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Abstract. We make the following contributions in this paper:
– We show that the existence of semantically secure public-key cryptosystems implies the existence

of injective one-way trapdoor functions. This resolves one of long-standing open problems in cryp-
tography. Moreover, the black-box way of construction to injective trapdoor functions from any
semantically secure cryptosystem disproves a conclusion in [15] at FOCS’01.

– We further show that the injective trapdoor functions constructed are secure correlated prod-
ucts under uniform, repetitional distribution. This shows that the existence of semantically secure
public-key cryptosystems implies the existence of CCA2 secure cryptosystems by a result of Rosen
and Segev [33]. This settles another intensive investigated long-standing and fundamental open
problem in cryptography. It also indicates that the secure correlated products under uniform, rep-
etitional distribution exist if and only if injective trapdoor functions exist. That in turn answers
the motivating question in [33].

Combining them with prior results, we achieve a somewhat surprising result: injective trapdoor func-
tions exist if and only if CCA2 secure cryptosystems exist. Considering CCA2 security is the strongest
among securities for public-key cryptosystems, this makes security hierarchy for public-key cryptosys-
tems, in the sense of existence, collapses into one level.
The conclusions of this work have many consequences: for example, the trapdoor functions with poly-
bounded pre-image size exist if and only if injective trapdoor functions exist; There exists a collection
of efficient trapdoor functions from Ajtai-Dwork lattice based cryptosystems, and several others.

1 Introduction

1.1 Two Open Problems in Encryptions.

The introduction to the notion of public-key encryptions [10, 25] brings cryptography into a new era.
It made several cryptographic applications possible, such as digital signature, oblivious transfer,
key exchange, zero-knowledge proof and multi-party computation. The research in cryptographic
community grows into two categories: one that focuses on theoretical constructions; the other on
the efficient and practical constructions.

One of the main tasks in the theoretical category is to find the minimal necessary and sufficient
assumptions for various cryptographic applications [18]. Another is to make it clear how two cryp-
tographic objects or two secure properties for an object are related. For example, Rompel [32] (see
also [23]) proves that one-way functions are necessary and sufficient for signature schemes. And
one-way functions also imply pseudorandom generators and pseudorandom functions [20, 17].

This paper theoretically investigates the minimal necessary and sufficient cryptographic prim-
itive for CCA2 secure public-key cryptosystems. It constitutes of two major problems: of first is
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about the primitive for semantically secure cryptosystems, and the second problem is about the
relationship between semantically secure and CCA2 secure cryptosystems.

Loosely speaking, a public-key cryptosystem is semantically secure, with respect to passive
adversaries, if ciphertexts do not leak any information about the messages encrypted. A CCA2
secure cryptosystem guarantees semantic security even if (active) adversaries are adaptively granted
access to decryption oracles (See Section 2 for a formal definition).

Being aware of some weaknesses of deterministic encryptions, Goldwasser and Micali [19] intro-
duced the notions of probabilistic encryptions and semantic security. Since then, semantic security
becomes the least secure requirement to an encryption scheme. It is well known that a determinis-
tic encryption scheme cannot be a semantically secure one. Hence the notion of semantic security
strengthens previously existing notions of security.

Injective trapdoor functions are functions that is easy to evaluate for any input, and hard to
invert on average. It associates each function with a trapdoor such that possession of trapdoor
permits efficient inversion.

It has been shown that injective trapdoor functions imply semantically secure public-key cryp-
tosystems [36, 19]. However the question, despite widespread belief, whether semantically secure
public-key cryptosystems imply injective trapdoor functions bothers researchers remains unsolved.
Although Gertner, Malkin and Reingold [15] claimed that injective trapdoor functions cannot be
constructed in black-box way from semantically secure cryptosystems, one of our results in this
paper indicates that this is not the case. In other words, we show the following:

(1) Semantically secure cryptosystems imply injective one-way trapdoor functions.

Our construction of injective one-way trapdoor functions from semantically secure cryptosystems
is in a black-box way. It resolves a long standing open problem and disproves the claim in [15].

Morover, while semantic security fits for most cryptographic applications, it is not good enough
in some scenarios where active adversaries exist, especially in case of malicious insiders. In this case,
an adversary might get access to decryption oracle before producing her attack. Naor and Yung [26]
modeled it with the term “security against chosen ciphertext attack”(CCA1), and constructed the
first CCA1 secure cryptosystem based on semantically secure encryptions using non-interactive
zero-knowledge (NIZK) proofs.

Later, Rackoff and Simon [29] and independently Dolev, Dwork and Naor [11] enhanced CCA1
into so called adaptive chosen ciphertext attack (CCA2), which in addition allows an adversary to
get access decryption oracle even after the attacker knows the ciphertext she wishes to break (see
Definition 3 for a formal definition). These kinds of attacks are practical in real-life scenarios (cf.
for example, [5, 35]).

The CCA2 security currently has become de facto notion of security for public-key encryption
schemes since then. Apart from the construction in [11], Sahai [34] enhanced the NIZK proofs used
by Naor and Yung, and gained constructions of CCA2 secure cryptosystem from semantically secure
cryptosystems under the enhanced NIZK proofs. The prototype of constructions in these papers is
similar in that they encrypt the same message by many (at least two) public keys and then prove
consistency of the resulting ciphertexts by NIZK.

The constructions above are based on the existence of enhanced permutations [24]. A natural
question that has been significantly investigated in cryptography is: can CCA2 secure cryptosystems
be constructed from semantically secure ones?
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In practical construction, Cramer and Shoup [9] have cooked and proved the first CCA2 secure
scheme based on the ElGamal encryption under the assumption of decisional Diffie-Hellman (DDH)
problem. This to some extent builds some confidence in formulating CCA2 security based on se-
mantic security. However, despite so many years intense investigations, this problem still remains
an open problem. In this paper we settle this problem positively. That is, we show that

(2) CCA2 secure cryptosystems exist if semantically secure cryptosystems exist.

This resolves a fundamental problem in cryptography. Together with claim (1) and previously exist-
ing results, we obtain the conclusion that injective trapdoor functions are necessary and sufficient
for CCA2 secure cryptosystems. This answers a major question in cryptography.

1.2 Previous Efforts and Related Work.

Since the invention of public-key encryption, the notion of injective trapdoor functions has been
viewed as the synonymous to secure public-key encryption. Indeed, it is proved in [10] that the
existence of secure public-key encryption cryptosystems is equivalent to the existence of injective
trapdoor functions for deterministic encryptions. Goldwasser and Micali [19], and also Yao [36]
have already formalized semantically secure encryptions from injective trapdoor functions at the
very beginning of probabilistic encryptions.

However, as mentioned earlier, only randomized encryptions may possess semantic security. In
order to construct injective trapdoor functions from a cryptosystems, or rather, to transform a
randomized encryption into a injective trapdoor function, how to cope with randomness used in
the encryption proves problematic. One issue is that encrypting one message using different random
strings might produce the same result. Another obstacle is that the decryption algorithm might not
retrieve randomness in ciphertext like ElGamal encryption scheme. Both hints us that the random
strings and the messages encrypted should be moderately related if we try to naturally use secret
key as trapdoor information.

Bellare, Halevi, Sahai and Vadhan [4] successfully constructed injective trapdoor functions from
semantically secure encryptions with the additional assumption that truly random functions exist
(so called the random oracle).

Their construction is a de-randomization process: the value for an input x is the encrypting to
x using random string G(x), where G is a random oracle to which adversaries also have access. The
investigation there indicates that the attempt to replace G(x) with random looking functions such
as pseudorandom generator may be hard to succeed. They finally point out that: “In fact whether
or not semantically secure public-key cryptosystems imply injective trapdoor functions is not only
an open question, but seems a hard one.”

Theirs is the only result trying to base injective trapdoor functions on public-key encryptions ap-
peared in the literature. Later, in [15], Gertner, Malkin and Reingold adopted the oracle separation
approach invented by Impagliazzo and Rudich in [22] and made the claim that there is no black-
box constructions possible from semantically secure encryptions to injective trapdoor functions.
This largely limits the success possibility, and (to our knowledge) the investigation in this direction
remains fruitless since then. Thus, the problem wether semantic secure public-key cryptosystems
imply injective trapdoor functions still remains open.

The other problem we are concerned with, however, gains much attentions. Since the appearance
of the notion of CCA2 security, the relationship between semantically and CCA2 security has been
a major question.
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As described above, Dolev, Dwork and Naor [11] and Sahai [34] followed the paradigm of multi-
encrypting a message followed by NIZK proofs of consistency. Cramer and Shoup constructed the
first practical scheme based on DDH assumption following the same paradigm. Elkind and Sahai
[12] made a survey and formalization for the two keys paradigm.

The main issue in this paradigm is the way the proofs of consistency or “proofs of well-formness”
of ciphertexts are constructed. It seems that constructing efficient NIZK proof for NP is not an
easy task on a weaker assumption (e.g. assumption of injective trapdoor functions). Hence the
forthcoming works in this line consider substituting NIZK proofs with other tools.

Pass, Shelat and Vaikuntanathan [27] replaced NIZK proofs with designated verifier proofs
in the same paradigm and yielded non-malleable encryption schemes against chosen plaintext at-
tack from semantically secure one. Choi, Dachman-Soled, Malkin and Wee [7] used encoding and
decoding techniques to check the consistency of ciphertexts, instead of zero knowledge proofs.
Cramer, Hanaoka, Hofheinz, Imai, Kiltz, Pass, Shelat and Vaikuntanathan [8] extended this tech-
nique construct a weaker CCA2 scheme, in which only a bounded number of queries are permitted.
Unfortunately, the results in all these papers yield only schemes with weaker securities than CCA2
security, though stronger than semantic security.

Having noticed the hardness of basing injective functions on semantically secure public-key
encryptions, Peikert and Waters [28] proposed a new and powerful cryptographic primitive named
lossy trapdoor functions and proved that it implies injective trapdoor functions, semantically secure
encryptions as well as CCA2 secure encryptions.

Rosen and Segev [33] recently proposed another primitive called secure correlated products.
They showed that CCA2 secure encryptions can be constructed from secure correlated products
under a natural distribution. They also show that correlated security is potentially weaker than
lossy trapdoor functions.

A different approach was suggested by Boneh, Canetti, Halevi and Katz [6] who constructed a
CCA2 secure public-key encryption scheme based on any identity-based encryption scheme. Their
construction is out of the “proofs of well-formedness” prototype. How their construction in general
relates with semantically secure encryptions is currently not clear.

Gertner, Malkin and Myers [14], again adopting the approaches by Impagliazzo and Rudich in
[22], showed that there are no black-box constructions in which the decryption algorithm of the
proposed CCA2 secure scheme does not query the encryption algorithm of the semantically secure
one.

1.3 Our Resolutions and Contributions.

A natural way to base injective functions on encryption schemes will include a de-randomization
process. This leads to dilemma due to seemingly contradictory requirements. On one side, we
hope to make use of valid encryption(s) in the definition of injective trapdoor functions. For this
purpose, the plaintext should be independent of the randomness used in the encrypting. On the
other side, the randomness shall have some relation to the encrypted messages so that they can be
retrieved with trapdoor information (usually the secret keys). This is because there is no guarantee
that decryption algorithm in a cryptosystem will retrieve randomness in the ciphertext. ElGamal
encryption scheme is one example. To make the functions injective, the randomness should be
uniquely determined by the input to a function.

Bellare, Halevi, Sahai and Vadhan exploited their construction in [4] by encrypting input using
randomness obtained from random oracle. The randomness is completely determined by the input.
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Additionally they pointed out the difficulty of substituting random oracle there with pseudorandom
generator.

We attack this problem with a new idea that do not try to encrypt an input to a function with
some randomness as did in previous construction in [4]. Instead, we use the input directly as the
randomness to encrypt some prescribed (randomly chosen) messages. Although a ciphertext may
(or may not) leak some bits in the input, it will not leak all of them. Our goal is injective one-way
(trapdoor) functions rather than perfectly hiding ones.

This alone will not get out of the dilemma. The key point is the way how to set the message to
be encrypted. Recall that only this message will be definitely retrieved with trapdoor, and further,
it should be independent of the random string (now the input) to make the encryption valid. The
message should also be related to the input in such a way so that with a trapdoor one can precisely
retrieve the input.

Our resolution to this seemingly paradox is to take two steps. First, in evaluation (i.e. encrypt-
ing) part, the randomness and messages in ciphertext are set independently such that even if it is
decrypted with secret key, one cannot reveal any information about the random string from the
plaintext alone. Second, to provide in explicit form with additional side information so that it al-
lows precisely relating plaintext to the randomness. This helps uniquely deciding and retrieving the
input. The side information is also chosen independent of any input. That is, the relation between
randomness and the messages is described out of the encryption content.

In this way, we are able to solvethe contradictory problem. The semantically secure encryption
completely hides the plaintext and keeps randomness hidden (though may not be perfectly hidden).
Moreover, the ciphertext together with side information will not compromise the input to the
function.

The way we implement the construction is to use a signal message to each bit of input: two
messages are randomly chosen so that one of them indicating 1, the other 0. For any input of k
bits, we use k pair of independently chosen messages to signal them. The value of a function at
an input is to encrypt these ordered signal messages with the input as randomness. The k pairs of
messages as a whole is the side information.

The realization of the construction is down so that it needs to encrypt many messages using
the same randomness. Therefore, a random reusable multi-messages encryption scheme is naturally
desired. Fortunately, this has been already exploited in the literature. Bellare, Boldyreva, Kuro-
sawa and Staddon [3] recently gave out a clear exploration to randomness reusable multi-messages
encryption. Loosely speaking, a randomness reusable multi-messages encryption is a public-key
cryptosystem such that one may simultaneously encrypt a set of messages using the same random-
ness and still keep the encryption secure (as hard as with original scheme).

More formally, let Π = (KGen, Enc, Dec) be a randomness reusable multi-messages cryptosystem.
Let `(n) be a polynomial in n. Let Π` = (KGen′, Enc′, Dec′) be a new encryption system with
messages space {0, 1}`×k, where {0, 1}k is the messages space for Π. The key generation algorithm
KGen′ will generate `-pairs of keys (pki, ski) and take pk = (pk1, . . . , pk`) and sk = (sk1, . . . , sk`)
as public and secret key, respectively. For any m = m1 · · ·m` ∈ {0, 1}`×k, where mi ∈ {0, 1}k, its
ciphertext is

Enc′pk(m, r) := (Encpk1(m1, r), . . . , Encpk`
(m`, r))

For any randomness reusable multi-messages encryption Π, if Π is semantically secure, so is Π`

for any polynomial `.
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Let Π be a randomness reusable encryption system. The sampling function for trapdoor func-
tions chooses 2k messages m = (m10,m11, . . . ,mk0,mk1) which form k pairs, and it invokes
the key generation algorithm KGen′ of Πk to generate pk, sk, where pk = (pk1, . . . , pkk), sk =
(sk1, . . . , skk). The m,pk as a whole is an index for a function Fm,pk and sk the trapdoor.

At any input x = x1 · · ·xk ∈ {0, 1}k, the value of Fm,pk is just the ciphertext Enc′pk(m,x) ,
where m = m1 · · ·mk ∈ {0, 1}k×k . Here mi is mi0 iff xi is 0, otherwise mi1.

It is evident that the message m is independent of x in the “content”. The only relation between
input x and m is that the ith block of m is chosen from {mi0,mi1} according to the ith bit in x.
Hence the value Fm,pk(x) is a valid cipher under Πk . Considering the semantic security, the security
of the functions is not hard to see.

Bellare, Boldyreva, Kurosawa and Staddon [3] showed that if there is a semantically secure
cryptosystem, there is also a semantically secure randomness reusable multi-messages cryptosys-
tem. Combining the description from above, means that semantically secure cryptosystems implies
injective one-way trapdoor functions.

This inference can be taken a step further. With careful investigation, we can show that the
trapdoor functions defined as above are also correlated secure under a natural distribution on input
domain. That leads us to the conclusion that semantically secure cryptosystems imply CCA2 secure
cryptosystems by the result of [33] mentioned earlier.

A collection of injective trapdoor functions F = (G, F ) is correlated products secure with
respect to some distribution C` over domains if ` Cartesian products is one-way with respect to
input drawing according to C`. Specifically, For independently generated indexes s1, . . . , s` ← G(1n),
and (x1, . . . , x`)← C`, it is easy to evaluate (Fs1(x1), . . . , Fs`

(x`)) and hard to invert. The uniformly
`-repetitional distribution is the distribution that randomly samples x from the domain and repeats
this ` times.

The trapdoor functions described above happens to be correlated secure under uniform, repeti-
tional distribution. In fact, the ` products of our injective trapdoor functions is just `k-encryption
and hence one-way.

To summarize, we make the following contributions in this paper:

– We show that the existence of semantically secure public-key cryptosystems implies the exis-
tence of injective one-way trapdoor functions. Additionally, since our construction of trapdoor
functions is in a black-box way, it therefore disproves the claim in [15].

– We show further that the injective trapdoor functions constructed is correlated secure under
uniform, repetitional distribution. This shows the existence of semantically secure public-key
cryptosystems implies the existence of CCA2 secure cryptosystems. Tis result resolves another
long-standing and fundamental open question in cryptography.

Combining these results together, we get the equivalence, in the sense of existence, between following
three important objects in cryptography: injective trapdoor functions, semantically cryptosystems
and CCA2 secure cryptosystems.

Our conclusions have many consequences: for example, Bellare, Halevi, Sahai and Staddon
[4] proved that trapdoor functions with poly-bounded pre-image size imply semantically secure
cryptosystems. It therefore holds that trapdoor functions with poly-bounded pre-image size imply
injective trapdoor functions, a result proved previously only to be hold in random oracle model in
[4].

6
Priliminary Version — October 27, 2008



Another example is that we can make the claim that there is a CCA2 secure cryptosystems
from any lattice based encryption scheme. This includes the scheme by Ajtai and Dwork [2, 1] (not
known before) as well as those by Regev [30, 31] (proved recently by Peikert and Waters [28, 13].

More importantly, this paper makes the hierarchical relations between security notions collapse
into one level in the sense of existence. More explicitly, this is because the existence of CCA2 secure
cryptosystems implies the existence of cryptosystems of various securities such as bounded CCA2
security, non-malleable security and so on.

The novelty of the construction may be of independent interest, and further applications are
expected in cryptography.

1.4 The Organization of the Paper

In the next section we present some notions and notations. In Section 3, we present two properties
of semantically secure encryptions, that will be used in the subsequent sections. In Section 4,
we first provide an extension, with respect to pseudorandom generators, from any semantically
secure encryption scheme into a random reusable multi-message encryption scheme. The encryption
trapdoor functions are then defined based on the extended scheme.

In order to achieve the security of correlated products for our encryption trapdoor functions,
in Section 5, we redefine the encryption trapdoor functions and base them on the extension with
respect to pseudorandom functions proposed in [3]. It allows us to prove our main conclusion with
great convenience. We make our conclusions and discussions in last section.

2 Preliminary and Notations

We denote by n ∈ Z the security parameter in this paper. For any 0 ≤ ` ∈ Z, we denote by [`] the
set {1, . . . , `}. For a finite set S, we denote by x ← S the experiment of choosing an element of
S uniformly at random and x1, . . . , xk

k← S the experiment of choosing k elements independently
uniform from S. Similarly, for an algorithm A, we denote by x1, . . . , xk

k← A(·) the experiment
that independently invokes A(·) with input for k times and output xi independently. We often
write x = x1x2 · · ·xk ∈ S to mean a string x in S such that |x1| = · · · = |xk|. For example,
x = x1 · · ·xk ∈ {0, 1}k is a string of length k with the i-th bit xi. A function µ(n) of n is negligible
if for any c > 0, for sufficiently large n, it holds µ(n) < 1/nc . We denote by {0, 1}l×k the l times
products of {0, 1}k. That is, {0, 1}k × {0, 1}k · · · × {0, 1}k︸ ︷︷ ︸

`-times
A collection of functions is said to be one-way if it has an efficient sampling function and for a

sampled function f , given x from the domain it is easy to compute f(x), and it is hard to find a
pre-image of f(x) with respect to the uniformly chosen x over the domain. The one-way trapdoor
functions are one-way functions that, in addition, generates some trapdoor information by sampling
function, with which one is able to efficiently invert functions. Formally

Definition 1 (Trapdoor Functions). A collection of functions F = (G, F ) satisfying the follow-
ing conditions is said to be a collection of one-way trapdoor functions.

Efficient sampling : The probabilistic polynomial time (ppt) algorithm G accepts the security
parameter n as input and outputs (s, tp), denoted by (s, tp)← G(1n). Where s is an index of a
function, and tp the trapdoor for the function.
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Efficient evaluation : Given x ∈M as input, F (s, ·) can be evaluated as F (s, x) in polynomial
time.

Inverting functions : For any randomly sampled function F (s, ·) and the value F (s, x) of uni-
formly chosen x ← M, it is computationally infeasible to find a pre-image. That is, for every
ppt algorithm A, the following probability is negligible.

Pr [s← G(1n), x←M : F (s,A(1n, s, F (s, x))) = F (s, x)]

However, with trapdoor information tp, it is easy to compute a pre-image of F (s, tp). That is,
there is a ppt algorithm A such that

Pr [s← G(1n), x←M : F (s,A(s, tp, F (s, x))) = F (s, x)] = 1− µ(n)

Where µ(n) is a negligible function.

We formally introduce the public-key cryptosystem as follows. Please note that we explicitly present
the random string in encryption algorithm Enc so as to make it convenient for discussions.

Definition 2 (Public-Key Encryption System). A public-key cryptosystem Π consists of three
algorithms (KGen, Enc, Dec) such that

1. Probabilistic algorithm KGen(·) accepting security parameter n outputs a pair of keys (pk, sk).
Where pk is a public key and sk the corresponding secret key.

2. The deterministic algorithm Enc(·, ·) takes a public key pk, a message m ∈ M and a random
string r ∈ R and outputs c = Encpk(m, r) as the ciphertext. Where M is the messages space
and R the random strings space.

3. The deterministic algorithm Dec(·) takes secret key sk and a ciphertext c as input and outputs
m = Decsk(c).

The correctness of a public-key cryptosystem requires that for any m ∈ M, any (pk, sk) ←
KGen(1n), r ← R, it holds that Decsk(Encpk(m, r)) = m.

Definition 3 (Security of Cryptosystems). Let (KGen, Enc, Dec) be an encryption scheme. For
any ppt algorithm A if the following is negligible:

Pr
[

(pk, sk)← KGen(1n), (m0,m1)← ADsk(·)

b← {0, 1}; r ← {0, 1}k′
c∗ ← Encpk(mb, r)

: ADsk(c∗,·)(pk, c∗) = b

]
− 1

2

where D and Dc∗ are two decryption oracles. And

1. if both Dsk(·) and Dsk(c∗, ·) are empty oracles, then the scheme is said secure against chosen
plaintext attack (CPA), or semantically secure. or

2. if oracle Dsk(·) responds exactly as a decryption algorithm Decsk(·) and Dsk(c∗, ·) is empty, then
the scheme is said secure against chosen ciphertext attack (CCA1). or

3. if both oracles Dsk(·) and Dsk(c∗, ·) responds exactly as a decryption algorithm Decsk(·), except
the latter will output ⊥ when c∗ is queried, then the scheme is said secure against adaptive
chosen ciphertext attack (CCA2).

We will use notions of pseudorandom generators and pseudorandom functions in our construc-
tions. The following definitions are cited from [16].
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Definition 4 (Pseudorandom Generator). A pseudorandom generator is a deterministic polynomial-
time algorithm G satisfying the following two conditions:

Expansion: there exists a function ` : N→ N such that `(n) > n for all n ∈ N, and |G(s)| = `(|s|)
for all s ∈ {0, 1}∗.

Pseudorandomness: the ensembles {G(Um)}m∈N and {U`(m)}m∈N are computationally indistin-
guishable in polynomial time. Where {U`(m)}m∈N is the uniform ensemble. That is, for any
polynomial p(·) and polynomial time algorithm D, for all sufficiently large n ∈ N,

|Pr[D(G(Un), 1n) = 1]−Pr[D(U`(n), 1
n) = 1]| < 1

p(n)

Definition 5 (Pseudorandom Functions). Let r : N→ N. The efficiently computable function
ensemble

{fs : {0, 1}∗ → {0, 1}r(|s|)}s∈{0,1}∗

is a pseudorandom function ensemble if following conditions hold:

Efficient Evaluation: there exists a polynomial-time algorithm that on input s and x ∈ {0, 1}∗
returns fs(x).

Pseudorandomness: for every ppt oracle machine D, Every polynomial p(·), and all sufficiently
large n,

|Pr[DFn(1n) = 1]−Pr[DHn(1n) = 1]| < 1
p(n)

where Fn is a random variable uniformly distributed over the multi-set {fs}s∈{0,1}n, and Hn is
uniformly distributed among all functions mapping arbitrary long strings to r(n)-bit-long strings.

3 Properties for Semantically Secure Public-Key Encryptions

We use Π = (KGen, Enc, Dec) to denote a public-key encryption system in this paper. The message
space is {0, 1}k and the random string space is {0, 1}k′

. That is, the deterministic encryption
algorithm Encpk(·, ·) takes a message of length k and a random string of length k′ as input.

Let’s consider the possibility to extract a bit of the plaintext from a ciphertext. Let Pi be a ppt
algorithm that tries to extract the i-th bit of plaintext.

Lemma 1. Let Π be a semantically secure cryptosystem, then for any i ∈ [k] and any ppt bit
extractor Pi, the success probability of extracting the i-th bit of plaintex from ciphertext is negligibly
better than guess. That is,

Advextract
Π (Pi) = Pr

[
(pk, sk)← KGen(1n);m← {0, 1}k, r ← {0, 1}k′

c = Encpk(m, r) ; b′ ← Pi(1n, pk, c)
: b′ = b

]
− 1

2
(1)

is a negligible function in n. Where b is the i-th bit in m. The probability in (1) is taken over the
choice of keys, messages and coin tossing in Pi .

Proof. For any i ∈ [k] and any ppt Pi, denote ε := Advextract
Π (Pi) . We construct the following

IND-CPA attacker A to invoke Pi as a subroutine as depicted in Fig. 1.
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O : (pk, sk)← G(1n);

A(1n, pk) : m0, m1 ← {0, 1}k;
If the i-th bit of m0 equals to the i-th bit of m1 then choose again

O : b← {0, 1} , r ← {0, 1}k
′
, c = Enc(pk, mb, r);

A(1n, pk, c) : pk, c→ Pi(1
n);

b′ ← Pi(1
n, pk, c)

output b′

Fig. 1. The IND-CPA attack using a bit extractor as a subroutine.

Whenever A receives the public key pk generated by challenger O using KGen, it chooses two
messages m0,m1 from {0, 1}k uniformly at random until the i-th bit in m0 and m1 differs. A
submits them to O. The latter then chooses b ∈ {0, 1} uniformly at random, and to encrypt mb

with a random string r ← {0, 1}k. The ciphertext c = Encpk(mb, r) is given to A. Adversary A in
turn invokes Pi with c, pk. A outputs the bit that Pi outputs.

The event success occurs when b = b′ in the game. It is easy to see that the success probability
of A is no less than the success probability of Pi extracting the i-th bit for plaintext mb. We obtain

Advcpa
Π = Pr[success]− 1

2

≥ Pr
[
(pk, sk)← KGen(1n);m← {0, 1}k, r ← {0, 1}k′

c = Encpk(m, r) ; b′ ← Pi(1n, pk, c)
: b′ = b

]
− 1

2
= ε (2)

The semantic security of Π implies that Advcpa
Π is a negligible function in n. Hence ε is negligible.

This ends the proof. ut

Lemma 2. For any semantically secure cryptosystem Π, it is infeasible for any adversary to extract
random string used from a ciphertext. That is, the following probability λ is a negligible function in
n for any ppt algorithm A .

λ := Pr
[
(pk, sk)← KGen(1n);m← {0, 1}k, r ← {0, 1}k′

c = Encpk(m, r) ; s← A(1n, pk, c)
: s = r

]
(3)

Proof. To show that λ is a negligible function in security parameter n, we construct a ppt algorithm
B producing IND-CPA against Π, which includes A as a subroutine.

The challenger O invokes KGen with 1n to obtain (pk, sk). After receiving public key pk , attacker
B chooses m0,m1 ∈ {0, 1}k uniformly at random and sends them toO. The challengerO will choose,
respectively, a bit b ← {0, 1} and r ← {0, 1}k uniformly at random. It further encrypts mb using
string r to get c = Encpk(mb, r) and delivers it to B . Algorithm B invokes A with c to get s as
feedback.

Algorithm B then checks if c = Encpk(m0, s) then let b′ = 0; If c = Encpk(m1, s) then let b′ = 1.
Otherwise to choose b′ ← {0, 1} uniformly at random. It finally outputs b′ as the guess to b . This
procedure is depicted in Fig. 2

It is easy to see from the construction of B that if A outputs the correct random string (i.e.
s = r), B outputs b′ satisfying b′ = b. Otherwise it outputs b′ such that b = b′ with probability 1

2 .
Let successB denote the event that B returns b′ such that b′ = b. Let successA denote the

event that A extracts the correct random string from a ciphertext, which occurs with probability
λ as denoted in (3).
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O : (pk, sk)← G(1n);

B(1n, pk) : m0, m1 ← {0, 1}k;

O : b← {0, 1} , r ← {0, 1}k
′
, c = Enc(pk, mb, r);

B(1n, pk, c) : pk, c→ A(1n);

s← A(1n, pk, c) ∈ {0, 1}k
′

If c = Encpk(m0, s) then b′ = 0
elseif c = Encpk(m1, s) then b′ = 1
else b′ ← {0, 1}

output b′

Fig. 2. The IND-CPA attack against Π using a random string extractor as a subroutine.

From the analysis above, we have

Pr [successB] = Pr [successB ∧ successA] + Pr [successB ∧ ¬successA]

= λ +
1
2

(4)

This implies λ = Pr [successB]− 1
2 = Advcpa

Π (B). Which is negligible from the sematic security of
cryptosystem Π . ut

4 Encryption Trapdoor Functions

We will present two constructions of injective one-way trapdoor functions family based on se-
mantically secure cryptosysterms. The first construction (presented in this section) is based on
semantically secure cryptosystems by employing a pseudorandom generator. The second construc-
tion (presented in Section 5) is similar to the first one, but it employs a collection of pseudorandom
functions instead. Though the second lacks simplicity in the presentation, it allows us to show
the correlated products security under C` (consult [33] for detailed definiton). Where C` (defined
in following context) is the uniform `-repetition distribution on {0, 1}`×k. That will lead us to a
construction of CCA2 secure encryption scheme by the result of [33].

Since the second approach adopted is essentially what was used in [3] to transform any semanti-
cally secure encryption scheme into a randomness reusable multi-messages encryption scheme§we
will cite the conclusion there directly.

4.1 Extensions of Semantically Secure Cryptosystems

In this subsection we first make an extension of a cryptosystem into a cryptosystem that allows
encrypting multiple messages simultaneously with the same randomness. We then present the con-
struction of encryption trapdoor functions and prove its security.

The extension is essentially to expand the length of messages encrypted. In other words, we
construct a new cryptosystem from a given one, such that the length of encrypted messages is
extended polynomial times and the random string space, however, remains the same as the original
one. The extension preserves semantic security.

Let Π = (KGen, Enc, Dec) be a public-key encryption scheme. Let k(n), k′(n) be two polynomi-
als. The messages space is {0, 1}k and the randomness space is {0, 1}k′

. Let `(n) be an integral
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Game0 : (pk, sk)← KGen′(1n);
pk = (pk1, pk2), sk = (sk1, sk2);

mi = m1
i m

2
i ← A(1n, pk) ∈ {0, 1}2k, i = 0, 1

b← {0, 1}, r ← {0, 1}k, r1r2 = PRG(r) ∈ {0, 1}2k′

c = (Encpk1(m
1
b , r1), Encpk2(m

2
b , r2))

b′ → A(1n, pk, c)

Game1 : (pk, sk)← KGen′(1n);
pk = (pk1, pk2), sk = (sk1, sk2);

mi = m1
i m

2
i ← A(1n, pk) ∈ {0, 1}2k, i = 0, 1

b← {0, 1}, r1, r2 ← {0, 1}k
′

c = (Encpk1(m
1
b , r1), Encpk2(m

2
b , r2))

b′ → A(1n, pk, c)

Fig. 3. The IND-CPA attacking games against Π2
PRG.

polynomial in n, the `-extension of a cryptosystem with respect to a pseudorandom generator is
defined as follows.

Definition 6 (`-Extension of Cryptosystems). Let Π = (KGen, Enc, Dec) be a public-key en-
cryption scheme with parameters as above. Let PRG be a pseudorandom generator with domain
{0, 1}k and range {0, 1}` k′

. To define a new encryption scheme Π`
PRG = (KGen`, Enc`, Dec`) as

follows:

Key Generation KGen`(·): on input security parameter 1n, it invokes KGen for ` times gaining key
pair (pki, ski)← KGen(1n) for i = 1, . . . , `. Let public key be pk = (pk1, . . . , pk`) and secret key
sk = (sk1, . . . , sk`) .

Encryption Enc`
pk(·, ·): on input m = m1 · · ·m` ∈ {0, 1}` k as input, algorithm Enc`

pk(·, ·) chooses
r ← {0, 1}k computes PRG(r) = r1 · · · r` and ci = Encpki

(mi, ri) for all i ∈ [`] . To output
c = (c1, . . . , c`) . That is, Enc`

pk(m, r) = c. Where |ri| = k′, |mi| = k for each i ∈ [`] .
Decryption Dec`

sk(·): on input c = (c1, . . . , c`) and sk, it computes mi = Decski
(ci) for all i ∈ [`]

and outputs m = m1 · · ·m` .

It is evident that the scheme Π`
PRG in Definition 6 is indeed an encryption scheme. The cor-

rectness of encryption relies on the correctness of Π . We proceed to show it preserving semantic
security.

Lemma 3 (Semantic Security Preservation). For any `(n) and a semantically secure cryp-
tosystem Π with parameters as above, the encryption scheme Π`

PRG is also a semantically secure
cryptosystem.

Proof. Without lose of generality, we assume that ` = 2 since negligibility is closed under operation
“plus” of a (fixed) polynomial times. Suppose A is a ppt algorithm that produce IND-CPA attack
against Π2

PRG. Game0 depicts (in Fig. 3 ) the attacking procedure.
The challenger O generates a pair of keys pk = (pk1, pk2), sk = (sk1, sk2) ← KGen′(1n). The

public key pk is provided to adversary A. Adversary then outputs and delivers to O a pair of
messages m0,m1 such that mi = m1

i m
2
i for i ∈ {0, 1}, where |mj

i | = k for i ∈ {0, 1}, j ∈ {1, 2}.
Challenger O then chooses r ← {0, 1}k and b ← {0, 1} uniformly at random. It encrypts mb as
c = (Encpk1(m

1
b , r1), Encpk2(m

2
b , r2)). Where r1r2 = PRG(r) and r1, r2 ∈ {0, 1}k′

. Ciphertext c is
provided to A. Upon receiving c, A outputs a bit b′ ∈ {0, 1}.

Game1 is the same as Game0 but the random strings r1, r2 used in encryption are chosen
uniformly at random from {0, 1}k′

, rather than generated using PRG.
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B(1n, r) : (pk, sk)← KGen2(1n);

m0, m1 ← A(1n, pk) ∈ {0, 1}2k

b← {0, 1}, c = (Encpk1(m
1
b , r1), Encpk2(m

2
b , r2)

d← A(1n, pk, c)
If d = b then output 1
else output 0

Fig. 4. Pseudorandom generator distinguisher.

Let successi be the event b = b′ in Gamei for i = 0, 1 . We will construct a distinguisher B to
tell pseudorandom strings generated by PRG from a random one, such that the success advantage
Advprg

PRG,B satisfying

Advprg
PRG,B = |Pr[success0]−Pr[success1]| (5)

The algorithm B (depicted in Fig. 4) on input of security parameter 1n and a string r0r1 ∈
{0, 1}2k′

invokes KGen2 to obtain public key pk = (pk1, pk2) and sk = (sk1, sk2) and delivers pk to
A. Adversary returns with a pair of messages m0,m1 ∈ {0, 1}2k . One of uniformly chosen message
mb is then encrypted with r0r1, pk. That is c = (Encpk1(m

1
b , r1), Encpk2(m

2
b , r2) . A provides with c

outputs a bit d . If d = b then outputs 1 else outputs 0 .
It is evident that if the input to B is a random string from {0, 1}2k′

, the computation proceeds
just as in Game1, hence

Pr[r ← {0, 1}2k′
: B(1n, r) = 1] = Pr[success1]

If the input to B is a string from {PRG(x) | x ∈ {0, 1}k}, the computation proceeds just as in
Game0, therefore

Pr[x← {0, 1}k, r = PRG(x) : B(1n, r) = 1] = Pr[success0]

The equation (5) is from the difference of last two equations.
We next to construct an IND-CPA attacker D against Π such that

Pr[successD] ≥ Pr[success1] (6)

Where successD is the event success guess of adversary D in IND-CAP game. This together with
(5) will show that

|Pr[success0]− 1/2| ≤ |Pr[success0]−Pr[success1]|+ |Pr[success1]− 1/2|
≤ Advprg

PRG,B + |Pr[successD]− 1/2| (7)

From the definition of pseudorandom generator and the semantic security of Π, we know that the
last two terms in (7) are both negligible functions in n . Which shows that the advantage of any ppt
A against IND-CPA attack to Π2

PRG is negligible and hence the semantic security of Π2
PRG holds.

It remains to construct ppt algorithm D satisfying (6) . The algorithm D (depicted in Fig. 5)
proceeds as follows: Challenger O will produce key pair (pk1, sk1) ← KGen(1n) and delivers with
pk1 to D . D then produces (pk2, sk2) ← KGen further and delivers pk = (pk1, pk2) to A as public
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O(1n) : (pk1, sk1)← KGen(1n)
D(1n, pk1) : (pk2, sk2)← KGen(1n);

pk = (pk1, pk2), sk = (∗, sk2);
mi = m1

i m
2
i ← A(1n, pk) for i = 0, 1

O(m1
0, m

1
1) : b← {0, 1}, r0 ← {0, 1}k

′
, c0 = Encpk1(m

1
b , r0)

D(c0) : b̂← {0, 1}, r1 ← {0, 1}k
′

c1 = Encpk2(m
2
b̂
, r1), c = (c0, c1)

b′ → A(1n, pk, c)
output b′

Fig. 5. IND-CPA game against Π with A as a subroutine.

key of Π2
PRG . After receiving the feedback of two challenge messages m0 = m1

0m
2
0,m1 = m1

1m
2
1 ∈

{0, 1}2k from A, algorithm D outputs m1
0,m

1
1 as the challenge messages to challenger O. A random

message mb among them is encrypted with pk1 as c0 = Encpk1(mb, t0) for r0 ← {0, 1}k′
and the

ciphertext is delivered to D . By chosen b̂ ← {0, 1} uniformly at random D computes ciphertext
c1 = Encpk2(m

2
b̂
, r1) for r1 ← {0, 1}k′

. The message (c0, c1) is provided to A . A in turn outputs a
bit d . This is also the output of D .

It is evident to see that if b̂ = b then the view of A here is identical to the view in Game1 . Let
successD denote the event b = b′ in the game. Hence

Pr[successD] = Pr[successD | b̂ = b] + Pr[successD | b̂ 6= b]

= Pr[success1] + Pr[successD | b̂ 6= b]
≥ Pr[success1]

This proves (6), and accomplishes the proof of Lemma 3. ut

4.2 Encryption Trapdoor Functions

We will assume as before that the underlying cryptosystem Π = (KGen, Enc, Dec) is with message
space {0, 1}k and the random string space {0, 1}k′

, where k(n), k′(n) are polynomials in security
parameter n. A pseudo-random generator PRG is used in the construction, where PRG : {0, 1}k →
{0, 1}kk′

.
The idea of the construction is: to fix k pairs of random messages uniformly at random from the

messages space and k public keys that are randomly chosen, these two parts constitute the index
of a function in the collection of functions. The corresponding secret keys as a whole is intended
as trapdoor for the function. For any input x = x1 · · ·xk ∈ {0, 1}k, it produces a sequence of k
encryptions like this: the plaintext for the i-th ciphertext is the first message of the ith pair if the
ith bit in x is 0, or the second message otherwise. The random strings used in the encryption are
generated by a pseudorandom generator with seed x. The result of the k ordered ciphertexts is the
value of x , which is just a ciphertext under Πk

PRG .
Here is a notation that will be used in subsequence contexts for conveniences.

Definition 7. For any k ∈ Z, let m = (m10,m11, . . . ,mk0,mk1) ∈ {0, 1}2k×k. For any x =
x1 · · ·xk ∈ {0, 1}k. Define mx := m1x1m2x2 · · ·mkxk

∈ {0, 1}k2
. The string mx is called the char-

acteristic string of x with respect to m.
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Using the same notations as in last section, the construction of trapdoor functions is formally
presented as follows:

Definition 8 (Encryption Trapdoor Functions, ETF). Let Π = (KGen, Enc, Dec) be a cryp-
tosystem and PRG a pseudo-random generator with parameters as above. A collection of efficient
computable functions FΠ

PRG = (G, F ) is defined as follows:

Sampling function G: on input security parameter 1n, algorithm G invokes KGenk(·) with 1n to
obtain pk, sk, and then chooses messages mij ← {0, 1}k uniformly at random for i ∈ [k], j ∈
{0, 1}. It outputs (m,pk) and sk. Where

m = (m10,m11, . . . ,mk0,mk1) , pk = (pk1, . . . , pkk) , sk = (sk1, . . . , skk) .

The output (m,pk) is an index of a function and sk the trapdoor of the function.
Evaluation of Fm,pk: on input x = x1 · · ·xk ∈ {0, 1}k, it computes and outputs Enck

pk(mx, x).
Recall that mx = m1x1 · · ·mkxk

is the characteristic string of x with respect to m in Definition 7.
Inverting Fm,pk(x) with trapdoor sk: Receiving c and sk as input, it computes m = Deck

sk(c).
If there is some x ∈ {0, 1}k such that m = mx then output x, otherwise output ⊥.

We remark that since mi0 = mi1 in m holds with only negligible probability for each i ∈ [k],
we assume mi0 6= mi1 in subsequent context1.

It is easy to see that when Π and pseudo-random generator PRG is given, the collection of
functions constructed above is indeed well-defined, since PRG is a deterministic algorithm. We
show that it is a collection of injective one-way trapdoor functions.

Theorem 1. Given Π as a semantically secure encryption system and PRG a pseudorandom gen-
erator with appropreated parameters, then FΠ

PRG defined above is a collection of injective one-way
trapdoor functions.

Proof. Trapdoorness: it is almost straightforward to verify that for any tuple (m,pk, sk) generated
by G, the information sk is indeed a trapdoor for function Fm,pk. But it is worthwhile to note that
in the inverting part, when m = Deck

sk(c) is computed, the x ∈ {0, 1}k such that m = mx, if exists,
is unique and can be defined as x = x1 · · ·xk, where xi = 0 iff mi = mi0 and xi = 1 iff mi = mi1

(recall mi0 6= mi1) for each i ∈ [k]. The correctness of inverting with trapdoor information relies on
the correctness of extended encryption Πk

PRG.

Injectivity : assume for some x, y ∈ {0, 1}k, there is a function index m,pk such that Fm,pk(x) = c,
Fm,pk(y) = d and c = d. Denote x = x1 · · ·xk, y = y1 · · · yk, PRG(x) = r1 · · · rk and PRG(y) =
s1 · · · sk. Where xi, yi ∈ {0, 1} and ri, si ∈ {0, 1}k′

for i = 1, . . . , k .
From the definition of extended encryption, c = (c1, . . . , ck) and d = (d1, . . . , dk), where ci =

Encpki
(mixi , ri) and di = Encpki

(miyi , si) . It holds that ci = di from c = d. The correctness of
encryption implies mixi = miyi for all i ∈ [k] . It further implies that xi = yi for all i ∈ [k] and
hence x = y .

One-wayness: for any sampled function Fm,pk , the value on input x ∈ {0, 1}k under this function
is c = (c1, . . . , ck), which is just an encryption of k-extension for Π with respect to pseudorandom
1 In fact, we may explicitly set mi0 6= mi1 during the indexes generation. Careful investigating on our approach

shows that it is unnecessary to choose 2k messages here, rather, two different messages and k repetition of them
will do.
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generator PRG. Let A be any ppt algorithm intended as an inverter to FΠ
PRG. Denote

ε = Pr
[
m,pk, sk← G(1n), x← {0, 1}k : A(m,pk, Fm,pk(x)) = x

]
. (8)

From the definition of Fm,pk, we have that

ε = Pr

[
m = m10,m11, . . . ,mk0,mk1

2k←− {0, 1}k
(pk, sk)← KGenk(1n), x← {0, 1}k, c = Enck

pk(mx, x)
: A(m,pk, c) = x

]
(9)

Where pk = (pk1, . . . , pkk) and c = (c1, . . . , ck).
Since messages mij is chosen uniformly independent at random from {0, 1}k, and x is a random

string, c = (c1, . . . , ck) is a valid ciphertext for a random plaintext. The semantic security of
extension scheme implies that the following probability, denoted as ε1, is with a negligible difference
to ε.

Pr


m = m10,m11, . . . ,mk0,mk1

2k←− {0, 1}k
(pk, sk)← KGenk(1n), x← {0, 1}k, c = Enck

pk(mx, x)
bi ← {0, 1}, if bi = 1 then m′

ij = mij else m′
ij = mi(1−j)

for i ∈ [k], j ∈ {0, 1}. m′ := m′
10m

′
11, . . . ,m

′
k0,m

′
k1.

: A(m′,pk, c) = x

 (10)

Here m′ is obtained by independently interchanging two messages in each of k pairs in m at
random. The reason why |ε − ε1| is negligible is with the same argument as in Lemma 1: the
semantically secure encryption hides every bit of encrypted message. If one can distinguish m′

from m as appeared in experiments (9) and (10) with respect to (pk, c), it will break semantic
security of encryption system Πk

PRG.
This can be formally proved by hybrid argument: let m0 = m, and for i = 1, . . . , k , let

mi = mi−1{mi0/m′
i0,mi1/m′

i1} meaning that mi is the same as mi−1 except replacing mi0 with
m′

i0, and mi1 with m′
i1, respectively. We have mk = m′. Since it is a semantically secure encryption,

no ppt algorithm will be able to tell mi−1,pk, c and mi,pk, c apart, otherwise with the same
argument as in proof for Lemma 1, it will break the semantic security of Π, and hence the semantic
security of Πk

PRG. That finally shows no ppt algorithm can distinguish m,pk, c and m′,pk, c,
except with negligible probability, since k is a polynomial in n. Therefore |ε− ε1| is negligible.

The probability ε1 in (10) is evidently the same as probability ε2 defined as follows:

Pr


m1, . . . ,mk

k← {0, 1}k, (pk, sk)← KGenk(1n)
x← {0, 1}k, c = Enck

pk(m,x); ni ← {0, 1}k, bi ← {0, 1}
if bi = 1 then m′

i0 := mi,m
′
i1 := ni else m′

i0 := ni,m
′
i1 := mi

for i = 1, . . . , k . m′ := m′
10,m

′
11, . . . ,m

′
k0,m

′
k1

: A(m′,pk, c) = x

 (11)

Where m = m1 · · ·mk and Enck(·, ·) is the encryption algorithm in Πk
PRG defined in Definition 8.

The experiment in equation (11) is interpreted as a random string extracting experiment as in
equation (3) by an adversary B as follows:

Challenger chooses encryption keys (pk, sk)← KGen′(1n) and a random message m = m1 . . .mk ←
{0, 1}k×k. It then encrypts m with a random string x← {0, 1}k. As a result it has c = Enck

pk(m,x).
The public key pk and ciphertext c is given to B .
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Algorithm B will choose ni ← {0, 1}k and bi ← {0, 1} independently at random for all i ∈ [k]. It
then sets m′

i0 := mi,m
′
i1 := ni if bi = 1, else m′

i0 := ni,m
′
i1 := mi. Let m′ := m′

10,m
′
11, . . . ,m

′
k0,m

′
k1.

B invokes A with (m′,pk, c) to output whatever A outputs.
The success probability of B in extracting the random string x used in the encryption is the

same as the probability ε2 in equation (11). According to Lemma 2, ε2 shall be a negligible function
in security parameter n .

Therefore, ε1 is negligible. From negligibility of |ε − ε1|, we have ε is negligible, which shows
the one-wayness of FΠ

PRG. ut

From Theorem 1, we obtain one of our main conclusions.

Theorem 2. The existence of semantically secure public-key cryptosystems is equivalent to the
existence of the injective one-way trapdoor functions.

Proof. It is well known [19, 36] that the existence of injective one-way trapdoor functions implies
the existence of semantically secure encryptions.

On the other side, it follows from construction in Definition 8 and Theorem 1 that the func-
tions FΠ

PRG is a collection of injective one-way trapdoor functions given Π a semantically secure
cryptosystem and PRG a pseudorandom generator. The existence of semantically secure encryption
implies the existence of one-way functions [21], which in turn implies the existence of pseudorandom
generators [20, 16]. Therefore, the existence of semantically secure public-key cryptosystems implies
the existence of injective one-way trapdoor functions. ut

5 From Encryption Trapdoor Functions to CCA2 Secure Cryptosystems

In this section we review the notions of security under correlated products and its relation to CCA2
secure encryption scheme. We will redefine the encryption trapdoor functions based on another
extension for any cryptosystem with respect to pseudorandom functions, rather than pseudorandom
generator. The new encryption trapdoor functions can be proved secure in a similar way as before.
It is further proved that they are secure correlated products under uniform, repetitional distribution
(see the definitions in following subsection). Combining this with results in [33], it shows that the
semantically secure encryptions imply CCA2 secure encryptions.

As pointed earlier, this approach is the same as transformation from a semantically secure
encryption to randomness reusable multi-message encryption adopted in [3], we cite the result
there directly without proof.

5.1 Review of Secure Correlated Products

Let F = (G, F ) be a collection of efficiently computable functions over domain {0, 1}k and `(n)
a polynomial on N. The `-wise product functions is defined as the `-wise Cartesian products of
functions from F on domain {0, 1}`×k . Formally,

Definition 9 (`-Wise Product [33]). Let F = (G, f) be a collection of efficiently computable
functions and `(n) a polynomial in security parameter n. The `-wise product F` = (G`, F`) is defined
as follows:

Efficient sampling On input 1n, G` invokes G(1n) for ` times and outputs (s1, s2, . . . , s`) for
the indexes of a function.
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Efficient evaluation On input (s1, s2, . . . , s` ;x1, x2, . . . , x`), algorithm F` evaluates each func-
tion si on xi ∈ {0, 1}k separately and outputs (F (s1, x1), F (s2, x2), . . . , F (s`, x`)).

For any distribution C` on {0, 1}`×k, with the inputs according to C`, product F` needs not to be
one-way even if F is a one-way function family. Hence the definition:

Definition 10 (Secure Correlated Products [33]). Let F be a collection of efficiently com-
putable functions and C` a distribution over domain {0, 1}` k for some polynomial `. We say that F
is secure under C`-correlated product if F` is one-way with respect to the input distribution C` .

5.2 Rosen-Segev Scheme

We include Rosen-Segev [33] CCA2 secure encryption scheme in this section for completeness.
A collection of injective trapdoor functions F and one-time unforgeable signature scheme

(KGensig, Sign, Ver) is used in Rosen-Segev cryptosystem ΠRS = (KGen, Enc, Dec). It is defined
as follows.

Key generation KGen invokes G(·) for 2`-times with input 1n to obtain (sj
i , td

j
i ) ← G`(1n) for

i ∈ [2`] and j ∈ {0, 1} . To generate (k∗Ver, k
∗
Sign)← KGensign(1n) and denote k∗Ver = v1v2 · · · v` ∈

{0, 1}`. The public key PK and secret key SK are

PK =
(
(s0

1, s
1
1), . . . , (s

0
` , s

1
`)

)
SK = (k∗Ver, td

1−v1 , . . . , td1−vk)

Encryption To encrypt bit m ∈ {0, 1}, algorithm Enc generates (kVer, kSign) ← KGensign(1n).
Denote kVer = u1u2 · · ·u` ∈ {0, 1}`. Choose x ∈ {0, 1}n uniformly at random and compute

yi = F (sui
i , x), ∀i ∈ [`] c1 = m⊕ h(su1

1 , . . . , su`
` , x)

c2 = Sign
(
kSign, (y1, . . . , yk, c1)

)
C =

(
kVer, (y1, . . . , yk, c1), c2

)
Output C as ciphertext.

Decryption Algorithm Dec receives ciphertext C as input:

if kVer = k∗Ver or Ver(kVer, , y1, . . . , yk, c1, c2) 6= 1 then output ⊥.

else let j ∈ [`] s.t. vj 6= uj . Compute x = F−1(tduj

j , yj)

if ∃ i ∈ [`] s.t. yi 6= F (sui
i , x) then output ⊥

else output c1 ⊕ h(su1
1 , . . . , su`

` , x)

Let C` be the uniform `-repetition distribution, Rosen and Segev prove the following.

Theorem 3 (Rosen-Segev [33]). If the collection of injective trapdoor function F that is secure
under C`-correlated products, and (KGensig, Sign, Ver) is one-time unforgeable signature scheme,
the encryption scheme ΠRS is CCA2 secure.

A proof of Theorem 3 can be found in [33].
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5.3 Realization with Pseudorandom Functions

In order to construct a collection of correlated secure trapdoor functions, we will redefine the en-
cryption trapdoor function in this section. In previous extension for the cryptosystems in definition
6, a pseudorandom generator is used. While this is good enough for our construction of a collection
of injective trapdoor functions as already proved, it is not convenient in presentation when we
consider the correlated security.

In the new construction, we use the same idea as before, but it adopts a collection of pseudo-
random functions instead of a pseudorandom generator. In fact, we have a general construction
similarly to the `-extension in Definition 6. This construction is the same as the transformation in
[3] and is presented formally as follows:

Definition 11 (`-Extension of Cryptosystems, revised). Suppose ` is an integral polynomial
in n. Let Π be a public-key encryption scheme with parameters as in definition 12 and PRF a
collection of pseudorandom functions from {0, 1}k′′

to {0, 1}k′
. Define a new encryption scheme

Π`
PRF = (KGen`, Enc`, Dec`) as follows:

Key Generation KGen`(·): On input security parameter 1n, it invokes KGen(1n) for ` times to get
key pair (pki, ski)← KGen(1n) for i = 1, . . . , `. Let the public key be pk = (pk1, . . . , pk`) and the
secret key sk = (sk1, . . . , sk`) .

Encryption Enc`
pk(·, ·): On input m = m1 · · ·m` ∈ {0, 1}` k as input, algorithm Enc`

pk(·, ·) chooses
r ← {0, 1}k and computes

Gprf(r) = r′ ri = Fprf(r′, pki) ci = Encpki
(mi, ri)

where |ri| = k′, |mi| = k for all i ∈ [`] . The output is c = (c1, . . . , c`) . That is, Enc`
pk(m, r) = c.

Decryption Dec`
sk(·): On input c = (c1, . . . , c`) and sk, it computes mi = Decski

(ci) for each
i ∈ [`] and outputs m = m1 · · ·m` .

The result of Theorem 4 belongs to Bellare, Boldtreva, Kurosawa and Staddon [3], where their
main purpose is to construct a random reusable multi-messages encryption system. The cryptosys-
tem Π`

PRF is essentially to encrypt ` messages with the same random string r and thus the name.

Theorem 4 (BBKS [3]). Given Π as a semantically secure encryption system and PRF a collec-
tion of pseudorandom functions with appropriate parameters as in Definition 11. For any integral
polynomial `(n), the scheme Π`

PRF defined above is a semantically secure cryptosystem.

With this new extension of encryption, our new construction is presented formally as follows.

Definition 12 (Encryption Trapdoor Functions, Revised). Let Π = (KGen, Enc, Dec) be a
cryptosystem with message space {0, 1}k and random string space {0, 1}k′

. In addition, we assume
that the keys in Π are in {0, 1}k′′

. Let PRF = (Gprf , Fprf) be a collection of pseudo-random functions
from {0, 1}k′′

to {0, 1}k′
. The notations in Definition 11 are inherited here. A collection of efficient

computable functions FΠ
PRF = (G, F ) is defined in the same way as in Definition 8, except that

the extended encryption scheme Π`
PRG is here replaced with Π`

PRF as defined in Definition 11. The
detailed is omitted here.

Theorem 4 allows us to restate Theorem 1 as follows.
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Theorem 5. Given Π as a semantically secure encryption system and PRF a collection of pseu-
dorandom functions with appropriate parameters as in Definition 12, the functions FΠ

PRF are a
collection of injective trapdoor functions.

The proof is similar to that of Theorem 1 and is omitted here. Here comes our key theorem:

Theorem 6 (Correlated Product Security ). Let `(n) be any integral polynomial in n. Given
Π as a semantically public-key cryptosystem and PRF as a collection of pseudorandom functions as
in Definition 12, the function family FΠ

PRF is secure correlated products under uniform, repetitional
distribution C`.

Proof. Given the collection of functions FΠ
PRF and ` an integer, the `-wise product FΠ,`

PRF = (G`, F`)
is defined as in Definition 9. Let (s1, s2, . . . , s`) ← G`(1n) be ` indexes, where si = (mi,pki),
mi = (mi

10,m
i
11, . . . ,m

i
k0,m

i
k1), and pki = (pki1, . . . , pkik) for all i ∈ [`] .

For any string x ∈ {0, 1}k, let mi
x be the characteristic string of x with respect to mi. The

evaluation of F` on input (s1, s2, . . . , s`; x, . . . , x) is

(Fs1(x), . . . , Fs`
(x)) = (Enck

pk1
(m1

x, x), . . . , Enck
pk`

(m`
x, x))

= ((c11, . . . , c1k), . . . , (c` 1, . . . , c` k)) (12)

where r = Gprf(x), rij = Fprf(r, pkij) and cij = Encpkij
(mi

jxj
, rij) for all i ∈ [`] and j ∈ [k] .

pk = (pk11, pk12, . . . , pk1k, . . . , pk` 1, pk` 2, . . . , pk` k) .
The last term in equation (12) is in the form of a ciphertext to a message encrypted under

` k-extension of Π with respect to PRF by Definition 11.
To see that for any randomly chosen x ∈ {0, 1}k, it indeed is a valid ciphertext under Π` k

PRF . One
notices that the index (s1, . . . , s`) is obtained by running KGenk(1n) independently for ` times and
choosing mi uniformly at random according to the definition of `-wise product. Which indicates
that all the pkij in pk are generated independently by KGen(1n) in Π, and all mi0 and mi1 are
chosen uniformly independent. That means pk is generated in the same way as by KGen` k(·) from
definition. For any random string x ∈ {0, 1}k, (12) is hence a valid ciphertext to m1

x · · ·m`
x under

Π` k
PRF . That is,

(Fs1(x), . . . , Fs`
(x)) = Enc` k

pk(m1
x · · ·m`

x, x) (13)

To show one-wayness of FΠ,`
PRF = (G`, F`), one have to show the probability ε defined as follows

is negligible in secure parameter n:

ε = Pr

 ∀i ∈ [`], mi = mi
10,m

i
11, . . . ,m

i
k0,m

i
k1

2k←− {0, 1}k,
(pki, ski)← KGenk(1n), si = (mi,pki), x← {0, 1}k

m := (m1, . . . ,m`), c := (Fs1(x), . . . , Fs`
(x))

: A(m,pk, c) = x

 (14)

= Pr

∀i ∈ [`], mi = mi
10,m

i
11, . . . ,m

i
k0,m

i
k1

2k←− {0, 1}k,
(pk, sk)← KGen` k(1n), x← {0, 1}k,

m := (m1, . . . ,m`), c = Enc` k
pk(m1

x · · ·m`
x, x)

: A(m,pk, c) = x

 (15)

Where equation (14) is from definition of secure correlated product, and equation (15) is from
equation (13) and the discussion as above.

According to Theorem 4, Π` k
PRF is a semantically secure encryption. Using the same arguments

as in the proof of one-wayness property for Theorem 1, one can show ε is negligible. That shows
the one-wayness of the products FΠ,`

PRF under distribution C`. ut
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This leads to our next main conclusion in this paper.

Theorem 7. The existence of semantically secure public-key cryptosystems is equivalent to the
existence of CCA2 secure public-key cryptosystems.

Proof. Since a CCA2 secure encryption system is already a semantically secure one. Hence one
direction is obvious.

On the other side, the existence of semantically secure encryption implies the existence of one-
way functions [21], which in turn implies the existence of pseudorandom functions [17, 16] and the
existence of one-time unforgeable signature schemes [32].

Hence the existence of semantically secure encryption implies injective trapdoor functions by
Theorem 5.

By Theorem 6, the existence of semantically secure encryption further implies the existence
of injective one-way trapdoor functions that are secure under C`-correlated products. Where C` is
uniform `-repetition distribution for any integral polynomial `(n).

Recall that the CCA2 encryption scheme by Rosen-Segev (Section 5.2) is based on injective
trapdoor functions secure under C`-correlated products and one-time unforgeable signature schemes.
Both, however, exists if semantically secure public-key cryptosystems exist. ut

Combining Theorem 1 (and Theorem 5) and Theorem 7, we conclude

Theorem 8. The injective trapdoor functions exist if and only if CCA2 secure cryptosystems exist.

6 Conclusions and Discussions

We conclude in this paper that the existence of injective trapdoor functions is equivalent to the
existence of semantically secure public-key cryptosystems, and to the existence of CCA2 secure
public-key cryptosystems. This settles two long-standing open problems in cryptography. The con-
clusions indicate that in the sense of existence, the notions of security for public-key cryptosystem
like CCA1 secure, non-malleable against CPA, or CCA, bounded CCA secure collapse to one.

The main technique here is to employ the randomness reusable multi-message encryption, using
the input to the function as randomness to encrypt its characteristic strings with respect to a
prescribed set of messages. The security comes from the semantic security of underlying encryption
scheme.

The way of constructing to trapdoor functions here is different from that adopted before. It may
have separate significance itself. It leads new constructions of injective trapdoor functions under
concrete assumptions like DDH or learning with errors (LWE) [31](resolved recently by Peikert and
Waters in [28]). The constructions here are much more efficient than those in [28]. Especially, it
gives the first injective trapdoor functions based on Ajtai-Dwork cryptosystem [1, 2].

Bellare et. al. [4] showed that trapdoor functions with poly-bounded pre-image size imply seman-
tically secure encryptions. Combining their result with ours, it concludes that trapdoor functions
with poly-bounded pre-image size exist if and only if injective trapdoor functions exist, which was
known previously only to hold in random oracle model [4].

Our conclusions also imply, in the sense of existence, the equivalence between secure correlated
products and injective trapdoor functions, which answer the motivating question of secure correlated
products in [33].
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