(w ,C )

If (C = C ∗) ∧ (w ∈ {w∗
0 ,w∗

1 }) Then return ⊥

If TT[w ] = ⊥ Then TT[w ]
$

← Td(sk ,w)
Return Test(TT[w ],C )

proc Finalize(b′)

Return (b = b′) ∧ ({w∗
0 ,w∗

1 } ∩W = ∅)

proc Initialize

(pk , sk)
$

← KG(pars)
Return pk

proc Finalize(w ,w ′)

C
$

← PEKS(pk ,w)

t ′
$

← Td(sk ,w ′)
Return (w 6= w ′) ∧ (Test(t ′,C ))

Figure 17: PEKS = (PG,KG,PEKS,Td,Test) is a PEKS scheme. Games IND-CCAPEKS and
IND-CPAPEKS are on the left, where the latter omits procedure Test. The LR procedure may be
called only once. Game CONSISTPEKS is on the right.

PEKS as follows:

Advind-atk
PEKS (A) = Pr

[

IND-ATKA
PEKS ⇒ true

]

.

We re-formulate the consistency definition of PEKS schemes of [ABC+08] using the game of Figure 17.
We define the advantage of an adversary A against the consistency of PEKS as follows:

Advconsist
PEKS (A) = Pr

[

CONSISTA
PEKS ⇒ true

]

.

Furthermore, we also recall the advantage measure Advconsist
PEKS (A), which captures the notion CONSIST

of computational consistency of PEKS scheme PEKS .

Transforming IBE to PEKS. The bdop-ibe-2-peks transform of [BDOP04] transforms an IBE scheme
into a PEKS scheme. Given an IBE scheme IBE = (Setup,Ext,Enc,Dec), the transform associates
to it the PEKS scheme PEKS = (KG,PEKS,Td,Test), where the key-generation algorithm KG returns

(pk , sk )
$

← Setup; the encryption algorithm PEKS(pk ,w) returns C ← Enc(pk ,w , 0k); the trapdoor

extraction algorithm Td(sk ,w) returns t
$

← Ext(pk , sk ,w); the test algorithm Test(t ,C ) returns 1 if and
only if Dec(pk , t , C) = 0k. Abdalla et al. [ABC+08] showed that this transform generally does not provide
consistency, and presented the consistency-providing new-ibe-2-peks transform as an alternative. We now
show that the original bdop-ibe-2-peks transform does yield a consistent PEKS if the underlying IBE
scheme is robust. We also show that if the base IBE scheme is ANO-CCA, then the PEKS scheme is
IND-CCA, thereby yielding the first IND-CCA-secure PEKS schemes in the standard model, and the first
consistent IND-CCA-secure PEKS schemes in the RO model. (Non-consistent IND-CCA-secure PEKS
schemes in the RO model are easily derived from [FP07].)

Proposition F.1 Let IBE be an IBE scheme, and let PEKS be the PEKS scheme associated to it per

the bdop-ibe-2-peks transform. Given any adversary A running in time t, we can construct an adversary

B running in time t + O(t) executions of the algorithms of IBE such that

Advconsist
PEKS (A) ≤ Advsrob-cpa

IBE (B) and Advind-cca
PEKS (A) ≤ Advano-cca

IBE (B) .

To see why the first inequality is true, it suffices to consider the adversary B that on input pars runs

(w ,w ′)
$

← A(pars) and outputs C
$

← Enc(pars ,w). The proof of the second inequality is an easy
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adaptation of the proof of the new-ibe-2-peks transform in [ABC+08], where B answers A’s Test queries
using its own Dec oracle.

Securely combining PKE and PEKS. Searchable encryption by itself is only of limited use since it
can only encrypt individual keywords, and since it does not allow decryption. Fuhr and Paillier [FP07]
introduce a more flexible variant that allows decryption of the keyword. An even more powerful (and
general) primitive can be obtained by combining PEKS with PKE to encrypt non-searchable but re-
coverable content. For example, one could encrypt the body of an email using a PKE scheme, and
append a list of PEKS-encrypted keywords. The straightforward approach of concatenating ciphertexts
works fine for CPA security, but is insufficient for a strong, combined IND-CCA security model where
the adversary has access to both a decryption oracle and a testing oracle. Earlier attempts to combine
PKE and PEKS [BSNS06, ZI07] do not give the adversary access to the latter. A full IND-CCA-secure
PKE/PEKS scheme in the standard model can be obtained by combining the IND-CCA-secure PEKS
schemes obtained through our transformation with the techniques of [DK05]. Namely, one can consider
label-based [Sho01] variants of the PKE and PEKS primitives, tie the different components of a ciphertext
together by using as a common label the verification key of a one-time signature scheme, and append to
the ciphertext a signature of all components under the corresponding signing key. We omit the details.
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