
Transforming chosen IV attack into a key differential attack:

how to break TRIVIUM and similar designs

Enes Pasalic

IMFM Ljubljana & University of Primorska, Koper

Slovenia

enespasalic@yahoo.se

Abstract

In this paper the applicability of differential cryptanalytic tool to stream ciphers
is elaborated using the algebraic representation similar to early Shannon’s postulates
regarding the concept of confusion. In 2007, Biham and Dunkelman [3] have formally
introduced the concept of differential cryptanalysis in stream ciphers by addressing
the three different scenarios of interest. Here we mainly consider the first scenario
where the key difference and/or IV difference influence the internal state of the cipher
(∆key, ∆IV ) → ∆S. We then show that under certain circumstances a chosen IV
attack may be transformed in the key chosen attack. Further we show that if there
exist linear relations between the key and IV bits, then using the differentiation of
internal state variables we are able to eliminate the presence of corresponding key
variables. The method leads to an attack whose complexity may be well beyond the
exhaustive search whenever the cipher admits exact algebraic description of internal
state variables and the keystream computation is not complex. A successful applica-
tion is especially noted in the context of stream ciphers whose keystream bits evolve
relatively slow as a function of secret state bits. For instance, the attack is success-
fully applied to a full round TRIVIUM with the worst case complexity being 268, but
combined with the key guessing it is significantly lower, about 260. The attack is also
applicable to stream cipher DECIM-128 but without decimation mechanism.

1 Introduction

In 1990, Biham and Shamir [5] have proposed a new cryptanalysts’ tool called differential
cryptanalysis. This technique, along with linear cryptanalysis of Matsui [12], has been
considered as one of the most powerful attacks on block ciphers to date. However, the
same ideas have not been applied in the same extent in cryptanalysis of stream ciphers
until recently. The use of concepts similar to differential cryptanalysis for block ciphers
was frequently employed frequently during the eSTREAM project [9]. These attacks are
commonly referred as chosen IV or key related attacks where the attacker is supposed to
freely choose IV values and/or different keys in order to extract certain information about
the secret state and/or key bits.

This approach has been successfully utilized in the cryptanalysis of the stream cipher
LILI-128 [1], where different IV’s used with a fixed secret key revealed a partial information

1



about the state bits. In other direction the eSTREAM proposal Py [4] (and its tweaks
PyPy and PyPy6) was successfully cryptanalyzed using the differential cryptanalysis [11],
more precisely for any given key the subset of IV’s was identified so that there was two
IV’s that would generate the identical initial state (and therefore identical keystream).
The ideas of differential cryptanalysis have also been successfully applied in so-called fault
analysis [6]. In such an attack the adversary introduce errors during the computation
which leads to errors in the output. The difference between an unfaulty and a faulty
computation would then reveal certain information about the computation itself.

This paper aims to give a thorough analysis of chosen IV and key related attacks
in the view of Shannon’s algebraic representation of encryption schemes. In difference
to a general framework studied in [3], where the effect of IV/key difference is analyzed
through the differential characteristics at the state variables ((∆key,∆IV ) → ∆S), we
take another approach and consider the differentiation of the key variables in the algebraic
expressions of the initial state variables. Though the related key attack (differential key
attack) is a more unrealistic sceanrio than a chosen IV attack, we show that this scenario
is far more dangerous as we can completely eliminate the presence of certain key variables
under the assumption that the IV is kept fixed. To satisfy the condition that IV is kept
fixed we essentially consider a chosen IV attack and a fixed key (which is much more
realistic scenario), and then in cases that a certain subset of IV and key bits are related
in a linear manner after the initial loading, say IVi ⊕ kj , the IV difference is transformed
into the key difference.

Once we have successfully eliminated the presence of certain key variables, through
the differentiation of the state variables, a simple key guessing attack may be combined
to further reduce the complexity of the state variables. Obviously by guessing many key
variables we can make the internal state bit equations to be arbitrary simple functions in
remaining key variables. Then, if the keystream generation does not combine these state
variables in a complicated manner (or at least a part of the keystream does not depend on
the state variables in a complex way) we can efficiently solve the system for the remaining
key bits. As an application of this approach we consider TRIVIUM [8], a hardware oriented
stream cipher that reached the final third phase of the eSTREAM project [9], and propose
an efficient attacking method for a full round TRIVIUM. The worst case complexity of
the attack is 268, and is well beyond the exhaustive key search for the cipher of 80-bit
security. This complexity is further reduced by combining a key guessing attack, and in
the worst case complexity of the attack is 263. Another suitable design, due to its specific
key and IV loading, is a stream cipher DECIM-128 [2]. But in this case the attack is only
applicable to a modified cipher that omits the output decimation.

The paper is organized as follows. In Section 2 a convenient algebraic representation
of the internal state variables is introduced. The main differential attack scenarios are
discussed in Section 3. It is then shown that the key differentiation in general eliminates
the presence of the key variables the differentiation is performed on. Here we also deduce
the conditions when an IV chosen attack can be transformed into a key differential attack.
In Section 4 we apply our method to certain stream cipher schemes. In particular, we show
that a full round TRIVIUM is susceptible to a key differentiation attack with complexity
well beyond the exhaustive search. Finally, Section 5 concludes the paper.

2



2 Algebraic representation of the initialization process

For the rest of this paper we only consider synchronous stream cipher as a dominant part of
the family, though the similar analysis as given here can be easily extended to asynchronous
stream ciphers. Technically, given a stream cipher, the cipher is fully specified by the
key/IV setup algorithm (KSA) and encryption algorithm whose input parameters includes
the key, IV, and state size. The key setup and IV setup are commonly performed in
a single phase so that the secret state of the cipher is derived by processing key and
IV bits in an iterative manner. The result of this phase is the so-called initial state
S = (s0, s1, . . . , sL−1) = F (IV1, . . . , IVκ, k1, . . . , kκ), for simplicity assuming the same
length of the key and IV, and in addition denoting by L ≥ 2κ the state size; the state size
being at least twice the key length to withstand time-memory-data trade-off attacks, see
for instance [7, 10]. Now given a fixed key K and the publicly known IV(i) the system of
equations may be written as,

s
(i)
0 = f0(IV

(i)
1 , . . . , IV (i)

κ , k1, . . . , kκ) = g0(IV
(i)
1 , . . . , IV (i)

κ , k1, . . . , kκ) + h0(k1, . . . , kκ)

...

s
(i)
L−1 = fL−1(IV

(i)
1 , . . . , IV (i)

κ , k1, . . . , kκ) = gL−1(IV
(i)
1 , . . . , IV (i)

κ , k1, . . . , kκ) + hL−1(k1, . . . , kκ)

The reason that we collect the terms that only contain the key bits in function g is that

the differential of the form s
(i)
r ⊕ s

(j)
r , 0 ≤ r ≤ L − 1, will not contain the key bit terms

for arbitrary IV(i) and IV(j). This of course may be generalized for any set of IV’s of even
weight.

Following the early ideas of Shannon, each si should depend in a complicated manner
on the key bits and involve many (preferably all) of them. This is also true for the IV

bits, as otherwise the differential s
(i)
r ⊕ s

(j)
r may result in simple expressions that relate

key and IV bits to the secret state bits. One should notice that there is a certain freedom
in selecting these relations, the freedom that may additionally reduce the complexity of
the system.

Let I,J = {1, 2, . . . , κ} denote the set of indices for the IV vector respectively the key
bits. Then a convenient algebraic representation, used in [13], is to represent the secret
bits as a collection of terms as follows,

s(i)
r =

{1,2,...,κ}
⊕

I=∅

ar,IIVI

[
⊕J

J=∅br,JKJ

]
=

=
⊕

I⊂I;I 6=∅

ar,IIVI

[
⊕J

J=∅br,JKJ

]

︸ ︷︷ ︸

g
(i)
r

⊕ [⊕J
J=∅br,JKJ ]

︸ ︷︷ ︸

h
(i)
r

, for 0 ≤ r ≤ L − 1, (1)

where a
(i)
I , b

(i)
J are algorithm specific binary coefficients, and for a given subset I =

{i1, . . . , il} ⊂ I the term IVI = IVi1IVi2 · · · IVil and similarly KJ = kj1kj2 · · · kjp for
some J = {j1, . . . , jp} ⊂ J . We note that treating both the key and IV as variables the
coefficients ar,I , br,J do not depend on the specific choice of IV’s. The above expressions

3



are valid for any stream cipher, the specific details being the size of the key, IV, state, and
the particular KSA used.

If the secret state bits sr had been generated randomly as the functions of the key
and IV bits, then one would expect that the algebraic normal forms of each sr contains
approximately 22κ−1 terms. In addition the high degree terms of order 2κ − 1 should be
present in such expressions as well, thus closely following the Shannon’s idea of making
complicated relations among the state bits and secret key bits. Given an algebraic descrip-
tion of the state of the cipher after running the KSA (this is commonly infeasible as the
number of terms is excessively large), the attacker can try to reduce the complexities of
these relations by either applying the chosen IV attack, related key attack or alternatively
to combine these two.

3 Transforming chosen IV into key related attacks

In this section we consider the main attack scenarios in the realm of the differential
cryptanalysis. Though similar in their essence, the cryptanalytic aspects significantly
differ depending in which scenario the attack is performed.

3.1 Chosen IV attacks

A chosen IV attack is a very realistic scenario in which the attacker chooses certain subset
of all possible IV’s in order to combine the relations of resulting state bits and hopefully
derive the simple relations between the state bits and secret key bits. Assume that for a
fixed key, the attacker is able to trace a certain subset of IV’bits say I for which relatively
simple relations may be derived. The easiest way to understand this approach is to specify
IV values to be zero in all positions but those that correspond to I. Thus, given the IV(i)

and a vector I = {i1, i2, . . . , ip} for which IVl = 0, l 6∈ I the secret state bits could be
expressed as,

s(i)
r =

⊕

ξ⊂I

ar,IIVξ

[
⊕J

J=∅br,ξ,JKJ

]
⊕ [⊕J

J=∅br,I,JKJ ] = IVi1

[
⊕J

J=∅br,i1,JKJ

]
⊕

⊕ IVi2

[
⊕J

J=∅br,i2,JKJ

]
⊕ · · · ⊕ IVi1IVi2 · · · IVip [⊕

J
J=∅br,I,JKJ ] ⊕ [⊕J

J=∅br,I,JKJ ]

Then keeping the key fixed we can further manipulate these expressions by specifying
different IV’s from this subset of indices. For instance, taking the IV(1) and IV(2) such

that IV
(1)
i1

6= IV
(2)
i1

and IV
(1)
i = IV

(1)
i for all i 6= i1 would result in,

s(1)
r ⊕ s(2)

r = ⊕J
J=∅br,i1,JKJ . (2)

This is exactly the idea that has been used in [13], where an semi-exhaustive search was
performed over the suitable set of indices I of weight 6 to derive linear expressions relating
keystream bits of reduced KSA Trivium and the secret key bits. However, the authors
derive such relations by setting the remaining IV bits (74 bits in the case of Trivium) to
zero which makes the attack slightly unrealistic as the probability of selecting such IV’s is
negligibly small. The above expressions suggests that the type of relations similar to (2)
may be derived for any fixed IV values making such an approach more realistic.

4



Thus, a pseudo algorithm for finding simple relations after the KSA procedure may be
formulated as follows:

1. Locate some subset of indices I for which the particular KSA does not generate
sufficiently complicated relations in secret key bits.

2. Based on this observation for any fixed combination of remaining IV bits not in I find

relations of the form s
(1)
r ⊕s

(2)
r ⊕· · · s

(m)
r by varying the IV vectors IV(1), IV(2), . . . , IV(m)

over the subset I, for all r ∈ [0, L − 1].

3. Once such relations are found these are used in the keystream generation process
to derive low degree relations relating the keystream bits and the secret key bits
(through the secret initial state bits).

3.2 Related key attacks

In this scenario the attacker can observe the operation of a cipher under several differ-
ent keys whose values are initially unknown, but where some mathematical relationship
connecting the keys is known to the attacker. This may be regarded as quite impractical
scenario since a secure key management and derivation usually should not allow to locate
the part of the bits which remain unchanged after the key derivation. Nevertheless, many
KSA schemes allow a simple mixture of the IV and secret key bits and therefore there is
a simple and elegant way to transform the chosen IV attack into the key related attack.

To illustrate this approach let the key K be fixed and for simplicity consider two
different IV vectors IV(1) and IV(2) that differ in certain positions specified by some subset

I, that is IV
(1)
i 6= IV

(2)
i for all i ∈ I. Furthermore, we assume that the KSA procedure

is such that a part of the cipher state of cardinality p is initialized by a simple XOR-ing
of the IV and key bits, and then the KSA is run to generate the final initial state of
the cipher. The initial loading of the IV and key bits is referred to as pre-setup phase,
resulting in the pre-setup state Sps = (sps

0 , s
ps
1 , . . . , s

ps
L−1), where the XOR-ing is applied

as follows,

s
ps(1)
jl

= IV
(1)
i ⊕ km; s

ps(2)
jl

= IV
(2)
i ⊕ km, l ∈ {1, 2, . . . , p}

for a suitable choice of indices sets say I, J,M that entirely depends on the specific loading
mechanism. Neglecting the due details it is easy to realize that instead of considering the
difference in IVs we may consider the relation so that IV(1) = IV(2) but the key is no
longer fixed and consequently one may define K ′,

K ′ =

{
k′

m = km; m 6∈ M, i 6∈ I

k′
m = 1 ⊕ km; m ∈ M, i ∈ I

For simplicity, an IV differential in a single position i, i.e. IV
(2)
i = IV

(1)
i ⊕ 1, would result

in the key difference through,

sps(1)
r = IV

(1)
i ⊕ km; sps(2)

r = IV
(2)
i ⊕ km = IV

(1)
i + (km ⊕ 1) = IV

(1)
i + k′

m.

5



Thus, we may analyze the effect of a single bit difference in IVs that is transformed in the
key difference. As before, at the end of the initialization, this difference would give,

∆kmsr
def
= skm

r ⊕ sk′

m
r =

⊕

I⊂I;I 6=∅

ar,IIVI

[
⊕J

J=∅br,I,JKJ

]
J⊕

J=∅

br,JKJ

⊕
⊕

I⊂I;I 6=∅

ar,IIVI

[
⊕J

J=∅br,I,JK ′
J

]
J⊕

J=∅

br,JK ′
J , (3)

where kj = k′
j for all j except for some j = m. This implies that in the above sum the

most of the terms are canceled leaving only those KJ ’s for which m ∈ J . Then for any
I ⊂ I and J ⊂ J such that m ∈ J we can compute

IVI

[
⊕J

J=∅br,JKJ

]
⊕ IVI

[
⊕J

J=∅br,JK ′
J

]
=

IVI [kmg(k1, . . . , km−1, km+1, . . . , kκ) ⊕ h(k1, . . . , km−1, km+1, . . . , kκ)] ⊕

IVI [k
′
i1

g(k1, . . . , km−1, km+1, . . . , kκ) ⊕ h(k1, . . . , km−1, km+1, . . . , kκ)] =

IVIg(k1, . . . , km−1, km+1, . . . , kκ).

It is straightforward to verify that the same arguments apply to the differential

J⊕

J=∅

br,JKJ ⊕

J⊕

J=∅

br,JK ′
J = h(k1, . . . , km−1, km+1, . . . , kκ),

thus, in general, lower degree expression (the decrease of the degree is at least one) in the
secret state bits are derived for ∆kmsr.

Example 1 Assume that the KSA for a given cipher enables a single IV difference to
be translated into the key difference in k1. Let the secret state bit sr be evaluated as
sr = k2k3k4k5 ⊕ k1k3k4 ⊕ k2k5k6 ⊕ k2k6 ⊕ k3 ⊕ k1; after the IV value has been specified.
Then differentiating the first key bit k1 we would compute,

∆k1sr = s(k1)
r ⊕ s(k1+1)

r = k3k4 ⊕ 1.

In this case we have decreased the degree of sr by two in a single step due to the cancellation
of the highest degree term k2k3k4k5 for which the differentiation does not apply as it does
not contain the variable k1.

A natural question that arise now is how to generalize this approach to include differ-
entiation of as many key bits as possible. At the first sight this is not possible due to
the following arguments. Let us define the key differential at positions kj1, . . . , kjm with
respect to some initial state bit sr as,

∆kj1
,...,kjmsr = s

(kj1
,...,kjm)

r ⊕ s
(kj1

+1,...,kjm+1)
r ,

where we simply evaluate the differential by specifying the key difference simultaneously at
given positions. Without loss of generality, to skip a complicated notation, we assume that

6



the secret state bit sr contains a single term i.e. sr = IVIkj1kj2 · · · kjm−1kjmkjm+1 · · · kjm+v
.

Then it is easy to compute,

∆kj1
,...,kjm sr = IVIkj1kj2 · · · kjm−1kjmkjm+1 · · · kjm+v

⊕

IVI(kj1 ⊕ 1)(kj2 ⊕ 1) · · · (kjm−1 ⊕ 1)(kjm ⊕ 1)kjm+1 · · · kjm+v
=

IVIkjm+1 · · · kjm+v
[1 + kj1 ⊕ . . . + kjm ⊕ kj1kj2 ⊕ . . . ⊕ kjm−1kjm ⊕

. . . ⊕ kj2 · · · kjm−1kjm],

the expression containing all the monomials of degree less than m in the key bits kj1, . . . , kjm .
Consequently, simultaneous differentiation at m positions does only guarantee the degree
decrease of order one but not m as desired. Nevertheless, one can get rid of the variables
kj1 , kj2 · · · , kjm by simply considering the linear combinations of the weighted differentials
of the form,

⊕

J⊂{kj1
,··· ,kjm};J 6=∅

∆Jsr

For instance, to make the key bits kj1 and kj2 vanish from sr we would compute the
following differentials : ∆kj1sr,∆

kj2sr, and ∆kj1
,kj2sr and add them together. To confirm

the validity of our claim for the above specified sr we would compute,

⊕

J⊂{kj1
,kj2

}

∆Jsr = ∆kj1sr ⊕ ∆kj2sr ⊕ ∆kj1
,kj2sr =

= IVIkj3 · · · kjmkjm+1 · · · kjm+v
[kj2 ⊕ kj1 ⊕ kj2 ⊕ kj1 ⊕ 1] =

= IVIkj3 · · · kjmkjm+1 · · · kjm+v

Of course the result is easily generalized for arbitrary number of terms and the degree
order. For instance, if there is another term in the sr, say α = IVI′kj1kjm+u

· · · kjm+v
, thus

containing only the variable k1 (it is covered by the variables k1 and k2) then computing
⊕

J⊂{kj1
,kj2

} ∆Jα would give,

⊕

J⊂{kj1
,kj2

}

∆Jα = ∆kj1α ⊕ ∆kj2α ⊕ ∆kj1
,kj2α =

= IVI′kjm+u
· · · kjm+v

⊕ 0 ⊕ IVI′kjm+u
· · · kjm+v

= 0,

and there is no influnce of the terms that are covered by the chosen subset of key variables.
Thus, the only terms that remain after the differentiation are the complex expressions in
the remaining key variables, the terms of the form IVIfI(kjm+1 , . . . , kjκ).

It should be emphasized that in difference to differential IV attacks the differential
key attacks are far more dangerous as the differentiation in the latter case affects the key
variables, whereas in case of IV differentials the decrease of the degree with respect to IV
variables has no effect after the IV has been set to a given value. On the other hand, the
condition that the IV and key variables are first XOR-ed and then processed via the KSA
might be rather restrictive.

7



3.3 Combining a related key and key guessing attack

In the previous section we have shown that there is a possibility to differentiate the secret
state equations at those key positions for which the loading procedure XORs the IV’s and
key bits. In this way we could eliminate the presence of the corresponding key variables
making the equation(s) depend on less number of key variables, thereby reducing its
complexity. An interesting approach that can be taken now is simply to guess a subset
of remaining key variables leading to a further degree reduction. Under a reasonable
assumption that the secret state bits (after the initialization) do not differ significantly
in terms of degree and complexity of the expressions we propose the following pseudo
algorithm for attacking the ciphers whose loading of a certain portion of the key and IV
bits is done by simple XOR-ing.

1. Find the key positions kj (subset of indices) for which the given KSA injects the key
and IV bits via IVi ⊕ kj . Denote this subset by J = {kj1 , kj2 , . . . , kjm}.

2. After loading the all key and IV bits, thus reaching the state Sps = (sps
0 , s

ps
1 , . . . , s

ps
L−1),

run the KSA to get the finial initial state of the cipher S = (s0, s1, . . . , sL−1).

3. Depending on the complexity of the expressions sr = fr(IV1, . . . , IVκ, k1, . . . , kκ)
select a suitable subset of IV’s for which these equations are of relatively low com-
plexity.

4. Differentiate the key variables with respect to the subset J so that ∆Jsr do not
depend on the key variables from the indices set J for any 0 ≤ r ≤ L − 1.

5. Guess a suitable subset of key bits so that the expressions ∆Jsr become of low degree
(preferably linear).

6. Run the cipher in the output mode, i.e. producing keystream zt, and analyze the
relations zt = G(s0, s1, . . . , sL−1) = H(kjm+1 , kjm+2 , . . . , kjκ). Observe the suitable
part of output sequence for which the function G does not introduce complicated
(high degree) equations in secret state bits. Solve the system of equations and check
its consistence (if necessary guess a few more key bits and solve the system). If the
solution is inconsistent guess another key value in the previous step and repeat.

Note that the complexity of the above algorithm mainly depends on the specific KSA and
the way the cipher generates the keystream (complicated relations on initial state bits or
not). However, since the key bits kj1 , kj2 , . . . , kjm have vanished from these equations the
worst case complexity is estimated as,

Cw.c. = 2κ−m,

which correspond to guessing all the remaining bits. Once these bits are correctly set it
remains to assign the unknown key bits kj1, kj2 , . . . , kjm which can be easily achieved by
plugging in these bits in the equations and checking the consistency with keystream bits
zt. Thus, the total worst case complexity is estimated as,

Cw.c. = 2κ−m + 2m,

8



thus in the case m � κ we approximately have Cw.c. = 2κ−m. We illustrate the whole idea
with an example, considering a hypothetical toy cipher satisfying all necessary conditions
for the attack to work.

Example 2 Let us consider a toy cipher that use the key K = (k1, k2, k3, k4) = (0, 1, 1, 1),
and assume that IV difference in two bits is translated in the key difference at positions
k1 and k2. For some specified IV let the first three (secret) initial state bits be given as,

s0 = k1k2k3 + k3k4 + k3 + k4 = 0,

s1 = k1k3k4 + k2 + k4 = 0,

s2 = k1k2k4 + k2k3k4 + k1 + k2 + k3 = 1.

Obviously we cannot get rid of the degree 3 terms by considering linear combinations of
the above equations. Let us compute the differentials for the 2 keystream bits z1 = s0 + s1

and z2 = s0 + s2,

z1 z2

∆k1z1 = ∆k1(s0 + s1) = k2k3 ∆k1z2 = ∆k1(s0 + s2) = k2k3 + k2k4 + 1
∆k2z1 = ∆k2(s0 + s1) = k1k3 + 1 ∆k2z2 = k1k3 + k3k4 + k1k4 + 1
∆k1,k2z1 = k3(1 + k1 + k2) + 1 ∆k1,k2z2 = k3(1 + k1 + k2) + k3k4 + k4(1 + k1 + k2)⊕

J⊂{k1,k2}
∆Jz1 = k3

⊕

J⊂{k1,k2}
∆Jz2 = k3 + k4

The attacker observes outputs z1 and z2 under different IV’s (translated into the key
difference), thus he is able to compute the above differentials. For instance, to compute
∆k1z1 he would simply observe the first keystream bit for a specified IV and fixed key K and
then the same keystream bit for a single change of one bit in the IV corresponding to the
key position k1. For the given values of K we may check that

⊕

J⊂{k1,k2}
∆Jz1 = k3 = 1

and
⊕

J⊂{k1,k2}
∆Jz2 = k3 + k4 = 0. Hence, the correct values of the key bits k3 = 1 and

k4 = 1 are found.

When applicable, the key related attack as discussed above is a powerful cryptanalytic tool.
The complexity is always beyond the exhaustive key search if the necessary assumptions
are valid. However, one needs to be careful when deriving the key differentials through the
IV change. The reason is that the KSA of a given cipher starts to process the pre-setup
state Sps = (sps

0 , s
ps
1 , . . . , s

ps
L−1) where the IV and key bits are initially loaded. Though

some of these s
ps
r are expressible as s

ps
r = IVi ⊕kj this may not be sufficient. For instance,

if the loading procedure injects s
ps
0 = IV1 and s

ps
1 = IV1 + k1 there is obviously ambiguity

when translating the IV difference at position IV1 into the key difference. Remember
that the main idea to keep virtually IV fixed is not valid in this case as the assumption
that the cipher is run using the same IV value and different keys is not true any longer.
Nevertheless, there are many designs that satisfy all the above conditions thus being
susceptible to the key related attacks.

4 Some practical applications of key related attacks

In this section we analyze the possible application of our technique to those designs that
satisfy the necessary assumption. To successfully apply the differential analysis our main

9



requirement was a linear mixing of certain subset of IV and key bits. It turns out that
many ciphers actually emplyos such a linear mixing making them vulnerable to the key
related attacks.

4.1 Case study: DECIM

DECIM-128 [2] was submitted as a hardware efficient cipher to the eSTREAM project.
Though it was not successfully cryptanalyzed, as the originally proposed version called
DECIM, it did not pass to the final phase of the project, but still it represents a strong
design that is based on irregular decimation and nonlinear filtering. Nevertheless the
initial loading of 128-bit key and 128-bit IV into the 288 bit register S = (s0, s1, . . . , s287)
is performed as follows,

si =

{
ki, 0 ≤ i ≤ 127
ki ⊕ IVi, 128 ≤ i ≤ 257.

Thus, DECIM-128 perfectly fits in the framework of the differential key cryptanalysis.
For such an initial loading we are free to choose any subset of IV bits and to reduce the
degree of equations by eliminating the dependency on the corresponding key variables.
Since no decimation is involved during the initialization process which takes 1152 cycles
the initial state of the cipher after the KSA can be determined (note that this might be
totally infeasible as the state bits might contain as many as 2256 monomials - in such a case
we would be forced to specify IV bits in advanced and even to guess some key bits). Then
assuming that no decimation is involved in the keystream generation the attacker would
simply observe the output keystream bits (in a known-plaintext scenario) recovering the
secret key bits.

Since the keystream is generated by passing the output of the nonlinear filter through
the ABSG decimation mechanism we cannot determine for sure which state bits constitute
the output. Thus additional guessing would be necessary and this would lead to the
complexity above the exhaustive search.

4.2 Case study: TRIVIUM

TRIVIUM [8] is a hardware oriented stream cipher that reached the final third phase of the
eSTREAM project. Due to its simplicity and compact algebraic description it has been
a popular target for cryptanalysis by a broad crypto community. However, TRIVIUM
has resisted all the cryptanalytic attempts so far and the most efficient attack proposed
recently [13] is a key recovery attack on a reduced round TRIVIUM in the chosen IV
scenario, where the original KSA is halved, that is only 576 cycles instead of 1152 cycles
are applied in the key/IV setup phase. Though the attack only considers 2 full cycles
(corresponds to 576 steps) of key/IV setup, the fact that attack only employs a small
subset of chosen IV’s and certain combination of output keystream bits to derive linear
equations involving the secret key bits seriously questions the security of the cipher. In the
original paper [8] the designers claim that 2 full cycles for the key/IV setup are sufficient
to properly mix the key and IV bits so that each state bit after 576 iterations depends on
each key and IV bit in a highly nonlinear manner.

10



TRIVIUM cipher uses three LSFRs whose total length is 288, thus the state of the
cipher is given by S = (s1, s2, . . . , s288). The state is contained in the three LFSRs
so that the first register comprises the state bits s1, . . . , s93, the second register stores
s94, . . . , s177, and s178, . . . , s288 are kept in the third register. In the output mode the
following computations are performed:
– Define t1 = s66 ⊕ s93, t2 = s162 ⊕ s177, and t3 = s243 ⊕ s288.
– The output keystream is formed as z = t1 ⊕ t2 ⊕ t3.
– Update the ti’s according to

t1 = t1 ⊕ s91 · s92 ⊕ s171; t2 = t2 ⊕ s175 · s176 ⊕ s264; t3 = t3 ⊕ s286 · s287 ⊕ s69;

– Finally the registers are updated as follows:

(s1, . . . , s93) = (t3, s1, . . . , s92); (s94, . . . , s177) = (t1, s94, . . . , s176);

(s178, . . . , s288) = (t2, s178, . . . , s287);

The initialization loads the 80-bit key to s1, . . . , s80, and the 80-bit IV vector to the
positions s94, . . . , s173. The remaining state bits are filled with zeros apart from s286, s287

and s288 which are set to one; this way the pre-setup state Sps is completed. The key/IV
setup is performed by clocking the cipher 4 · 288 = 1152 times without producing the
output.

TRIVIUM seems to be a very suitable target for the application of key related attacks
due to the following arguments.
– In the first place the first 66 output bits are linear combinations of six state bits and
therefore the degree of these equations cannot be larger than the maximum degree of
individual terms. Thus, if we can efficiently turn the state bit equations into linear by
applying the key differentiation together with guessing some key bits, then 66 linear equa-
tions of the keystream are easily solved (below we show that only 68 key variables remain
after the key differentiation).
– To apply the above technique we must ensure the existence of linear relations among
certain IV and key bits. Obviously this is not the case for the pre-setup state Sps as
there is no mixture between the key and IV bits. But it can be easily verified that after
running the key/IV setup a certain number of clocks the internal state will contain desired
equations that mix IV and key bits in a linear manner. For convenience we denote the

state at time i as Si = (s
(i)
1 , . . . , s

(i)
288) where S(0) = Sps. Then after the very first clock the

update variables are computed as t1 = k66 ⊕ IV78, t2 = IV69 ⊕ IV80, and t3 = k69. Hence,

s
(1)
94 = k66 ⊕ IV78 and this would give a rise to one linear relation. It is easy to verify that

such a linear relations are obtained in the first 12 clocks,

s
(i)
94 = k67−i ⊕ IV79−i, i = 1, . . . , 12,

which leads to the following internal state after 12 clocks:

(s
(12)
1 , . . . , s

(12)
93 , k55 ⊕ IV67, k56 ⊕ IV68, . . . , k66 ⊕ IV78, s

(12)
106 , . . . , s

(12)
288 ).

It is important to notice that the key bits k55, . . . , k66 and IV bits IV67, . . . , IV78 are
later mixed with remaining variables but their internal linear relation is always preserved.

11



Thus through the IV differential at positions 67, . . . , 78 we get the key differential
at positions 55, . . . , 66. Technically, the IV bits at positions 1, . . . , 66 and 79, 80 are kept
fixed, whereas the IV bits at positions 67, . . . , 78 are varied so that the key differentiation is
performed as explained before. Assuming we are able to handle the initial state equations
after the KSA (which we can by specifying the IV and guessing certain number of key
bits) we can get rid of the key bits k55, . . . , k66 therefore reducing the complexity of the
exhaustive search to Cw.c. = 280−12 = 268.

Nevertheless, we can successfully combine the key differentiation with the key guessing
attack. Assume that we guess 60 key variables, thus leaving only 8 key variables in the
algebraic expressions for the secret state bits (after the key variables k55, . . . , k66 has been
eliminated) to be determined. Most likely the algebraic expressions are only quadratic in
remaining key variables, and since we have 66 linear keystream equations we would get
a system of 66 equations with the maximum number of terms equal to

(8
2

)
+

(8
1

)
= 36.

The system is heavily overdefined and we easily find a correct solution. In the case there
are cubic terms in the expressions we would then guess 62 bits and the number of terms
would be

(
6
3

)
+

(
6
2

)
+

(
6
1

)
= 41 which again results in an overdetermined system. Finally,

by guessing 63 bits of the key we are assured that the system is overdefined. In this case
there are only 5 key variables left and the total number of terms is at most 32, thus 66
equations from the keystream generation should suffice.

4.2.1 Estimating the degree of equations

TRIVIUM is very efficiently designed with respect to the total number of gates. In par-
ticular, the update function and the keystream generation are fairly simple, though as the
time evolves the equations derived become very complex due to the exponential expansion
of the terms. Nevertheless, the degree of the equations does not increase exponentially in
each clock of the initialization but rather a few times during one round that consists of

288 iterations. For instance, if we trace the first state bit s
(0)
1 = k1 then we notice that

k1 is not affected until it has been moved to position 66 (thus after 66 cycles) and then

the update variable t1 is computed as t
(66)
1 = k1 ⊕ k28 ⊕ k26k27 + IV12 so that s

(66)
94 = t

(66)
1 .

The key bit k1 is thereafter not involved in the update computation for the next 26 cycles.
Then one can check that this bit is included as a linear term in the degree 4 equation for

the s
(93)
94 .

Computer simulations indicate that the degree of equations after the 4 full rounds
(1152 cycles) is likely to reach its maximum value but it is unlikely that the initial state
bits follow the ideal complexity reaching some 2159 number of terms as it would be the
case with randomly generated functions. Thus there is a possibility for a further decrease
in complexity after specifying the key and IV values. This however remains to be justified
in a more exact manner, the main problem being that specifying the IV is not sufficient
to handle enormously large expressions for the state bits that might contain as many as
280 terms.

12



5 Conclusions

In this paper we have shown that a linear mixing of the IV and key bits might lead to an
efficient key recovery attack. The application to other designs apart from TRIVIUM and
DECIM-128 is currently in progress. To circumvent this type of attack the initial loading
of the IV and key bits into the cipher should be performed in a nonlinear manner, thus
slightly increasing the amount of clock cycles for the KSA procedure.

References

[1] S. Babbage. Cryptanalysis of LILI-128. Preproceedings of NESSIE 2-nd workshop,
Egham, 2001.

[2] C. et al. Berbain. DECIM-128. Avaliable on ECRYPT Stream Cipher Project
page, 2005. http://www.ecrypt.eu.org/stream/decim.html.

[3] E. Biham and O. Dunkelman. Differentialcryptanalysis in stream ciphers. Cryp-
tology ePrint Archive, Report 2007/218, 2007. http://eprint.iacr.org/.

[4] E. Biham and J. Seberry. Py (Roo: A fast and secure stream cipher using rolling
arrays. Avaliable on ECRYPT Stream Cipher Project page, 2005. http://www.

ecrypt.eu.org/stream/py/py.ps.

[5] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, vol. 4(1):3–72, 1991.

[6] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In
Advances in Cryptology—CRYPTO’97, volume LNCS 1294, pages 513–525. Springer-
Verlag, 1997.

[7] A. Biryukov and A. Shamir. Cryptanalytic time/memory/data tradeoffs for
stream ciphers. In Advances in Cryptology—ASIACRYPT 2000, volume LNCS 1976,
pages 1–13. Springer-Verlag, 2000.

[8] C. Canniere and B. Preneel. TRIVIUM specifications. Avaliable on ECRYPT
Stream Cipher Project page, 2005. http://www.ecrypt.eu.org/stream/trivium.

html.

[9] ECRYPT. Call for stream cipher primitives. http://www.ecrypt.eu.org/stream/.

[10] J. Hong and P Sarkar. New applications of time memory data tradeoffs. In
ASIACRYPT, volume LNCS 3788, pages 353–372. Springer-Verlag, 2005.

[11] W. Hongjun and B. Preneel. Differential cryptanalysis of the stream ciphers Py,
Py6 and PyPy. In Advances in Cryptology—EUROCRYPT 2007, volume LNCS 4515,
pages 276–290. Springer-Verlag, 2007.

[12] M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology—EUROCRYPT’93, volume LNCS 765, pages 386–397. Springer-Verlag,
1993.

13



[13] M. Vielhaber. Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential At-
tack. Cryptology ePrint Archive, Report 2007/413, 2007. http://eprint.iacr.org/.

14


