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Abstract

RSA-FDH and many other schemes provably secure in the Random-Oracle Model (ROM)
require a cryptographic hash function whose output size does not match any of the standard
hash functions. We show that the random-oracle instantiations proposed in the literature for
such general cases are insecure, including the two historical instantiations proposed by Bellare
and Rogaway themselves in their seminal papers from ACM CCS ’93 and EUROCRYPT ’96:
for instance, for 1024-bit digests, we present a 268 preimage attack on BR93 and a 2106 collision
attack on BR96. This leads us to study the potential security impact of such defects. While one
might think that a hash collision may at worst give rise to an existential forgery on a signature
scheme, we show that for several (real-world) schemes secure in the ROM, collisions or slight
hash function defects can have much more dramatic consequences, namely key-recovery attacks.
For instance, we point out that a hash collision discloses the master key in the Boneh-Gentry-
Hamburg identity-based cryptosystem from FOCS ’07, and the secret key in the Rabin-Williams
signature scheme for which Bernstein proved tight security at EUROCRYPT ’08. This problem
can be fixed, but still, such schemes, as well as the Rabin-Williams variant implemented in
the IEEE P1363 standard, strongly require that the hash function is immune to malleability
variants of collision attacks, which does not hold for the BR93 instantiation. Our results suggest
an additional criterion to compare schemes secure in the ROM: assessing the risks by carefully
studying the impact of potential flaws in the random-oracle instantiation. In this light, RSA-PSS
seems more robust than other RSA signatures secure in the ROM.
Keywords: Cryptanalysis, Hash Function, Random Oracle, Provable Security, Signature, Full-
Domain Hash, PSS, Rabin, Rabin-Williams, RSA.

1 Introduction

The Random-Oracle Model (ROM) goes back to at least Fiat and Shamir [27]. It was popularized
and made into an explicit design paradigm by Bellare and Rogaway [7]. Roughly speaking, a se-
curity proof in the ROM is a security proof in which the underlying hash functions are modeled
as random oracles. In some sense, the design of schemes based on the ROM is a trade-off between
schemes that are provably secure but hopelessly impractical and very efficient schemes for which
no security property is known. Today, the ROM is one of the most controversial issues in cryp-
tographic research. On the one hand, the ROM is in widespread use in both research papers and
standards, because such schemes are usually more efficient, can be based on well-studied compu-
tational problems, and sometimes, their security proof can even be tight. In fact, many public-key
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cryptographic schemes used in practice are only proven secure in the ROM, e.g. RSA-OAEP [8]
and RSA-PSS [9]. On the other hand, many researchers have expressed doubts about the wisdom
of relying on the ROM. In particular, Canetti, Goldreich and Halevi [17] proved ten years ago that
there are signature and encryption schemes which are secure in the ROM, but insecure for any
instantiation of the random oracle. However, all the known constructions [17, 31, 4] showing the
limitations of the ROM are arguably “unnatural” and significantly differ from real-world construc-
tions. This has led Koblitz and Menezes [41] to claim that “our confidence in the random oracle
assumption is unshaken”.

Two trends have emerged in the past ten years. One trend is to keep on improving the security
guarantees offered by proofs in the ROM, by providing tighter and tighter security proofs, which
means that any potential attack could be used to efficiently solve the underlying hard problem with
essentially the same success probability. In fact, the promise of tight security proofs has always
been one of the key selling points of the ROM (see [7, 9]). The other trend is to get away from the
ROM, by designing alternative solutions in the standard model (such as in [25]): in particular, with
the development of pairing-based cryptography [14], new schemes provably secure in the standard
model under ad-hoc assumptions based on pairings have appeared (such as [16, 12, 13, 26]).

Recent breakthroughs in the cryptanalysis of hash functions [53, 52, 49] have shown that stan-
dard hash functions like MD5 or SHA-1 are far from behaving like random oracles. Yet, these results
have so far had surprisingly little impact on the public-key world, including widespread public-key
schemes proved in the ROM. The only public-key application known so far seems to be [49], which
constructs two colliding X.509 certificates for different identities and public keys. Four years after
the discovery of the first MD5 collision [53], the lack of serious attack on RSA-OAEP or RSA-PSS
may paradoxically reinforce the ROM.

This stresses the importance of studying the actual security (in the standard model) of schemes
provably secure in the ROM. There can be significant differences between the real world and an
idealized security model, as the MD5 case illustrates: like all Merkle-Damg̊ard hash functions
based on Davies-Meyer compression functions, MD5 was provably collision-resistant [55, 11] (up
to the birthday bound) in the ideal cipher model (with respect to the block cipher underlying the
compression function). Yet, the MD5 block cipher turned out to be so far from an ideal cipher that
computing MD5 collisions only costs a few seconds now [53, 39]. However, not all applications of
MD5 are under threat: for instance, though the MD5 compression function does not seem to satisfy
any of the assumptions required by HMAC security proofs [5, 3], only very theoretical attacks on
HMAC-MD5 are known [19, 28, 51].

But in order to study the actual security, it is essential to know how the random oracle will
be instantiated in practice, should the scheme ever be used. Often, the output size of the required
random oracle matches that of standard cryptographic hash functions (like 160 bits for SHA-1).
In this case, standard hash functions are most likely to be used in practice, despite well-known
extension properties of MD-iterated hash functions (such as the derivation of h(m1||m2) from
h(m1) and m2) which make them easily differentiable from a random oracle. But RSA-FDH [9]
and many other schemes secure in the ROM (such as [34, 21, 22, 37, 10, 29, 15]) actually require a
random oracle with “non-standard” output. First, the output may not be a uniformally distributed
bitstring: it could be integers mod N like in RSA-FDH [9], or elliptic curve points like in pairing-
based crypto, etc., fortunately there are well-known tricks to deal with such situations provided
that one has access to an instantiation with arbitrary output {0, 1}n. However, if the required
output bit-length does not match any of the standard cryptographic hash functions, as is the case
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of RSA-FDH which needs at least 1024 bits, it is unclear how the oracle will be instantiated in
practice. This is related to the output domain extension problem, which asks how to extend the
output of a good hash function.

Unfortunately, this issue does not seem to be well adressed in the literature: Katz and Lindell
devote a chapter to the ROM in their recent textbook [36], but warn that a detailed discussion of
how to instantiate a random oracle in practice is beyond the scope of the book. To the best of
our knowledge, the only proposals of random-oracle instantiations supporting arbitrary outbit bit-
length are the following: two historical instantiations by Bellare and Rogaway proposed respectively
in their seminal papers [7] (on the ROM) and [9] (on RSA-FDH and RSA-PSS), recent constructions
by Coron et al. in the full version [24] of [23], and the instantiations implicit in the PKCS#1 v2.1 [48]
and IEEE P1363 [33] standards. Surprisingly, despite the importance of [7, 9], it seems that none
of these instantiations have been analyzed in the literature, except that [24] has been analyzed in
the indifferentiability framework of Maurer et al. [43].

This raises the question of the impact of potential defects in random-oracle instantiations. When
a research article provides a security proof in the ROM, it usually does not say how to instanti-
ate the random oracle, neither what might happen if the hash function is not a random oracle.
Assume that Alice implements a scheme secure in the ROM under a well-known computational as-
sumption. Several years later, the assumption still stands, but Alice learns that her random-oracle
implementation is not as perfect as she thought: Should Alice worry? Are the risks confined to
chosen-message existential forgery and ciphertext distinguishability, or are there cases where Alice
could be in serious trouble? If Alice had the choice between two (equally efficient) schemes secure
in the ROM under the same assumption, maybe Alice would rather choose the least risky one, in
terms of robustness to defects in the hash function.

Our Results. We analyze for the first time all the concrete proposals [7, 9, 48, 33] of random-oracle
instantiations supporting arbitrary outbit bit-length, and show that they are insecure, notably those
proposed by Bellare and Rogaway themselves in [7, 9], back in 1993 and 1996. For instance, for
1024-bit digests, we give a 268 preimage attack on the BR93 instantiation [7] and a 2106 collision
attack on the BR96 instantiation [9]. It should be stressed that none of these instantiations made it
clear what was exactly the expected security guarantee, but one might argue that a random-oracle
instantiation with output bit-length n should offer 2n/2 resistance to collisions, and 2n resistance
to preimages. What we show is that the proposals fall short of those bounds. We note that the
instantiations implicit in PKCS [48] and IEEE [33] standards are not collision-resistant: collisions
follow directly from collisions on SHA-1. And we show that when applied to the compression
functions of MD5 or SHA-1, the theoretical constructions of Coron et al. [24] are no more collision-
resistant than MD5 or SHA-1 themselves.

Next, we study the impact on schemes secure in the ROM. While it is often believed that a
hash collision may at worst give rise to an existential forgery on a signature scheme, we show
that for several provably secure schemes proposed in the literature [9, 34, 15, 10, 29], collisions
or slight hash function defects can have much more dramatic consequences, namely key-recovery
attacks. Our most interesting examples are related to Rabin and Rabin-Williams signatures. For
instance, we remark that a hash collision discloses the master key in the Boneh-Gentry-Hamburg
identity-based cryptosystem [15], and the secret key in the Rabin-Williams signature scheme for
which Bernstein [10] recently proved tight security, which was not mentioned in [15, 10]. Since
this might not be desirable, we show how to fix this problem (oblivious to the security proof),
but even then, it should be noted that these schemes, as well as another Rabin-Williams variant
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included in the IEEE P1363 standard [33], require that the hash function be immune to malleability
variants of collision attacks, which is for instance not the case of BR93 [7]. This means that
the Rabin-Williams signature included in IEEE P1363 would have been insecure if the standard
had implemented the BR93 instantiation, or if it had replaced the signature by its variant [10]
(since the random-oracle instantiation of IEEE P1363 is not collision-resistant). These issues are
not restricted to factoring-based schemes: we show similar problems for a recent provably-secure
lattice-based signature scheme [29].

Our results suggest an additional criterion to compare schemes secure in the ROM: assessing
the risks by carefully studying the impact of potential flaws in the random-oracle instantiation.
Along these lines, we also study the main RSA signature schemes provably secure in the ROM:
RSA-FDH [9], RSA-PFDH [21], RSA-PSS [9], and RSA-KW [37]. While it is well-known that
RSA-PFDH, RSA-PSS and RSA-KW all offer a tight security proof, it seems that RSA-PSS is
more robust with respect to potential defects in the random-oracle instantiation.

Road map. We assume the reader is familiar with hash functions, the random-oracle model [7]
and provable security for signatures [32]. The paper is organized as follows. In Section 2, we
recall and attack the random-oracle instantiations that have been proposed in the literature for
arbitrary output size. Next, we study the implications of such defects for several secure signature
schemes. In Section 3, we study Rabin signatures, more precisely the ID-based cryptosystem of [15]
and PRab [9]. In Section 4, we study Rabin-Williams signatures, more precisely the scheme [34]
implemented in the IEEE P1363 standard [33] and its variant analyzed in [10]. In Section 5, we
study RSA signatures. In Appendix A, we study a different kind of scheme: the GPV lattice-based
signature scheme [29].

2 Random-Oracle Instantiations for Arbitrary Output

In this section, we present and analyze the random-oracle instantiations supporting arbitrary output
bit-length that have been proposed in the literature, namely [7, 9, 24] and the instantiations implicit
in the PKCS#1 v2.1 [48] and IEEE P1363 [33] standards. For completeness, we also briefly discuss
provably collision-resistant hash functions such as [18, 42].

We note that some of the instantiations make use of MD5, but that alone is insufficient to discard
them. Indeed, though the collision-resistance of MD5 is seriously broken [53, 39], many usages of
MD5 are not threatened yet: for instance, there is still no practical attack on HMAC-MD5.

2.1 The 1993 Instantiation by Bellare and Rogaway

Description. In their seminal paper on the random-oracle methodology [7], Bellare and Rogaway
actually proposed several guidelines to instantiate a random oracle (see [7, Section 6]), without
committing too much: it seemed like any reasonable choice should work in practice. In fact, the
only explicit construction given in [7, Section 6] is the following one, which we call BR93:

• Let h4 : {0, 1}512 → {0, 1}128 be the first compression function of MD5, that is the compression
function evaluated with the initial IV of MD5.

• Let h′ : {0, 1}256 → {0, 1}64 defined by h′(x) being the first 64 bits of h4((xx) ⊕ C), for a
randomly chosen 512-bit constant C. The function h′ defines a pseudo-random number gener-
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ator h′′(x) : {0, 1}224 → {0, 1}∗ by counter as follows: h′′(x) = h′(x〈0〉)||h′(x〈1〉)||h′(x〈2〉) . . .
where 〈i〉 is the encoding of i into 32 bits1.

• Finally, the BR93 instantiation of the random oracle is the truncation (prefix) of h(x) :
{0, 1}∗ → {0, 1}∗ defined as follows. First, one applies a padding to x by adding a bit 1
and enough bits 0 to obtain a bitstring x′ whose bit-length is a multiple of 128. Then, if we
divide x′ into 128-bit blocks as x′ = x′0 . . . x

′
n−1, then h(x) = h′′(x′0〈0〉) ⊕ h′′(x′1〈1〉) ⊕ · · · ⊕

h′′(x′n−1〈n− 1〉), that is, h(x) is the XOR of the n streams produced by each of the x′i.

Weaknesses. We show that BR93 is insecure with respect to collision resistance and preimage
resistance, independently of the choice of the underlying hash function (MD5 here). Our attacks are
based on Wagner’s generalized birthday algorithm [50], which we now recall. The basic operation
of the algorithm is the general join ./j : L ./j L

′, which consists of all elements of L×L′ such that
their j least significant bits match:

L ./j L
′ =

{
l ⊕ l′ : (l, l′) ∈ L× L′

∣∣∣ (l ⊕ l′)[0..j−1] = 0j
}
.

Assume that we are given several lists L0, L1, ..., each of size 2r. Our goal is to find l0 ∈ L0, l1 ∈
L1, ... such that

⊕
li = 0. The idea is to join the lists using a binary tree. We build the first

level with L01 = L0 ./r L1, L23 = L2 ./r L3, and so on. By the birthday paradox, these new lists
should still contain about 2r elements. On the next level, we build L0123 = L01 ./2r L23. Since the
elements of L01 and L23 already agree on their r lower bits, we are only doing a birthday paradox
on the bits r to 2r, so we still expect to find 2r elements. If we start with 2k lists, on the last level
we end up with one list of 2r elements which all begin with kr zeros. In this list, we expect to find
two elements that agree on 2r extra bits, so that we have a collision on (k+2)r bits. The algorithm
for k = 2 is described by Figure 1.

L0 L1 L2 L3

L01

./r

L23

./r

L0123

./2r

4 lists of 2r elements

2 lists of 2r elements
with r zeros

1 list of 2r elements
with 2r zeros

Figure 1: Wagner’s algorithm for k = 2

We now use Wagner’s algorithm to find collisions on BR93. For each message block x′i, we
will consider 2r possible values, and build a list Li with the resulting h′′(x′i〈i〉). Then we can use
Wagner’s attack on these lists. A collision attack on (k+ 2)r bits will have a complexity of 2k · r2r

using messages of 2k blocks. For instance, a collision attack on 1024 bits with messages of 230

blocks costs 230 · 32 · 232 = 267 elementary operations. If we limit the message size to 214 blocks,
1The paper [7] actually says 64 bits, but that would be incompatible with the definition of h′ as 224 + 64 = 288 >

256.
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the complexity is 214 · 64 · 264 = 284. Note that this complexity does not depend on the size of the
underlying hash function.

We can also use Wagner’s algorithm to find preimages on BR93. If we want a preimage of
H, we first replace L0 by L0 ⊕ H. On the last level of the tree, we will still have one list of 2r

elements which all begins with kr zeros, but instead of looking for a collision on 2r extra bits,
we look for an element with r extra zeroes. This element corresponds to a message x such that
H ⊕ h(x) = H ⊕ h′′(x′0〈0〉) ⊕ h′′(x′1〈1〉) ⊕ ...h′′(x′

2k−1
〈2k − 1〉) =(k+1)r 0, i.e. the (k + 1)r first

bits of h(x) agree with H. A preimage attack on (k + 1)r bits will have a complexity of 2k · r2r

using messages of 2k blocks. A preimage attack on 1024 bits with messages of 231 blocks costs
231 · 32 · 232 = 268 elementary operations.

2.2 The 1996 Instantiation by Bellare and Rogaway

Description. In their paper [9] on PSS, Bellare and Rogaway proposed another instantiation [9,
Appendix A], which we call BR96:

• Let H = MD5 or SHA-1.

• Define hBR96(x) as the appropriate truncation (prefix) of:

H(const〈0〉x)||H(const〈1〉x)||H(const〈2〉x)|| . . .

where the constant const should be unique to h. If another instantiation is needed, one
should change const.

Weaknesses. First of all, we note that BR96 can easily be distinguished from a random oracle.
More precisely, BR96 suffers from the same extension problems as any MD function: if the out-
put size of hBR96 is an exact multiple of that of H, then hBR96(m1||m2) can be computed from
hBR96(m1) and m2.

More importantly, we show that BR96 is insecure with respect to collision resistance and preim-
age resistance, independently of the choice of the underlying hash function (except the output size),
thanks to Joux’s multicollision technique [35], and we show how to (slightly) improve the results
of [35]. This might come as a surprise, since [35, Sect. 5] stressed: “we were not able to find a
single research paper that can be cryptanalyzed using the attacks presented here”. Recall that [35]
showed that the concatenation of two or more MD-iterated hash functions is not as secure as one
might have expected: the security is essentially the same as that of a single hash function. More
precisely, it was proved that if one concatenates k iterated hash functions with an internal size of n
bits each, one can find a collision in the concatenation for a workload of nk−1×2n/2, and preimages
for a workload of poly(nk)2n.

In fact, these figures given in [35] are a bit conservative: a closer analysis reveals that the
collision cost nk−1 × 2n/2 can be reduced to [(n/2)k−1 + (n/2)k−2 + · · · + 1] × 2n/2 ≤ (n/2)k−1 ×
(n/2)/(n/2− 1)× 2n/2 ≈ (n/2)k−1 × 2n/2.

As for preimages, Joux described in [35, Appendix A] an attack on the concatenation of k
iterated hash functions based on fixed points, whose exact cost was not precisely given: the cost
was estimated to poly(nk)2n. However, there seems to be a more efficient attack by generalizing the
basic preimage attack against two hash functions as follows. First, build a 2nk−1/2k−2

-multicollision
on the first hash function F1, and look for an extra block that maps this multicollision to the
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target value of F1. Then build a multicollision in F2 using the messages of the first multicollision:
each collision in F2 requires a set of 2n/2 messages, which will be built from n/2 colliding pairs
in F1. Thus we should get a 2nk−2

/2k−3-multicollision in F1. We will also use the last n colliding
pairs for a preimage search on F1. This gives us a 2nk−2

/2k−3-multicollision in F1||F2 which is
also a preimage. We apply the technique iteratively to build a 2n-multicollision for F1||F2||...Fk−1

which is also a preimage. If we compute Fk on the set of 2n colliding messages, we expect to
find one preimage against the full concatenation. The most expensive steps of this attack are the
preimage search, because the collision finding steps all have a complexity which is O(nk × 2n/2).
The preimage step on Fi will require to compute Fi on 2n message, which are made from n block
pairs of length ni−2/2i−2 and one block of length ni−2/2i− 3. If we do an amortized analysis, each
computation require to hash 2 blocks from message pairs, and the final block, which gives a cost
of ni−2/2i−4 × 2n. The cost of the full preimage search is roughly equivalent to the cost of the last
preimage search, which is nk−2/2k−4 × 2n.

We apply this result to BR96, by considering each of the Hi : x 7→ H(const〈i〉x) as a distinct
iterative hash function. For instance, if H is MD5, we can find collisions in 1024 bits of the
output with a workload of essentially 647 · 264 = 2106, where the colliding messages will be of
length 647 = 242 blocks; and we can find preimages of 1024 bits of the output with a workload
of 1286/24 · 2128 = 2166. Though impractical, these complexities are far lower than the theoretical
security of a 1024-bit random oracle.

The BR96 construction is also malleable. Again with the multicollision technique, we can create
pairs of messages x0, x1 such that H(const〈i〉x0) = H(const〈i〉x1) for all i’s except the last one.
We will build a multicollision set of 2n/4 such messages, and we expect to find one quadruplet such
that H(x0)⊕H(x1)⊕H(x2)⊕H(x3) = 0. In Appendix A, we will see that this kind of malleability
can be exploited to attack the GPV signature scheme.

2.3 Recent Instantiations by Coron et al. (CDMP)

Description. Coron et al. [23, 24] (CDMP) proposed several variations of Merkle-Damg̊ard to build
a random oracle from an (ideal) compression function or an (ideal) block-cipher using the Davies-
Meyer mode. They proposed four variants of MD for input domain extensions (namely, Prefix-Free
Encoding, Dropping Some Output Bits, Using NMAC, and Using HMAC ) and one scheme (only
in the full version [24]) for output domain extension. The output extension scheme is similar to
the BR96 construction, but the counter is included after the message (which is reminiscent of the
so-called MGF1 pseudo-random number generator used in several standards [33, 48]):

hCDMP (x) = H(x〈0〉)||H(x〈1〉)||H(x〈2〉)|| . . .

(here, H is one of the four input extension schemes). This choice is due to efficiency considerations,
but we will see that it has a strong security implication. The main advantage of [23, 24] is its
security proof: all the constructions are proved indifferentiable from a random oracle (in the sense
of Maurer et al. [43]), if the underlying compression function is a random oracle, or if it uses the
Davies-Meyer mode with an ideal block cipher. However, no recommendation is given in [23, 24]
for the choice of the underlying compression function (or the underlying block cipher for Davies-
Meyer). So strictly speaking, unlike [7, 9], there was no fully concrete proposal of a random-oracle
instantiation: still, one may want to apply the constructions to usual compression functions.
Weaknesses. One should be careful not to overestimate the significance of indifferentiability secu-
rity proofs: we currently do not know how to build an ideal compression function, and the security
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guarantees on the hash function disappear if the compression function is not ideal. For instance,
it was shown by Bellare and Ristenpart in [6] that none of the CDMP constructions necessar-
ily preserve collision-resistance: they give (theoretical) examples of collision-resistant compression
functions for which the resulting hash function is not collision-resistant.

We show further problems in the CDMP constructions. While [23, 24] was presented as a fix to
the MD construction, we point out that if one applies these fixes to MD5 or SHA-1, one can still
find collisions in the new hash function (independently of the chosen output length) with the same
cost as the original MD5 or SHA-1. This means that [23, 24] do not address the main vulnerabilities
in MD5 or SHA-1.

To see this, we first show that the four input extensions are not collision resistant if applied
to the compression functions of MD5 or SHA-1. This is trivial for Dropping Some Output Bits,
Using NMAC, and Using HMAC, because these constructions are nested: an inner collision becomes
an outer collision. So the only potentially tricky case is Prefix-Free Encoding, for which [23, 24]
proposed only two instantiations:

• prepend the message size as the first block. It turns out that MD5/SHA-1 collision at-
tacks [53, 52] can be extended to this case, because the number of blocks of colliding mes-
sages produced is equal and already known in advance, and it is well-known that existing
MD5/SHA-1 collision attacks can be extended to any given IV.

• use the first bit of each message block as a flag to distinguish the last message block. Since
the number of blocks in MD5/SHA-1 colliding messages is very small, and the first bit of each
block is random looking, we can simply produce random collisions until one has the required
form.

Now, because of the iterated structure of the four input extensions, these collisions give rise to
collisions in the output extension hCDMP . More generally, while hCDMP is indifferentiable from a
random oracle ifH is, any collision inH becomes a collision in hCDMP ifH has an iterative structure
like MD or the four input extensions: namely, H(x0) = H(x1) implies H(x0〈i〉) = H(x1〈i〉) and
therefore hCDMP (x0) = hCDMP (x1).

Hence, we have shown that if the CDMP constructions are applied to the compression functions
of MD5 or SHA-1 for an arbitrary output size, the cost of producing collisions remains essentially the
same as in MD5 or SHA-1, even though the constructions are indifferentiable from a random oracle
under the assumption that the underlying block cipher of MD5 or SHA-1 is an ideal cipher. Of
course, one could try to apply the CDMP constructions with different components, but it should
perhaps be noted that [23, 24] do not make any concrete recommendation for the compression
function.

2.4 Instantiations in PKCS and IEEE Standards

Description. No cryptographic standard currently specifies a random oracle instantiation for arbi-
trary size. However, several instantiations are implicit in PKCS #1 v2.1 [48] and IEEE P1363 [33],
because RSA-OAEP [8] and RSA-PSS [9] are standardized:

• RSA-OAEP requires two random oracles G and H with small input size (less than the RSA
modulus), which are both instantiated in PKCS [48] by the MGF1 pseudo-random number
generator [48]. Recall that MGF1 is simply a hash function in counter mode like hCDMP ,
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except that the counter is over four bytes: MGF1(x) = h(x〈0〉)||h(x〈1〉)||h(x〈2〉)|| . . ., where
h is either SHA-1 or a SHA-2.

• RSA-PSS also requires two random oracles G and H, but while G still has small input size, H
has a small output size but possibly large inputs. In PKCS [48], H is instantiated by SHA-1
or SHA-2, and G is instantiated by MGF1.

Thus, none of the oracles required by RSA-OAEP and RSA-PSS have both a large input and
output as would be required by for instance RSA-FDH. Still, MGF1 is a potential random-oracle
instantiation, because it supports arbitrarily large input and output.

There is another implicit instantiation in IEEE P1363 [33]. Indeed, the Rabin-Williams sig-
nature scheme implemented in IEEE P1363 uses a variant of the PSS encoding [9] (as described
in [34]) called EMSA-PSS in [48] and EMSA4 in [33] (see Figure 2: the main difference between
EMSA-PSS and PSS [9] is that the message is first hashed before going through the PSS encoding)
but it is specified in [33] that the salt can optionally be set to zero, in which case “the signature
scheme is deterministic, similar to Full-Domain Hashing”. Thus, one can view EMSA-PSS with

Figure 2: The EMSA-PSS encoding [33]

zero salt as an instantiation of a FDH: since the padding constants are zero, this amounts to essen-
tially hash the message twice in a row, then apply MGF1; concatenate the output and the input
of MGF1, and append the “BC” byte.
Weaknesses. The case of MGF1 has already been analyzed with the CDMP case in the previous
subsection: using SHA-1 or any MD-iterated hash function, the cost of producing collisions in
MGF1 remains as low as for the underlying hash function. And EMSA-PSS with zero salt is
clearly no more collision-resistant than the underlying hash function. Of course, the “BC” byte
makes it differentiable from a random oracle.

Hence, none of the instantiations in PKCS and IEEE standards can be considered collision-
resistant with MD5 or SHA-1 as the underlying hash function.

2.5 Provably secure hash functions

To conclude this section, we briefly mention the case of hash functions which are provably collision-
resistant under appropriate computational assumptions. Though they are not claimed to be random
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oracles, they might be potential candidates since they usually support large output size, But it is
folklore that none should be viewed nor used as a random oracle, because they all have special
properties which are not satisfied by a random oracle, typically malleability. Consider for instance
two recent collision-resistant hash functions:

• VSH [18], which is provably collision-resistant, provided that a certain problem related to
integer factorization is hard. The output set is Z×N , where N is an integer hard to factor.

• SWIFFT [42], which is provably (asymptotically) collision-resistant and one-way, provided
that certain lattice approximation problems are hard. The smallest output size is 528 bits,
but larger sizes are possible.

These hash functions are easily malleable in the following sense. In [42], it is noted that for any
two inputs x1 and x2 such that x1 +x2 is a valid input, we have SWIFFT (x1) +SWIFFT (x2) =
SWIFFT (x1 + x2). By definition of VSH [18], if N is the public modulus, it is trivial to generate
two distinct messages M0 and M1 such that 4V SH(M0) ≡ V SH(M1) (mod N). More gener-
ally, for any product s > 1 of distinct very small primes (chosen among the primes used by the
VSH compression function), it is easy to generate two distinct messages M0 and M1 such that
s2V SH(M0) ≡ V SH(M1) (modN).

Curiously, we will see as a side result of subsequent sections that these malleability relationships
are exactly the kind of properties which can be exploited to attack several signature schemes. For
instance, the malleability of SWIFFT can be exploited to attack the GPV signature scheme [29],
and the malleability of VSH can be exploited to attack Rabin and Rabin-Williams signatures. This
is yet another warning that one should be very careful when plugging provably-secure primitives.

3 Security Robustness of Rabin Signatures

In 1979, Rabin [47] introduced the following signature scheme. Let N = pq be an RSA-modulus,
h : {0, 1}∗ → ZN be a hash function and k ≥ 1 be an integer. To sign a message m, pick r ∈ {0, 1}k
uniformly at random until h(m||r) is a quadratic residue mod N . Then select s ∈ ZN uniformly
at random among all the four square roots of h(m||r). The signature of m is the pair (s, r). In
modern terminology, this process can be viewed as a probabilistic-full-domain-hash (PFDH) [21],
which was here necessary because the hash function h does not only map to quadratic residues.

There are now many variations of Rabin signatures which are provably secure in the ROM.
In this section, we consider two of those, and study the potential impact of defects in the oracle
instantiation. First, we consider the recent identity-based cryptosystem [15] by Boneh et al., which
uses secure Rabin signatures for key generation. While this cryptosystem is provably secure in the
ROM, we notice that the scheme described in [15] is not tolerant to collisions in the hash function:
namely, any hash collision gives rise to a very efficient chosen-ID attack which recovers the master
key. This problem can be fixed, but the attack also shows that other malleability defects in the
oracle would be equally deadly.

Next, we consider PRab [9], which is a PSS version of Rabin signatures by Bellare and Rogaway:
we give a converse to the security proof of [9], namely that if the parameters are selected in such a
way that the security reduction is not tight, then there is an efficient key-recovery attack on PRab.
And we show how to improve this attack if there are defects in the oracle instantiation. Thus, in
this case, it is extremely important to select parameters carefully so that the security proof is tight.
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3.1 Rabin Signatures in the Boneh-Gentry-Hamburg ID-based scheme

Boneh et al. [15] recently presented an identity-based encryption without pairings, which uses Rabin
signatures in the key generation process as follows.

Let N = pq be an RSA modulus, and denote by J(N) the subgroup of Z×N of elements with
Jacobi symbol equal to 1. Denote by QR(N) the subgroup of J(N) of quadratic residues. The
integer ` defines the bit-length of messages, and ID denotes the set of identities. The public
parameters are (N, u,H) where u is chosen with uniform distribution in J(N) \ QR(N), and H :
ID× [1, `]→ J(N) is a hash function. The master key is the factorization of N and a random key
K for a pseudorandom function FK : ID × [1, `]→ {0, 1, 2, 3}.

The key generation is as follows. Given as input the master key and an identity ID, for each
j = 1, . . . , ` do: Rj ← H(ID, j) ∈ J(N) and w ← FK(ID, j); let a ∈ {0, 1} be such that uaRj ∈
QR(N); set rj ← zw where {z0, . . . , z3} are the four square roots of uaRj in ZN . The decryption
key corresponding to ID is (r1, . . . , r`) together with the public parameters. The PRF F ensures
that the key generator always outputs the same square roots for a given ID, but an adversary
cannot tell ahead of time which of the four square roots will be output.

While this ID-based cryptosystem is provably secure in the ROM (see [15] for a proof and a full
description of the scheme), we point out that it is not tolerant to hash collisions. Assume indeed that
an adversary knows two pairs (ID1, j1) 6= (ID2, j2) such that H(ID1, j1) = H(ID2, j2). In a chosen-
ID attack, we can retrieve the the secret keys corresponding to the identities ID1 and ID2. But
because the pseudo-random function F is independent of H, we will thus obtain two (independent)
random square roots of the same quadratic residue, which discloses the factorization of the master
key with probability 1/2. To prevent this attack, one can modify the scheme by replacing w ←
FK(ID, j) with w ← FK(H(ID, j)) (and modifying the input domain of FK accordingly): it seems
that [15] chose w ← FK(ID, j) to simplify the security proof. However, even with the fix, the scheme
is still vulnerable to malleability variants of collisions. More precisely, one can easily extend the
key-recovery attack to the more general case where one knows two pairs (ID1, j1) 6= (ID2, j2) such
that H(ID1, j1) ≡ k2H(ID2, j2) (modN) where k is known.

3.2 A Converse to the Security Proof of PRab

When introducing PSS, Bellare and Rogaway [9] also showed how to implement Rabin signa-
tures [47] with a security proof in the ROM: the resulting scheme, called PRab in [9], is essentially
Rabin-PSS, which we now describe. Let N = pq be the Rabin public key of bit-length k ≥ k0 + k1.
Two hash functions h : {0, 1}∗ → {0, 1}k1 and g : {0, 1}k1 → {0, 1}k−k1 are used. We let g1 be the
function which on input w ∈ {0, 1}k1 returns the first k0 bits of g(w), and let g2 be the function
which on input w ∈ {0, 1}k1 returns the remaining k − k0 − k1 bits of g(w). To sign a message
M ∈ {0, 1}∗, one first repeats the following process until y is a quadratic residue mod N :

1. Choose r ∈R {0, 1}k0 and let w = h(M‖r) and r∗ = g1(w)⊕ r;

2. Let y = w‖r∗‖g2(w).

Then the signature s is chosen uniformly at random among the four distinct square roots of y ∈ Z×N .
Bellare and Rogaway [9] showed the security of PRab in the ROM, under the hardness of factoring
N , and the tightness of their security proof was similar to that of their proof for RSA-PSS. More
precisely, if ε and ε′ denote the advantages for breaking respectively PRab and factoring, then:

ε = 2ε′ + [4(qsig + qhash)2 + 2] · (2−k0 + 2−k1), (1)
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where qsig and qhash denote respectively the numbers of signature queries and hash queries. Under
appropriate choices of k0 and k1, the right-hand term becomes negligible with respect to ε′, in
which case the security proof is said to be tight.

We now show that it is extremely important to select k0 to make the security proof tight
(see [40] for a discussion on the importance of tightness). Consider first the following elementary
known-message key-recovery attack:

• Collect n signatures s1, . . . , sn of random messages M1, . . . ,Mn. Denote by ri the (unknown)
random number used by the signer to generate si.

• Since the output of h is {0, 1}k1 and r ∈R {0, 1}k0 , by the birthday paradox, as soon as
n ≥ Ω(2(k0+k1)/2), there should be i 6= j such that h(Mi||ri) = h(Mj ||rj) and ri = rj . Such a
collision can be detected by looking at all s2

i (modN).

• Then si and sj are two random square roots of the same y ∈ Z×N . This is because the
signing process of PRab does not check whether the same y has been “signed” before. Hence
gcd(si − sj , N) is a non-trivial factor of N with probability 1/2.

This gives a generic attack whose cost is essentially 2(k0+k1)/2 signatures of random messages.
This attack can be improved in the chosen-message setting. If we submit Θ(2k0/2) times the

same message M to the signing oracle, we will obtain a collision on the ri’s, and the attack still
applies. This chosen-message attack costs O(2k0/2) signature queries (on the same message), which
proves that the security reduction of [9] summarized by Eq. (1) is essentially tight in a different
sense: as soon as q2

sig ≥ Ω(2k0), an adversary can actually recover the factorization of N . In
particular, if one wrongly applies Coron’s security result [21] for RSA-PSS to PRab, one might
believe that k0 = 30 is a good choice, in which case there is an attack requiring only 215 signature
queries on the same message.

Note that if h is a Merkle-Damg̊ard iterated hash function, the adversary does not even have
to submit the same message to the signing oracle: he may even restrict to distinct messages.
Indeed, by using Joux’s multicollision technique [35], the adversary can generate n distinct messages
M1, . . . ,Mn such that h(Mi) = h(Mj) and all the Mi’s have the same number of blocks. Then, by
definition of Merkle-Damg̊ard , if ri = rj , we have h(Mi||ri) = h(Mj ||rj), so we can still apply the
attack. The cost of generating n multicollisions is O(2k1/2 log n) (see [35]), which can become as low
as O(log n) if it is easy to generate chosen-IV collisions (such as is the case for MD5 [53]). However,
we still need to make O(2k0/2) signature queries. The attack becomes particularly efficient if h is
MD5, and the size k0 of the random salt is small.

4 Security Robustness of Rabin-Williams Signatures

We now turn our attention to Rabin-Williams signatures, which are variants of Rabin signatures
based on tweaks [54]. We focus on what are arguably the most interesting provably-secure Rabin-
Williams schemes: the scheme implemented in the IEEE P1363 standard [33], and the scheme for
which Bernstein [10] proved tight security at EUROCRYPT ’08, without requiring any random-
ization à la PSS. We call the first scheme IRW (for IEEE Rabin-Williams) and the second scheme
TRW (for “Tight” Rabin-Williams).
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4.1 Description of Rabin-Williams signatures

We describe both TRW and IRW: in the terminology of Bernstein [10], TRW is called “fixed
unstructured B = 0”, while IRW is called “| Principal |”. Let N = pq be a Rabin public key with
the special requirement that p ≡ 3 (mod 8) and q ≡ 7 (mod 8). TRW and deterministic IRW uses
a full-domain hash function h : {0, 1}∗ → ZN . To sign a message M ∈ {0, 1}∗, one applies the
following process:

1. First, the message M is transformed into m ∈ ZN .

• In TRW, m is obtained by hashing: m = h(M) ∈ ZN where h : {0, 1}∗ → ZN is a
full-domain hash function.

• In IRW, m is instead obtained by the EMSA-PSS transform (see Figure 2 of Section 2.4).
However, IEEE allows both deterministic (with zero salt) and randomized versions (with
a parameterized random salt). In other words, IRW-PSS with zero salt can be viewed
as an instantiation of IRW-FDH.

2. From the structure of N , there are exactly four triplets (e, f, s) ∈ {−1, 1}×{1, 2}×{0, . . . , N−
1} such that m ≡ efs2 (modN), and these so-called tweaked square roots can all be computed
using p and q.

• In TRW, one selects the (e, f, s) triplet uniformly at random, but if ever M has already
been signed, one must select the same triplet as chosen previously (see [10, Section 2]).
The signature of M is s.

• In IRW, one computes the so-called principal tweaked square root of m, that is, the
unique tweaked square root (e, f, s) such that e is 1 if m is a square modulo q, otherwise
-1; f is 1 if em is a square modulo p, otherwise 2; and s is a square modulo N = pq.
This is called the principal tweaked square root. The signature of M is the minimum of
s and N − s.

Regarding Step 2 of TRW, the paper [10] does not say how one can make sure that if given the
same message M again, the signer chooses the same signature again. If the implementor mistakenly
forgets to do that check, there is a trivial key-recovery attack by simply submitting the same message
twice. However, we note that this issue has been discussed by Katz and Wang in [37, Section 4.1]
in the context of RSA signatures: they proposed to hash (with an independent random oracle) the
concatenation of the secret key and the message M (or alternatively, m = h(M)), and uses the
result to choose deterministically the triplet (e, f, s). Of course, another solution is to do like in
the ID-based cryptosystem [15] discussed in Section 3.1: select (e, f, s) deterministically using a
pseudo-random function indexed by an additional secret key. We will see that these subtleties in
the implementation can have a major impact on the actual security of the scheme, though they are
irrelevant to the security proof.

Both IRW and TRW are provably secure with respect to factoring, in the ROM. More precisely,
it was shown in [34] that the security proof of IRW is loose if there is no randomization (zero salt),
and tight if the randomization is large, and it was recently shown in [10] that the security proof of
TRW is tight.
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4.2 Robustness of Rabin-Williams with respect to collisions

We show that TRW is not tolerant to collisions on the hash function. Let h : {0, 1}∗ → ZN be the
random-oracle instantiation. We have the following key-recovery attack:

• Assume that the attacker is able to generate a collision (M0,M1) on h.

• The attacker queries the signing oracle on M0 and M1.

• Let (ei, fi, si) ∈ {−1, 1} × {1, 2} × {0, . . . , N − 1} be the (selected) tweaked square root of
h(Mi), for 0 ≤ i ≤ 1.

• Depending on how TRW is exactly implemented, we claim that (ei, fi, si)0≤i≤1 will be two
random tweaked square roots (not necessarily equal) of the same element h(M0) = h(M1) ∈
ZN , in which case it is easy to obtain the factorization of N with probability 1/2.

In the exact definition of TRW (see [10]), the signer should select the same tweaked square root
if given the same message. However, note that M0 6= M1 strictly speaking, which implies that
(ei, fi, si)0≤i≤1 will be two random tweaked square roots (not necessarily equal) of the same element
h(M0) = h(M1) ∈ ZN . Furthermore, if one implements the first Katz-Wang suggestion [37] of
hashing the concatenation of the secret key and the message to determine the tweaked square root,
then (ei, fi, si)0≤i≤1 will effectively be two random tweaked square roots of the same element: this
is because h(M0) = h(M1) does not necessarily imply h′(S‖M0) = h′(S‖M1) where S denotes the
secret key and h′ is another random oracle. Of course, the problem is the same if one applies
the solution of the ID-based cryptosystem [15]. However, if one applies instead the second Katz-
Wang suggestion [37] of hashing the concatenation of the secret key and h(M), the previous attack
disappears.

Interestingly, IRW is immune to this attack, because the choice of (e, f, s) is deterministic for a
given m. So, while IRW-FDH has a loose security proof, it is robust with respect to collisions, but
TRW may not be robust depending on the way it is implemented. In this sense, IRW-FDH seems
more secure than TRW.

It might help to see a concrete example. Assume that the we plug the compression function
of MD5 into the CDMP random-oracle construction [24] (see Section 2.4), and that we use this
instantiation as a full-domain hash for IRW-FDH and TRW. Then, because of the indifferentiability
framework [43], the signature schemes become provably secure under the factoring assumption, in
the ideal cipher model (with respect to the MD5 block cipher) or in the random oracle model (with
respect to the MD5 compression function). But in practice, there is an instant chosen-message
key-recovery attack on this TRW instantiation, which fails on IRW-FDH.

4.3 Robustness of Rabin-Williams with respect to malleability

4.3.1 The case of TRW

We show that TRW is not tolerant to malleability variants of collisions on the hash function.
Assume that the attacker is able to generate a pair (M0,M1) of distinct messages such that:

4h(M0) ≡ h(M1) (modN). (2)

From Section 2, we know that this is easy if h is VSH [18], even though it might be hard to
find collisions on VSH; and that it is also possible (with more effort) if h is BR93 [7]. Again,
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the attacker queries the signing oracle on M0 and M1, which gives rise to tweaked square roots
(ei, fi, si) ∈ {−1, 1} × {1, 2} × {0, . . . , N − 1} of h(Mi). Note though that there is a one-to-one
correspondance between the four tweaked square roots of h(M0) and the four tweaked square roots
of h(M1), thanks to the congruence (2). More precisely, if (e, f, s) is a tweaked square root of h(M0),
then (e, f, 2s mod N) is a tweaked square root of h(M1). This implies that (e0, f0, 2s0 mod N) and
(e1, f1, s1) are two “independent” random tweaked square roots of h(M1), which means that one
can factor N with probability 1/2.

Note that this attack is independent on the way TRW is implemented regarding signatures
of messages with identical digests, using Katz-Wang suggestions [37]. Obviously, the attack can
be adapted to other malleability properties. For instance, similar attacks apply if one is able to
find a pair (M0,M1) of distinct messages such that h(M0) ≡ −h(M1) (mod N), or k2h(M0) ≡
h(M1) (modN) for some known k ∈ Z×N .

4.3.2 The case of IRW

We show that the previous attack also applies to IRW-FDH. Starting again from congruence (2),
let (ei, fi, si) ∈ {−1, 1} × {1, 2} × {0, . . . , N − 1} be the principal tweaked square root of h(Mi).
Because 4 is a square mod p and q, (2) implies that e0 = e1 and f0 = f1. Since (e0, f0, 2s0 mod N)
is a tweaked square root of h(M1), we have 4s2

0 ≡ s2
1 (modN), and therefore s1×(2s0)−1 mod N is a

square root of 1 mod N . But it must be a non-trivial square root because it has different Legendre
symbols mod p and q: indeed, both s0 and s1 are squares mod N , while

(
2
p

)
= 1 and

(
2
q

)
= −1.

Hence, this discloses the factorization of N . This attack can be generalized if congruence (2) is
replaced by k2h(M0) ≡ h(M1) (mod N) for any known k ∈ Z×N such that

(
k
p

)
6=
(

k
q

)
, which is

slightly more restrictive than the TRW case.

4.4 Robustness of Rabin-Williams with respect to preimages

The previous attacks also show that both TRW and IRW-FDH become strongly insecure if the
full-domain hash function h is not one-way, like BR93 [7]. Alternatively, one can simply select
(e, f, s) ∈ {−1, 1}× {1, 2}× {0, . . . , N − 1} uniformly at random, and compute m = efs2 (modN).
By inverting h, one obtains a message M such that m = h(M). Finally, by signing the message
M with either TRW or IRW-FDH, one will obtain another tweaked square root of m (principal or
not), which will disclose the factorization of N with probability at least 1/2 because (e, f, s) is a
random tweaked square root.

5 Security Robustness of RSA Signatures

The previous sections suggest to look at what happens to the security of RSA signatures, when
the hash function is flawed. Since there is a well-known gap between the RSA problem and integer
factorization, it seems difficult to hope for a key-recovery attack: instead, we consider the resistance
to chosen-message forgeries, either universal or existential. The main RSA signature schemes
provably secure in the ROM under the RSA assumption are: RSA-FDH [9], RSA-PFDH [21],
RSA-PSS [9], and RSA-KW [37]. It is well-known that RSA-FDH has a loose security proof [20],
while RSA-KW has a tight security proof [37], and so do RSA-PFDH and RSA-PSS if the salt is
sufficiently large (see [21]).
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Let us briefly recall these schemes. The RSA-PSS transform has already been described in
Section 3.2 (see also Figure 2 of Section 2.4 for the EMSA-PSS variant). All the other schemes use
a full-domain hash h : {0, 1}∗ → ZN where N is the RSA modulus. Let σ : ZN → ZN denote the
RSA raw signature primitive. Let m ∈ {0, 1}∗ be a message and s its signature. For RSA-FDH,
s = σ(h(m)). For RSA-PFDH, one selects a salt r ←R {0, 1}k, and let s = (σ(h(m||r)), r). For
RSA-KW, ifm has never been signed, one selects a one-bit salt r ←R {0, 1}, and let s = σ(h(r||m)).

The PKCS#1 v2.1 standard [48] uses RSA-PSS since Sept. 1999 (or more precisely, the variant
RSA-EMSA-PSS [34] of RSA-PSS), and it has been reported that one of the main reasons why
RSA-PSS was selected over RSA-FDH was the tightness of the security proof. If tightness was
the main factor, one might now be tempted to select RSA-KW over RSA-PSS, because the salt
in RSA-KW is reduced to one bit (which can be deterministically derived from the secret key and
the message). However, by comparing the robustness of RSA signatures with respect to potential
defects in the random-oracle instantiation, a different picture emerges.

5.1 Robustness with respect to collisions

Because RSA-FDH and RSA-EMSA-PSS are hash-and-sign schemes, they do not tolerate collisions:
any collision obviously leads to a chosen-message existential forgery. Similarly, any collision leads
to a chosen-message existential forgery on RSA-KW, with probability 1/2 because of the one-bit
salt.

One may think that the probabilistic schemes RSA-PFDH and RSA-PSS are more robust. In
this direction, Numayama et al. [46] showed that RSA-PFDH tolerates collisions in a weakened
ROM, but their model does not take into account MD-iterated hash functions. We observe that if
h is a MD-iterated hash function, then any collision in h with the same number of blocks gives rise
to a chosen-message existential forgery on RSA-PFDH and RSA-PSS. This is because RSA-PFDH
and RSA-PSS both use h(m||r). And if h(m1) = h(m2) where m1 and m2 have the same number of
blocks, then h(m1||r) = h(m2||r) for any r. This implies that for both RSA-PFDH and RSA-PSS,
any signature of m1 is also valid for m2. It can be noted that if RSA-PFDH and RSA-PSS had used
h(r||m) instead of h(m||r), then the ROM security proofs would remain valid, but the previous
attack would fail.

5.2 Robustness with respect to preimages

It is easy to prove that if the full-domain hash is not one-way, then there are chosen-message
universal forgery attacks on RSA-FDH, RSA-PFDH and RSA-KW. On the other hand, preimages
in h do not seem to provide stronger attacks than chosen-message existential forgeries on RSA-
PSS. Hence, among all the ROM-secure RSA signature schemes, it seems that RSA-PSS is the
most robust one, with respect to flaws in the random-oracle instantiation.
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A Security Robustness of the GPV Lattice-based Signature Scheme

A.1 Description of GPV

Gentry, Peikert and Vaikuntanathan (GPV) [29] recently proposed a provably-secure variant of
the GGH lattice-based signature scheme [30]. Nguyen and Regev [44] obtained a polynomial-
time key-recovery known-message attack against GGH signatures, but their attack exploited the
deterministic choices made by the signature algorithm. In constrast, GPV is probabilistic, based
on Klein’s randomized variant [38] of Babai’s nearest plane algorithm [2]. The tight security proof
of [29] is strikingly similar to Bernstein’s tight security proof [10] for the TRW scheme. This is
because both signature schemes are actually based on the same primitive: a trapdoor collision-
resistant hash function with preimage sampling. In [10], collision resistance is based on factoring,
while in [29], it is based on the hardness of finding very short vectors in certain lattices.

We now recall the GPV signature scheme [29], using as less lattice terminology as possible:
much more details can be found in [29]. There is a main integer parameter n, and two additional
integers m and q such that q = poly(n) and m = Θ(n log q). The signer selects a matrix A ∈ Zn×m

q

in such a way that: the distribution of A is statistically close to the uniform distribution, and
the signer knows a secret set S of m very short linearly independent vectors in the m-dimensional
lattice L formed by all vectors x ∈ Zm such that Ax ≡ 0 (mod q).
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There is a full-domain hash function h : {0, 1}∗ → Zn
q . To sign a message M ∈ {0, 1}∗, the

signer applies the following process:

1. Compute the hash h = h(M) ∈ Zn
q .

2. Thanks to S, the signer is able to compute in a probabilistic way (with overwhelming prob-
ability) a vector e ∈ Zm such that Ae ≡ h (mod q) and e is very short, namely ‖e‖ ≤ s

√
m

where the parameter s ∈ R+ is related to S and the lattice L. There are actually many
possible e’s, and the one selected by the signer has a Gaussian distribution, which is the main
reason why one can obtain a security proof in the ROM. Again, like in TRW, it is assumed
that if ever M has already been signed, then the same e is chosen.

3. Output e ∈ Zm as the signature of M .

To check that e ∈ Zm is a valid signature of M , one verifies that Ae ≡ h(M) (mod q) and that e is
sufficiently short, namely ‖e‖ ≤ s

√
m.

The security proof of [29] in the ROM is with respect to the following hard lattice problem:
finding non-zero lattice vectors x ∈ L such that ‖x‖ ≤ 2s

√
m.

We now present chosen-message attacks on the GPV signature scheme, when the underlying
hash function is weak. We first present attacks that break the underlying computational assump-
tion, by finding very short vectors in the lattice L, then we discuss why such attacks might lead
to forgery attacks and key-recovery attacks. In the Rabin-Williams case, breaking the underlying
computational assumption (that is, factoring) directly leads to key recovery. This may not be the
case with GPV [29].

A.2 Robustness with respect to collisions

Let h : {0, 1}∗ → Zn
q be the random-oracle instantiation. Assume that the attacker is able to

generate a collision (M0,M1) on h. The attacker queries the signing oracle on M0 and M1, and
obtains two signatures e0, e1 ∈ Zm. Then:

Ae0 ≡ Ae1 ≡ h(M0) ≡ h(M1) (mod q),

which implies that A(e0 − e1) ≡ 0 (mod q). Thus, e0 − e1 belongs to the m-dimensional lattice L,
of norm ≤ 2s

√
m, but could it be zero? In the exact description of GPV scheme [29, Section 5], it

is written that if a message M has already been signed, the same signature should be output, but
similarly to TRW, it does not say that this should also be the case if the digest h(M) has already
been “signed”. Thus, we may assume that both e0 and e1 have been generated independently, as
M0 6= M1: since the distribution of both e0 and e1 is Gaussian, the difference e0 − e1 is nonzero
with overwhelming probability. In other words, using only two signature queries, we are likely to
have obtained a non-zero lattice vector of L of norm ≤ 2s

√
m, which is exactly the underlying hard

problem of the GPV security proof.

A.3 Robustness with respect to malleability

Similarly to the Rabin-Williams case, the previous attack can be adapted to malleability properties
of the hash function. Assume indeed that the attacker is able to find two distinct messages M0 and
M1 such that:

h(M0) ≡ h(M1) +Ax (mod q),
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where x ∈ Zm is non-zero and very short, say ‖x‖ � s
√
m. Again, let e0, e1 ∈ Zm be signatures

corresponding to M0 and M1. Then:

Ae0 ≡ Ae1 +Ax (mod q),

which implies that e0 − e1 − x is a very short vector of L, whose norm might be nearly as short as
2s
√
m.
In a similar vein, assume that the attacker is able to generate two distincts pairs of distinct

messages (M0,M1) and (M ′0,M
′
1) such that:

h(M0)− h(M1) ≡ h(M ′0)− h(M ′1) (mod q).

In Section 2, we showed that this was easy with SWIFFT [42] and one can easily build instantiations
of h based on MD5/SHA-1 with similar properties, thanks to near-collisions techniques. Then, if
we denote by ei and e′i the respective signatures of Mi and M ′i , we obtain that e0 − e1 − e′0 + e′1 is
a short vector of L, of norm ≤ 4s

√
m.

A.4 Forgery and Key recovery

The previous attacks made it possible to find very short nonzero vectors in the lattice L, possibly
sufficiently short to break the computational assumption of GPV. However, this alone may not be
sufficient to recover the secret key S, nor to generate new signatures. We now explain why the
attacker may still be hopeful.

First of all, the attacker may try to use his collection of newly obtained short lattice vectors to
compute even shorter lattice vectors. This is exactly the principle of sieve algorithms [1, 45], which
can be heuristically improved by performing strong lattice reduction of low-dimensional sublattices
spanned by subsets of vectors.

The ability of the attacker to forge signatures depends on his ability to approximate the clos-
est vector problem (CVP) in the lattice L. This approximation is usually obtained by Babai’s
algorithm [2] or its variants [38], which in turn depends on how short and how orthogonal are the
lattice vectors known by the attacker. However, the performances of Babai’s algorithm can be
improved by exhaustive search: more precisely, Babai’s algorithm is based on a repeated use of a
one-dimensional CVP subroutine, which can heuristically be improved by using higher-dimensional
CVP subroutines.

The success of these methods will depend on the exact choice of GPV parameters. Since there
is currently no concrete proposal for such parameters, it is difficult to assess the difficulty of forgery
or key recovery, based on the previous attacks.
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