
Generalized Universal Circuits
for Secure Evaluation of Private Functions

with Application to Data Classification

Ahmad-Reza Sadeghi and Thomas Schneider?

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Secure Evaluation of Private Functions (PF-SFE) allows two
parties to compute a private function which is known by one party only
on private data of both. It is known that PF-SFE can be reduced to
Secure Function Evaluation (SFE) of a Universal Circuit (UC). Previous
UC constructions only simulated circuits with gates of d = 2 inputs while
gates with d > 2 inputs were decomposed into many gates with 2 inputs
which is inefficient for large d as the size of UC heavily depends on the
number of gates.

We present generalized UC constructions to efficiently simulate any cir-
cuit with gates of d ≥ 2 inputs having efficient circuit representation.
Our constructions are non-trivial generalizations of previously known
UC constructions.

As application we show how to securely evaluate private functions such
as neural networks (NN) which are increasingly used in commercial ap-
plications. Our provably secure PF-SFE protocol needs only one round
in the semi-honest model (or even no online communication at all using
non-interactive oblivious transfer) and evaluates a generalized UC that
entirely hides the structure of the private NN. This enables applications
like privacy-preserving data classification based on private NNs without
trusted third party while simultaneously protecting user’s data and NN
owner’s intellectual property.

Key words: universal circuits, secure evaluation of private functions,
neural networks, private data classification, privacy

1 Introduction

Today, a variety of new business models can be provided as electronic services
where customers post their requests to a remote provider who performs specific
knowledge based operations on their data and provides customers with the re-
sults. Examples are expert systems for heath diagnostics, remote data bases,
multimedia data processing, or data classification tools (e.g., for spam). From

? The first author was supported by the European Union under FP6 project SPEED.
The second author was supported by the European Union under FP7 project CACE.

security targets point of view customers may send sensitive and security criti-
cal data and hence require the protection (confidentiality and integrity) of their
data, while the service providers may require the protection of their Intellectual
Property (IP), i.e., their expertise embedded in their system.

Hence, the problem can be formulated as follows: two parties, a service re-
quester R (client) and a service provider P (server), are involved in the compu-
tation of a function f (belonging to P) on data x (input by R) where P should
not obtain any information about x and R should not get any useful information
about f besides the result f(x)1.

For arbitrary functions f , this is tackled by Secure Function Evaluation (SFE)
of Private Functions (PF-SFE). SFE protocols [27,12,14,13,9,5] allow two parties
to securely evaluate a common function on private data. Based on this, PF-SFE
[20,16,10] evaluates a Universal Circuit (UC) [25,10] as common function which is
programmed with the private function f . As UC can be programmed to simulate
any function, it entirely hides f while SFE ensures privacy of data x.

Previous UC constructions can simulate circuits with gates of d = 2 inputs
only. For example, circuits performing arithmetic operations like addition, num-
ber comparison, or multiplication are most efficiently implemented from chains of
d = 3 input gates (full adders, and full comparers). When these types of circuits
need to be simulated with known UC constructions (to hide which arithmetic
operations are performed), the large gates must be decomposed into many d = 2
input gates, e.g., five gates per 3-input gate using Shannon’s expansion theorem:
f(a, b, c) = (c ∧ f(a, b)|c=1) ∨ (c̄ ∧ f(a, b)|c=0)).

To overcome this overhead, we generalize previous UC constructions to d ≥ 2
as non-trivial extensions of previous work together with new constructions that
are especially suited to simulate small circuits. Our constructions are much more
efficient than using the straight-forward solution of evaluating dd/2e known UCs
(where d = 2) in parallel. The overhead of our best Generalized UC (GUC)
construction is by a factor of two smaller than the best known UC construction
for the practical example given in §5.4.

As application of our GUC constructions we show how to securely evaluate
private Neural Networks (NN) where each neuron has d inputs. Amongst oth-
ers, NNs are very useful tools for data classification including pattern/sequence
recognition, and sequential decision making. NNs are increasingly becoming im-
portant for deployment in commercial applications like spam filtering [3], speech
recognition [24], and many more [23] where the “expertise” of the provider is
embedded in NN. Neural networks allow to model any function [7], and are ro-
bust against noise. Previous work [15,17] is based on straight forward use of
homomorphic encryption in multiple rounds that cannot hide NN’s structure
completely and is not provably secure. In contrast we show that our solution (i)
is efficient w.r.t. the size of the circuit needed for a reasonable NN, (ii) requires
no or only one round to evaluate a GUC that (iii) hides the underlying NN and
its topology entirely and (iv) is provably secure in the semi-honest model.

1 Clearly, evaluating f on different inputs xi allows R to learn some information on f .
Thus, P should restrict the maximum number of evaluations of f by other means.

1.1 Related Work

Two-Party Secure Function Evaluation (SFE) protocols [27,12,9] allow two par-
ties to evaluate any function represented as boolean circuit which is known to
both of them on their respective private inputs. All of these protocols are prov-
ably secure against semi-honest adversaries and can be extended to be secure
against malicious adversaries via cut-and-choose [14,13,5]. SFE in semi-honest
model is based on Oblivious Transfer (OT) requiring one round of communi-
cation [19,1,8] or a non-interactive implementation based on an extension of
trusted computing modules [6].

NNs can be represented as boolean circuits - threshold NNs with back-
propagation [21] or evolutionary learning algorithms [18] were implemented in
hardware, but were not considered to be evaluated within SFE protocols yet.

SFE can be extended to private functions (PF-SFE) where the private func-
tion is known to one party only and hidden entirely from the other party. PF-SFE
is reduced to SFE of a Universal Circuit (UC) that is programmed with the pri-
vate function and entirely hides its structure [20,16,10]. The SFE protocol of
[9] which allows very efficient evaluation of UCs can also be used to improve
evaluation of GUCs of this paper (by a factor between two- and fourfold).

Currently known UC constructions [25,10] can simulate gates with d = 2
inputs only. Gates with more than two inputs can be simulated by decomposing
them into multiple gates with two inputs.

Oblivious training and evaluation of NNs was studied in the context of Obliv-
ious Polynomial Evaluation (OPE) [2]. The OPE protocol reduces oblivious poly-
nomial evaluation to OT. Based on this protocol, they show how to train and
evaluate NNs in multiple rounds without hiding the structure of the NN. Non-
linear activation functions are either evaluated using a circuit based SFE protocol
or piece-wise approximated as polynomials evaluated via OPE protocol.

Oblivious NN evaluation using homomorphic encryption [15,17] requires mul-
tiple rounds as well - one per layer of the NN. The protocol allows evaluation of
NNs with several activation functions like threshold or sigmoid function. To hide
the structure of the NN, dummy neurons are introduced but this does not en-
tirely hide the structure (e.g., maximal number of neurons per layer and maximal
number of layers are revealed as outlined in their paper). Also, these protocols
are not provably secure as blinding an additively homomorphic encrypted value
with a randomly chosen factor reveals information on the magnitude of the value.

1.2 Our Contributions

In §4 we present practical Generalized Universal Circuit (GUC) constructions
to efficiently simulate circuits of gates with d ≥ 2 inputs having efficient circuit
representations. Former UCs are restricted to d = 2 and decompose larger gates
into multiple gates with two inputs resulting in much more overhead than our
GUC constructions (cf. Table 1 in §5.4). Our constructions are non-trivial gen-
eralizations of known UC constructions that are special cases of ours for d = 2.

Based on these GUC constructions we present protocols to securely evaluate
private Neural Networks (NN) with activation functions implemented as small
circuits (such as threshold function) in §5. Unlike previous work, our proto-
cols are provably secure, need a constant number of rounds (one round in the
semi-honest model or even no online communication at all using non-interactive
OT), hide NN’s structure entirely (besides number of in- and outputs, maximum
degree d and number of neurons k) and are still practical.

1.3 Basic Idea and Outline

A Generalized Universal Circuit (GUC) is a circuit which can be programmed
to simulate an arbitrary circuit that consists of gates with d inputs each. These
gates are required to have an efficient circuit representation which is the case in
our example for neurons in §5 or if the size of their function table 2d is small.

A GUC can be thought of as a kind of processor (here: programmable circuit)
that takes as input some data x and a program pf corresponding to a function
(here: input circuit) and evaluates the program on the data (here: input circuit
on data): UC(pf , x) = f(x). As GUC can be programmed with any function
it does not reveal anything about the function. This allows to evaluate arbi-
trary functions privately. In contrast to previous UC constructions we relax the
restriction that input circuits need to consist of gates of d = 2 inputs only.

In §4 we give different methods to construct GUCs in an iterative (§4.1),
modular (§4.2), or graph based (§4.3) way and compare them in §4.4. Definitions
are given in §2, new building blocks in §3.

As practical application where simulation of d input gates is advantageous, we
show how neural networks (NN), described in §5.1, can be expressed as circuits
consisting of d input gates in §5.2. Their structure can be entirely hidden inside a
GUC which allows secure evaluation of private NNs as shown in §5.3. Finally, we
compare our GUC construction and its application to securely evaluate private
NNs to previously known constructions and protocols in §5.4.

2 Definitions and Preliminaries

The following definitions generalize those of [10] to gates with multiple inputs.
A gate G is the implementation of a boolean function {0, 1}d → {0, 1} with

d inputs and one output. The size of a gate G, denoted by |G|, is the multiple of
function table entries needed to implement the gate w.r.t. a 2 input gate, namely
|G| = 2d−2 (e.g., |B|d=1 = 0.5, |B|d=2 = 1, etc.).

We consider acyclic circuits consisting of connected gates with arbitrary fan-
out, i.e., the output of each gate can be used as input to arbitrary many gates.
Further, each output of circuit C is the output of a gate and not a redirected
input of C. The size of a circuit is the sum of the sizes of its gates. Communication
and computation complexity of SFE protocols is linear in the size of the circuit.

A programmable gate is a gate with an unspecified function table. To program
it, a specific function table with 2d entries for each input combination is given.

To simplify presentation we group gates into functional blocks as follows:
A block Bu

v is a sub-circuit with u inputs in1, .., inu and v outputs out1, .., outv.
Bu

v computes a function fB : {0, 1}u → {0, 1}v that maps the input values to the
output values. For simplicity, we identify Bu

v with fB and write: B(in1, .., inu) =
(out1, .., outv). Blocks consist of connected gates and other sub-blocks. The size
of block B, denoted by |B|, is the sum of the sizes of its sub-elements.

A programmable block is a block consisting of programmable gates or pro-
grammable blocks. It is programmed by programming each of its sub-elements.

A generalized Universal Circuit (GUC) UCk,u,v×d is a programmable block
with u inputs and v outputs that can be programmed (denoted by UCC

k,u,v×d) to
simulate any circuit C with up to u inputs, v outputs and k gates with d inputs,
i.e., ∀(in1, .., inu) ∈ {0, 1}u : UCC

k,u,v×d(in1, .., inu) = C(in1, .., inu).
We use programmable block constructions from [10] with the given number

of in- and outputs and the following informal functionalities (see [10] for exact
definitions and constructions): Y switching block (Y 2

1 programmable as left:
out1 = in1 or right: out1 = in2), X switching block (X2

2 programmable as pass:
(out1, out2) = (in1, in2) or cross: (out1, out2) = (in2, in1)), Su

v selection block
(programmable to select for each of the v outputs any of the u inputs including
duplicates). Their sizes and properties are summarized in Table 3 in §B.

Our constructions use different compositions of wires:
A (single) wire has value either 0 or 1 and is drawn as thin arrow ().

A multi wire W consist of ω wires with fixed ordering. The single wires
can be indexed by W [1], ..,W [ω]. The value of W is the unsigned integer value
w =

∑ω
i=1 2i−1W [i]. Multi wires are drawn as filled thick arrows ().

A bundle consists of wires with irrelevant ordering and no duplicates (no two
wires are the output of the same gate). u× d denotes u bundles of d wires each.
Bundles are drawn as unfilled arrows ().

Exact calculations of the sizes of our constructions and building blocks with
all intermediate steps are given in §E.

3 Bundle Blocks for GUC Constructions

The main difference of our efficient GUC constructions compared to previous
UC constructions is to switch bundles of d wires instead of single wires only. To
do this, we construct efficient bundle blocks that are used as the fundamental
building blocks of the GUC constructions described in §4.

Cu
d Choice Block is a programmable block that can be programmed to choose

from the u inputs a bundle of d distinct values as outputs (without recurrence)
where the order of the outputs does not matter. More formally, given a subset
Γ ⊆ {1, .., u}, |Γ | = d, the choice block computes C(in1, .., inu) = (inγ1 , .., inγd

)
where Γ = {γ1, .., γd} (note, the set equality implies irrelevance of ordering and
no duplicate inputs). Of course the definition of a choice block makes only sense
for u ≥ d as Γ is undefined for u < d.

A simple implementation of a Cu
d choice block, Cu,simple

d , is to use d se-
lection blocks Su−d+1

1 in parallel: outi = Su−d+1
1 (ini, .., inu−d+i); i = 1, .., d,

i.e., the first selection block can be programmed to select any of the inputs
in1, .., inu−d+1, the second any of in2, .., inu−d+2 and so on. This results in
|Cu,simple

d | = d·|Su−d+1
1 | = du−d2. The equation also holds true for u = d where

the choice block consists of wires only and its size is 0. The straight-forward pro-
gramming algorithm works as follows: sort Γ ascendingly; for i = 1, .., d do: let
k be the smallest element in Γ ; program the i-th selection block to select ink;
remove k from Γ ; next i. Correctness and efficiency are easy to verify.

Alternatively, a choice block, Cu,sublin
d , which is much more efficient for larger

d can be derived as a special case of bundle permutation block described next.

BP
u≥vd
v×d Bundle Permutation Block is a programmable block that can be

programmed to permute the u inputs to v bundled outputs of d wires each
(without duplicates). We define bundle permutation blocks to have at least as
many inputs as outputs: u ≥ vd. More formally, let S ⊆ 1, .., u; |S| = vd be the
subset of inputs that are chosen as outputs and Φ = (Φ1, .., Φv) be an ordered

partition of S with
v⋃

i=1

Φi = S; |Φi| = d, the block computes BP (in1, .., inu) =

(inϕ1,1 , .., inϕ1,d
, .., inϕv,1 , .., inϕv,d

), with Φi = {ϕi,1, .., ϕi,d}; i = 1, .., v.

Our efficient implementation of BPu≥vd
v×d bundle permutation block is based

on the truncated permutation block construction of [10]. A TPu≥v
v truncated

permutation block is a programmable block that can be programmed to permute
its u ≥ v inputs to its v outputs (u and v need not be equal or powers of two as
in [26]). Remaining u− v inputs are discarded (truncated permutation).

TPu
v block is constructed recursively from two TP

u/2
v/2 sub-blocks and u/2−1

X switching blocks on top that distribute the inputs to the sub-blocks and
v/2 X switching blocks on bottom to distribute their outputs to the outputs
of TPu

v block as shown in Fig. 1(a). W.l.o.g. we assume u and v are even at
each recursion step (otherwise we introduce an unused dummy input or output
with small overhead). Note, that our construction is upside-down compared to
the original construction of [10] to have the saved X blocks on top instead
(the programming algorithm remains the same using the inverse permutation
instead). This modification implies that our GUC construction M3 in special
case d = 2 is more efficient than the original UC construction of [10].

To obtain an efficient BPu≥vd
v×d bundle permutation block, a TPu≥vd

vd trun-
cated permutation block is constructed without the lowest log d layers of X
switching blocks which can be replaced with wires as the order within each bun-
dle of d wires is irrelevant. Hence, |BPu

v×d| = |TPu≥vd
vd | − |X| · log d · dv/2 =

(u + dv) log v + (log d + 1)u − 3dv + 2. An efficient programming algorithm for
bundle permutation blocks can easily be derived from the one given in [10].

Our efficient construction of the bundle permutation block is indeed a gen-
eralization of the truncated permutation block of [10] which is a special case for

d = 1 of our construction (BPu≥v
v×1 ≡ TPu≥v

v) with exactly the same size
|BPu≥v

v×1 | = |TPu≥v
v | = (u + v) log v + u− 3v + 2.

By fixing the other parameter v = 1, we obtain a more efficient (sub-linear in
the number of outputs d) construction for choice blocks, Cu,sublin

d := BPu≥d
1×d ≡

Cu
d , with size |Cu,sublin

d | = |BPu≥d
1×d | = (log d + 1)u− 3d + 2.

4 Generalized Universal Circuits

A generalized universal circuit (GUC) UCk,u,v×d is a boolean circuit that can be
programmed to simulate any circuit with u inputs, v outputs and k gates with
d ≥ 2 inputs each. Existing UC constructions [25,10] can simulate gates with two
inputs only and can be seen as a special case of our corresponding generalized
constructions for d = 2. UCk,u,v×d has exactly u inputs and v outputs.

Each d input gate of the simulated circuit is simulated within a gate simula-
tion block, i.e., a programmable block which can be programmed to simulate the
functionality of the gate and has d inputs and 1 output. Gates are simulated in
topologic order which can be computed efficiently by topologic sorting in O(k).

In the following, we assume that the order of the inputs of a gate simulation
block is irrelevant and no inputs are duplicated. This is the case for gate simu-
lation blocks implemented as a d input programmable gate that is programmed
with the same function table as the simulated d input gate of exponential size
|G| = 2d−2. The entries of the function table can be swapped according to an
arbitrary input ordering and duplicate inputs can easily be eliminated. Also for
gate simulation blocks that implement neurons as a circuit the order of inputs is
irrelevant and duplicate inputs can be eliminated as we will explain in §5. The
irrelevance of the input ordering without duplicates is reflected by bundles of d
wires as input into a gate simulation block.

If the order of inputs of the simulated gates is relevant or duplicate inputs
are needed, the following GUC constructions can be extended by replacing the
bundle blocks from §3 with their corresponding non-bundled counterparts where
the order of outputs does matter at the cost of a small overhead:
Cu,simple

d 7→ Su
d , Cu,sublin

d 7→ Su≥d
d , BPu≥vd

v×d 7→ TPu≥vd
vd .

We stress that the sizes of all building blocks and the GUCs presented in the
remainder of this section only depend on the parameters u, v, k, d but neither on
the input data nor the simulated circuit. Hence, dynamic choice of the smallest
implementation for each building block in so called combined constructions re-
spectively choosing smallest GUC construction reveals nothing about the input
data nor the simulated circuit.

4.1 Iterative GUC Constructions

A simple GUC is constructed iteratively by choosing for the i-th gate simulation
block Gi any of the u inputs of the circuit or the output of a previous gate
simulation block G1, .., Gi−1 with Cu+i−1

d choice block. The v outputs of the
GUC can be selected to be any of the outputs of the k gate simulation blocks

using Sk≥v
v selection block.

Using simple Cu,simple
d choice blocks results in a total size of

|UCI1
k,u,v×d| = 0.5dk2 + (du− d2 − 0.5d + |G|+ 1)k + (k + 3v) log v − 4v + 3

∼ 0.5d · k2 + d · uk.

With sub-linear Cu,sublin
d choice blocks instead the construction has size

|UCI2
k,u,v×d| = (0.5 log d + 0.5)k2 + (u log d + u− 0.5 log d− 3d + |G|+ 2.5)k

+ (k + 3v) log v − 4v + 3 ∼ 0.5 log d · k2 + log d · uk.

A combination of both approaches chooses the smallest implementation for each
choice block (simple or sub-linear) dynamically.

|UCI
k,u,v×d| ≤ min(|UCI1

k,u,v×d|, |UCI2
k,u,v×d|).

All iterative GUC constructions are only practical for a small number of simu-
lated gates k and few inputs u.

4.2 Modular GUC Constructions

Another approach to construct a GUC is to separate the inputs and the outputs
from the simulation of the gates. This results in modular GUC constructions
which are a generalization of the modular UC construction of [10]. The modular
GUC is composed out of three programmable blocks as shown in Fig. 1(b).
The generalized Universal Block (UB), Uk×d, simulates the k gates, the input
selection block chooses the corresponding inputs and the output selection block
chooses the outputs of the simulated gates as outputs of the modular GUC. The
construction has size

|UCMi
k,u,v×d| = |Su

dk≥u|+ |UMi
k×d|+ |Sk≥v

v | ∼ 2dk log k + dk log u + |UMi
k×d|.

The overall complexity is determined by the complexity of the generalized UB
Uk×d that only depends on the number of simulated gates k and no longer on
the number of inputs u or outputs v. The generalized UB Uk×d has k bundles
of d inputs where the i-th bundle, indi, .., indi+d−1, can be switched to the i-th
gate simulation block Gi; the output of Gi is connected to outi of Uk×d.

Next, we give different constructions for generalized UBs that can be plugged
into the modular GUC construction. The iterative constructions (generalized
from [22, Section 5.3.1]) grow like d·k2 and log d·k2 and the recursive construction
(generalized from [10]) grows like dk log2 k.

Iterative Generalized Universal Block Construction. An iterative con-
struction for a generalized UB is similar to the iterative GUC construction de-
scribed in §4.1 but without the dependancy on the inputs that are handled
efficiently by the input selection block of the modular GUC construction. For

TP
u/2
v/2TP

u/2
v/2

...

out
1
, ..., out

v

X X

out1 out2 out3 outv-1out4 outv

TP
u
v

...

X

inu-1inu

...

...

X

in3 in4in1 in2

in
1
, ..., in

u

X

(a) Truncated Permutation Block

Su

dk≥u

in1, . . . , inu

out1, . . . , outv

k

k×d

UCk,u,v×dGeneralized

Universal

Circuit

Output

Selection

Block

Generalized

Universal

Block

Uk×d

Sk≥v

v

Input

Selection

Block

(b) Modular GUC Construction

Fig. 1. Building blocks for GUCs

each gate simulation block Gi, a Cd+i−1
d choice block can be programmed to

choose any of the d wires of the i-th input bundle of the generalized UB and the
i− 1 outputs of the previous gate simulation blocks G1, .., Gi−1 as input to Gi.
Using simple Cu,simple

d choice blocks this results in a total size of

|UM1
k×d| = 0.5dk2 − 0.5dk + k · |G| ∼ 0.5d · k2.

With sub-linear Cu,sublin
d choice blocks instead the size is

|UM2
k×d| = (0.5 log d + 0.5)k2 + (d log d− 0.5 log d− 2d + |G|+ 1.5)k

∼ 0.5 log d · k2.

Both modular iterative constructions still grow like k2 but are more efficient
than the iterative GUC constructions from §4.1 for circuits with many inputs
due to the efficient handling of inputs with the input selection block.

Recursive Generalized Universal Block Construction. A generalization
of the recursive UB construction of [10] yields a generalized UB of size

|UM3
k×d| = (0.625d + 0.25)k log2 k + (0.5d log d− 0.625d− 1.25)k log k

+ (|G|+ 3)k − 3 ∼ 0.625dk log2 k.

For lack of space, the detailed description of the construction is in §C. Com-
pared to the constructions presented before, the recursive construction grows
like k log2 k instead of k2 which is clearly much slower for larger circuits.

Combined Generalized Universal Block Construction. A combination of
these generalized UB constructions uses the smallest generalized UB implemen-
tation (M1, M2 or M3) dynamically. Dynamic Programming avoids recalculation
of the smallest construction for given parameters by caching it in a table.

|UM
k×d| ≤ min(|UM1

k×d|, |UM2
k×d|, |UM3

k×d|)

4.3 Universal Graph based GUC Construction

A generalization of Valiant’s UC construction [25] which is based on Universal
Graphs results in a GUC construction of size

|UCUG
k,u,v×d| ∼ 4.75d(2k + u +

v

d− 1
) log k.

This GUC construction is asymptotically better than those shown before for
large circuits and is based on the following theorem.

Theorem 1. Each circuit of arbitrary fan-out with v outputs and k gates of
d inputs each can be converted into an equivalent circuit with fan-out ≤ d by
adding at most k + v

d−1 gates.

For lack of space, the detailed description of this construction and the proof
of the theorem are given in §A.

4.4 Comparison of GUC Constructions

The sizes of the different GUC constructions for several practical parameters are
shown in Fig. 4 of §B. Which construction is the smallest (and hence should be
used for least overhead) depends on the parameters d, k, u, and v only. Quadratic
constructions (I1, I2,M1,M2) are suitable for small, whereas recursive construc-
tion (M3) is better for mid-size and universal graph based construction (UG)
for large circuits.

5 Secure Evaluation of Private NNs with GUCs

5.1 Structure of NNs

A neural network (NN) is an acyclic directed graph of several neurons. The
neurons are arranged in multiple layers (Fig. 2) in topologic order. Each neuron
has d input bits, one output bit, internal precision of s bits and is structured
as shown in Fig. 3(a). Each input bit ini of a neuron is multiplied with a s-
bit constant weight wi. The Σ block computes the sum σ of these weighted
inputs. The threshold function τ compares σ with a threshold value t and sets
the output: if σ :=

∑d
i=1 wi · ini < t, then out = 0, else out = 1.

N

N

N

N

N

N

N

N N

N

Fig. 2. NN with 4 layers of k = 10 neurons with degree d = 3 including u = 3
input neurons and v = 2 outputs.

The input neurons of the first layer in the NN have only 1 input with multiple
bits m. They can also be realized with a neuron as shown in Fig. 3(a) by setting
the weights correspondingly.

Neurons fulfill the restrictions for d input gates of §4: Inputs can be permuted
arbitrarily by permuting their weights in the same way. Duplicate inputs into
a neuron with the same source can be merged into one input by adding their
weights. Implementation of neurons presented next guarantees that the weights
of neurons remain hidden from requester and hence these modifications are not
detectable for him.

5.2 Circuit Implementation of Neurons

If the number of inputs d is small, each neuron can be implemented as pro-
grammable d input gate of size |Ngate

d,s | = 2d−2 (for arbitrary activation func-
tion), otherwise as programmable d input block (Fig. 3(a)). The neuron can be
programmed depending on the weights ω1, .., ωd and the threshold value t.

w1

w2

wd

τ
∑

in1

in2

ind

out

Nd,s

(a) Neuron

ADDs+2

ADDs+1

ADDs+1

ADDs+2

ADDs+1

ADDs+1

in1

in2

in3

in4

ind

ind−1

ind−2

ind−3

ADDs+log d out

Σ

(b) Sum

W1

W2

Ws

in

out[1]

out[2]

out[s]

w

(c) Weights

HA

FA

FA

ADDs+1

out[1]

out[2]

out[s]

out[s + 1]

in1[1]
in2[1]

in1[2]
in2[2]

in1[s]
in2[s]

c1

c2

cs

(d) Adder

FC

τ

in[1]

in[2]

in[s + log d]

out

c1

c2

HC

FC

cs

(e) Threshold

Fig. 3. Circuit implementation of a neuron

As before we give directly the total size of the building blocks. Exact calcu-
lations with all intermediate steps are given in §E.2.

The w block multiplies its input bit with constant ω of s bits (Fig. 3(c)). The
bits ω[i], i = 1, .., s, determine the programming of the programmable gate Wi: if
ω[i] = 0, then Wi = 0, else Wi = in. The size is |Wi| = 0.5, |w| = s · |Wi| = 0.5s.

The Σ block sums up the d input values of s bits each to a s + log d bit
value by pairwise adding them in a tree (Fig. 3(b)). An adder ADDs+1 to add
two s bit values to an s + 1 bit value is composed as usual from a half adder
HA and s − 1 full adders FA (Fig. 3(d)). The size is |HA| = 2, |FA| = 4,
|ADDs+1| = 4(s + 1)− 6, |Σ| < 4ds + 2d− 4s + 6.

The τ block compares the s + log d bit input with an s + log d bit constant t
(Fig. 3(e)). The carry ci = 0, i = 1, .., s+log d, tells that the i least significant bits
of in are less than the i least significant bits of t: if ((in mod 2i) < (t mod 2i)),
then ci = 0, else ci = 1. Depending on t[1], the programmable half comparer
block HC is programmed: if t[1] = 0, then HC = 1, else HC = in1. The
remaining bits t[i], i = 2, .., s+log d, determine the program of the programmable
full comparer blocks FCi: if t[i] = 0, then FCi = ini∨ci−1, else FCi = ini∧ci−1.
The size is |HC| = 0.5, |FC| = 1, |τ | = s + log d− 0.5.

The total size of a neuron implemented as programmable block is
|Nblock

d,s | < 4.5ds + 2d− 3s + log d + 5.5.

5.3 Protocol for Oblivious Evaluation of NNs using GUCs

Oblivious evaluation of NNs is reduced to SFE of GUCs similar to the reduc-
tion for PF-SFE [10]. A GUC is programmed to simulate the structure of the
NN. Each gate simulation block G is instantiated with a programmable cir-
cuit for a neuron Nd,s programmed with the coefficients of the neuron it sim-
ulates: UCNN = UCk,u,v×d|G=Nd,s

. Programmed GUC simulates the NN and
entirely hides its structure (besides size and number of inputs and outputs):
∀(in1, .., inu) ∈ {0, 1}u : UCNN (in1, .., inu) = NN(in1, .., inu).

When requester evaluates the programmed UCNN with a SFE protocol, he
learns no more about NN than the maximal number of neurons k, maximal
degree of neurons d, internal precision s, inputs u and outputs v.

The protocol needs one round in the semi-honest model (using interactive OT
such as [19,1,8]) or is non-interactive (using non-interactive OT of [6]). Recall,
the reduction from PF-SFE to SFE using UC (resp. GUC in our case) is non-
cryptographic and the security of the PF-SFE protocol is exactly that of the un-
derlying SFE protocol which is provably secure against semi-honest adversaries
(e.g., [27,12,9]). This can be extended to be provably secure against malicious
adversaries by using correspondingly secure SFE protocols (e.g., [14,13,5]) which
need more than one but still a constant small number of rounds.

5.4 Comparison with Previous Work

We compare our GUC constructions with existing UC constructions before com-
paring our protocol for secure evaluation of NNs with existing protocols. As
example for both comparisons we use the practical NN to classify sonar tar-
gets from [4] for which performance results are given in [15]. However, we use

threshold instead of sigmoid as activation function as performance of [15] is al-
most the same independent of the used activation function. Besides this we use
exactly the same parameters for the neural network, namely u = 60 inputs,
v = 2 outputs, k = 12 hidden neurons with an internal resolution s = 20 (cor-
responding to their quantization factor Q = 10−6). In order to obfuscate the
structure of NN they propose to embed NN into a grid of 5 layers with 15 neu-
rons each. Hence, the in-degree of each neuron is d = 15 while the total number
of neurons is hidden to be less than k = 75. This results in neurons of size
|N | = |Nblock

d=15,s=20| ≤ 1, 330 < |Ngate
d=15,s=20| = 8, 192.

We compare three possible alternatives that protect the internal weights and
thresholds of the neurons and incrementally protect the structure of the NN:

(A) Embed NN into a 5× 15 grid to obfuscate its structure (same as [15]):
evaluate 75 · |N | ≤ 99, 750 gates.

(B) Hide the structure of the NN entirely:
simulate NN of k = 12 neurons (12 · |N | ≤ 15, 960 gates) in GUC
(|UCM1

k=12,u=60,v=2×d=15| ≤ 2, 304 gates, cf. Fig. 4(g) in §B).
(C) Additionally hide the number of neurons to be less than 75:

simulate NN of k = 75 neurons (75 · |N | ≤ 99, 750 gates) in GUC
(|UCM2

k=75,u=60,v=2×d=15| ≤ 27, 371 gates, cf. Fig. 4(h) in §B).

Comparison of GUC Construction. As shown in Table 1, the overhead of
our GUC introduced in case (B) and (C) is very moderate compared to known
UC constructions. Applying UC directly results in an overhead which is by a
factor of > 103 times bigger, while using dd/2e = 8 parallel UCs still is by a
factor of more than two times bigger than our solution.

Table 1. Comparison of UC overhead (in number of gates)

UC Parallel UCs GUC

[25] [10] [25] [10] §4
(B): k = 12 4, 242, 114 5, 556, 431 23, 432 6, 577 2, 304

(C): k = 75 31, 482, 358 47, 478, 158 100, 359 58, 618 27, 371

Comparison of Protocol for Secure Evaluation of NNs. We used Fairplay
SFE system [14] implemented in Java as well without cut and choose step to
evaluate a circuit with u = 60 inputs, v = 2 outputs and the given number of
gates within two processes on a notebook with 2.16 GHz Intel Core 2 processor
and 2 GB memory. As [15] do not specify the exact hardware used (“two mid-
level notebooks, connected on a LAN network”), the results of the comparison
shown in Table 2 are qualitative but not necessarily quantitative:

Unlike the protocol in [15], ours are provably secure and approaches (B) and
(C) hide the structure of NN better than just obfuscating it.

The total amount of communication overhead of [15] is by a factor of at least
10 times better than our solutions, however they need multiple rounds (for each
layer of the NN) whereas our solutions need only one round in the semi-honest
model or even no online-communication at all (using non-interactive OT). On
analyzing the communication complexity separately for server and client we see
that in our solutions the amount of data sent by the client is much smaller than
that of the server and only depends on the number of inputs but not on the size
of NN. The amount of data sent by client is by a factor of five less than that
in [15] (as the client in their symmetric protocol sends approximately half of
the total data). This asymmetry in the communication exactly corresponds to
modern communication networks such as mobile networks or the internet, where
the upstream of the client is much slower than its downstream. Downloading the
maximum amount of 5.4 MB in (C) realistic for today’s mobile networks.

The total time for executing the protocol of (A) and (C) is almost the same
as that of [15] while (B) is almost three times faster. While in [15] client has
to do only 20% of the work, in our protocols, server and client need approxi-
mately the same amount of computation for creating and evaluating the garbled
circuit. Online-computation of our server can be avoided almost completely by
constructing the garbled circuit in advance while server is idle. This reduces total
execution time of our protocols by half.

Using [9] as underlying SFE protocol or a high-speed SFE implementation
such as [11] written in C with elliptic curve based OT would further improve
communication and computation complexity of our protocols.

Table 2. Comparison of protocols for secure evaluation of NNs

Protocol [15] (A) (B) (C)

Level of privacy obfuscate obfuscate hide structure hide structure&size

Provably secure no yes

Communication (Total) 76 kB 4.2 MB 0.79 MB 5.4 MB
Server (send) ≈ 38 kB 4.2 MB 0.78 MB 5.4 MB
Client (send) ≈ 38 kB 7.5 kB

Rounds 5 1 (0)

Computation (Total) 11.7 s 11.3 s 4.0 s 13.4 s
Server 9.3 s ≈ 5.7 s ≈ 2.0 s ≈ 6.7 s
Client 2.4 s ≈ 5.7 s ≈ 2.0 s ≈ 6.7 s

Acknowledgments. We thank Vladimir Kolesnikov and anonymous reviewers
for their helpful comments.

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In Advances in Cryptology – EUROCRYPT 2001, volume 2045

of LNCS, pages 119–135. Springer, 2001.
2. Yan-Cheng Chang and Chi-Jen Lu. Oblivious polynomial evaluation and oblivious

neural learning. In Advances in Cryptology – ASIACRYPT 2001, volume 2248 of
LNCS, pages 369–384. Springer, 2001.

3. Rich Drewes. An artifical neural network spam classifier, August 2002.
http://www.interstice.com/drewes/cs676/spam-nn/.

4. R. Paul Gorman and Terrence J. Sejnowski. Analysis of hidden units in a layered
network trained to classify sonar targets. Neural Networks, 1(1):75–89, 1988.

5. Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi
party computation against covert adversaries. In Advances in Cryptology – EU-
ROCRYPT 2008, volume 4965 of LNCS, pages 289–306. Springer, 2008.

6. Vandana Gunupudi and Stephen R. Tate. Generalized non-interactive oblivious
transfer using count-limited objects with applications to secure mobile agents. In
Financial Cryptography and Data Security (FC ’08), volume 5143 of LNCS, pages
98–112. Springer, 2008.

7. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

8. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In CRYPTO 2003, volume 2729 of LNCS. Springer, 2003.

9. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In 35th Int. Colloquium on Automata, Languages and
Programming (ICALP ’08), volume 5126 of LNCS, pages 486–498. Springer, 2008.

10. Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit con-
struction and secure evaluation of private functions. In Financial Cryptography
and Data Security (FC ’08), volume 5143 of LNCS, pages 83–97. Springer, 2008.
http://thomaschneider.de/FairplayPF.

11. Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation effi-
ciently with security against malicious adversaries. In Security and Cryptography
for Networks (SCN ’08), volume 5229 of LNCS, pages 2–20. Springer, 2008.

12. Yehuda Lindell and Benny Pinkas. A proof of Yao’s protocol for secure two-party
computation. Cryptology ePrint Archive, Report 2004/175, 2004.

13. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Advances in Cryptology –
EUROCRYPT 2007, volume 4515 of LNCS, pages 52–78. Springer-Verlag, 2007.

14. Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a secure
two-party computation system. In USENIX, 2004.
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html.

15. Claudio Orlandi, Alessandro Piva, and Mauro Barni. Oblivious neural network
computing via homomorphic encryption. European Journal of Information Systems
(EURASIP), 2007(1):1–10, 2007.

16. Benny Pinkas. Cryptographic techniques for privacy-preserving data mining.
SIGKDD Explor. Newsl., 4(2):12–19, 2002.

17. Alessandro Piva, Michele Caini, Tiziano Bianchi, Claudio Orlandi, and Mauro
Barni. Enhancing privacy in remote data classification. New Approaches for Secu-
rity, Privacy and Trust in Complex Environments (SEC ’08), 2008.

18. Vassilis P. Plagianakos and Michael N. Vrahatis. Parallel evolutionary training al-
gorithms for ”hardware-friendly” neural networks. Natural Computing, 1(2-3):307–
322, 2002.

19. Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical
report, Harward University, 1981. Available at Cryptology ePrint Archive, Report
2005/187.

http://www.interstice.com/drewes/cs676/spam-nn/
http://thomaschneider.de/FairplayPF
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html

20. Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing
for NC1. In Proc. 40th IEEE Symp. on Foundations of Comp. Science, FOCS ’99,
pages 554–566, New York, 1999. IEEE.

21. Kazuo Sato and Hiroomi Hikawa. Implementation of multilayer neural network
with threshold neurons and its analysis. Artificial Life and Robotics, 3(3):170–175,
1999.

22. Thomas Schneider. Practical secure function evaluation. Master’s thesis, University
of Erlangen-Nuremberg, 2008. http://thomaschneider.de/theses/da/.

23. StatSoft, Inc. STATISTICA Automated Neural Networks, 2008.
http://www.statsoft.com/products/stat nn.html.

24. Joe Tebelskis. Speech Recognition using Neural Networks. PhD thesis, School of
Computer Science, Pittsburgh, 1995.

25. Leslie G. Valiant. Universal circuits (preliminary report). In Proc. 8th ACM Symp.
on Theory of Computing, STOC ’76, pages 196–203. ACM Press, 1976.

26. Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, 1968.
27. Andrew C. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symp.

on Foundations of Comp. Science, FOCS ’86, pages 162–167, Toronto, 1986. IEEE.

A Universal Graph based GUC Construction

To construct an asymptotically better UC than the practical constructions pre-
sented before we generalize Valiant’s UC construction [25]. Valiant shows how
to construct a UC by embedding the given circuit into a universal graph Γd(k′)
with |Γd(k′)| ∼ 4.75dk′ log k′, where d is the fan-in and fan-out of the simulated
graph and k′ is the number of simulated nodes. A circuit with u inputs and k
gates having fan-in and fan-out maximum d can be represented as such a simu-
lateable graph with k′ = k + u nodes and embedded into this universal graph.
We generalize Valiant’s construction (that uses d = 2 and can simulate circuits
with gates having 2 inputs only) to a GUC that simulates circuits with arbitrary
fixed in-degree d and arbitrary fan-out of size

|UCUG
k,u,v×d| ∼ 4.75d(2k + u +

v

d− 1
) log k.

The circuit is converted from arbitrary fan-out to a circuit with fan-out at most d
which can be embedded into the universal graph Γd(k′). This is done by replacing
each gate with fan-out x > d by a binary tree of d x

d−1e + 1 gates with fan-out
≤ d. At most e = k + v

d−1 extra gates are needed as described in §A.1. Setting
k′ = k + u + e results in the stated complexity for the generalized Valiant’s UC
construction. By setting d = 2 we obtain exactly the asymptotic complexity of
Valiant’s original UC construction.

A.1 Converting Circuit to Fan-out ≤ d

As described in §A, a circuit with s gates of arbitrary fan-out and m outputs
can be converted into one having gates with fan-out ≤ d only, by replacing each
gate with fan-out x > d by a binary tree of d x

d−1e+1 gates with fan-out ≤ d each.

Theorem 1 in §4.3 gives an upper bound for the maximal number of extra
gates e added which we prove similar to [25, Fact 3.1 and Corollary 3.1]:

http://thomaschneider.de/theses/da/
http://www.statsoft.com/products/stat_nn.html

Fact: Suppose that a graph G with fan-in d has among the nodes of in-degree
zero, n′ nodes of nonzero out-degree, and amongst the rest v′ nodes of out-degree
zero, fi of out-degree i, i = 1, .., d − 1, and g of out-degree greater than d − 1.
Suppose also that e′ =

∑
(out − degree − d) =

∑
x over the set of nodes with

out-degree greater than d. Then e′ ≤
∑d−1

i=1 (d− i)fi + dv′ − n′.

Proof. The total of the out-degrees must equal the total of the in-degrees. The
former is ≥ n′+

∑d−1
i=1 (ifi)+dg + e′, and the latter is ≤ d(v′+

∑d−1
i=1 fi + g). ut

Corollary: e ≤ k + v
d−1

Proof. Any gate with fan-out x + d, x > 0, can be replaced by a binary tree
with d x

d−1e+ 1 ≤ x
d−1 + 2 gates. Hence for any circuit there is an equivalent one

having fan-out d and at most e ≤ e′

d−1 + g more gates. But the total number of
gates k =

∑d−1
i=1 fi + g + v′ and in any minimal circuit v′ ≤ v. Hence at most

e ≤ e′

d− 1
+ g ≤ d

d− 1
v′ +

d−1∑
i=1

d− i

d− 1
fi + g ≤ s +

d

d− 1
v′ − v′ ≤ k +

v

d− 1

extra gates are needed which completes the proof of the corollary and Theorem 1.
ut

B Tables and Figures

Table 3. Programmable switching blocks

Block Name of Block Size Dupli- Or-
cates der

Su
1 [10] Selection u − 1 X X

Su
v [10] Selection (simple) v(u − 1) X X

Su
v≥u [10] Selection (efficient) (u + v) log u + 2v log v − 2u − v + 3 X X

Su≥v
v [10] Selection (efficient) (u + 3v) log v + u − 4v + 3 X X

Su
2u [10] Selection (improved) 6u log u + 3 X X

P u
u [26] Permutation 2u log u − 2u + 2 - X

EP u
v≥u [10] Permutation (expanded) (u + v) log u − 2u + 2 - X

Cu,simple
d (§3) Choice (simple) du − d2 - -

Cu,sublin
d (§3) Choice (sub-linear) (log d + 1)u − 3d + 2 - -

BP u≥vd
v×d (§3) Bundle Permutation (u + dv) log v + (log d + 1)u − 3dv + 2 - -

BSu,choice
u×d (§C) Bundle Selection (choice) u · |Cu

d | X -
BSu,perm

u×d (§C) Bundle Selection (perm) (2.5d + 1)u log u + (d log d − d − 2)u + 3 X -

(a) d = 2, u = 1024, v = 1, k = 1 . . . 100 (b) d = 2, u = 1024, v = 1, k = 1 . . . 10000

(c) d = 4, u = 1024, v = 1, k = 1 . . . 100 (d) d = 4, u = 1024, v = 1, k = 1 . . . 10000

(e) d = 16, u = 1024, v = 1, k = 1 . . . 100 (f) d = 16, u = 1024, v = 1, k = 1 . . . 10000

(g) d = 15, u = 60, v = 2, k = 1 . . . 13 (h) d = 15, u = 60, v = 2, k = 1 . . . 75

Fig. 4. Comparison of GUC constructions for different parameters

C Recursive Generalized Universal Block Construction

Before showing how a UB can be constructed recursively as generalization of the
construction in [10], we introduce bundle selection block, a new bundle block.

BSu
u×d Bundle Selection Block is a generalization of selection block. It is a

programmable block that can be programmed to select for each of the u bundles
of outputs (with d wires per bundle) any of the u inputs (with duplicates between
different bundles). More formally, when programmed with a tuple of subsets of
the inputs Σ = (Σ1, .., Σu) with Σi ⊆ {1, .., u}, |Σi| = v; i = 1, .., u, bundle
selection block computes BS(in1, .., inu) = (inσ1,1 , .., inσ1,d

, .., inσu,1 , .., inσu,d
),

where Σi = {σi,1, .., σi,d}; i = 1, .., u.
A simple implementation of a BSu

u×d bundle selection block, BSu,choice
u×d , uses

u choice blocks Cu
d in parallel to choose for each of the u bundles any d of the u

inputs. |BSu,choice
u×d | = u · |Cu

d |.
An improved construction for a BSu

u×d bundle selection block, BSu,perm
u×d can

be obtained analogous to the improved selection block Su
2u construction of [10,

Sect. 4.2] from bundle permutation blocks as shown in Fig. 5. |BSu,perm
u×d | =

|EPu
ud/2|+ (ud− 1) · |Y |+ |BPud

u×d| = (2.5d + 1)u log u + (d log d− d− 2)u + 3.
The programming of this construction can be reduced to a similar box-packing
problem of u boxes with size ci ∈ {0, · · · , du}; i = 1, .., u and

∑u
i=1 ci = du in

a rectangular 2× du/2 grid. This can be efficiently solved with the box-packing
algorithm [10, Algorithm 1]. The Su

2u construction of [10, Sect. 4.2] including the
optimization of [10, Sect. 4.3] is a special case of the general construction BSu

u×d

for d = 2. Our construction is slightly more efficient due to smaller BPud
u×d.

BS
u
u×d

EP
u
ud/2

in1 inu

Y Y

Y

Y

Y

xud/2x1 x2

y1 y2 yud/2

yud/2+1yud yud−1 yud−2

yud/2−1

xud/2x1 x2

y1 yud

BP
ud
u×d

out1 outu

Fig. 5. Bundle selection block BSud
u×d

Recursive Generalized Universal Block Construction. A generalized UB
can be constructed similar to the recursive UB construction of [10, Sect. 3.1]
as shown in Fig. 6. The Uk×d block to simulate k gates is composed out of
two Uk/2×d blocks to simulate k/2 gates each. The upper Uk/2×d block’s inputs
and outputs are directly connected to the first half of the surrounding Uk×d

block’s interface - the outputs of the lower Uk/2×d block provide the second half
of the outputs. This construction exactly corresponds to the definition of the
interface for the generalized UB. Each input to the lower Uk/2×d block can now
be either any output of the upper Uk/2×d block or the corresponding input from
the second half of the outer Uk×d block’s inputs. Which value is chosen depends
on the topology of the circuit. Any combination can be realized by efficiently
programming the BS

k/2
k/2×d block and the Mkd mixing block correspondingly

(similar to [10, Sect. 3.1]).

This construction is applied recursively until k = 1 where a gate simulation
block is used as base of the recursion: U1×d = G.

|UM3
k×d| = (0.625d + 0.25)k log2 k + (0.5d log d− 0.625d− 1.25)k log k + 3k

− 3 + k · |G| ∼ 0.625dk log2 k

Uk×d

out1, . . . , outk/2 outk/2+1, . . . , outk

in1, . . . , indk/2 indk/2+1, . . . , indk

Uk/2×d

Uk/2×d

BS
k/2

k/2×d

Mkd

k/2×d k/2×d

k/2×d

k/2

k/2

k/2

k/2×d

Fig. 6. Recursive generalized universal block construction

The Uk construction of [10, Sect. 3.1] including the optimization of [10, Sect.
4.3] is a special case of our general construction Uk×d for d = 2. Our general con-
struction is slightly more efficient because of our slightly more efficient BS

k/2
k/2×d.

D Formulae

Arithmetic series

k∑
i=0

i =
k(k + 1)

2
(1)

Geometric series

k∑
i=0

qi =
1− qk+1

1− q
(2)

⇒
k∑

i=1

(
1
2

)i

= −1 +
1− (1

2)k+1

1− 1
2

= 1− 2−k (3)

Hypergeometric series

Sk =
k∑

i=1

i

2i
=

1
2

+
1
2

k−1∑
i=1

i + 1
2i

=
1
2

+
1
2

k−1∑
i=1

(
1
2

)i

+
1
2

k−1∑
i=1

i

2i

(3)
= 1− 1

2k
+

1
2
Sk−1

k→∞===⇒ Sk < 1 +
1
2
Sk ⇒ Sk < 2 (4)

E Circuit Constructions and Sizes

E.1 Universal Circuit Constructions

Iterative GUC Constructions.

|UCI1
k,u,v×d| = k · |G|+ |Sk≥v

v |+
k−1∑
i=0

|Cu+i,simple
d |

= k · |G|+ |Sk≥v
v |+

k−1∑
i=0

d(u + i− d)

(1)
= k · |G|+ ((k + 3v) log v + k − 4v + 3) +

(
kud− kd2 + d

k(k − 1)
2

)
= 0.5dk2 + (du− d2 − 0.5d + 1)k + (k + 3v) log v − 4v + 3 + k · |G|

|UCI2
k,u,v×d| = k · |G|+ |Sk≥v

v |+
k−1∑
i=0

|Cu+i,sublin
d |

= k · |G|+ |Sk≥v
v |+

k−1∑
i=0

((log d + 1)(u + i)− 3d + 2)

(1)
= k · |G|+ ((k + 3v) log v + k − 4v + 3)

+
(

(u log d + u− 3d + 2)k + (log d + 1)
k(k − 1)

2

)
= (0.5 log d + 0.5)k2 + (u log d + u− 0.5 log d− 3d + 2.5)k

+ (k + 3v) log v − 4v + 3 + k · |G|

Modular GUC Constructions.

|UCMi
k,u,v×d| = |Su

dk≥u|+ |UMi
k×d|+ |Sk≥v

v |
= ((u + dk) log u + 2dk log(dk)− 2u− dk + 3) + |UMi

k×d|
+ ((k + 3v) log v + k − 4v + 3)

= 2dk log k + (2d log d− d + 1)k + (dk + u) log u

+ (k + 3v) log v − 2u− 4v + 6 + |UMi
k×d|

|UM1
k×d| = k · |G|+

k−1∑
i=0

|Cd+i,simple
d |

= k · |G|+
k−1∑
i=0

d(d + i− d)

(1)
= 0.5dk2 − 0.5dk + k · |G|

|UM2
k×d| = k · |G|+

k−1∑
i=0

|Cd+i,sublin
d |

= k · |G|+
k−1∑
i=0

((log d + 1)(d + i)− 3d + 2)

(1)
= k · |G|+ (d log d− 2d + 2)k + (log d + 1)

k(k − 1)
2

= (0.5 log d + 0.5)k2 + (d log d− 0.5 log d− 2d + 1.5)k + k · |G|

|UM3
k×d| = 2 · |Uk/2×d|+ |BS

k/2,perm
k/2×d |+ |Mkd/2|

= k · |G|+
log(k)−1∑

i=0

2i(|BS
k/2i+1,perm
k/2i+1×d |+ |Mkd/2i+1 |)

= k · |G|+
log(k)−1∑

i=0

2i((2.5d + 1)
k

2i+1
log

k

2i+1
+ (d log d− d− 2)

k

2i+1

+ 3 + d
k

2i+1
)

= k · |G|+
log(k)−1∑

i=0

(
(2.5d + 1)

k

2
log

k

2i+1
+

k

2
(d log d− 2) + 3 · 2i

)
(2)
= k · |G|+ (1.25d + 0.5)k log2 k + (0.5d log d− 1)k log k + 3(k − 1)

− (1.25d + 0.5)k
log(k)∑
i=1

i

(1)
= (0.625d + 0.25)k log2 k + (0.5d log d− 0.625d− 1.25)k log k + 3k

− 3 + k · |G|

E.2 Circuit Implementation of Neurons

|ADDs+1| = |HA|+ (s− 1) · |FA| = 2 + 4(s− 1) = 4(s + 1)− 6

|τ | = |HC|+ (s + log d− 1) · |FC| = 0.5 + (s + log d− 1) = s + log d− 0.5

|Σ| =
log d∑
i=1

d

2i
· |ADDs+i|

=
log d∑
i=1

d

2i
(4(s + i)− 6)

= (4s− 6)d
log d∑
i=1

(
1
2

)i

+ 4d

log d∑
i=1

i

2i

(3),(4)
< (4s− 6)d(1− 1

d
) + 4d · 2

= 4ds + 2d− 4s + 6

|Nblock
d,s | = d · |w|+ |Σ|+ |τ |

< (0.5ds) + (4ds + 2d− 4s + 6) + (s + log d− 0.5)
= 4.5ds + 2d− 3s + log d + 5.5

	Generalized Universal Circuits for Secure Evaluation of Private Functions with Application to Data Classification
	Ahmad-Reza Sadeghi and Thomas Schneider
	Introduction
	Related Work
	Our Contributions
	Basic Idea and Outline

	Definitions and Preliminaries
	Bundle Blocks for GUC Constructions
	Cdu Choice Block
	BPv du vd Bundle Permutation Block

	Generalized Universal Circuits
	Iterative GUC Constructions
	Modular GUC Constructions
	Iterative Generalized Universal Block Construction.
	Recursive Generalized Universal Block Construction.
	Combined Generalized Universal Block Construction.

	Universal Graph based GUC Construction
	Comparison of GUC Constructions

	Secure Evaluation of Private NNs with GUCs
	Structure of NNs
	Circuit Implementation of Neurons
	Protocol for Oblivious Evaluation of NNs using GUCs
	Comparison with Previous Work
	Comparison of GUC Construction.
	Comparison of Protocol for Secure Evaluation of NNs.
	Acknowledgments.

	Universal Graph based GUC Construction
	Converting Circuit to Fan-out d
	Fact:
	Corollary:

	Tables and Figures
	Recursive Generalized Universal Block Construction
	BSu du Bundle Selection Block
	Recursive Generalized Universal Block Construction.

	Formulae
	Circuit Constructions and Sizes
	Universal Circuit Constructions
	Iterative GUC Constructions.
	Modular GUC Constructions.

	Circuit Implementation of Neurons

