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Abstract. On-line/Off-line signatures are used in a particular scenario
where the signer must respond quickly once the message to be signed
is presented. The idea is to split the signing procedure into two phases.
The first phase is off-line: in this phase, the signer does some preparing
works before the message to be signed is presented. The second phase is
on-line: once the message to be signed is known, the signer utilizes the
result of the pre-computation and takes a very short time to accomplish
the signing procedure.
In most of these schemes, when signing a message m, a partial signature
of m is computed in the off-line phase. We call this part of signature
the off-line signature token of message m. In some special applications,
the off-line signature tokens might be exposed in the off-line phase. For
example, some signers might want to transmit off-line signature tokens
in the off-line phase in order to save the on-line transmission bandwidth.
Another example is in the case of on-line/off-line threshold signature
schemes, where off-line signature tokens are unavoidably exposed to all
the users in the off-line phase.
This paper discusses this exposure problem and introduces a new notion:
divisible on-line/off-line signatures, in which exposure of off-line signa-
ture tokens in off-line phase is allowed. An efficient construction of this
type of signatures is also proposed.

Keywords: Signature Schemes, Divisible On-line/Off-line Signatures,
Trapdoor Hash Functions, On-line/Off-line Threshold Signatures.

1 Introduction

On-line/Off-line signatures are used in a particular scenario where the signer
must respond quickly once the message to be signed is presented. This notion
was first introduced by Even, Goldreich and Micali in 1990[11]. The idea of on-
line/off-line signatures is to split the signing procedure into two phases. The first
phase is off-line: in this phase, the signer does some preparing works before the
message to be signed is presented. The second phase is on-line: once the message
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to be signed is known, the signer utilizes the result of the pre-computation and
uses a very short time to accomplish the signing procedure.

As noted in [11], some signature schemes such as the Fiat-Shamir[12], Schnorr[22],
El-Gamal[10] and DSS[18] signature schemes can be naturally viewed as on-
line/off-line signature schemes since the first step of these schemes does not
depend on the given message, and can thus be carried out off-line. However,
these schemes are based on specific security assumptions. For example, the se-
curity proofs of the Fiat-Shamir, Schnorr and El-Gamal signatures are based on
the random oracle model, and it is not very clear how to analyze the security of
the DSS signature scheme[19].

Up to now, there are two general approaches to convert any signature scheme
into an on-line/off-line signature scheme. They are Even et al.’s paradigm[11]
based on one time signatures and Shamir and Tauman’s paradigm[23] based
on trapdoor hash functions. Even et al.’s concrete implementation in [11] has a
very long signature length and thus is not practical. Shamir-Tauman paradigm
greatly reduces the signature length, whilst the on-line computation is fast.

Some recent works in on-line/off-line signatures have been done in [21, 24,
25, 6, 16, 7, 4]. These schemes aim at some specific goals such as improving the
efficiency[21], eliminating the random oracle model assumption[16], construct-
ing ID-based schemes[24], constructing threshold schemes[7, 4], avoiding key
exposure[6], or avoiding trapdoor hash primitives[25].

Recently in PKC08, Catalano et al.[5] unified Even et al.’s paradigm and
Shamir-Tauman paradigm, in the sense that they both use an ordinary signa-
ture scheme and a (weak) one time signature scheme as components4. Here the
trapdoor hash function in Shamir-Tauman paradigm is viewed as a weak one
time signature scheme. However, these two paradigms truly have different se-
curity characterizations if we consider the partial signature exposure problem
described in the next subsection. See next subsection for more details.

1.1 Divisible On-line/Off-line signatures

In most of the on-line/off-line signature schemes([10, 18, 21, 24, 25, 6, 16, 7, 4]
and some variations of [12, 22]), when signing a message m, a partial signature
of m is computed in the off-line phase. We call this part of signature the off-
line signature token of message m. Although the signature generation is broken
into two stages, the transmission of a signature is at one time, i.e., the whole
signature of a message is transmitted to the recipient at the end of the on-line
phase, while nothing is transmitted in the off-line phase.

A question thus naturally arises: can the off-line signature token be transmit-
ted to the recipient off-line? An equivalent question is: is the signature scheme
still secure if the adversary is allowed to query the signing oracle with a message
depending on this message’s off-line signature token? Addressing this question
is meaningful because in some special applications, the off-line signature tokens

4 Here the “weak” means the signature scheme is unforgeable only against generic
chosen message attack[15].
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might be exposed in the off-line phase. For example, some signers might want
to transmit off-line signature tokens in the off-line phase in order to save the
on-line transmission bandwidth. Another example is in the case of on-line/off-
line threshold signature schemes, where off-line signature tokens are unavoidably
exposed to all the users in the off-line phase.

Unfortunately, most on-line/off-line signature schemes can not be proven to
be secure if their off-line signature tokens are exposed in the off-line signing
phase. In this paper, we introduce a new notion called divisible on-line/off-line
signatures, in which exposure of off-line signature tokens in off-line singing phase
is allowed. To exemplify this new notion, we give in appendix some on-line/off-
line signature schemes extracted from existing literatures, which satisfy the new
property of divisibility. This paper also presents an efficient construction satis-
fying the new requirement, which is based on Boneh and Boyen(BB)’s signature
scheme[3].
An informal description. Let OS be an on-line/off-line signature scheme.
When signing a message m submitted by a receiver (or generated randomly), the
signer uses the signing algorithm of OS to obtain a signature, say Σ. Informally,
we say scheme OS is divisible if: i) Σ can be separated into two parts Σoff and
Σon, where Σoff is obtained before the message m is known by the signer. ii)
Before the signer knows the message, he can send Σoff to the receiver first. In
other word, the message requested to be signed in the attack game can depend
on the first part of the signature. A formal definition is presented in Section 3.

An on-line/off-line signature scheme is trivially divisible if its Σoff is null.
For this reason we restrict to non-trivial divisibility in this paper. In the rest of
this paper, the word divisible/divisibility usually means a non-trivial case.
Existing Schemes with divisibility. Some existing on-line/off-line signature
schemes are listed in Table 1 to show whether they can be proved divisible. We
can see that some schemes are divisible such as Scheme Schnorr-OS and Even et
al.’s scheme. However, most schemes like Shamir and Tauman’s general paradigm
can not be proven to have this property.

It is worthwhile noting that Even et al.’s paradigm, which uses an one time
signature scheme as a component, is divisible; whereas Shamir and Tauman’s
general paradigm cannot be proven divisible because it only uses a weak one
time signature scheme.
Motivations. Considering the exposure problem might be interesting by itself.
Besides, there are two main reasons to consider the divisibility of an on-line/off-
line signature scheme:

1. To save the on-line bandwidth. If an on-line/off-line scheme is divisible, the
signer can send the off-line part of the signature in the off-line phase instead of
in the on-line phase. This reduces the on-line bandwidth of the communication
channel.

Remark 1. For example, the signer can pre-compute a series of off-line signa-
ture tokens and sends these tokens when the communication channel is not
busy. Alternatively, the signer may store these off-line tokens in the form of
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Schemes Divisible? Note

Fiat-Shamir[12] No

Schnorr-OS Yes
It’s a variant of Schnorr signature
scheme[22]. See Appendix C.

El-Gamal[10] No
DSS[18] No

Even et al.’s scheme [11] Yes It has a long signature length.
Shamir and Tauman’s
paradigm (general) [23] No

Some specific constructions can be
proved divisible. See Appendix A,B.

Xu et al.’s scheme [24] No
It seems divisible. However a
deeper analysis shows it is not.

Chen et al.’s scheme [6] No

CMTW-OS Yes
See Appendix A. It is extracted
from [7].

BCG-OS Yes
See Appendix B. It is extracted
from [4].

Table 1. Some on-line/off-line signature schemes. The second column shows whether
they can be proved to be divisible.

a DVD/CD and send the disk to the receiver directly since these off-line to-
kens do not depend on the messages to be later signed. At the same time, to
ensure the one-to-one correspondence of the off-line tokens with the on-line
ones, we can append a digital label to each off-line/on-line signature token.
Note that doing this does not much increase the on-line signature length. For
example, labels of 15 bit each can distinguish more than 32,000 signature
tokens whereas each on-line signature token is at least 160 bits up to date.
Furthermore, the index in the labels can be reused while the unused off-line
signature tokens are exhausted.

2. To construct on-line/off-line threshold signatures. An on-line/off-line thresh-
old signature scheme[7, 4] is a threshold signature scheme[8, 9] which can be
partitioned into off-line and on-line phases. There are two main approaches to
prove the unforgeability of a threshold signature scheme: the direct reduction
approach (e.g., the part of reduction to the one-more-discrete-log assumption
of Theorem 2 in [7], and the part of reduction to the discrete log assump-
tion of Theorem 1 in [4]) and the simulation approach(e.g., [13, 20, 14]). In
the direct reduction approach, the security of a threshold signature scheme is
directly reduced to the hardness of an underlying hard problem such as the
factoring problem or the discrete log problem. In the simulation approach,
the security of a threshold signature scheme is reduced to the unforgeability
of its basic signature scheme (This reduction approach is called simulation,
and the property which guarantees the success of simulation is called the sim-
ulatability of a threshold signature scheme). In essence, the two approaches
are the same, in the sense that the security is reduced to the hardness of an
underlying hard problem in the end. However, if the basic signature scheme
is known to be unforgeable, the simulation approach will simplify the proof.
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When proving the unforgeability of an on-line/off-line threshold signature
scheme OT S in the simulation approach, one must be careful that OT S
should be proved simulatable to a divisible on-line/off-line signature scheme,
i.e., the simulation of the off-line signing phase should not depend on the
message to be signed in the on-line phase. The reason is that in the attack
game of on-line/off-line threshold signatures, the adversary can adaptively
choose messages to be signed depending on his off-line signing view. Thus,
a divisible on-line/off-line signature is a key component of an on-line/off-line
threshold signature.

Related work. The notion of divisible on-line/off-line signatures is first explic-
itly given in this paper, but the original idea goes back to [7, 4]. When proving
the unforgeability of an on-line/off-line threshold signature scheme, the authors
noticed that the off-line simulation of the scheme should not depend on the mes-
sage to be signed. Thus, the on-line/off-line signature schemes(CMTW-OS and
BCG-OS, see Appendix A,B) extracted from [7, 4] are divisible. Besides, Even
et al.’s paradigm, which utilizes an one time signature scheme, is also divisible.
This work is before [7, 4].

Scheme CMTW-OS and BCG-OS are both based on Shamir and Tauman’s
hash-sign-switch paradigm[23]. But Shamir-Tauman paradigm itself cannot be
proven divisible. However, if the specific trapdoor hash functions (e.g., the trap-
door hash functions in CMTW-OS and BCG-OS) used in Shamir-Tauman paradigm
can be viewed as a fully secure one time signature scheme, Shamir-Tauman
paradigm can be unified again into Even et al.’s general paradigm, in the sense
that these two paradigms both uses an one time signature scheme as a compo-
nent and thus can be proven divisible[5]. This is exactly the reason that Scheme
CMTW-OS and BCG-OS can be proven divisible.

Although Even et al.’s general paradigm (especially its practical implementa-
tions CMTW-OS and BCG-OS) can convert any ordinary signature scheme into a
divisible on-line/off-line signature scheme, it has two drawbacks: i)A basic signa-
ture scheme is needed as a component. Thus, compared to our proposed scheme
whose signing algorithm requires essentially only one exponential computation,
these schemes requires an additional standard signature computation. ii)In ad-
dition to a basic assumption such as the discrete log assumption, the security of
these schemes also depends on the security of the basic signature scheme. See
Section 4.3 for more details.

1.2 Our Contribution

In this paper, we first explicitly give the notion of divisible on-line/off-line sig-
natures. To illustrate this notion, we show in Appendix C how to prove Schnorr
signature scheme[22] is divisible. Furthermore, using the double trapdoor tech-
nique, we present an efficient divisible scheme, which is based on BB signature
scheme[3]. In our new scheme, the use of trapdoor hash function is eliminated
and thus our scheme is more efficient than divisible schemes in [7, 4]. (In fact,
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a trapdoor hash function is implicitly integrated into the new scheme. It can be
explicitly seen in the output stage of the proof of Theorem 1.)

To sum up, our divisible scheme has the following advantages:

1. Its security is proven in the standard model (instead of in the random oracle
model).

2. Its computational cost of on-line signing is only one modular multiplication.
This is comparable to the state-of-the-art on-line/off-line signature schemes.

3. Its overall computational cost of singing is essentially only one scalar exponen-
tiation in a bilinear group. 5 This is superior to other divisible on-line/off-line
signature schemes whose unforgeability is proved in the standard model.

Finally, an application to on-line/off-line threshold signatures is presented. We
show that based on a divisible on-line/off-line signature scheme, an on-line/off-
line threshold signature scheme can be proven secure if it is simulatable.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we give some pre-
liminaries. Section 3 gives the security model of divisible on-line/off-line signa-
tures. Section 4 presents an efficient divisible on-line/off-line signature scheme
whose security is proven in the standard model. An application to on-line/off-line
threshold signature schemes is introduced in Section 5.

2 Preliminaries

2.1 Notations and Definitions

We denote by N the set of natural numbers, and by Z the set of integers. If
k ∈ N, we denote by 1k the concatenation of k ones and by {0, 1}k the set of
bitstrings of bitlength k. By {0, 1}∗, we denote the set of bitstrings of arbitrary
bitlength.

If S is a set, then the notation x
R← S denotes that x is selected randomly

from the set S. Similarly, x ∈R S denotes x is a random element of S. If A
is an algorithm, by A(·) we denote that A receives only one input. If A re-
ceives two inputs we write A(·, ·) and so on. If A(·) is a probabilistic algorithm,
y ← AO1,O2,...(x1, x2, . . . ) means that on input x1, x2, . . . and with access to
oracles O1,O2, . . . , A’s output is y. If p(·, ·, . . . ) is a predicate, the notation
Pr[p(x, y, . . . ) : x

R← S; y R← T ; . . . ] denotes the probability that p(x, y, . . . ) will
be true after the ordered execution of the algorithms x

R← S, y
R← T, . . . . “PPT”

is an abbreviation for “probabilistic polynomial-time”.

Definition 1 (Negligible Function). A function ε : N→ R is negligible if for
all c > 0, ε(k) < 1/kc for all sufficiently large k.
5 “Scalar exponentiation” in this context is the repeated application of a group oper-

ation to the same element. In some contexts, it is also called scalar multiplication.
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Definition 2 (Discrete Logarithm Assumption). Let p ∈ {0, 1}k be a prime.
Let G be a group of order p and let g ∈ G be a generator of G. Solving the dis-
crete logarithm problem in G is to compute x, given h = gx ∈ G where x is
randomly selected in Zp. The discrete logarithm assumption in G states that the
discrete logarithm problem is hard to solve, i.e., for any PPT algorithm A, the
following probability is negligible in k.

ε(k) = Pr[A(descr(G), g, h) = x : x
R← Zp;h ← gx]

where descr(G) is a description of G which contains the value of p and other
group parameters.

Definition 3 (One-More-Discrete-Log Assumption[1]). Let p ∈ {0, 1}k

be a prime. Let G be a group of order p and let g ∈ G be a generator of G.
Define DLg(·) as a oracle which on input h ∈ G, returns dlgh ∈ Zp (the discrete
logarithm of h to the base of g).

Solving the n-DL problem is to compute x1, x2, . . . , xn+1, with access to the
oracle DLg(·) at most n times, given h1 = gx1 , . . . , hn+1 = gxn+1 ∈ G where
xi(1 ≤ i ≤ n + 1) are randomly selected in Zp. The one-more-discrete-log as-
sumption in G states that n-DL problem is hard to solve for any n ∈ N, i.e., for
any n ∈ N and any PPT algorithm A with access to oracle DLg(·) at most n
times, the following probability is negligible in k.

ε(k) = Pr[ADLg(·) (descr(G), g, h1, . . . , hn+1) = (x1, . . . , xn+1)

: x1
R← Zp, . . . , xn+1

R← Zp;h1 ← gx1 , . . . , hn+1 ← gxn+1 ]

where descr(G) is a description of G which contains the value of p and other
group parameters.

Definition 4 (Bilinear Paring). Let G,GT be two multiplicative cyclic group
of prime order p. A bilinear pairing on (G,GT ) is a function e : G × G → GT

which has the following properties:

1. Bilinear: e(ua, vb) = e(u, v)ab, for all u, v ∈ G and a, b ∈ Z.
2. Non-degenerate: e(u, v) 6= 1 for all u, v ∈ G.
3. Computable: paring e(u, v) can be efficiently computed for all u, v ∈ G.

For generality, one can set e : G1 × G2 → GT where G1 6= G2. An efficiently
computable isomorphism ψ : G2 → G1 can convert the security proof of the
simple case where G1 = G2 to the general case.

Definition 5 (q-SDH Assumption[3]). Let G be a group of prime order p.
Let g be a generator of G. Solving the q-SDH problem in G is to compute a
pair (c, g1/(x+c)) where c ∈ Z∗p, given a (q + 1)-tuple (g, gx, g(x2), . . . , g(xq)). The
q-SDH assumption in group G states that the q-SDH problem in G is hard to
solve, i.e., for any PPT algorithm A, the following probability is negligible in k.

ε(k) = Pr[A(g, gx, g(x2), . . . , g(xq)) = (c, g1/(x+c)) : x
R← Z∗p]
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The following lemma states that given a q-SDH problem instance (g, gx, . . . , g(xq)),
we can construct a new 1-SDH prolem instance (h, hx) with q − 1 known solu-
tions (ci, si = h1/(x+ci)) where any new solution reveals a solution to the original
problem instance. We refer the reader to the Lemma 3.2 of [3] for the proof of
this lemma.

Lemma 1. There exists a PPT algorithm Γ which satisfies:

– Its inputs are:
1. descr(G). A description of a group G with prime order p.
2. (g, gx, . . . , g(xq)). A q-SDH problem instance in Group G where q ∈ N.
3. c1, . . . , cq−1 ∈ Z∗p where all ci . −x (mod p).

– It outputs a PPT algorithm ∆ and a tuple ((h, u), (s1, . . . , sq−1)) ∈ G2×Gq−1

which satisfy:
1. u = hx.
2. si = h1/(x+ci), i.e., (ci, si) (1 ≤ i ≤ q − 1) are solutions of the 1-SDH

problem instance (h, hx).
3. By using Algorithm ∆, any new solution (c∗, s∗) 6= (ci, si) for the 1-SDH

problem instance (h, hx) reveals a solution to the original instance,i.e., on
inputs (c∗, s∗) where (c∗, s∗) 6= (ci, si) for all i ∈ {1, . . . , q − 1} and s∗ =
h1/(x+c∗), ∆ can output a pair (c, g1/(x+c)) ∈ Z∗p ×G in polynomial time.

3 Security Model

We give the security model of divisible online/offline signatures and some security
notions.

3.1 Syntax

A divisible online/offline signature scheme (DOS) is a tuple of algorithms (KeyGen,
Signoff ,Signon,Ver).

– (pk, sk) ← KeyGen(1k). The Key generation algorithm,a PPT algorithm which
on input a security parameter k ∈ N, outputs a public/private key pair
(pk, sk).

– (Σoff
i , Sti) ← Signoff(sk). The i-th (i ∈ N) executing of the off-line signing

algorithm, a PPT algorithm which on input a private key, outputs a (public)
off-line signature token Σoff

i and a (secret) state information Sti. The state
information is kept secret and will be transmitted to the i-th executing of the
on-line signing algorithm.

– Σon
i ← Signon(sk, Sti,mi). The i-th (i ∈ N) executing of the on-line signing

algorithm, a PPT algorithm which on input sk, a state information Sti and a
message mi, outputs an on-line signature token Σon

i . The signature for mi is
defined as Σi = (Σoff

i , Σon
i )

– 0/1 ← Ver(pk, m,Σ). The verification algorithm, a PPT algorithm which on
input the public key pk, a message m and a signature Σ, outputs 0 or 1 for
reject or accept respectively.
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Completeness: It is required that if (Σoff, St) ← Signoff(sk) and Σon ←
Signon(sk, St, m), then Ver(pk, m,Σ) = 1 for all (pk, sk) generated by KeyGen(1k).

3.2 Security Notation

In the following, we define a security notion for a divisible on-line/off-line signa-
ture scheme.

EU-CMA: For a divisible on-line/off-line signature scheme DOS, existential
unforgeability against adaptive chosen message attacks is defined in the follow-
ing game. This game is carried out between a challenger S and an adversary
A. The adversary A is allowed to make queries to an off-line signing oracle
Signoff(sk) and an on-line signing oracle Signon(sk, St, ·) defined in Section 3.1.
We assume that if A makes the i-th on-line signature query then it has already
made the i-th off-line signature query. This requirement is reasonable since the
signer always execute his i-th off-line signature signing before his i-th on-line
signing. If in the random oracle model, A is also allowed to make queries to a
hash oracle h(·) which on input a message in {0, 1}∗, outputs a hash value of
this message. The attack game is as follows:

1. The challenger runs KeyGen on input 1k to get (pk, sk). pk is sent to A.
2. On input (1k, pk),A is allowed to query the oracles Signoff(sk), Signon(sk, St, ·)

(and h(·) if in the random oracle model) polynomial times. The i-th state in-
formation Sti is transmitted from the i-th executing of Signoff(sk).

3. A outputs a pair (m,Σ).

The adversary wins the game if the message m has never been queried to the on-
line signing oracle Signon(sk, St, ·) and Ver(pk, m,Σ) = 1 holds. Let AdvA,DOS
be the advantage of the adversary A in breaking the signature scheme, i.e.,

AdvA,DOS =Pr[Ver(pk, m,Σ) = 1 :

(pk, sk) ← KeyGen(1k); (m,Σ) ← ASignoff(sk),Signon(sk,St,·),η(·)]

where

η(·) =

{
null (in the standard model)
h(·) (in the random oracle model)

and A has never requested the signature of m from the on-line signing oracle.
The probability is taken over the internal coin tosses of the algorithm KenGen
and A.

Definition 6. An adversary A (t, qoff, qon, ε)-breaks a divisible online/offline
signature scheme DOS in the standard model if A runs in time at most t, makes
at most qoff queries to the off-line signing oracle, at most qon queries to the on-
line signing oracle, and AdvA,DOS is at least ε.
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An adversary A (t, qoff, qon, qh, ε)-breaks a divisible online/offline signature
scheme DOS in the random oracle model if A runs in time at most t, makes at
most qoff queries to the off-line signing oracle, at most qon queries to the on-line
signing oracle, at most qh queries to the hash oracle, and AdvA,DOS is at least
ε.

A divisible on-line/off-line signature scheme DOS is existentially unforgeable
under adaptive chosen message attacks if for every PPT adversary A, AdvA,DOS
is negligible.

Difference to the previous definition. The above definition is different from
the attack game for an ordinary oo signature scheme where the adversary is
only allowed to query the oracle Sign(sk, ·) (and a hash oracle if in the random
oracle). In other word, in the attack game of an ordinary scheme, the off-line
signature token is returned to the adversary only after the message to be signed
is submitted, whilst in the game for a divisible scheme, the adversary obtains
the off-line signature token of a message before he submits this message.

Thus, the unforgeability defined above is stronger than the unforgeability
defined as usual for ordinary on-line/off-line signatures. Note, however, that
the unforgeability defined as usual is enough for the applications where off-line
signature tokens are not exposed in the off-line signing phase.

4 A Divisible On-line/Off-line Signature Scheme Based
on The q-SDH Assumption

In this section, we propose an efficient divisible on-line/off-line signature scheme
whose security is proven in the standard model. This scheme is based on Boneh
and Boyen’s signature scheme[3].

4.1 Construction

Let G be a bilinear group of prime order p. Assume the message space is Z∗p.
Note that using a collision resistant hash function H : {0, 1}∗ → Z∗p, one can
extend the message domain to {0, 1}∗. The new divisible oo signature scheme
SDH-OS = (KeyGen,Signoff,Signon,Ver), where

– KeyGen. Pick a random generator g ∈ G. Choose random x, y, z ∈R Z∗p, and
compute X = gx ∈ G, Y = gy ∈ G and Z = gz ∈ G. Also compute v =
e(g, g) ∈ GT . The public key is (g, X, Y, Z, v). The private key is (x, y, z).

– Signoff. (The i-th run). Choose a random θ ∈ Z∗p such that x + θ 6= 0. Com-

pute σ = g
1

(x+θ) where 1
(x+θ) is the inverse of (x + θ) in Z∗p. Store the state

information θ. The off-line signature token is σ.
– Signon. (The i-th run, on a message m). Retrieve from the memory the i-th

state information θ. Compute r, w ∈ Z∗p such that:

m + yr + zw = θ.
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This can be done by first selecting a random r ∈ Z∗p such that m + yr 6= θ,
and computing w = (θ −m − yr)z−1 mod p. The on-line signature token is
(r, w)

– Ver. Given a message m ∈ Z∗p and a signature (σ, r, w), verify that whether
e(σ,XgmY rZw) = v.

Remark 2. To reduce the on-line signing cost, we can move the selection of r
and computing y · r to the off-line phase. Thus, the on-line signing requires only
1 modular multiplication in Zp.

Completeness: Note that

e(σ,XgmY rZw) = e(g1/(x+θ), gx+m+yr+zw)

= e(g1/(x+θ), gx+θ)
= e(g, g) = v

Thus the proposed scheme satisfies the property of completeness.

4.2 Security

Theorem 1. The divisible on-line/off-line signature scheme SDH-OS is exis-
tentially unforgeable under adaptive chosen message attacks, provided that the
q-SDH assumption holds in Group G.

Proof. We prove this theorem by contradiction. Assume there exists an Algo-
rithm A which (t, qoff, q− 1, ε) breaks the unforgeability of SDH-OS in the game
defined in Section 3. Then we construct an Algorithm B which breaks the q-SDH
problem in polynomial time with probability ε′ ≥ ε

3 · (1 − q
p ). In the proof, the

multi-mode technique of [3] is used.
Let G be a group of prime order p. Let g be a generator of G. Algorithm B

is given a q-SDH problem instance (g, gτ , g(τ2), . . . , g(τq)). To solve this problem
instance, B works as follows.
Setup: Algorithm B selects cmode ∈R {1, 2, 3} and a list of messages c1, . . . , cq−1 ∈R

Z∗p. We may assume ci +τ 6= 0 for all i ∈ {1, . . . , q−1}, or else B has already
obtained τ and thus the q-SDH problem is solved. Next, B feeds Algorithm
Γ in Lemma 1 with inputs descr(G), (g, gτ , g(τ2), . . . , g(τq)), (c1, . . . , cq−1) to
get an algorithm ∆ and ((h, u), (s1, . . . , sq−1)) ∈ G2×Gq−1. Note that as de-
scribed in Lemma 1, u = hτ and si = h1/(τ+ci) hold. Algorithm B computes
v = e(h, h) and proceeds as follows.

• If cmode = 1, selects y, z ∈R Z∗p and sends to A a public key (h, u, hy, hz, v).
• If cmode = 2, selects x, z ∈R Z∗p and sends to A a public key (h, hx, u, hz, v).
• If cmode = 3, selects x, y ∈R Z∗p and sends toA a public key (h, hx, hy, u, v).

In either case, we denote by (h,X, Y, Z, v) the public key that A received.
Simulating the Signing Oralce (Off-line): Algorithm A can submit at most

qoff off-line signing queries where qoff ≥ q − 1. Then, upon the i-th (1 ≤ i ≤
q − 1) query,
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• If cmode = 1, B returns σi = si as the i-th off-line signature token.
• If cmode = 2, B selects ri ∈R Z∗p, and returns σi = (si)

1
ri as the i-th off-line

signature token.
• If cmode = 3, B selects wi ∈R Z∗p, and returns σi = (si)

1
wi as the i-th

off-line signature token.

Upon the i-th (q ≤ i ≤ qoff) query, B just returns a random element in G.
Simulating the Signing Oralce (On-line): Algorithm B creates a H-list of

4-tuples which is initialized to empty. Algorithm A can submit at most q−1
on-line signing queries. Upon the i-th query input mi,

• If cmode = 1, B selects ri ∈R Z∗p, and sets wi = (ci−mi− yri)z−1 mod p.
If wi = 0, Algorithm B reports failure and aborts. Otherwise B outputs
(ri, wi) as the i-th online signature token.

• If cmode = 2, B selects ri ∈R Z∗p, and sets wi = (ciri−x−mi)z−1 mod p.
If wi = 0, Algorithm B reports failure and aborts. Otherwise B outputs
(ri, wi) as the i-th online signature token.

• If cmode = 3, B selects wi ∈R Z∗p, and sets ri = (ciwi−x−mi)y−1 mod p.
If ri = 0, Algorithm B reports failure and aborts. Otherwise B outputs
(ri, wi) as the i-th online signature token.

It can be verified that in either case B outputs a valid signature (σi, ri, wi)
on the message mi if B does not abort. In either case, Algorithm B sets
Wi = hmiY riZwi and adds the 4-tuple (mi, ri, wi,Wi) to the H-list.

Output: It can be shown that the simulated off-line/on-line singing oracles are
indistinguishable from the real ones for A if B does not abort. Thus, with
probability ε, Algorithm A outputs a valid forgery (m∗, σ∗, r∗, w∗) where
m∗ 6= mi for all i ∈ {1, . . . , q−1}. Algorithm B computes W∗ = hm∗Y r∗Zw∗

and searches the H-list for a tuple of the form (·, ·, ·,W∗). One of the following
events must happen:

Event 1: W∗ 6= Wi for all i ∈ {1, . . . , q − 1}. Let btype = 1 for this case.
Event 2: W∗ = Wi for some i ∈ {1, . . . , q− 1}, and r∗ 6= ri. Let btype = 2 for

this case.
Event 3: W∗ = Wi for some i ∈ {1, . . . , q − 1}, and r∗ = ri, but w∗ 6= wi.

Let btype = 3 for this case.

Algorithm B aborts if btype 6= cmode. Otherwise,

• If cmode = btype = 1, then let c∗ = m∗ + yr∗ + zw∗. We can see (c∗, σ∗)
is a new solution to the 1-SDH problem instance (h, hτ ) since from the
verification equation we can get σ∗ = h1/(τ+c∗) and from W∗ 6= Wi for all
i we can get c∗ 6= ci for all i. From Lemma 1, the original q-SDH problem
instance can be solved in polynomial time by Algorithm ∆.

• If cmode = btype = 2, then for some i, hm∗Y r∗Zw∗ = hmiY riZwi and
r∗ 6= ri hold. Thus, Algorithm B can get τ = dlhu = dlhY = [(wi−w∗)z +
(mi −m∗)] · (r∗ − ri)−1 mod p.
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• If cmode = btype = 3, then for some i, hm∗Y r∗Zw∗ = hmiY riZwi and
w∗ 6= wi hold. Thus, Algorithm B can get τ = dlhu = dlhZ = [(ri−r∗)y+
(mi −m∗)] · (w∗ − wi)−1 mod p.

Thus, if B does not abort and btype = cmode holds, then B successfully solves
the original q-SDH problem instance.

Remark 3. Here W = hmY rZw plays a role of “trapdoor hash function” in the
scheme.

Next, let’s analyze the probability that B succeeds. B succeeds if the following
three events happen:

Event A: B does not abort in the simulating stage.
Event B: A successfully outputs a forgery in its own challenge game.
Event C: B does not abort in the output stage, i.e., btype = cmode holds.

In the i-th round on-line signing simulation, Algorithm B aborts if i) ri is chosen
to be (ci −mi)y−1 when cmode = 1, or ii) ri is chosen to be (x + mi)c−1

i when
cmode = 2, or iii) wi is chosen to be (x + mi)c−1

i when cmode = 3. This happens
with probability 1/(p−1) in each round. Thus, in the simulation stage, B does not
abort with probability at least 1−(q−1)/(p−1), i.e., Pr[A] = 1−(q−1)/(p−1).
Since A outputs a forgery with probability ε if B does not abort in the simulation
stage, we have that Pr[B|A] = ε. Since the value of cmode is independent of btype,
we have that Pr[C|AB] = 1/3. So,

Pr[ABC] = Pr[C|AB] · Pr[B|A] · Pr[A]

≥ 1
3
· ε(1− q − 1

p− 1
)

≥ ε

3
· (1− q

p
)

We have constructed a PPT algorithm which breaks the q-SDH problem with
non-negligible probability. This contradicts the q-SDH assumption and thus the
theorem is proved. ¥

4.3 Comparison and Discussion

We compare our new scheme SDH-OS with some known divisible on-line/off-line
signature schemes in Table 2. To achieve the same secuirty level, we assume the
parameter p in our new scheme and Schemes CMTW-OS, BCG-OS and Schnorr-
OS are all k-bit long. When using an elliptic curves with k = 160, our scheme
has the same security level with a 1024-bit key RSA signature[3]. In this case,
our scheme has a 160-bit off-line signature length and a 320-bit on-line signature
length. In comparison, we omit additions in the signing algorithm.

To our knowledge, the most efficient divisible on-line/off-line signature scheme
is Scheme Schnorr-OS. However, its security proof is based on the random oracle
model(ROM). Our new scheme’s security is proven in the standard model. Its
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overall computational cost of signing is only one scalar exponentiation in the
group G (i.e., roughly k squarings and k/2 multiplications in G), which is com-
parable to Scheme Schnorr-OS and is superior to other schemes whose security is
proved in the standard model(See Remark 4). Our new scheme’s on-line signing
requires only 1 modular multiplication in Zp. This is very efficient and compa-
rable to other efficient schemes. The main drawback of our scheme is the on-line
signature length is 2 log2 p, which is twice the length of Scheme CMTW-OS or
Schnorr-OS. Thus, it remains an unsolved problem to find a divisible scheme
whose security is proven in the standard model and whose performance is com-
parable to Scheme Schnorr-OS.

Schemes Signoff Signon
Ver

Signature Size
Off-line/
On-line

Assumptions

New Scheme
k sq. in G

k
2

mult. in G
1 mult.
in Zp

k sq. in G
7
8
k mult. in G
1 pairing

k bits / 2k bits q-SDH

CMTW-OS
(Appendix A)

k sq. in G
3
4
k mult. in G
1 stand. sig

1 mult.
in Zp

k sq. in G
3
4
k mult. in G
1 stand. ver

1 stand.sig /
k bits

Sig,
one-more-
discrete-log

BCG-OS
(Appendix B)

k sq. in G
7
8
k mult. in G
1 stand. sig

1 mult.
in Zp

k sq. in G
7
8
k mult. in G
1 stand. ver

1 stand.sig /
2k bits

Sig,
discrete log

Schnorr-OS
(Appendix C)

k sq. in G
k
2

mult. in G
1 mult.
in Zp

k sq. in G
3
4
k mult. in G k bits/ k bits

ROM,
one-more-
discrete-log

Table 2. Comparisons amongst divisible on-line/off-line signature schemes. The word
“stand.” refers to operations or signature length of the underlying standard signature
scheme. “Sig” in the assumption column means the security also depends on the se-
curity of the underlying standard signature scheme. Abbreviations used are: “sq.” for
squaring, and “mult.” for multiplication.

Remark 4. Suppose gi are in some groupG, ei are all k-bit random values and t is
small compared to k. By using a variant of the “square-and-multiply” method for
exponentiation(Algorithm 14.88, [17]), computing ge1

1 ge2
2 . . . get

t requires roughly
k squarings and (1− 1

2t )k multiplications in G.

5 An Application to On-line/Off-line Threshold
Signatures

Gennaro et al.[13] has proved that if a threshold signature scheme is simulat-
able, then its unforgeability can be reduced to the unforgeability of its underlying
signature scheme. This provides a way to simplify the security proof of a thresh-
old signature scheme. However, this result cannot be applied to on-line/off-line
threshold signature schemes. Here we provide a similar result in Theorem 2 for
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on-line/off-line threshold signature schemes. This theorem essentially states that
a sufficient condition for the security reduction of an on-line/off-line threshold
signature scheme is that the simulatability is “divisible”.

Definition 7 (On-line/Off-line Threshold Signatures). Let P = {P1, P2,
. . . , Pn} be a set of n players. An on-line/off-line threshold signature scheme
(OT S) for a divisible on-line/off-line signature scheme DOS = (KeyGen,Signoff ,
Signon,Ver) is a triple of algorithms (T-KeyGen,T-Sign,Ver).

– (pk, sk, sk1, . . . , skn) ← T− KeyGen(1k). The threshold key generation algo-
rithm. It is a distributed PPT algorithm which on input a security parameter
k ∈ N, outputs i) a public/secret key pair (pk, sk) with the same distribution
as KeyGen, and ii) the key shares skj(1 ≤ j ≤ n) of sk where sk is known to
nobody and skj is only known to Pj ∈ P.

– Σ ← T-Sign(sk1, . . . , skn,m). The threshold signing algorithm. It is a dis-
tributed PPT algorithm which on input the secret key shares skj(1 ≤ j ≤ n)
and a message m, outputs a signature Σ. The signing algorithm consists of
two sub-algorithms:
• (Σoff, st1, . . . , stn) ← T-Signoff(sk1, . . . , skn). The off-line phase of the algo-

rithm T-Sign. It is is a distributed PPT algorithm which on input the secret
key shares skj(1 ≤ j ≤ n), outputs an off-line signature token Σoff and a
state information stj for each players Pj.

• Σon ← T-Signon(sk1, . . . , skn, st1, . . . , stn,m). The on-line phase of the al-
gorithm T-Sign. It is a distributed PPT algorithm which on input skj , stj of
Pj and a message m, outputs an on-line signature token Σon.

Finally, the signing algorithm returns Σ = (Σoff, Σon) as the signature for
message m. The distribution of (Σoff,m, Σon) is required to be the same as
that of (Σoff

DOS ,m, Σon
DOS) where (Σoff

DOS , St) ← Signoff(sk) and Σon
DOS ←

Signon(sk, St, m).
– 0/1 ← Ver(pk, m,Σ). The verification algorithm. It is a PPT algorithm which

on input the public key pk, a message m and a signature Σ, outputs 0 or 1
for reject or accept respectively. It is the same with the verification algorithm
of DOS.

Robustness. Robustness of Scheme OT S means that the scheme will compute
a correct output even in the presence of halting or malicious faults. Namely, even
the inputs of some players to the algorithm T-KeyGen and T-Sign are absent or
wrong, a robust scheme OT S can still be successfully finished.
Existential Unforgeability. Existential unforgeability for an on-line/off-line
threshold scheme OT S (with a threshold t) is defined in the following game. This
game is carried out between a challenger S and an adversary A who can corrupt
up to t players. The adversary A is allowed to arouse the T-Sign algorithm
polynomial times. We suppose B is the set of currently corrupted players. The
attack game is as follows:

1. The challenger runs T-KeyGen on input 1k to get (pk, sk, sk1, . . . , skn). Let
ViewT-KeyGen

A be A’s view in this phase, which includes pk, {ski : Pi ∈ B}
and other information.
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2. On input ViewT-KeyGen
A ,A is allowed to arouse T-Sign(sk1, . . . , skn, ·) (on behalf

of the players in B) polynomial times. The messages the adversary selected
to query the signing oracle may depend on previous obtained signatures and
views, i.e., the s-th message selected to query T-Sign can depend on all i-th
signing view for i = 1, . . . , s− 1 and the s-th off-line signing view. At the end
of this phase, A gets different messages signed.

3. A outputs a forgery (m,Σ).

The adversary wins the game if the message m has never been queried to the
oracle T-Sign(sk1, . . . , skn, ·) and Ver(pk, m,Σ) = 1 holds. Let AdvA,OT S be the
advantage of the adversary A in breaking the signature scheme OT S, i.e.,

AdvA,OT S = Pr[Ver(pk, m,Σ) = 1 : (pk, sk, sk1, . . . , skn) ← T-KeyGen(1k);

(m,Σ) ← AT-Sign(sk1,...,skn,·)]

where A has never requested m to the signing oracle and the probability is taken
over the internal coin tosses of the algorithm T-KeyGen and A.

Definition 8 (Unforgeability). A scheme OT S is existentially unforgeable
under adaptive chosen message attacks if for every PPT adversary A, AdvA,OT S
is negligible.

Definition 9 (Simulatability). An on-line/off-line threshold signature scheme
OT S = (T-KeyGen,T-Sign,Ver) is simulatable if the following properties hold for
any PPT adversary A against OT S:

1. The algorithm T-KeyGen is simulatable. That is, there exists a PPT simulator
SIMKeyGen that, on input the public key pk generated by an execution of T-

KeyGen, can simulate A’s view ViewT-KeyGen
A .

2. The algorithm T-Sign is simulatable. Let the public key of OT S be pk and an
execution of algorithm T-Sign be

(Σoff, Σon) ← T-Sign(sk1, . . . , skn,m). (*)

The algorithm T-Sign is simulatable means there exists a PPT simulator
SIMSign which satisfies:
• On input the public key pk, the off-line signature Σoff and the transcript

of the execution of SIMKeyGen (in particular the private information that is
given to A), SIMSign can simulate A’s off-line singing view ViewSignoff

A in the
process (*).

• After SIMSign gets inputs m and Σon, it can also simulate A’s on-line
singing view ViewSignon

A in the process (*).

Theorem 2. An on-line/off-line threshold signature scheme OT S is existen-
tially unforgeable under adaptive chosen message attacks, provided that it is
simulatable and its underlying signature scheme is a divisible on-line/off-line
signature scheme which is existentially unforgeable under adaptive chosen mes-
sage attacks.
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Proof. (sketch). We prove this theorem by contradiction. Assume there exists an
Algorithm A which breaks the unforgeability of OT S in polynomial time with
non-negligible probability, then we construct an Algorithm B which breaks the
unforgeability of its underlying divisible on-line/off-line signature scheme, say
DOS.

LetDOS = (KeyGen, Signoff ,Signon,Ver). andOT S = (T-KeyGen,T-Sign,Ver).
To break the unforgeability of DOS, B works as follows.
Setup: Suppose the challenger runs KeyGen to get a public/private key pair

(pk, sk) of DOS and pk is sent to B. By the precondition, OT S is simu-
latable, so there exists a simulator (SIMKeyGen,SIMSign) which can simulate
OT S’s key generation process and singing process. B runs (SIMKeyGen with
input pk to simulate A’s view in Algorithm T-KeyGen.

Simulating the signing oracle T-Sign:

• When A arouses T-Signoff, B first queries the oracle Signoff , to get an off-
line signature token Σoff. Next, B runs SIMSign with input Σoff and the
transcript of the execution of SIMKeyGen to simulate the off-line singing
view of A.

• When A arouses T-Signon to sign a message m, B submits the query m to
the oracle Signon, to get an on-line signature token Σon. Then, B continues
to feed SIMSign with input m and Σon to simulate A’s off-line signing view.

Output: The simulated view ofA is indistinguishable from the real one. Thus,A
outputs a forgery (m,Σ) for OT S with non-negligible probability. B outputs
(m,Σ) since it is also a valid forgery for DOS and thus the theorem is
proved. ¥

Theorem 2 provides an approach to construct on-line/off-line threshold signa-
tures: given a divisible on-line/off-line signature scheme DOS, we construct a
scheme T OS, which is a threshold version of DOS. If T OS is simulatable in the
sense of Definition 9, then T OS is a secure on-line/off-line threshold signature
scheme.
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In appendix, we give elliptic curve analogues of existing divisible on-line/off-line
signature schemes in order to fairly compare them with our proposed scheme.

A. Crutchfield et al.’s Divisible On-line/Off-line Scheme
CMTW-OS

The on-line/off-line signature scheme CMTW-OS is extracted from [7]. In [7],
the authors construct an on-line/off-line threshold signature scheme which is a
threshold version of this basic scheme. Let S = (G,S,V) be an ordinary signature
scheme. The on-line/off-line signature scheme CMTW-OS = (KeyGen,Signoff ,
Signon,Ver), where

– KeyGen.Choose an elliptic curve E over a finite field F. Select a point in E
with prime order p. Let G be a group generated by g. Choose x ∈R Zp, and let
h = gx. Run the key generation algorithm of S to obtain (pk, sk). The public
key of OS is (E, p, g, h, pk), and the private key is (x, sk).

– Signoff . (The i-th run). Choose r,m ∈R Zp, and compute u = grhm. Use the
signing algorithm of S to obtain σ = Ssk(u). Store the state information r,m.
The off-line signature token is σ.

– Signon. (The i-th run, on a message m′ ∈ Zp). Retrieve m, r from the memory.
Compute r′ = r + (m−m′)x mod p. The on-line signature token is r′.

– Ver. (On a message-signature pair (m′, Σ) where Σ = (σ, r′)). Verify that
whether Vpk(gr′hm′

, σ) = 1.

Theorem 3. The on-line/off-line signature scheme constructed above is divis-
ible and existentially unforgeable under adaptive chosen message attacks, pro-
vided that the underlying signature scheme S is existentially unforgeable against
generic chosen message attacks and the one-more-discrete-log assumption holds
in G.

The proof of this theorem is omitted. Please refer to Theorem 2 of [7] for
details. 6

6 The proof in [7] reduces the security of the on-line/off-line scheme CMTW-OS to
the one-more-discrete-log assumption, or the collision resistance of a trapdoor hash
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B. Bresson et al.’s Divisible On-line/Off-line Scheme
BCG-OS

The on-line/off-line signature scheme BCG-OS is extracted from [4]. In [4],
the authors construct an on-line/off-line threshold signature scheme which is a
threshold version of this basic scheme. Let S = (G,S,V) be an ordinary signature
scheme. The on-line/off-line signature scheme BCG-OS = (KeyGen,Signoff ,Signon,
Ver), where

– KeyGen.Choose an elliptic curve E over a finite field F. Select a point in E
with order power p. Let G be a group generated by g. Choose x, y ∈R Zp,
and let h1 = gx, h2 = gy. Run the key generation algorithm of S to obtain
(pk, sk). The public key is (E, p, g, h1, h2, pk), and the private key is (x, y, sk).

– Signoff . (The i-th run). Choose r, s, m ∈R Zp, and compute u = gmhr
1h

s
2. Use

the signing algorithm of S to obtain σ = Ssk(u). Store the state information
r, s, m. The off-line signature token is σ.

– Signon. (The i-th run, on a message m′). Retrieve r, s, m from the memory.
Choose r′ ∈R Zp and compute s′ = s+ y−1[(m−m′)+ (r− r′)x] mod p. The
on-line signature token is (r′, s′).

– Ver. (On a message-signature pair (m′, Σ) where Σ = (σ, r′, s′)). Verify that
whether Vpk(gm′

hr′
1 hs′

2 , σ) = 1.

Remark 5. To reduce the on-line signing cost, we can move the selection of r′

and computing (r−r′) ·x to the off-line phase. Thus, the on-line signing requires
only 1 modular multiplication in Zp.

Theorem 4. The on-line/off-line signature scheme constructed above is divis-
ible and existentially unforgeable under adaptive chosen message attacks, pro-
vided that the underlying signature scheme S is existentially unforgeable against
generic chosen message attacks and the discrete logarithm assumption holds in
G.

The proof of this theorem is also omitted. Please refer to Theorem 1 of [4]
for details.

C. Proving the Schnorr Signature Scheme[22] is Divisible

A variant of the Schnorr signature scheme can be naturally viewed as a divisi-
ble on-line/off-line signature scheme: Schnorr-OS = (KeyGen,Signoff ,Signon,Ver).

– KeyGen.Choose an elliptic curve E over a finite field F. Select a point in E
with prime order p. Let G be a group generated by g. Choose x ∈R Zp, and
let h = gx. Let H be a hash function: H : {0, 1}∗ → Zp. The public key is
(E, p, g, h, H), and the private key is x.

function, or the unforgeability of S. A little modification of this proof can simply
reduce the security to the one-more-discrete-log assumption or the unforgeability of
S.
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– Signoff . (The i-th run). Choose r ∈R Zp, and compute u = gr. Store the state
information r. The off-line signature token is u.

– Signon. (The i-th run, on a message m). Retrieve r from the memory. Set
c = H(m‖u) and compute s = r − cx mod p. The on-line signature token is
s.

– Ver. (On a message-signature pair (Σ, m) where Σ = (u, s). Verify that
whether gshH(m‖u) = u.

Remark 6. The signature token is defined as (u, s) ∈ G × Zp instead of (c, s) ∈
Zp × Zp. This is to decrease the on-line signature length because the value of c
can’t be computed in the off-line phase.

Lemma 2. The divisible on-line/off-line signature scheme Schnorr-OS is ex-
istentially unforgeable against adaptive chosen message attacks in the random
oracle model, provided that the one-more-discrete-log assumption holds in G.

Proof. Assume there exists an Algorithm A which (t, qoff, qon, qh, ε) breaks the
unforgeability of Schnorr-OS in the random-oracle based game defined in Sec-
tion 3. Then we construct an Algorithm B which breaks the qon-DL problem in
polynomial time with probability ε′ ≥ ( ε

qh
− 1

p )2.
Let g be a point in E with prime order p. Let G be a group generated by

g. Algorithm B is given a qon-DL problem instance (descr(G), g, v1, . . . , vqon+1)
where descr(G) = (E, p). To find all the values of dlgvi, Algorithm B works as
follows:
Setup: Algorithm B sets h = vqon+1 and gives to A the public key (E, p, g, h, H)

where H is modeled as a random oracle defined in the following.
Simulating the hash oracle: Maintain a H-list of pairs, which is initialized to

empty. Upon a query input M ∈ {0, 1}∗, returns a random value c ∈ Zp if
M is not in the H-list. Then add (M, c) to the H-list.

Simulating the signing oracle (off-line): Upon the i-th query, return vi as
the off-line signature token.

Simulating the signing oracle (on-line): Upon the i-th query input mi,
Algorithm B makes query mi‖vi to the hash oracle to obtain an answer, say
ci. Next, Algorithm B makes query vih

−ci to the oracle DLg(·) to obtain
wi = dlg(vih

−ci) and returns wi as the answer for the query mi. B makes
at most qon queries to the oracle DLg(·) since A makes at most qon on-line
signing queries.

Rewinding: At the beginning of the game, Algorithm B randomly selects a value
d ∈ qh. Upon the d-th hash query, the simulated hash oracle returns a random
value c ∈ Zp as usual. If A successfully outputs a valid signature forgery on
a message, Algorithm B then resets A to the step where A has just sent
the d-th hash query. This time, the simulated hash oracle again randomly
selects a value, say c′, and returns it as the answer. Next, B continues the
game which runs the second instance of A, which has the same inputs and
internal coins with the first instance.

Output: Let the d-th hash query be m‖t ∈ {0, 1}∗×Zp. Algorithm B successfully
ends the game if the following events occur:
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1) The first instance ofA successfully outputs a valid signature forgery (t, s1)
for the message m where s1 is some value in Zp, and

2) The second instance of A successfully outputs a valid signature forgery
(t, s2) for the message m where s2 is some value in Zp, and

3) c 6= c′.

If the above events occur, we can conclude that gs1hc = gs2hc′ = t and
c 6= c′. Thus, B can output the solution of the qon-DL problem as follows:
dlg(vqon+1) = dlg(h) = (s1 − s2)(c′ − c)−1 mod p.
dlg(vi) = wi + cidlg(vqon+1) mod p for i from 1 to qon.
Let’s estimate the probability that B successfully ends the game. By a stan-

dard argument similar to the reset lemma of [2], we get that B succeeds with
probability at least ( ε

qh
− 1

p )2. Thus, B successfully breaks qon-DL problem in
polynomial time with non-negligible probability. This contradicts the one-more-
discrete-log assumption and thus the theorem is proved. ¥


