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Abstract

We propose a new variant of the Cramer-Shoup KEM (key encapsulation mechanism).
The proposed variant is more efficient than the original Cramer-Shoup KEM scheme in
terms of public key size and encapsulation cost, but is proven to be (still) secure against
chosen ciphertext attack in the standard model, relative to the Decisional Diffie-Hellman
problem.

1 Introduction

Motivation. At Crypto ’98, Cramer and Shoup [9] proposed the first practical public key
encryption (PKE) scheme whose security against adaptive chosen ciphertext attack (which
we simply call “CCA” throughout this paper) can be proven without depending on the
random oracle model [6]. This is a striking result as the chosen ciphertext security without
random oracles could be achieved by only adding a few more exponentiations to the original
ElGamal encryption scheme, in contrast to the computationally heavy solutions [11, 20] based
on zero-knowledge proofs proposed before. Nearly seven years later, a major improvement
on the performance of the Cramer-Shoup PKE scheme was made by Kurosawa and Desmedt
[17]. They were able to obtain a very efficient hybrid PKE scheme by simplifying the Cramer-
Shoup PKE scheme with the help of the “ciphertext authenticity checking” mechanism of
the underlying symmetric encryption primitive. Afterwards, Hofheinz and Kiltz [14] came
up with a dual version of the Kurosawa-Desmedt PKE scheme. Note that chosen ciphertext
security of all these schemes are relative to the Decisional Diffie-Hellman (DDH) problem.

In the full version of their Crypto ’98 paper, Cramer and Shoup [10] formulated a frame-
work called “KEM/DEM (Key Encapsulation Mechanism/Data Encapsulation Mechanism)”.
A KEM is a public key scheme that outputs a (session) key taking public key as input. Ac-
cording to the KEM/DEM framework, a (hybrid) PKE scheme secure against CCA can be
constructed in such a way that a key output by a CCA-secure KEM scheme1 is used as a ses-

1The CCA security notion for KEM will be defined in Section 2.
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sion key for an one-time CCA-secure DEM (i.e., symmetric encryption) scheme that encrypts
a plaintext message.

In the same paper, Cramer and Shoup proposed a KEM scheme based on the their original
PKE scheme, which we denote by “CS-KEM”, and showed it is CCA-secure assuming that
the DDH problem is hard. Interestingly, however, it was shown [13] that the KEM scheme
extracted from Kurosawa and Desmedt’s hybrid PKE scheme, which we denote by “KD-
KEM”, does not satisfy full CCA-security even though the hybrid PKE scheme remains
secure against CCA. Abe et al. [1] showed later that the KD-KEM scheme is actually secure
against ”LCCA (predicate-dependent CCA)” which is weaker than usual CCA-security of
KEM. Similarly, the KEM scheme extracted from Hofheinz and Kiltz’s [14] hybrid PKE
scheme, denoted “HK-KEM”, was shown to be secure against CCCA (constrained CCA),
which is also weaker than the usual CCA-security of KEM.

Hence, the CS-KEM scheme is, though less efficient than the KD-KEM and HK-KEM
schemes, the only KEM scheme that is fully CCA-secure without random oracles, relative to
the DDH problem. A remaining question is whether the performance of the CS-KEM scheme
can be further improved. In this paper, we give a positive answer to this question.
Recent Developments. In 2007, Kiltz [16] proposed a KEM scheme whose CCA security is
based on the gap hashed Diffie-Hellman problem. An interesting feature of this scheme is
that different from the CS-KEM scheme, a key can be computed from one of the public key
components used to create one ciphertext component. More precisely, let pk = (q, g, c, d) be
public key, where g is a generator of a group of prime order q; c = gx and d = gy for some
random (x, y) ∈ Z∗q . In this scheme, a ciphertext and its corresponding key is computed
as (gr, (cαd)r) and KDF(cr) respectively, where KDF denotes a key derivation function. As
mentioned earlier, the public c used to create (cαd)r is reused to produce cr. Note here that
one cannot expect a computational gain even if c is reused. However, if d were reused, a
computational cost could be reduced by computing crα and dr separately to generate (cαd)r

and using dr as a key. Indeed, Lu et al. [18] recently showed that this modified version of
Kiltz’s KEM scheme is CCA-secure.

More recently, as one of the applications of their new computational problem called “Twin
Diffie-Hellman” problem, Cash et al. [8] proposed a new variant of Cramer and Shoup’s
PKE scheme and showed that it is CCA-secure under the hashed decisional Diffie-Hellman
assumption, which is weaker than the usual DDH assumption2. Although this variant has
interesting theoretical implications, it is computationally more expensive than the original
Crammer and Shoup’s one and hence ours.
Our Contributions. We observe that it is also possible to apply the structure of Kiltz’s KEM
scheme to the CS-KEM scheme. As a result, we could construct a KEM scheme which is
proven to be fully CCA-secure without random oracles assuming that the DDH problem is
hard, while it is more efficient than the CS-KEM scheme. The efficiency comes as a shorter
public/private key pair and improved encapsulation speed. However, we honestly state that
the improvement on the encapsulation speed would not be very much dramatic due to the
advancement of fast multi-exponentiation algorithms [2, 7, 19], which makes the cost for
computing double exponentiation very close to the cost of computing a single exponentiation.

2Note that although [8] focuses only on a PKE scheme, a corresponding KEM scheme can easily be derived
and analyzed in an obvious way.
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Nevertheless, the proposed scheme has a new structure, which reduces one group element of
the public key of the CS-KEM scheme. We believe it is also theoretically interesting in that
it shows yet another way of constructing a more efficient variant of the CS-KEM without
sacrificing full CCA-security.

2 Preliminaries

In this section, we review the formal notion of key encapsulation mechanism (KEM) and its
security against adaptive chosen ciphertext attack (CCA). We also review building blocks
used in our construction of KEM which will be presented in Section 3.
Key Encapsulation Mechanism (KEM). The KEM scheme, denoted KEM, consists of the
following algorithms [10, 22, 15].

• Key Generation: Taking 1λ for a security parameter λ ∈ Z≥0 as input, this algorithm
generates a public/private key pair (pk, sk).

• Encapsulation: Taking 1λ and a public key pk as input, this algorithm generates a
ciphertext/(symmetric) key pair (ψ, K).

• Decapsulation: Taking 1λ, a private key sk and a ciphertext ψ as input, this algorithm
outputs either a (symmetric) key K or the special symbol ⊥, meaning “reject”.

The security against CCA of KEM is defined as follows. Consider any attacker A and
any value λ > 0 for security parameter in the following game GameCCAKEM

A (λ) in which A
interacts with the challenger.

Phase 1: The challenger runs the key generation algorithm providing 1λ as input to
generate a public/private key pair (pk, sk). The challenger then computes a challenge
ciphertext φ∗ and a key K∗

1 by running the encapsulation algorithm. It also picks
K∗

0 ∈ SK at random, where SK denotes the key space. It then picks β ∈ {0, 1} at
random and gives (pk, φ∗,K∗

β) to A.

Phase 2: A submits ciphertexts, each of which is denoted by φ. On receiving φ,
the challenger runs the decapsulation algorithm on input φ and passes the resulting
decapsulation to A. At the end of this phase, A outputs its guess β′ ∈ {0, 1}.
We define the output of the game to be 1 if β′ = β, and 0 otherwise. A’s success is
defined by the probability

AdvCCA
A,KEM(λ) =

∣∣∣Pr[GameCCAKEM
A (λ) = 1]− 1

2

∣∣∣.

We say that KEM is CCA-secure if AdvCCA
KEM(λ) = maxA

{
AdvCCA

A,KEM(λ)
}

is negligible
for any attacker A.

The Decisional Diffie-Hellman Problem. We now review the definition of the Decisional Diffie-
Hellman (DDH) problem. Let D be an attacker. Let G be a finite cyclic group generated by
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g ∈ G. Let q be a prime order of G, whose size depends on the security parameter λ. We
define the DDH problem using the attacker D’s advantage in distinguishing two distributions:

AdvDDH
D,G (λ) = |Pr[a R← Zq; b

R← Zq : 1 ← D(1λ, ga, gb, gab)]

− Pr[a R← Zq; b
R← Zq; r

R← Zq : 1 ← D(1λ, ga, gb, gr)]|.
Equivalently [9, 10, 12],

AdvDDH
D,G (λ) = |Pr[w R← Zq; g2 ← gw

1 ; r R← Zq : 1 ← D(1λ, g1, g2, g
r
1, g

r
2)]

− Pr[w R← Zq; g2 ← gw
1 ; r′ R← Zq \ {r} : 1 ← D(1λ, g1, g2, g

r
1, g

r′
2 )]|,

where g1 is the generator of G.
We say that the DDH problem is hard if AdvDDH

G (λ) = maxD
{
AdvCCA

D,G (λ)
}

is negligible
for any attacker D.
Target Collision Resistant Hash Function (TCR). The security of the target collision resistant
hash function denoted by H is defined as follows. Given a randomly chosen group element
x ∈ Gn, it is hard for an attacker B1 to find y 6= x such that H(x) = H(y). We define the
attacker B1’s success probability by AdvCOL

B1,H(λ). We say that H is target collision-resistant
if AdvCOL

H (λ) = maxB1

{
AdvCOL

B1,H(λ)
}

is negligible for any attacker B1.
Key Derivation Function (KDF). In the proposed variant of the KD-KEM scheme, we will
use the key derivation function denoted by KDF. Specifically, KDF takes a random element
in the group G as input. Let l be the length of the output of KDF, which depends on the
security parameter λ. We define the security of KDF with respect to an attacker B2 as follows.
(Below, “ROR” stands for “real or random”.)

AdvROR
B2,KDF(λ) = |Pr[a R← G : 1 ← A(1λ,KDF(a))]

− Pr[a R← G; µ R← {0, 1}l : 1 ← A(1λ, µ)]|.
We say that KDF is secure if AdvROR

KDF (λ) = maxB2

{
AdvROR

B2,KDF(λ)
}

is negligible for any
attacker B2.

Notice that the above security requirement on KDF is the same as that of the KDF
functions used in [10, 12].

3 The Proposed Variant of the Cramer-Shoup KEM

Description. We describe our variant of the CS-KEM scheme, which we denote by “Π”, as
follows. (Readers are referred to the end of Section 1 for the underlying idea of our scheme.)

Key Generation: Pick a group G of prime order q and generators g1 and g2 of G.
Pick a target-collision resistant hash function H : {0, 1}∗ → Z∗q and a key derivation
function KDF. Then choose (x1, x2, y1, y2) ∈ Z4

q at random and compute

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 .

Return public key pk = (G, q, g1, g2, c, d,H, KDF) and private key sk = (pk, x1, x2, y1, y2).
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Encapsulation: Pick r ∈ Z∗q at random and compute

u1 = gr
1, u2 = gr

2, α = H(u1, u2), v = crdrα, K = KDF(u1, c
r).

Return a ciphertext ψ = (u1, u2, v) and a key K.

Decapsulation: Upon receiving ψ = (u1, u2, v), compute

α = H(u1, u2), v = ux1+y1α
1 ux2+y2α

2 , K = KDF(u1, u
x1
1 ux2

2 )

If v′ = v then return K; otherwise, return ⊥.

We show that the scheme Π is CCA-secure, relative to the DDH problem. More precisely,
we prove the following theorem.

Theorem 1 The KEM scheme Π is CCA-secure assuming that the DDH problem is hard
and the underlying hash function H s target collision-resistant and key derivation function
KDF is secure. More precisely, we have

AdvCCA
Π (λ) ≤ AdvDDH

G (λ) + AdvCOL
H (λ) + AdvROR

KDF (λ) +
qD

q
.

where λ denotes the security parameter and qD is the number of queries to the decapsulation
oracle.

Outline of Proof. The basic idea of the proof essentially follows the logic of the proofs of the
CS-KEM [10] and CS-PKE [9] schemes. Basically we need to show that by using a CCA-
attacker for the scheme Π as a subroutine, a DDH attacker can solve the DDH problem: When
the DDH attacker is given a right Diffie-Hellman tuple (g1, g2, g

r
1, g

r
2), it can perfectly simulate

the environment of the CCA-attacker. On the other hand, when it is given (g1, g2, g
r
1, g

r′
2 )

where r′ 6= r, the output of the decapsulation oracle will not be legitimate but we will show
that this one won’t be a problem.

In our proof, there is an important difference from the proofs of the CS-KEM/CS-PKE
schemes. Since the public key component c used to create v = crdrα is “reused” to produce
a key material cr, we need to assume that the attacker’s view include c, d, v and cr when
breaking the confidentiality (i.e. “key indistinguishability”) of the scheme Π. (Note that
this is different from the CS-KEM/CS-PKE schemes in which an independent public key
component is used to produce a key and hence v is not in the attacker’s view.) By using
an argument from linear algebra, we show that fortunately, this does not cause a problem.
(Readers are referred to Equation (12).)

Proof. Fix an attacker A that breaks CCA-security of the scheme Π. Also, fix an attacker
D that is to solve the DDH problem.

Simulation. The DDH attacker D simulates the environment of A as follows. Assume
that D is given a DDH instance (g1, g2, u1, u2) where g1 and g2 are generators of a group G
of prime-order q. D chooses (x1, x2, y1, y2) ∈ Z4

q at random and computes c = gx1
1 gx2

2 and
d = gy1

1 gy2
2 . D also chooses a hash function H and a key derivation function KDF, and gives

pk = (G, q, g1, g2, c, d,H, KDF) as a public key to A.
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When A queries ciphertexts to the decapsulation oracle in the find stage, D decapsulates
them using (x1, x2, y1, y2).

D simulates the challenge ciphertext and the key as follows. D first sets u∗1 = u1 and u∗2 =
u2, and computes α∗ = H(u∗1, u

∗
2), v = (u∗1)

x1+y1α∗(u∗2)
x2+y2α∗ and K∗

1 = KDF(u∗1, (u
∗
1)

x1(u∗2)
x2).

D also chooses K∗
0 at random from the output space of KDF and picks β ∈ {0, 1} at random.

D finally gives A the challenge ciphertext-key pair ψ∗ = (u∗1, u
∗
2, K

∗
β).

When A queries ciphertexts, all of which are different from ψ∗, to the decapsulation oracle
in the find stage, D decapsulates them using (x1, x2, y1, y2).

Finally, when A outputs its guess β′, D outputs 1 if β′ = β; otherwise, outputs 0.
Analysis. We first analyze the case when D is given (g1, g2, u2, u2) such that logg1

u1 =
logg2

u2. First, we prove the following lemma.

Lemma 1 Let r∗ = logg1
u1 = logg2

u2. Then we have

Pr[D(1λ, g1, g2, g
r∗
1 , gr∗

2 ) = 1] = Pr[GameCCAΠ
A(λ) = 1]. (1)

Proof. Note that since (x1, x2, y1, y2) is randomly chosen from Z4
q , the public key pk is

distributed the same as that in the real attack.
By the simulation of the challenge ciphertext presented above, we have

ψ∗ = (u∗1, u
∗
2, v

∗) = (gr∗
1 , gr∗

2 , (gr∗
1 )x1+y1α∗(gr∗

2 )x2+y2α∗) = (gr∗
1 , gr∗

2 , cr∗dr∗α∗)

and

K∗
1 = KDF(u∗1, (g

r∗
1 )x1(gr∗

2 )x2) = KDF(u∗1, c
r∗).

Since K∗
0 is drawn uniformly at random from the output space of KDF, (ψ∗,K∗

β) has the
right distribution.

It remains to show that the output of the decapsulation oracle (both in the simulation
and the real attack) has the right distribution. Now, we call a ciphertext ψ = (u1, u2, v)
is invalid if logg1

u1 6= logg2
u2. We show that invalid ciphertexts are rejected except for

negligible probability.
First, by the public key pk that A sees, we have the following equations:

logg1
c = x1 + x2w (2)

and

logg1
d = y1 + y2w, (3)

where w = logg1
g2. Hence, one can view (x1, x2, y1, y2) as a random point on the plane

defined by (2) and (3). From the challenge ciphertext, we have

logg1
v∗ = r∗(x1 + x2w + y1α

∗ + y2wα∗), (4)

where r∗ = logg1
u∗1 = logg2

u∗2 and α∗ = H(u∗1, u
∗
2). Note that the challenge ciphertext

(whether it is in the simulation or real attack) does not constrain (x1, x2, y1, y2) as the hyper-
plane defined by (4) contains the plane formed by the equations (2) and (3). Now consider
the following equation obtained from the invalid ciphertext ψ:

logg1
v = r1x1 + r2x2w + r1y1α + r2y2wα, (5)

6



where r1 = logg1
u1 and r2 = logg1

u2 such that r1 6= r2. If the decapsulation oracle does not
reject ψ, the point (x1, x2, y1, y2) should lie on the hyperplane defined by (5). But observe
that the equations (2), (3) and (5) are linearly independent, so the hyperplane defined by
(5) intersects the plane formed by the equations (2) and (3) at a line. This happens with
probability 1/q, which is negligible. ut
We now analyze the case when D is given (g1, g2, u2, u2) such that logg1

u1 6= logg2
u2. More

precisely, we prove the following lemma.

Lemma 2 Let r∗1 = logg1
u1 and r∗2 = logg2

u2, where r∗1 6= r∗2. Then we have β is independent
from B’s view.

Pr[D(1λ, g1, g2, g
r∗1
1 , g

r∗2
2 ) = 1] ≤ 1

2
+ AdvROR

KDF (λ) + AdvCOL
H (λ) +

qD

q
. (6)

Proof. Recall that if a ciphertext ψ = (u1, u2, v) is “invalid” then logg1
u1 6= logg2

u2. Now,
define RejInvC to be an event that the decapsulation oracle rejects all invalid ciphertexts. We
first show that

Pr[β′ = β|¬RejInvC] ≤ 1
2

+ AdvROR
KDF (λ). (7)

To prove this, we consider the distribution of the point (x1, x2, y1, y2) ∈ Z4
q conditioned

on A’s view. Now assume that the decapsulation oracle decapsulates only valid ciphertexts,
each of which is denoted by (u1, u2, v). Then we can get the equation

logg1
v = r(x1 + x2w + y1α + y2wα), (8)

where r = logg1
u1 = logg2

u2 and α = H(u1, u2). Now assume that A even gets the key
material ux1

1 ux2
2 through querying the decapsulation oracle. (In fact, A only gets the key

which is the output of KDF which “wraps” the key material ux1
1 ux2

2 .) Hence the following
equation is in A’s view:

logg1
ux1

1 ux2
2 = r(x1 + x2w). (9)

However, the equations (2), (3), (8) and (9) are linearly dependent. Hence, no information
about the point (x1, x2, y1, y2) is leaked from the above equations.

Now consider the challenge ciphertext ψ∗ = (u∗1, u
∗
2, v

∗) and the key K∗
1 = KDF(u∗1, (u

∗
1)

x1(u∗2)
x2),

produced by the simulation. Suppose that A gets the key material (u∗1)
x1(u∗2)

x2 at the worst
case. Since v∗ and (u∗1)

x1(u∗2)
x2 are in A’s view, (x1, x2, y1, y2) should then satisfy the follow-

ing equations

logg1
v∗ = r∗1x1 + r∗2x2w + r∗1y1α

∗ + r∗2y2wα∗, (10)

where r∗1 = logg1
u∗1, r∗2 = logg2

u∗2 with r∗1 6= r∗2 and α∗ = H(u∗1, u
∗
2), and

logg1
(u∗1)

x1(u∗2)
x2 = r∗1x1 + r∗2x2w. (11)
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Now observe that

det




1 w 0 0
0 0 1 w
r∗1 r∗2w r∗1α

∗ r∗2α
∗w

r∗1 r∗2w 0 0


 = w2α∗(r∗1 − r∗2)

2 6= 0. (12)

Hence, the equations (2), (3), (10) and (11) are linearly independent. Note that (u∗1)
x1(u∗2)

x2

is distributed uniformly in G since r∗1 and r∗2 are chosen uniformly at random from Zq and
that K∗

0 has been chosen uniformly at random and independently from anything else. Thus
the distribution of β is independent from A’s view under the assumption that KDF is secure
and we get the bound (7).

We now show that the probability that the decapsulation oracle rejects all invalid cipher-
texts is bounded by insecurity of hash function and some negligible probability.

Pr[RejInvC] ≤ AdvCOL
H (λ) +

qD

q
, (13)

where qD denotes the number of the queries to the decapsulation oracle.
Suppose that A submits an invalid ciphertext ψ = (u1, u2, v) 6= ψ∗ to the decapsulation

oracle. First, note that it is not possible that (u1, u2) = (u∗1, u
∗
2) since ψ 6= ψ∗, we have

v 6= v∗ and hence the decapsulation oracle will reject ψ straight away. Note also that it is
possible that (u1, u2) 6= (u∗1, u

∗
2) and α = α∗ but the probability that this happens is bounded

by the insecurity of the hash function H since this event implies the violation of the target
collision-resistance of H.

Thus, for up to qD invalid ciphertexts such that (u1, u2) 6= (u∗1, u
∗
2) and α 6= α∗. In this

case, if the point (x1, x2, y1, y2) lied on the hyperplane defined by the following equation

logg1
v = r1x1 + r2x2w + r1y1α + r2y2wα, (14)

where r1 = logg1
u1 and r2 = logg1

u2, the decapsulation oracle would accept the ciphertext
ψ. However, observe that

det




1 w 0 0
0 0 1 w
r∗1 r∗2w r∗1α

∗ r∗2α
∗w

r1 r2w r1α r2αw


 = w2(r1 − r2)(r∗1 − r∗2)(α

∗ − α) 6= 0.

Hence, (2), (3), (10) and (14) are linearly independent, implying that the hyperplane defined
by (14) intersects the line formed by intersecting (2), (3) and (10) at a point, which happens
with negligible probability 1/q. Considering that there are qD decapsulation queries, we get
(13).

ut
Note that from (7) and (13), we get

Pr[β′ = β] = Pr[β′ = β|¬RejInvC] Pr[¬RejInvC] + Pr[β′ = β|RejInvC] Pr[RejInvC]

≤ Pr[β′ = β|¬RejInvC] + Pr[RejInvC] ≤ 1
2

+ AdvROR
KDF (λ) + AdvCOL

H (λ) +
qD

q
.
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Then, from the construction of D, we have

Pr[D(1λ, g1, g2, g
r∗1
1 , g

r∗2
2 ) = 1] = Pr[β′ = β] ≤ 1

2
+ AdvROR

KDF (λ) + AdvCOL
H (λ) +

qD

q
.

Combining the bounds from Lemmas 1 and 2 (i.e. by subtracting (1) from (6)), we get
the bound in the theorem statement. ut

4 Comparisons

In Table 1, we summarize the basic parameters such as public key, ciphertext of CS-KEM
[10], KD-KEM [17], HK-KEM [14] and ours. We also summarize whether those schemes
provide full CCA-security, assuming the hardness of the DDH problem. Note that KD-KEM
and HK-KEM are proven to be CCCA-secure [14], which is weaker than full CCA. Note also
that it is an open problem to prove or disprove that HK-KEM provides full CCA-security.

Scheme Public key Ciphertext Key Full CCA
CS-KEM [10] g1, g2, c, d, h gr

1, g
r
2, (cd

α)r KDF(gr
1, h

r) Yes
KD-KEM [17] g1, g2, c, d gr

1, g
r
2 (cdα)r No

HK-KEM [14] g1, c, d, h gr
1, (cd

α)r hr Not Known
Ours g1, g2, c, d gr

1, g
r
2, (cd

α)r KDF(gr
1, c

r) Yes

Table 1: Comparison of Our KEM Scheme with Other KEM Schemes

As one can notice from the above table, our scheme is more efficient than the CS-KEM
scheme while it is less efficient than the KD-KEM and HK-KEM schemes. However, an
advantage of our scheme and CS-KEM schemes might be the simplicity that they provide full
CCA-security without introducing additional primitive like MAC. (As formally shown in [3],
one can generically convert a CCCA-secure KEM into a CCA-secure KEM by authenticating
the CCCA-secure KEM ciphertext using a MAC. Hence, KD-KEM and HK-KEM can be
made to be CCA-secure by introducing the overhead of MAC. In this case, expansion of the
ciphertext is unavoidable and as a result, the length of the ciphertext is close to the original
CS-KEM and ours.)

In Table 2, we summarize the computational costs of the above-mentioned schemes. In the
table, “E” stands for ”Exponentiation”, “DE” stands for “Double Exponentiation”, which is
a special case of multi-exponentiation for two bases, e.g. AaBb, and finally “SE” stands for
“Sequential Exponentiation” [7], which is as efficient as multi-exponentiation (in our case,
double exponentiation).

Since there are many factors that determine the running time of various multi-exponentiation
algorithms [2, 19], it would be difficult to state decisively one double exponentiation is equiv-
alent to how much of single exponentiation. (Note that if we use the naive approach that
computes two single exponentiations separately and multiply them together, 1 DE = 2 E.)
But if one adopts the “multi-exponentiation with a sliding window” algorithm assuming the
unsigned binary representation of exponents as described in [2], one can obtain 1 DE = 1.39E

9



if window size = 2 and the bit-length of q = 256. The figures in the parentheses in Table 2
are obtained based on this assumption.

Scheme Enc. Cost Dec. Cost
CS-KEM [10] 3E + 1DE (4.39E) 2DE (2.78E)
KD-KEM [17] 2E + 1DE (3.39E) 1DE (1.39E)
HK-KEM [14] 2E + 1DE (3.39E) 1SE (≈1.39E)
Ours 4E 2.78E

Table 2: Comparison of Computational Costs

Notice from the above table that in terms of computational costs, the difference between
our scheme and both KD-KEM and HK-KEM is less than one exponentiation.

We also remark that as done for CS-KEM and KD-KEM respectively in [10] and in [21],
one can make the key generation and decapsulation algorithms of our KEM scheme more
efficient, which is described in detail in Appendix A.

5 Conclusion

In this paper, we proposed a new variant of the Cramer-Shoup KEM (CS-KEM) scheme
which is more efficient than the original Cramer-Shoup KEM and fully CCA-secure in the
standard model, relative to the DDH problem. Our results shows that the original CS-KEM
can further be optimized without losing full CCA-security.
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A An Efficient Variant of Our KEM Scheme

Description. Adopting the techniques in [10, 21], one can design an efficient variant of our
KEM scheme, which we denote by “Π̃”, as follows.

Key Generation: Pick a group G of prime order q and generator g1 of G. Pick a
target-collision resistant hash function H : {0, 1}∗ → Z∗q and a key derivation function
KDF. Then choose (w, x, y) ∈ Z3

q at random and compute

g2 = gw
1 , c = gx

1 , d = gy
1 .

Return public key pk = (G, q, g1, g2, c, d,H, KDF) and private key sk = (pk, x, y, w).

Encapsulation: Pick r ∈ Z∗q at random. Compute

u1 = gr
1, u2 = gr

2, α = H(u1, u2), v = crdrα, K = KDF(u1, c
r).

Return ciphertext ψ = (u1, u2, v) and key K.

Decapsulation: Upon receiving ψ = (u1, u2, v), compute

α = H(u1, u2), u′2 = uw
1 , v′ = ux+yα

1 , K = KDF(u1, u
x
1).

If u′2 = u2 and v′ = v then return K; otherwise, return ⊥.

The above scheme is also CCA-secure. Regarding this, we prove the following theorem.

Theorem 2 If the KEM scheme Π (described in Section 3) is CCA-secure then the above
KEM scheme Π̃ is CCA-secure. More precisely, we have

AdvCCA
Π̃

(λ) ≤ AdvCCA
Π (λ) +

qD

q
.

where λ denotes the security parameter and qD is the number of queries to the decapsulation
oracle.

Proof. Fix an attacker A for the scheme Π. Also, fix an attacker Ã for the scheme Π̃.
Assume that A is provided with the public key pk = (G, q, g1, g2, c, d) and the private key

sk = (pk, x1, x2, y1, y2), where g1 and g2 are generators of G and c = gx1
1 gx2

2 and d = gy1
1 gy2

2 .
A simply gives Ã pk as the public key of the scheme Π. A sets g2 = gw

1 for some w ∈ Zq,
x = x1 + wx2 and y = y1 + wy2. (Note that A does not the value w.) Since c = gx1

1 gx2
2 =

gx1+wx2
1 = gx, d = gy1

1 gy2
2 = gy1+wy2

1 = gx by definition of w and (x, y), the public key pk is
distributed identically in both A and Ã’s view.
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When Ã queries a ciphertext ψ = (u1, u2, v) to the decapsulation oracle in the find stage,
A forwards it to its decapsulation oracle, gets a decapsulation result and sends it back to Ã.

Sometime later, A gets a challenge ciphertext and a key pair (ψ∗(= u∗1, u
∗
2, v

∗),Kβ), where
β ∈ {0, 1} is chosen at random, and forwards the pair to Ã as a challenge ciphertext of the
scheme Π̃ and a key.

When Ã queries a ciphertext ψ = (u1, u2, v) to the decapsulation oracle in the guess stage,
A forwards it to its decapsulation oracle, gets a decapsulation result and sends it back to Ã.

When Ã outputs its guess, A outputs it as its guess.
We compute the probability that an invalid ciphertext ψ = (u1, u2, v), which should have

been rejected, is accepted by the simulated decapsulation oracle.
Since we have assumed that ψ = (u1, u2, v) is invalid, the condition [(uw

1 6= u2)∧(ux+yα
1 =

v)] or [(uw
1 = u2) ∧ (ux+yα

1 6= v)] or [(uw
1 6= u2) ∧ (ux+yα

1 6= v)] holds. However, if the
last two conditions held, the simulated decapsulation oracle would reject ψ. Hence the first
condition [(uw

1 6= u2)∧(ux+yα
1 = v)] must hold when invalid ψ is not rejected by the simulated

decapsulation oracle. Note that uw
1 6= u2 means r1 6= r2 where r1 = logg1

u1 and r2 = logg1
u2.

Note also that since x = x1 + wx2 and y = xy + wy2, ux+yα
1 = v is equivalent to

[r1{(x1 + wx2) + (y1 + wy2)α}] mod q = [r1(x1 + y1α) + r2w(x2 + y2α)] mod q

⇐⇒ w(r1 − r2)(x1 + wy2) = 0 mod q.

As r1 6= r2 by the assumption and w 6= 0 mod q, the above equation holds with probability
1/q, which is negligible. Hence we get the bound in the theorem statement. ut
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