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Abstract

Bilinear pairings on elliptic curves have been of much interest in cryp-
tography recently. Most of the protocols involving pairings rely on the
hardness of the bilinear Diffie-Hellman problem. In contrast to the dis-
crete log (or Diffie-Hellman) problem in a finite field, the difficulty of this
problem has not yet been much studied. In 2001, Verheul [64] proved that
on a certain class of curves, the discrete log and Diffie-Hellman problems
are unlikely to be provably equivalent to the same problems in a corre-
sponding finite field unless both Diffie-Hellman problems are easy. In this
paper we generalize Verheul’s theorem and discuss the implications on
the security of pairing based systems. We also include a large table of
distortion maps.

1 Introduction

Throughout history, people have needed ways to transmit information in a se-
cure manner. In the basic model for cryptography, entities A (Alice) and B
(Bob) are communicating over a possibly insecure channel. It is assumed that
an adversary E (Eve), who desires to know what Alice and Bob are saying to
each other, has access to the channel, as well as considerable computing power.
If Alice and Bob are careful, they can use cryptography for many different ob-
jectives, including ensuring message confidentiality, creating digital signatures,
or exchanging keys.

Since 1985, the theory of elliptic curves has been used in cryptography.
Elliptic curve cryptosystems have some advantages over other systems. For
one, there is a wide range of parameters for a user to choose from. Given a
prime power q = pf , (p 6= 2 or 3), we can define an elliptic curve over Fq by the
equation

E : y2 = x3 +Ax+B,

where A and B in Fq are chosen so that 4A3 + 27B2 6= 0.
More importantly, elliptic curves offer the same level of security as other

systems, but with a much shorter keylength. This has made elliptic curve cryp-
tography an increasingly popular choice.
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In the past few years, pairings on elliptic curves have been a very active
area of research in cryptography. A pairing is a map from pairs of points on
an elliptic curve into the multiplicative group of a finite field. The two pairings
most commonly used, the Weil and Tate pairings, are also bilinear and non-
degenerate. These properties have enabled the construction of new protocols
for a variety of cryptographic applications.

The security for most of these protocols relies on the hardness of the bilinear
Diffie-Hellman problem, or some related problem. In contrast to the discrete
log (or Diffie-Hellman) problem in a finite field, the difficulty of this problem
has not yet been much studied. It is known that the bilinear Diffie-Hellman
problem is not harder than the discrete log or Diffie-Hellman problem in a finite
field, but the precise relationship is not yet clear.

In 2001, Verheul [64] proved a theorem relating to the then new XTR cryp-
tosystem. Using pairings, there is a computable homomorphism from certain
elliptic curves to the group used in the XTR cryptosystem. At the Crypto 2000
rump session [46] it was pointed out that if this map could be efficiently in-
verted, the XTR system would be equivalent to an elliptic curve cryptosystem.
As such, any attack on elliptic curve cryptography would yield an attack on
the XTR system. Thus the security of XTR would be no greater than that of
elliptic curve systems.

In response, Verheul proved that the construction of a computable inverse
would yield an efficient algorithm to solve the Diffie-Hellman problem in certain
finite fields. Since the Diffie-Hellman problem is widely believed to be difficult,
this would seem to show that the XTR cryptosystem is not just an elliptic curve
system in disguise.

The results in Verheul’s paper were specifically geared at a certain class of
finite fields and supersingular curves, but we generalize his result in this paper
to arbitrary finite fields and associated supersingular curves. We show that for
any finite field Fq, we can construct supersingular elliptic curves which under the
so called MOV embedding are isomorphic to the product of two cyclic groups
of order q − 1. If this embedding can be efficiently inverted, then we show that
the Diffie-Hellman problem is efficiently solvable in F∗q , as well as on the curve.

Verheul established his result before the advent of pairing based cryptology,
and it was intended solely to ensure confidence in the XTR system. It is now of
interest because of the light it sheds on the relationship between Diffie-Hellman
and discrete log type problems in different groups and especially because of
certain implications for the security of pairing-based cryptography. Namely,
our generalization of Verheul’s theorem says that the security of pairing based
systems depends on the infeasibility of constructing an inverse to the Menezes-
Okamoto-Vanstone embedding. Moreover, Verheul’s own interpretation of his
theorem (see the title of [38]) would suggest that the groups used in pairing-
based cryptography are less secure than subgroups of multiplicative groups of
finite fields. We will examine these implications more closely.

The outline of this paper is as follows. In chapter 2 we will review some
basic facts about elliptic curves. In chapter 3 we will discuss some of the math-
ematical problems upon which the security of many cryptosystems rely. In the
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fourth chapter, we discuss in more detail the theorem of Verheul (including its
generalization), and its consequences. We give the mathematical background
and definitions of the Tate and Weil pairings in chapter 5. In chapter 6 we define
distortion maps, a tool used in pairing based cryptography and a key part of the
proof of the main result of this paper. We also study isogenies of elliptic curves
over finite fields, which are used to create distortion maps. chapter 7 will look
at some of the ways pairings have been utilized in cryptography. In chapter 8
we provide some algorithms needed for the generalization of Verheul’s theorem,
and determine their complexity. In chapter 9, we look at the special cases of
our result when the characteristic of the finite field is 2. We give the proof of
the main theorem in chapter 10, and some examples in chapter 11. Finally, in
chapter 12 we look at future directions of research and open questions. We also
include an appendix containing a table of explicit distortion maps.

2 Elliptic Curves

2.1 Group law

Let K be a field. Consider the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K.

Let L be any field containing K, and E(L) be the set of pairs (x, y) ∈ L2 that
satisfy the above equation, together with a ”point at infinity” written ∞. If
there is no point of E(K) where the partial derivatives simultaneously vanish,
then E is called an elliptic curve. This condition makes the curve smooth.

For the purposes of this paper, K will almost always be a finite field Fq. We
note that if the characteristic of K is not 2 or 3, then by changing variables, we
can write the equation of E as

E : y2 = x3 +Ax+B, where A,B ∈ K.

With this equation, the condition of smoothness becomes 4A3 + 27B2 6= 0.
For elliptic curves defined over Q, we use the following terminology. Let y2 =
x3+Ax+B be a minimal model for an elliptic curve E defined over Q. The term
minimal model will be explained shortly. If p is a prime such that 4A3+27B2 = 0
in Fp, then p is known as a bad prime because the reduction of E mod p is not
an elliptic curve. For a given curve E defined over Q, there are only a finite
number of bad primes. A prime which isn’t bad is called good. Throughout this
paper, we will always assume that when we reduce a curve mod p we exclude
the bad primes.

Each element of E(L) is called a point, and E(L) can be made into an abelian
group under a certain addition of points. We summarize how this is defined.
For any P,Q ∈ E(L),

i. P +∞ = P = ∞+ P (so ∞ is the identity element).
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ii. −∞ = ∞, and for P = (x, y) 6= ∞, let −P = (x,−y − a1x− a3).

iii. P + (−P ) = ∞ = (−P ) + P .

iv. For P,Q 6= ∞ and Q 6= −P , let R be the third point of intersection
(counting multiplicities) of the curve with the line l = PQ if P 6= Q, or
with the tangent line to the curve at P if P = Q. Then we set P+Q = −R.

This is visually depicted in Figure 1.

Figure 1: Addition of points on an elliptic curve

2.2 Elliptic curves over finite fields

Let E be an elliptic curve defined over Fq. The following facts are well-known.
Since Fq is finite, it is clear that E(Fq) is a finite group. In fact, E(Fq) is
isomorphic to Z/nZ or Z/n1Z⊕ Z/n2Z for some integers n, n1, n2 with n1|n2.

If we know how many points are in E(Fq), then we can determine how many
points there are over any extension of Fq. Let #E(Fq) = q+1− t. The number
t is called the trace of E over Fq, and by Hasse’s theorem, |t| ≤ 2

√
q. If we write

X2 − tX + q = (X − α)(X − α), then for all k ≥ 1,

#E(Fqk) = qk + 1− αk − αk.

Note that |α| = √
q.

For odd q, if E is given by y2 = x3 + ax2 + bx+ c, then the twist of E by d
is the curve Ẽ given by dy2 = x3 + ax2 + bx+ c. It is easy to show that if d is a
square in Fq, the number of points on Ẽ is the same as on E, while if d is not
a square, then #Ẽ(Fq) = q + 1 + t. Similar notions and results hold when q is
a power of 2.
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There is an important homomorphism we can define on E(Fq). Define the
Frobenius map by

φq : E(Fq) → E(Fq)

φq(x, y) = (xq, yq).

The characteristic equation of φq is

φ2
q − tφq + q = 0,

meaning for any P =∈ E(Fq), we have

φ2
q(P )− [t]φq(P ) + [q]P = ∞.

The t in this equation is the trace of E over Fq, and is also the unique integer a
for which φ2

q − aφq + q = 0. t is often referred to as the trace of the Frobenius.
The j-invariant of E is an invariant which can be used to tell when two

elliptic curves are isomorphic. If E1 and E2 are isomorphic over a field K, then
j(E1) = j(E2). If K is algebraically closed, then the converse is also true. For
curves given by the equation E : y2 = x3 +Ax+B, j(E) can be calculated by

j(E) = 1728
4A3

4A3 + 27B2
.

If we desire a curve with a given j-invariant, then we can use the curve

y2 = x3 +
27j

4(1728− j)
x− 27j

4(1728− j)
,

which has j-invariant j 6= 0, 1728. If we desire a curve with j-invariant 0, we
can use y2 = x3 + B and any B. For j-invariant 1728, the curve y2 = x3 + Ax
will suffice with any A.

The discriminant of the curve y2 = x3 + Ax + B is defined to be the dis-
criminant of the polynomial x3 +Ax+B, which is equal to −16(4A3 + 27B2).
Given an elliptic curve E defined over the rationals, it is always possible (by
changing variables) to find an equation for E of the form y2 = x3 +Ax+B with
A and B in Z, and the absolute value of the discriminant as small as possible.
Such an equation is called a minimal model for E. The bad primes are exactly
those primes which divide the minimal discriminant.

2.3 Torsion polynomials

For a given n, we now look at the points of order n on an elliptic curve E(Fq).
If n and the characteristic of Fq are relatively prime, then

E[n] = {P ∈ E(Fq) | [n]P = ∞} ∼= Z/nZ⊕ Z/nZ.

E[n] is the kernel of the multiplication-by-n map, [n] : E → E, where
[n](P ) = [n]P . Given a point P = (x, y), we can derive explicit equations for
the coordinates of [n]P in terms of x and y.
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Theorem 1 Let E be given by y2 = x3 + Ax + B, over a field whose charac-
teristic is not 2. Then we can write

[n]P =
(
φn(x, y)
Φ2

n(x, y)
,
ωn(x, y)
Φ3

n(x, y)

)
.

The functions φn, ωn, and Φn in Z[x, y] are defined recursively by

Φ0 = 0
Φ1 = 1
Φ2 = 2y

Φ3 = 3x4 + 6Ax2 + 12Bx−A2

Φ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)

Φ2n+1 = Φn+2Φ3
n − Φn−1Φ3

n+1 for n ≥ 2

Φ2n =
Φn

2y
(
Φn+2Φ2

n−1 − Φn−2Φ2
n+1

)
for n ≥ 2,

and
φn = xΦ2

n − Φn+1Φn−1

ωn =
1
4y
(
Φn+2Φ2

n−1 − Φn−2Φ2
n+1

)
.

Proof These formulas are well-known. For example, see [65] for details. 2

The polynomial Φn is called the n-th torsion polynomial of E. It can be
shown that

Φn(x, y) =

{
y(nx(n2−4)/2 + ...) if n is even,
nx(n2−1)/2 + ... if n is odd.

Notice that in both cases, we have Φ2
n(x, y) = n2xn2−1 + ..., is a function of x,

since y2 = x3 +Ax+B.
Let

Φn(x) = Φn(x, 1) =

{
Φn(x, y)/y if n is even,
Φn(x, y) if n is odd.

An immediate corollary is that a point P = (x, y) is in E[n] if and only if
Φn(x) = 0. We will use torsion polynomials in chapter 8 to find subgroups of
E[n], and also to prove the nondegeneracy of the Weil pairing.

2.4 Supersingular curves

Let E be an elliptic curve defined over Fq where q is a power of p. The curve E
is supersingular if E satisfies one of three equivalent conditions (see [59]):

1. #E(Fq) ≡ 1 mod p or equivalently #E(Fq) = q + 1− t with p|t (t is the
trace).
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2. E has no nontrivial points of order p over Fq, i.e., E[p] = {∞}.

3. The endomorphism ring of E over Fq is non-commutative, or more pre-
cisely, it is an order in a quaternion algebra.

For supersingular curves, if E is defined over Fq, where q = pf , then it is
known that j(E) ∈ Fp2 . So every supersingular curve is isomorphic (over Fp)
to one defined over Fp2 .

If E isn’t supersingular, then E is said to be ordinary. Supersingular curves
can be classified according to their embedding degree k, which is at most 6 (see
[18] or [43] for a proof). The embedding degree of E is the smallest positive
integer k such that the order of every point of E(Fq) divides qk − 1.

Table 1: Classification of supersingular curves by embedding degree (see [43])
k Group structure of E(Fq) Group structure of E(Fqk) t q

1 (Z/(√q ∓ 1)Z)2 (Z/(√q ∓ 1)Z)2 ±2
√
q q = p2m

2 Z/(q + 1)Z (Z/(q + 1)Z)2 0 q = p2m+1

2 Z/( q+1
2 )Z⊕ Z/2Z (Z/(q + 1)Z)2 0 q = p2m, p ≡ 3 mod 4

3 Z/(q ∓√q + 1)Z (Z/(q 3
2 ± 1)Z)2 ±√q q = p2m

4 Z/(q ∓
√

2q + 1)Z (Z/(q2 + 1)Z)2 ±
√

2q q = 22m+1

6 Z/(q ∓
√

3q + 1)Z (Z/(q3 + 1)Z)2 ±
√

3q q = 32m+1

3 Security

3.1 Hard problems

Public-key cryptosystems are based on one-way functions. In essence, a one-
way function f is one for which it is easy to compute f(x) for a given input x,
but given a y in the image of f , it is hard to find an x in the domain so that
f(x) = y. One of the most important examples of a one-way function is the
discrete logarithm problem (DLP). Let G be a (multiplicatively written) cyclic
group generated by g of prime order n, i.e. |G| = |〈g〉| = n. Given an integer
x < n, it is relatively easy to compute gx, but conversely given an element
y ∈ G, it is sometimes difficult to determine x such that y = gx. The discrete
log problem has been well-studied in groups such as finite fields and elliptic
curves, and is believed to provide adequate security if parameters are carefully
chosen.

A closely related problem is the Diffie-Hellman problem (DHP). Using the
same group G with generator g, the Diffie-Hellman problem asks one to de-
termine gxy given g, gx and gy. The decision Diffie-Hellman problem (DDHP)
is: given g, gx, and gy, determine if another given element h ∈ G is equal to
gxy. Clearly if you can solve the discrete log problem, then you can solve the
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Diffie-Hellman problem, and if you can solve the Diffie-Hellman problem, you
can solve the decision Diffie-Hellman problem.

Many of the protocols of elliptic curve cryptography use one of these prob-
lems, implemented in a prime order cyclic subgroup of the group of points on
an elliptic curve.

Using bilinear pairings on elliptic curves, some related problems can be de-
fined. Let e : E(Fq) × E(Fq) → F∗qk be a bilinear pairing. Bilinearity means
that

e(P +R,Q) = e(P,Q)e(R,Q)

e(P,Q+R) = e(P,Q)e(P,R)

for all points P,Q and R on E(Fq). We also require e to be nondegenerate,
which means that for each point P , there is a point Q such that e(P,Q) 6= 1
and similarly for each point Q there is a point P with e(P,Q) 6= 1. The bilinear
Diffie-Hellman problem (BDHP) is: compute e(P, P )abc, given P, [a]P, [b]P, and
[c]P . If you can solve the DHP on the curve, you could find [ab]P , and compute
e([ab]P, [c]P ) = e(P, P )abc, thus solving the bilinear Diffie-Hellman problem.
Similarly, if we could solve the DHP in the finite field, we could apply the finite
field DHP algorithm to e(P, P ), e([c]P, P ), and e([a]P, [b]P ), which would solve
the BDHP. We could also define the bilinear decision Diffie-Hellman problem
(BDDHP), and similarly, solving the DDHP implies you can solve the bilinear
decision Diffie-Hellman problem. The security of many pairing based protocols
depend on the assumed hardness of these problems.

A problem P is said to reduce to another problem Q, if given an algorithm
that solves problem Q we can use it to efficiently solve problem P. This means
that problem Q is at least as hard as problem P. So from what we said above,
the BDHP reduces to the DHP, which reduces to the DLP. Similarly, the decision
Diffie-Hellman and the bilinear Diffie-Hellman problems reduce to the DHP and
BDHP respectively. If two problems reduce to each other, then the problems
are said to be equivalent. Roughly speaking, this means that the two problems
are equally hard.

We have a chain of reductions for the above problems, but could it be that
some of these problems are equivalent? There is evidence that the Diffie-Hellman
problem is actually equivalent to the discrete log problem (see [42]), and this
has been proved in some cases (see [12]). But there is no strong evidence that
any of the other problems are equivalent. For example, pairings can be used to
show that on some curves, the DDHP is likely to be much easier than the DHP.
We will show how this can be done in a later chapter.

We introduce one more problem which will be used in the proof of the main
result in this paper. The weak Diffie-Hellman problem is the following. Given a
cyclic group 〈g〉, we need to find another generator h such that when presented
with any ga and gb in 〈g〉, then we can compute hab. The generator h should
only depend on g, and not on ga or gb. At first glance, this seems easier than the
Diffie-Hellman problem, but the following lemma shows it is computationally
equivalent to the Diffie-Hellman problem.
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Lemma 1 If the weak Diffie-Hellman problem can be solved efficiently, then so
can the Diffie-Hellman problem.

Proof The following proof is from [64]. Let 〈g〉 be our cyclic group with
generator g. Let n be the order of 〈g〉. The order n can be assumed to be
prime, however the proof works for composite n, provided that we can factor n.
Let WDH be the function defined by WDH(ga, gb) = hab, for some generator
h which depends only on g. By hypothesis, WDH can be efficiently computed.

We can write h = gs, for some unknown 0 < s < n. As h is a generator,
necessarily (s, n) = 1. We claim that we can efficiently find gsϕ(n)−3

. We’re
using ϕ to denote the Euler-phi function. To see this, for any i let

T (i) = (gsi−1
, gsi

).

Then T (1) = (g, h), and

T (2i) = (gs2i−1
, gs2i

) = (hs2i−2
, hs2i−1

) =
(
WDH(gsi−1

, gsi−1
),WDH(gsi−1

, gsi

)
)
,

and

T (2i+1) = (gs2i

, gs2i+1
) = (hs2i−1

, hs2i

) =
(
WDH(gsi−1

, gsi

),WDH(gsi

, gsi

)
)
.

So given i, we can find T (i) by repeated squarings and multiplications in 4 log2 i
calls to the WDH function. This means we can efficiently compute T (ϕ(n)−3),
and obtain gsϕ(n)−3

.
Now given ga and gb, set

r = WDH
(
gsϕ(n)−3

,WDH(ga, gb)
)

= WDH
(
gsϕ(n)−3

, hab
)

= WDH
(
gsϕ(n)−3

, gabs
)

= hsϕ(n)−3abs = hsϕ(n)−2ab

= (gs)sϕ(n)−2ab = gsϕ(n)−1ab

= gabs−1
.

The last equality follows by Euler’s theorem, namely sϕ(n) ≡ 1 mod n for any
integer s coprime to n.

Finally,

WDH(r, g) = WDH
(
gabs−1

, g
)

= habs−1
= (gs)abs−1

= gab.

We have efficiently solved the Diffie-Hellman problem in 〈g〉.
2
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4 Verheul’s theorem

Recall that the embedding degree of E is the smallest positive integer k such
that the order of every point of E(Fq) divides qk − 1. We’ll soon see that the
Weil pairing reduces the DLP (or DHP) on an elliptic curve with embedding
degree k to the same problems in F∗qk . To ensure confidence in the security of
pairing based cryptography, we would like to be able to show that the DLP on
low-embedding degree curves is equivalent to (and not easier than)the DLP in
F∗qk , since this problem has been studied far more extensively in finite fields.

This is done using the MOV embedding, by which we mean the map

ê : 〈P 〉 → Fqk where ê(Q) = e(Q,S),

where P and S are fixed points of order n on E(Fqk). So a straightforward
way to try to prove equivalence would be to find a homomorphism that goes
from the finite field to the curve, i.e. a homomorphism that inverts the MOV
embedding. Such a homomorphism might be interpreted as evidence for the
security of pairing based cryptosystems. However, Verheul proved the following
in [64].

Theorem 2 Let p be a prime p ≡ 2 mod 3, and n a prime number such that
n|(p2 + p − 1). Let g be a generator of µn, the group of nth roots of unity in
F∗p6 . Let P be a point of order n on a supersingular curve E defined over Fp2

with #E(Fp2) = p2 − p+ 1.
If an efficiently computable homomorphism can be found from µn to 〈P 〉,

then the Diffie-Hellman problem can be efficiently solved in both µn and 〈P 〉.

The group µn in the theorem is called an XTR group. In 2000, A. Lenstra
and Verheul created the XTR public key system. It is based on a new way to
represent elements of a subgroup of the multiplicative group of certain finite
fields [38]. Its security relies on the DHP in the finite field. At the Crypto 2000
rump session [46] it was pointed out that if an efficiently computable homo-
morphism inverting the MOV embedding for XTR groups could be found, the
XTR system would be equivalent to certain supersingular elliptic curve cryp-
tosystems. It was posed as an open problem to construct such a map. Wanting
to show this was not likely, Verheul proved the above result. He concluded that
this ”provides evidence that the multiplicative group of a finite field provides
essentially more...security than the group of points of a supersingular elliptic
curve of comparable size.” It should be noted, however, that one should be
cautious about concluding that the finite field problems are harder than the
problems on the supersingular curve just because one particular approach to
proving equivalence seems unlikely to succeed. Verheul’s theorem does provide
some evidence, but opinions differ about how strong this evidence is.

Verheul’s result also has implications for pairing based cryptography. Many
people would hesitate to have confidence in pairing based systems unless some
rigorous security guarantees can be given. For example, some of the applications
in chapter 7 depend on the hardness of the DHP on the curve. It would provide
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confidence if it could be shown the DHP on the curve is no easier than the DHP
in the corresponding finite field. A natural way to try to prove this would be to
construct an inverse MOV map.

Verheul’s theorem was specifically aimed at certain finite fields and supersin-
gular curves, but we generalize his result in this paper to arbitrary finite fields
and associated supersingular curves. Since the DHP in finite fields has been
extensively studied, and is generally regarded to be intractable, the generalized
version of Verheul’s theorem implies that if an efficiently computable inverse
MOV homomorphism could be found, systems relying on the hardness of the
DHP in Fq or in the corresponding elliptic curve group would be insecure. This
would include almost all pairing based cryptosystems. This includes, for exam-
ple, Joux’s three party key distribution scheme, Boneh and Franklin’s identity
based encryption system, and Boneh, Lynn, and Schachem’s short signature
scheme, all of which we will discuss in chapter 7.

We emphasize that the absence of a map which inverts the MOV embedding
does not mean that the DLP in the finite field isn’t equivalent to the same
problem on the curve. Nor does it mean that one problem is necessarily harder
than the other. It just means that a certain avenue for proving equivalence does
not work. There could be other, less direct methods to show their equivalence.

We also remark that even if it is the case that two problems are unlikely to
be provably equivalent, they could still be equivalent in practice. That is, it is
still possible that in practice no one will ever find a way to solve one of them
without solving the other. For example, it is unlikely that the DDHP in a finite
field is provably as hard as the DLP in a finite field. Yet currently there seems
to be no way to solve the DDHP in a finite field without solving the DLP. So
in practice, there is no gap between the two problems.

In [33], Koblitz and Menezes suggested how Verheul’s theorem could be
generalized. Let Fq be an arbitrary finite field, and suppose that we have a
trace zero elliptic curve E over Fq. A trace zero curve means that t = 0,
i.e., #E(Fq) = q + 1. Suppose that E has equation y2 = f(x) for odd q and
y2 + y = f(x) for q a power of 2. Let β ∈ Fq2 be a nonsquare in Fq2 for odd q
and an element of absolute trace 1 for q a power of 2 (that is, TrFq2/F2(β) = 1).

Let Ẽ be the twisted curve over Fq2 with equation βy2 = f(x) for odd q and
y2 + y + β = f(x) for q a power of 2.

We have #E(Fq) = q + 1 = q + 1− α− ᾱ, and so α is purely imaginary. As
|α| =

√
q, we have α =

√
q · i. So #E(Fq2) = q2 + 1 − α2 − ᾱ2 = q2 + 1 + 2q,

and #Ẽ(Fq2) = q2 + 1 − 2q. Then (using the classification of supersingular
curves given in chapter 2) Ẽ(Fq2) is a product of two cyclic groups of order
q − 1, each of which is isomorphic to the multiplicative group of Fq under the
MOV embedding. If the theorem can be generalized to these curves, then an
efficiently computable construction of a homomorphism that inverts the MOV
embedding would make the Diffie-Hellman problem easily solvable in all finite
fields.

When q = p2m and p 6≡ 3 mod 4, there is no trace zero curve over Fq.
However, we will show we can still construct a supersingular curve E, such that
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E(Fq2) is a product of two cyclic groups of order q − 1.
We now state the main theorem of this paper. The proof will be given in

chapter 10.

Theorem 3 Let Fq be an arbitrary finite field. Then there is an elliptic curve
E over Fq such that Ẽ(Fq2) is a product of two cyclic groups of order q − 1.

Given such a curve, let P be a generator for one of the cyclic subgroups of
order q − 1. Under the MOV embedding, we have an isomorphism from 〈P 〉 to
F∗q . If an efficiently computable isomorphism can be found from F∗q to 〈P 〉, then
the Diffie-Hellman problem can be efficiently solved in both F∗q and 〈P 〉.

We note that the problem of inverting pairings is an area of active interest.
See [20], [21], [29], [50], [51], [52], or [53] for example.

5 Pairings

Given an elliptic curve E over Fq and a positive integer n not divisible by the
characteristic p of Fq, let

E[n] =
{
P ∈ E(Fq) : [n]P = ∞

}
,

be the set of points of E of order n over Fq. Let µn be the set of nth roots of
unity in Fq, µn = {ζ : ζn = 1} ⊆ Fq. A pairing is a function

e : E[n]× E[n] → µn.

We will be interested in pairings which are bilinear and nondegenerate. Bi-
linearity means for all P, P1, P2, Q,Q1, and Q2 in E[n], we have

e(P1 + P2, Q) = e(P1, Q)e(P2, Q) and e(P,Q1 +Q2) = e(P,Q1)e(P,Q2).

Nondegeneracy means for all P 6= ∞ in E[n], there is a Q ∈ E[n] such that
e(P,Q) 6= 1, and similarly, for all Q 6= ∞ in E[n], there is a P ∈ E[n] such that
e(P,Q) 6= 1.

Some basic properties of pairings include the following:

Lemma 2 Let e be a bilinear, nondegenerate pairing. Then for all P,Q ∈ E[n],
and any a, b ∈ Z,

1. e(P,∞) = e(∞, Q) = 1

2. e(−P,Q) = e(P,−Q) = e(P,Q)−1

3. e([a]P,Q) = e(P,Q)a = e(P, [a]Q)

4. e([a]P, [b]Q) = e(P,Q)ab

Proof Everything easily follows from the bilinear property. 2

The two most common pairings used, the Tate and Weil pairings, are bilinear
and nondegenerate. Both pairings can also be efficiently computed. Before we
can define them, we need to review the theory of divisors.
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5.1 Divisors

All of the results given in this chapter are standard facts about divisors, and so
we omit most proofs. Proofs can be found in [25] or [17]. Let E be an elliptic
curve defined over a field K. A divisor D on E is a formal sum

D =
∑

j

cj [Pj ]

where each Pj ∈ E(K) and cj ∈ Z, with only finitely many of the cj nonzero.
We sometimes write alternatively

D =
∑
P

cP [P ].

The support of D is the set of all points Pj where cj 6= 0. The set of all divisors
on E is called div(E). It is an abelian group under addition with(∑

P

cP [P ]

)
+

(∑
P

dP [P ]

)
=
∑
P

(cP + dP )[P ]

We define the degree and sum of a divisor D as follows:

deg(D) = deg

∑
j

cj [Pj ]

 =
∑

j

cj ∈ Z

sum(D) = sum

∑
j

cj [Pj ]

 =
∑

j

[cj ]Pj ∈ E(K).

We also will define the divisor of a function on E. By a function on E, we
mean a nonzero f(x, y) ∈ K(x, y). It is possible for functions to have more than
one representation on a given curve. For example, if E : y2 = x3 + x, then on
E the function f(x, y) = y

x could also be written as g(x, y) = x2+1
y . It might

seem that this could lead to confusion in evaluating f(P ), particularly when the
numerator or denominator evaluates to 0. The following theorem ([17]) clarifies
this.

Theorem 4 Given a point P on an elliptic curve E, there is a function UP

(called a uniformizing parameter for P ) such that for any function f on E,
there is an integer r and a function g on E such that

f = Ur
P g,

where UP (P ) = 0, and g(P ) 6= 0,∞. The number r doesn’t depend on the choice
of UP .
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For a given P , there are three possibilities for f(P ) = Ur
P g. If r = 0, then

f(P ) = g(P ). If r > 0, then f(P ) = 0, and f has a zero at P of order r. If
r < 0, then f has a pole of order r at P . In all cases, define the order of f at
P to be the value of r, written ordP (f) = r. Then the divisor of f is

div(f) =
∑

P∈E(K)

ordP (f)[P ].

The sum in the definition of div(f) is actually a finite sum [17].

Theorem 5 Let f be a function on E. Then

1. f has only finitely many zeroes and poles.

2. The degree of div(f) is 0.

3. If div(f)=0, i.e., if f has no zeroes or poles, then f is constant.

Given a function f on E and a divisor D, we can define f(D) as follows. If
D =

∑
j cj [Pj ], then let

f(D) =
∏
j

f(Pj)cj .

We will need a few more results about divisors before being able to define
the Tate and Weil pairings.

Lemma 3 If f and g are two functions on E, then

div(f) + div(g) = div (fg),

and

div(f)− div(g) = div
(
f

g

)
.

A divisor D is said to be defined over Fqk , when the qk-th Frobenius map
permutes the points in the support ofD so as not to change the formal expression
of D.

Theorem 6 Let D be a divisor of degree 0 on an elliptic curve E. There is
a function f on E with div(f)=D if and only if sum(D)=∞. Furthermore,
if sum(D)=∞ then we can choose f so that it is defined over Fqk when D is
defined over Fqk .

Proof Following ([65]), we prove this theorem in one direction. For the other
direction, see [17] or [25]. This part of the proof is worth giving in detail because
the method can be used in computing pairings.

Suppose that sum(D)=∞ and deg(D)=0. Let P1 and P2 be two points on
E, with the equation of the line l passing through them being ax+ by + c = 0.
By the way addition is defined on the curve, this line intersects the curve in a
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third point, which is −(P1 + P2). These are the only zeroes of the line on E. If
b 6= 0, then the line also has a triple pole at ∞. Thus,

div(ax+ by + c) = [P1] + [P2] + [−(P1 + P2)]− 3[∞].

Also note that if P1 + P2 = (x3, y3)

div(x− x3) = [P1 + P2] + [−(P1 + P2)]− 2[∞].

We see that

div
(
ax+ by + c

x− x3

)
= [P1] + [P2]− [P1 + P2]− [∞],

or

[P1] + [P2] = [P1 + P2] + [∞] + div
(
ax+ by + c

x− x3

)
.

Now

sum
(

div
(
ax+ by + c

x− x3

))
= sum([P1] + [P2]− [P1 + P2]− [∞]) = ∞.

In the special case when P1 + P2 = ∞, it is easy to see [P1] + [P2] = 2[∞] +
div(x− x0), where x0 is the x-coordinate of P1 and P2.

In both cases, we see that we can replace [P1]+[P2] by [P1+P2]+[∞]+div(g),
for some function g on E. So we can replace all the terms in D with positive
coefficients by [P ] + n1[∞] + div(g1), for some point P on E, some integer n1,
and some function g1 on E. Likewise, for all the terms with negative coefficient
we can replace them with −[Q]− n2[∞]− div(g2) for some Q ∈ E(K), n2 ∈ Z,
and function g2 on E. Thus,

D = [P ]− [Q] + n[∞] + div(
g1
g2

).

Notice that both g1 and g2 are products of functions g which satisfy sum(div(g))=∞.
We conclude that sum(div( g1

g2
)) = ∞. By the first part of Theorem 5.3, 0=deg(div

(
g1
g2

)
),

so 0=deg(D)=1-1+n, so n = 0 and

D = [P ]− [Q] + div
(
g1
g2

)
.

Then as we’re assuming sum(D)=∞, we have

∞ = sum(D) = P −Q+ sum(div
(
g1
g2

)
) = P −Q,

so P = Q, and D is the divisor of a function f .
To see that we can choose f to be defined over Fqk , note the following. A

priori, f is only defined over Fqk . Let σ be an element of the Galois group G
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of Fqk/Fqk . Then notice that σ(D) = D. So fσ (meaning f with σ applied to
the coefficients) has the same divisor D, so fσ/f is a constant. Using Galois
cohomology, the map σ → cσ is a cocycle in H1(G,F∗qk) which by Hilbert’s
theorem 90 is trivial. So there is a constant c1 ∈ F∗qk such that cσ = cσ1/c1 for
all σ ∈ G. Then f/c1 is fixed by all σ, so is defined over Fqk . Replacing f by
this, we can assume f is defined over Fqk . 2

We point out that the technique used in the proof shows us how to explicitly
find a function f such that div(f)=D when given a degree 0 divisor D with sum
∞.

5.2 Weil pairing

We now define the Weil pairing and prove that it is a bilinear pairing. We’ll
also prove some additional properties the Weil pairing satisfies.

Let n be an integer relatively prime to the characteristic of our field K. Let
Q be a point of order n on E. Consider the divisor D1 = n[Q] − n[∞]. It has
degree 0, and its sum is ∞. So by the results of the previous section, there is a
function f on E with div(f)=n[Q] − n[∞]. Now find a point Q′ ∈ E[n2] with
[n]Q′ = Q. Consider a second divisor,

D2 =
∑

R∈E[n]

([Q′ +R]− [R]) .

Then
sum(D2) =

∑
R∈E[n]

Q′ = [n2]Q′ = [n]Q = ∞.

So as D2 also has degree 0 and sums to ∞, there is a function g on E with
div(g)=D2.

Since D2 can also be written as

D2 =
∑

[n]Q′′=Q

[Q′′]−
∑

R∈E[n]

[R],

we see that D2 and hence g do not depend on the choice of Q′.
We define the Weil pairing by

en : E[n]× E[n] → µn

en(P,Q) =
g(P + S)
g(S)

,

where S is any point of E(K) such that g(P + S) and g(S) are both defined
and nonzero.

We must show this definition makes sense. Note that although g is only
determined up to a constant multiple, en is independent of the choice of g.
Recall that div(f) = n[Q]− n[∞]. Let f ◦ n : E → K be defined by

(f ◦ n)(S) = f([n]S).
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The zeroes of f ◦ n are the points S such that [n]S = Q, so they are the points
Q′ + R, where R ∈ E[n]. Likewise the poles of f ◦ n are the points P with
[n]P = ∞, so they are just the set E[n]. Thus

div(f ◦ n) = n
∑

R∈E[n]

[Q′ +R]− n
∑

R∈E[n]

[R].

But this is clearly equal to div(gn). So

0 = div(f ◦ n)− div(gn) = div
(
f ◦ n
gn

)
,

so f◦n
gn is constant. Multiplying f ◦ n by a constant doesn’t change its divisor,

so we can assume that f is chosen so that f ◦ n = gn.
Then for P ∈ E[n] and any S on E(K), we see that

g(P + S)n = (f ◦ n)(P + S) = f ([n](P + S)) = f([n]S) = (f ◦ n)(S) = g(S)n.

So g(P+S)
g(S) is an n-th root of unity, assuming both are nonzero.

For a fixed P , the map g(P+S)
g(S) is a continuous map on E(K) under the Zariski

topology. Recall the Zariski topology has as closed sets the sets of points which
are the zeroes of a polynomial. A map is continuous under this topology if the
inverse image of a closed set is closed. Since E is connected, the image of the
map g(P+S)

g(S) must also be connected. As µn is a finite discrete set, the map
must actually be constant. This shows the definition of en is independent of the
choice of S, and so en is well-defined.

Theorem 7 The Weil pairing en satisfies the following properties:

1. en is bilinear, i.e.

en(P1 + P2, Q) = en(P1, Q)en(P2, Q)

and
en(P,Q1 +Q2) = en(P,Q1)en(P,Q2).

2. en(P, P ) = 1

3. en(P,Q) = en(Q,P )−1

4. en is nondegenerate, i.e. if en(P,Q) = 1 for all Q ∈ E[n] then P = ∞
and if en(P,Q) = 1 for all P ∈ E[n] then Q = ∞.

5. en is Galois invariant, i.e. if σ is an automorphism of K that restricts to
the identity on K, then

en(σ(P ), σ(Q)) = σ(en(P,Q)).

Here we are using the notation that if P = (x, y), then σ(P ) = (σ(x), σ(y)).
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6. If P ∈ E[nn′] and Q ∈ E[n] then

enn′(P,Q) = en([n′]P,Q).

7. If E is considered over an extension field, the value of en(P,Q) remains
unchanged.

Proof The following are standard arguments. See [65] or [59] for example.
(1) Choose S so that g(P1 + P2 + S), g(P2 + S), and g(S) are all defined and
nonzero. Then we have

en(P1 + P2, Q) =
g(P1 + P2 + S)

g(S)

=
g(P1 + (P2 + S))

g(P2 + S)
g(P2 + S)
g(S)

= en(P1, Q)en(P2, Q),

since the definition of en is independent of the choice of S. We have to work
a little harder for linearity in the second variable. Let Q3 = Q1 + Q2. In our
definition of the Weil pairing above, given a point Q, we used functions f and
g. Let fi and gi be the corresponding functions for Qi for i = 1, 2, 3. Now the
divisor [Q3]− [Q1]− [Q2]+[∞] has degree 0 and sum ∞, so by Theorem 6, there
is a function h on E with

div(h) = [Q3]− [Q1]− [Q2] + [∞].

Now as div(fi) = n[Qi]− n[∞], we have

div
(

f3
f1f2

)
= div(f3)− div(f1)− div(f2)

= (n[Q3]− n[∞])− (n[Q1]− n[∞])− (n[Q2]− n[∞])
= n[Q3]− n[Q1]− n[Q2] + n[∞]
= n div(h)
= div(hn).

Thus hn is a constant multiple of f3
f1f2

, and so there exists a c such that f3 =
cf1f2h

n. By our choice of the fi and gi, we have fi ◦ n = gn
i . Substituting this

in,
gn
3 = cgn

1 g
n
2 (h ◦ n)n,

or
g3 = c′g1g2(h ◦ n).

From the definition

en(P,Q1 +Q2) =
g3(P + S)
g3(S)

=
g1(P + S)
g1(S)

g2(P + S)
g2(S)

h([n](P + S))
h([n]S)

= en(P,Q1)en(P,Q2),
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as [n]P = ∞ so the last term is just h([n]S)
h([n]S) = 1. The point S is chosen so that

none of the above terms is 0 or ∞.
(2) We want to evaluate en(P, P ). Let τP be the map from E to E defined

by translation by P :
τP (R) = R+ P.

The zeroes of the function f ◦ τ[j]P are the zeroes of f translated by −[j]P , and
similarly for the poles. So

div(f ◦ τ[j]P ) = n[P − [j]P ]− n[−[j]P ].

Thus

div

n−1∏
j=0

f ◦ τ[j]P

 = n

n−1∑
j=0

([[1− j]P ]− [−[j]P ]).

Since P ∈ E[n], both
∑n−1

j=0 [[1−j]P ] and
∑n−1

j=0 [−[j]P ] are equal to
∑n−1

j=0 [[j]Q],
so the last displayed sum equals 0. This implies that

∏n−1
j=0 (f ◦τ[j]Q) is constant.

If P ′ is a point such that [n]P ′ = P , then

n−1∏
j=0

f ◦ τ[j]P =
n−1∏
j=0

f ◦ n ◦ τ[j]P ′ =

n−1∏
j=0

g ◦ τ[j]P ′

n

.

It follows that
∏n−1

j=0 g ◦ τ[j]P ′ is constant (again using the connectedness of E
in the Zariski topology). If we now evaluate this product at any point S and at
S + P ′, then

n−1∏
j=0

g ◦ τ[j]P ′(S) =
n−1∏
j=0

g ◦ τ[j]P ′(S + P ′),

and so
n−1∏
j=0

g(S + [j]P ′) =
n−1∏
j=0

g(S + [j + 1]P ′).

Cancelling the common terms, we have

g(S) = g(S + [n]P ′) = g(S + P )

which means

en(P, P ) =
g(P + S)
g(S)

= 1.

(3) easily follows from (1) and (2) using the calculation

1 = en(P +Q,P +Q) = en(P, P +Q)en(Q,P +Q)
= en(P, P )en(P,Q)en(Q,P )en(Q,Q) = en(P,Q)en(Q,P ).

(4) Suppose that en(P,Q) = 1 for all P ∈ E[n]. Then g(P+S)
g(S) = 1 for all

P and we claim there is a function h on E with g = h ◦ n. This is proved in

19



Lemma 4 at the end of this section. So (h ◦ n)n = gn = f ◦ n, and since the
multiplication by n map is surjective on E(K), f = hn. Thus

n div(h) = div(hn) = div(f) = n[Q]− n[∞],

and hence div(h) = [Q] − [∞]. By Theorem 5.3, Q = ∞. Now suppose that
en(P,Q) = 1 for all Q ∈ E[n]. Then en(Q,P ) = 1 for all Q and by the
nondegeneracy in the second variable which we just showed, we must have P =
∞.

(5) Let σ be an automorphism of K which is trivial on K. Let σ(P ) =
(σ(x), σ(y) for P = (x, y). Let fσ and gσ be the maps corresponding to f and
g in the definition of the pairing of en(σ(P ), σ(Q)). Note these are the same
functions obtained by applying σ to the coefficients of f and g. Then

en(σ(P ), σ(Q)) =
gσ(σ(P ) + σ(S))

gσ(σ(S))
= σ

(
g(P + S)
g(S)

)
= σ(en(P,Q)).

(6) With f and g from the definition of the pairing, we have

div(fn′) = nn′[Q]− nn′[∞],

and
(g ◦ n′)n = (f ◦ nn′).

Thus
(g ◦ n′)nn′ = (f ◦ nn′)n′ = fn′ ◦ nn′.

So we can use fn′ and g ◦ n′ in place of f and g in the definition of enn′ . Then

enn′(P,Q) =
(g ◦ n′)(S + P )

(g ◦ n′)(S)
=
g([n′]S + [n′]P )

g([n′]S)
= en([n′]P,Q).

(7) In the definition of en, no reference was made to the field of definition of
E. Everything was defined over E(K).

2

Using the above properties of the Weil pairing, we have the following easy
corollaries.

Corollary 1 There exist points P,Q ∈ E[n] such that en(P,Q) is a primitive
n-th root of unity. In particular, if {P,Q} is a basis for E[n], then en(P,Q) is
a primitive n-th root of unity.

Proof As P and Q vary over E[n], the image of en(P,Q) is a subgroup µd of
µn. Then by bilinearity,

1 = en(P,Q)d = en([d]P,Q),

for all P,Q ∈ E[n]. By the nondegeneracy of the pairing, we must have [d]P = ∞
for all P ∈ E[n]. As P was arbitrary, and E[n] ∼= Zn⊕Zn, it must be that d = n.
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If {P,Q} is a basis for E[n], set en(P,Q) = ζ, with ζd = 1. The bilinearity of
en implies that ζ generates the whole image of en, which we just showed is µn.
Thus d = n and en(P,Q) is a primitive n-th root of unity. 2

Corollary 2 If E[n] ⊂ E(K), then µn ∈ K∗.

Proof Let σ be any automorphism of K which is the identity on K. Then by
the galois invariance property of the Weil pairing,

σ(en(P,Q)) = en(σ(P ), σ(Q)) = en(P,Q)

for any P,Q ∈ E[n]. So we see that en(P,Q) ∈ K∗ for any P,Q. 2

One consequence of this last corollary is that if E is an elliptic curve defined
over Q, then for n ≥ 3, E[n] 6⊂ E(Q).

Lemma 4 Let E : y2 = x3 + Ax + B be an elliptic curve defined over a field
K. Suppose g is a function on E such that g(P + S) = g(P ) for all P ∈ E(K)
and all S ∈ E[n], where n ≥ 1 is not divisible by the characteristic of K. Then
there is a function h on E satisfying g(P ) = h([n]P ) for all P .

Proof We follow the proof from [65]. The lemma is clearly true if n = 1, so
we can assume n > 1. Given a point S ∈ E[n], there are rational functions
T (x, y), U(x, y) (depending on S) so that

(x, y) + S = (T (x, y), U(x, y))

on E. Regard K(x, y) as the quadratic extension of K(x) obtained by adjoining
the element

√
x3 +Ax+B.

We define a map
σS : K(x, y) → K(x, y)

σS(g(x, y)) = g(T (x, y), U(x, y)).

This makes sense as (T,U) is on E. The map is easily seen to be a homomor-
phism. In fact, the inverse of σS is σ−S , so the map is actually an automorphism.
We also note that because (x, y) +S 6= (x, y) +S′ unless S = S′, if S 6= S′ then
σS 6= σS′ .

Thus we have a group G of n2 automorphisms of K(x, y) as S runs through
E[n]. Let F be the fixed field of K(x, y) corresponding to G. Note that if a
function g is fixed by one of these automorphisms, then g(P + S) = g(S) for
all P . So F is actually the field of functions that satisfy the conditions of the
lemma. It follows by basic Galois theory that

[K(x, y) : F ] = n2.
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Recall from Section 2.3, that there are rational functions φn(x),Φn(x, y),
and ωn(x, y) such that

[n](x, y) =
(
φn(x)
Φ2

n(x)
,
ωn(x, y)
Φ3

n(x, y)

)
.

Notice that K
(

φn(x)
Φ2

n(x) ,
ωn(x,y)
Φ3

n(x,y)

)
⊆ F, and moreover[

K

(
φn(x)
Φ2

n(x)
,
ωn(x, y)
Φ3

n(x, y)

)
: K

(
φn(x)
Φ2

n(x)

)]
≥ 2,

because ωn(x,y)
Φ3

n(x,y) 6∈ K
(

φn(x)
Φ2

n(x)

)
as ωn(x,y)

Φ3
n(x,y) = yH(x) for some function H. This

implies [
K(x, y) : K

(
φn(x)
Φ2

n(x)

)]
≥ 2n2.

We now show we actually have equality. Let

P (X) = φn(X)− φn(x)
Φ2

n(x)
Φ2

n(X)

which has X = x as a root. The polynomial φn(X) = Xn2
+ ..., and Φ2

n(X) has
degree n2 − 1, so P (X) = Xn2−1 + .... It follows that x is of degree at most n2

over K
(

φn(x)
Φ2

n(x)

)
. As [K(x, y) : K(x)] = 2, then[

K(x, y) : K
(
φn(x)
Φ2

n(x)

)]
≤ 2n2.

As we have equality, then we must actually have

F = K

(
φn(x)
Φ2

n(x)
,
ωn(x, y)
Φ3

n(x, y)

)
.

The functions in F are those functions g such that g(P + S) = g(P ), for all
P ∈ E(K) and S ∈ E[n]. The functions on the right are of the form h([n]P ),
so this proves the lemma. 2

5.3 The Tate pairing

The Tate pairing is also defined using divisors. Let P ∈ E[n], so P ∈ E(Fqk)
where k is the embedding degree, the smallest positive integer such that n|(qk−
1). There is a function f on E such that

div(f) = n[P ]− n[∞].
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Given another point Q in E[n], choose a point R ∈ E[n] such that R 6∈
{∞, P,−Q,P − Q} so neither R nor Q + R is a pole or zero of f . Then we
define

τn(P,Q) =
(
f(Q+R)
f(R)

)(qk−1)/n

.

We need to verify that τn(P,Q) is an n-th root of unity, and that τn(P,Q)
doesn’t depend on the choice of f or R.

If f1 is another function on E with divisor n[P ] − n[∞], then by Theorem
we must have f1 = cf , for some constant c. Then

f1(Q+R)
f1(R)

=
cf(Q+R)
cf(R)

=
f(Q+R)
f(R)

,

so the value τn(P,Q) is independent of the choice of f .
Now let S be another point of E(Fqk)[n], with S 6∈ {∞, P,−Q,P −Q}. Note

that the divisor D = [Q+ S]− [S]− [Q+R] + [R] has degree 0 and sum ∞, so
there is a function h on E such that div(h) = D. Then

f(Q+ S)
f(S)

=
f(Q+R)
f(R)

f(Q+ S)f(R)
f(S)f(Q+R)

=
f(Q+R)
f(R)

f(div(h)).

We now need the Weil reciprocity theorem:

Theorem 8 Let f and h be two functions on E with disjoint support. Then

f(div(h)) = h(div(f)).

For a proof see [18]. Using this,

f(Q+ S)
f(S)

=
f(Q+R)
f(R)

h(div(f)) =
f(Q+R)
f(R)

(
h(P )
h(∞)

)n

.

By our choice of R and S, neither P nor ∞ is a zero or pole of h. If we raise
both sides to the (qk − 1)/n power, then the term with h becomes 1.

Thus (
f(Q+ S)
f(S)

)(qk−1)/n

=
(
f(Q+R)
f(R)

)(qk−1)/n

,

and so τn(P,Q) doesn’t depend on the choice of R.
By Theorem 6, we can take f to be defined over Fqk . So the value f(Q +

R)/f(R) is in F∗qk , hence so is τn(P,Q). Also, τn(P,Q)n =
(

f(Q+R)
f(R)

)qk−1

= 1,
and we’ve shown τn(P,Q) ∈ µn.

Note that what we are calling the Tate pairing is a modified version of what
is generally referred to as the Tate pairing. The image of a pair of points under
the unmodified Tate pairing is a coset, rather than an element of F∗qk . The
modification we make is raising to the (qk − 1)/n-th power, which we do to
simplify things as well as to make τn have the desired properties below.
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Theorem 9 The Tate pairing

τn : E[n]× E[n] → µn

satisfies the following properties:

1. τn is bilinear

2. τn is nondegenerate

3. τn is Galois invariant

4. If n|N and N |(qk − 1), then τN = τn

Proof (1) Let P1, P2 ∈ E[n]. Then

D = ([P1]− [∞]) + ([P2]− [∞])− ([P1 + P2]− [∞])

is a divisor with sum ∞ and degree 0, so there is a function f on E defined over
Fqk with div(f)=D. Let fi be a function on E with divisor n[Pi] − n[∞] for
i = 1, 2. Then

div(f1f2f−n) = div(f1) + div(f2)− ndiv(f) = n[P1 + P2]− n[∞].

So we can use f1f2f−n to compute the pairing for τn(P1 +P2, Q). Choose R so
that R 6∈ {∞, P1, P2, P1 + P2,−Q,P1 −Q,P2 −Q,P1 + P2 −Q}. Then

τn(P1 + P2, Q) =
(
f1(Q+R)
f1(R)

f2(Q+R)
f2(R)

f(R)n

f(Q+R)n

)(qk−1)/n

= τn(P1, Q)τn(P2, Q).

For bilinearity in the second variable, given P,Q1, Q2 ∈ E[n], choose R so that
R 6∈ {∞, P,−Q1,−Q2,−(Q1 +Q2), P −Q1, P −Q2, P −Q1 −Q2}. Then

f(Q1 +Q2 +R)
f(R)

=
f(Q1 +Q2 +R)
f(Q2 +R)

f(Q2 +R)
f(R)

,

so

τn(P,Q1 +Q2) =
(
f(Q1 +Q2 +R)

f(R)

)(qk−1)/n

=
(
f(Q1 +Q2 +R)
f(Q2 +R)

f(Q2 +R)
f(R)

)(qk−1)/n

= τn(P,Q1)τn(P,Q2).

(2) Nondegeneracy will be proved at the end of this chapter using an alter-
native definition of the Tate pairing. A proof can also be found in [16].

(3) Let σ be an element of the Galois group of Fqk over Fqk . Let fσ denote the
function obtained by applying σ to the coefficients of f . Then clearly σ(f(P )) =
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fσ(σ(P )). If f is as in our definition of τn, then div(f)=n[P ] − n[∞] and
consequently div(fσ) = n[σ(P )]− n[∞]. So

τn(σ(P ), σ(Q)) =
(
fσ(σ(Q+R))
fσ(σ(R))

)(qk−1)/n

= σ

(
f(Q+R)
f(R)

)(qk−1)/n

= σ(τn(P,Q)).

(4) Write N = mn. If f is a function on E with div(f)=n[P ]− n[∞], then
div(fm) = N [P ]−N [∞]. So we can use fm for τN . It easily follows

τN (P,Q) =
(
f(Q+R)m

f(Q)m

)(qk−1)/N

=
(
f(Q+R)
f(Q)

)(qk−1)/n

= τn(P,Q).

2

The reader should be aware that if the same curve E, instead of being
considered over Fq, is considered over Fqj , (where j is relatively prime to k),
then the value of τn(P,Q) changes. It becomes the qjk−1

qk−1
-th power of the value

it had when E was considered over Fq. This is different than the Weil pairing,
whose value didn’t change when the same curve was regarded as a curve over a
field extension.

Another difference with the Weil pairing, is that we need not have τn(P, P ) =
1 when k = 1. It can be shown if k > 1 then τn(P, P ) = 1.

One other difference between the two pairings is that for the Tate pairing,
we work over the field Fq(µn) = Fqk , while for the Weil pairing, we work over
the possibly bigger field Fq(E[n]), which is the smallest field containing Fq and
all the coordinates of the points of E[n]. The following theorem from [2] shows
these fields are often the same.

Theorem 10 Let E be an elliptic curve over Fq. Suppose that n is a prime
dividing #E(Fq) such that n 6 | (q−1). Then E[n] ⊆ E(Fqk) if and only if qk ≡ 1
mod n.

Proof If E[n] ⊆ E(Fqk), then we already proved (Corollary 2) that µn ⊆ Fqk ,
hence qk ≡ 1 mod n. Now suppose that qk ≡ 1 mod n, and let P ∈ E(Fq) be
a point of order n. Let Q be another point on E(Fq) so that {P,Q} is a basis
for E[n]. Let φq be the Frobenius map where φq(x, y) = (xq, yq). As P has
coordinates in Fq, φq(P ) = P . Let φq(Q) = [a]P + [b]Q. Then φq acts on E[n],
with the action given by the matrix

(φq)n =
(

1 a
0 b

)
.
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The trace t of φq is given by q+1−#E(Fq). So as n divides #E(Fq), 1+b ≡ q+1
mod n, so b ≡ q mod n. We can thus replace b by q because Q has order n,
so[b]Q = [q]Q.

Now replace Q by Q′ = Q+[c]P , where c ≡ a(q−1)−1 mod n which makes
sense as q 6≡ 1 mod n. Then {P,Q′} is also a basis for E[n]. One easily sees that
this change of basis diagonalizes the matrix of φq with respect to this basis, so
without loss of generality we can assume that a = 0. It follows that the matrix
of φk

q (with respect to this latter basis) is(
1 0
0 q

)k

=
(

1 0
0 qk

)
≡
(

1 0
0 1

)
mod n.

So φk
q fixes Q′, hence φk

q fixes all points of E[n]. Given any (x, y) ∈ E[n], we
have that (xqk

, yqk

) = (x, y), so both x and y are in Fqk . This shows that
E[n] ⊆ Fqk .

We’ve seen that in order to prove τn gives a bilinear pairing, we need at least
eight distinct points in E(Fqk of order n. What if Fqk is so small that this isn’t
possible? Although this is unlikely to be the case in a cryptographic setting,
the situation can be remedied using the equivalent definition of the Tate pairing
which we’ll give in the next section. 2

5.4 Computing pairings

There is another way to define the Weil pairing which is useful for computational
purposes. It also shows a relationship with the Tate pairing.

Let fP be a function on E such that div(fP ) = n[P ]− n[∞]. Define

〈P,Q〉n =
fP (Q+R)
fP (R)

for P,Q ∈ E[n], and R ∈ E(Fqk) such that R 6∈ {∞, P,−Q,P −Q}. In the last
section we showed that this is independent of the choice of fP , and up to n-th
powers, it is independent of R. We also saw that

τn(P,Q) = 〈P,Q〉(q
k−1)/n

n ,

We now show how this can be used to define the Weil pairing.

Theorem 11 Let P,Q ∈ E[n]. Let DP be a divisor with sum P and degree
0, and DQ a degree 0 divisor with sum Q such that DP and DQ have disjoint
support. If fP , fQ are functions on E such that div(fP ) = nDP and div(fQ) =
nDQ, then

en(P,Q) =
fQ(DP )
fP (DQ)

.
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Proof This argument is due to [41]. We begin by showing that fQ(DP )
fP (DQ) is

independent of the particular choice of DP , DQ, fP , or fQ. Any function other
than fP must be of the form cfP for some constant c. But then (cfP )(DQ) =
fP (DQ), because DQ is degree 0, and so the constant cancels out. Similarly,
any other constant involved in the choice of fQ drops out.

LetDQ′ be another degree zero divisor with sum Q and support disjoint from
DP . Let fQ′ be the corresponding function with div(fQ′) = nDQ′ . Note that
DQ −DQ′ = div(h) for some h, and that div(hn) = ndiv(h) = nDQ − nDQ′ =
div(fQ/fQ′). Thus fQ = cfQ′hn for some constant c. We then calculate

fQ(DP )
fP (DQ)

=
cfQ′(DP )h(DP )n

fP (DQ′ + div(h))
=

fQ′(DP )h(nDP )
fP (DQ′)fP (div(h))

=
fQ′(DP )h(div(fP ))
fP (DQ′)fP (div(h))

=
fQ′(DP )
fP (DQ′)

.

The constant c cancels out because DP has degree 0, and the last equality
follows by Weil reciprocity. An analogous argument can be used to show the
same result if DP ′ is another degree 0 divisor with sum P .

Let DP and DQ be divisors as in the statement of the theorem. Let D̂Q =
[Q] − [∞], and f̂Q be a function such that div(f̂Q) = nD̂Q. This is the same
function we labeled as f when we defined the Weil pairing en(P,Q) at the start
of Section 5.2. As DQ − D̂Q is a degree 0 divisor with sum ∞, we can write
DQ = D̂Q + div(hQ) for some function hQ.

Let Q′ be such that [n]Q′ = [Q]. As we showed in the definition of the Weil
pairing, there exists a function ĝQ such that

div(ĝQ) =
∑

S∈E[n]

([Q′ + S]− [S]),

as well as ĝn
Q = f̂Q ◦ n.

Let P ′ be such that [n]P ′ = P and let X be a point on E such that

D = (n− 1)[P ′ +X] + [P ′ − P +X]− n[X]

has support disjoint from the support of ĝQ. We also require that P + [n]X
and [n]X are not equal to either Q or ∞. We can write DP = D̂P + div(hP ),
where D̂P = [P + [n]X]− [[n]X], and there is an f̂P with div(f̂P ) = nD̂P . Note
that D̂P and D̂Q satisfy the conditions of our theorem. Its easy to see there is
a function ĝP such that

div(ĝP ) =
∑

S∈E[n]

([P ′ +X + S]− [X + S]),

which satisfies ĝn
P = f̂P ◦ n.

Now D has sum ∞ and degree 0, so there is a function h with div(h) = D.
By Weil reciprocity, h(div(ĝQ)) = ĝQ(div(h)). We’ll now evaluate each side of
this equality and this will prove the result.
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We have

ĝQ(div(h)) =
ĝQ(P ′ +X)n−1ĝQ(P ′ − P +X)

ĝQ(X)n

=
ĝQ(P ′ +X)n

ĝQ(X)n

ĝQ(P ′ − P +X)
ĝQ(P ′ +X)

=
f̂Q ◦ n(P ′ +X)

f̂Q ◦ n(X)

ĝQ(P ′′)
ĝQ(P ′′ + P )

=
f̂Q(P + [n]X)

f̂Q([n]X)

1
en(P,Q)

,

where P ′′ = P ′ − P +X.
Now we look at h(div(ĝQ) =

∏
S∈E[n]

h(Q′+S)
h(S) . Let τS(T ) = T + S, and

H(T ) =
∏

S∈E[n]

h(T + S) =
∏

S∈E[n]

h ◦ τS(T ).

Therefore,

div(H) =
∑

S∈E[n]

div(h ◦ τS)

=
∑

S∈E[n]

(n− 1)[P ′ +X − S] + [P ′ − P +X − S]− n[X − S]

= n
∑

S∈E[n]

[P ′ +X − S]−
∑

S∈E[n]

[P ′ +X − S] +
∑

S∈E[n]

[P ′ − P +X − S]− n
∑

S∈E[n]

[X − S]

= n
∑

S∈E[n]

[P ′ +X − S]− n
∑

S∈E[n]

[X − S]

= n
∑

s∈E[n]

[P ′ +X + S]− [X + S]

= n div(ĝP )
= div(ĝn

P ).

Thus H = cĝn
P = cf̂P ◦ n, so H(T ) = cf̂P ([n]T ).

So we have that
∏

S∈E[n] h(Q
′+S) = H(Q′) = cf̂P (Q), and also

∏
S∈E[n] h(S) =

H(∞) = cf̂P (∞). Thus

h(div(ĝQ) =
f̂P (Q)

f̂P (∞)
.

When we combine this with our above results, we find

f̂P (Q)

f̂P (∞
=
f̂Q(P + [n]X)

f̂Q([n]X)

1
en(P,Q)

,
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or

en(P,Q) =
f̂Q(P + [n]X)

f̂Q([n]X)

f̂P (∞)

f̂P (Q)

=
f̂Q(D̂P )

f̂P (D̂Q)
.

By the independence of the choice of DP and DQ, this is equivalent to

en(P,Q) =
fQ(DP )
fP (DQ)

.

2

We show how this relates to 〈P,Q〉n. A natural choice of divisors in the
statement of the theorem is DP = [P ] − [∞] and DQ = [Q + R] − [R], where
R 6= ∞, P,−Q,P −Q. With this choice, we show the following.

Corollary 3 Up to n-th powers, we have

en(P,Q) =
〈Q,P 〉n
〈P,Q〉n

.

Proof Using DP = [P ]− [∞] and DQ = [Q+R]− [R], we have that

en(P,Q) =
fQ(DP )
fP (DQ)

=
fQ(DP )
〈P,Q〉n

.

So we need to verify that fQ(DP ) = 〈Q,P 〉n, up to n-th powers.
Now let S be any point of E such that S /∈ {∞, Q,−P,Q − P}, and let

DS = [P + S]− [S]. Then DP −DS = div(h) for some function fS . So

fQ(DP ) = fQ(DS + div(h)) = fQ(DS)fQ(div(h))
= fQ(DS)h(div(fQ)) = fQ(DS)h(nDQ) = fQ(DS)h(DQ)n.

Furthermore, if f is a function such that div(f) = n[Q] − n[∞], then
div(fQ/f)=div(fQ)-div(f) = n(DQ − [Q] + [∞]) = ndiv(g) = div(gn) for some
function g. It follows that fQ = cfgn for some constant c. Then

fQ(DP ) = fQ(DS)h(DQ)n = (cf)(DS)g(DS)nh(DQ)n = f(DS)

up to n-th powers. But f(DS) = 〈Q,P 〉n up to n-th powers, so we are done. 2

We have seen that to compute 〈P,Q〉n (and thus en(P,Q) and τn(P,Q)) we
have to find a function f with div(f) = n[P ] − n[∞]. The proof of Theorem 6
illustrated how we can do this. However, for large n, it is not efficient. V. Miller
created an algorithm ([47],[48]) that finds f in polynomial time.

The main idea is to use the double and add technique. Let fi be a function
such that

div(fi) = i[P ]− [[i]P ]− (i− 1)[∞].

Such functions are determined up to a constant multiple. We seek to find fn.
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Lemma 5 The functions fi can be chosen so that:

1. f1 = 1.

2. Let l and v be algebraic expressions for the straight lines used in the com-
putation of [i]P + [j]P = [i+ j]P . Then

fi+j = fifj
l

v
.

Proof It is trivial that f1 = 1 works. As in the proof of Theorem 6

div(
l

v
) = [[i]P ] + [[j]P ]− [[i+ j]P ]− [∞]

so

div(fifj
l

v
) = div(fi) + div(fj) + div(

l

v
)

= i[P ]− [[i]P ]− (i− 1)[∞] + j[P ]− [[j]P ]− (j − 1)[∞]
+ [[i]P ] + [[j]P ]− [[i+ j]P ]− [∞]

= (i+ j)[P ]− [[i+ j]P ]− (i+ j − 1)[∞].

2

We double when i = j and add when j = 1. The algorithm uses an addition
chain for [n]P to construct fn. As we need to compute fn(D), where D =
[Q+R]− [R], we evaluate all intermediate fi at D. We now give his algorithm:

Algorithm 1 - Miller’s algorithm to evaluate 〈P,Q〉n

1. Given P,Q ∈ E[n], choose R ∈ E[n] with R 6∈ {∞, P,−Q,P −Q}.

2. Write n in binary as n = (nt, ..., n1, n0) with each ni ∈ {0, 1}.

3. Set f = 1, T = P and i = t.

4. If i < 0 then go to step 5. Else do the following:

(a) Let l be the tangent line to E through T . Let v be the vertical line
through 2T .

(b) Set T = 2T .

(c) Set f = f2 l(Q+R)
v(Q+R)

v(R)
l(R) .

(d) If ni = 1 then do the following:

i. Let l be the line through T and P , and v the vertical line through
T + P .

ii. Set T = T + P .
iii. Set f = f l(Q+R)

v(Q+R)
v(R)
l(R) .
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(e) Set i = i− 1 and return to step 4

5. The desired value is 〈P,Q〉n = f

This algorithm has been improved upon, and is efficient enough to be used
to implement pairing based cryptography at current security levels.

5.5 An alternative definition of the Tate pairing

We first show another way the Tate pairing can be defined using the Weil pairing.
We follow the exposition of Washington ([65]).

Theorem 12 Given points P,Q ∈ E[n], choose R ∈ E(Fq) such that [n]R = Q.
Let φ be the Frobenius map, i.e., φ(x, y) = (xqk

, yqk

). Then

τn(P,Q) = en(P,R− φ(R)).

Proof Note that [n](R−φ(R)) = [n]R−[n]φ(R) = Q−φ(Q) = ∞, so en(P,R−
φ(R)) is defined. We also need to verify that it is independent of the choice of
R. Let R′ be another point such that [n]R′ = Q. It’s clear that R′ −R ∈ E[n].
So

en(P,R′ − φ(R′)) = en(R− φ(R) + (R′ −R)− φ(R′ −R))

=
en(P,R− φ(R))en(P,R′ −R)

en(P, φ(R′ −R))
,

using the bilinearity of en. As P ∈ E(Fqk), then φ(P ) = P and we see

en(P, φ(R′ −R)) = en(φ(P ), φ(R′ −R)) = φ(en(P,R′ −R)) = en(P,R′ −R)

because en(P,R′ −R) ∈ Fqk . This shows that

en(P,R′ − φ(R′)) = en(P,R− φ(R))

doesn’t depend on the choice of R.
We now show this gives the same value as τn(P,Q). Let T ∈ E[n] and choose

a function g with

div(g) = n[R]− [Q+ T ] + [T ]− n[∞],

and let gφ be the function obtained by applying φ to all the coefficients of g.
Thus φ(g(X)) = gφ(φ(X)) for any point X. Looking at the divisor of gφ, we
calculate

div(gφ) = n[φ(R)]− [Q+ T ] + [T ]− n[∞].

It follows that
div(g/gφ) = n[R]− n[φ(R)].

Now choose a degree 0 divisor DP such that sum(DP ) = P , and DP has disjoint
support from the support of div(g). We also require that φ(DP ) = DP , that
is φ permutes the points in the support DP such that the formal expression
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for DP is unchanged. There is always some choice which will work, by Lemma
11.9 of [65]. One possibility which will often work is DP = [P + S]− [S], where
S ∈ E(Fqk) is chosen so S 6∈ {Q+ T,R, T,∞, Q+ T − P,R− P, T − P,−P}.

As [n]P = ∞, then there is a function f with div(f) = nDP , and by Theorem
6 we can assume that f is defined over Fqk so that φ(f(R)) = f(φ(R)). By
Theorem 11 applied with Q = R − φ(R), DQ = [R] − [φ(R)], fP = f , and
fQ = g/gφ we see

en(P,R− φ(R)) =
(g/gφ)(DP )

f([R]− [φ(R)])
.

Rearranging this yields

en(P,R− φ(R)) = φ

(
f(R)
g(DP )

)
g(DP )
f(R)

=
(
f(R)
g(DP )

)qk−1

,

since φ raises elements to the qk-th power.
Notice that

g(DP )n = g(nDP ) = g(div(f)) = f(div(g)) =
f(R)nf(T )

f(Q+ T )f(∞)n

by Weil reciprocity. So (
f(R)
g(DP

)n

=
f(Q+ T )
f(T )

f(∞)n,

and raising both sides to the (qk − 1)/n-th power(
f(R)
g(DP

)qk−1

=
(
f(Q+ T )
f(T )

)(qk−1)/n

f(∞)qk−1.

Since f is defined over Fqk , then f(∞) ∈ Fqk and hence f(∞)qk−1 = 1. Com-
bining the various pieces above, we see that

en(P,R− φ(R)) =
(
f(Q+ T )
f(T )

)(qk−1)/n

.

This is almost what we want, however in the definition of τn(P,Q), we need
a function F such that div(F ) = n[P ] − n[∞], while we have div(f) = nDP .
Note that DP − [P ] + [∞] is a degree 0 divisor with sum ∞, so is the divisor
of a function h, which we can take to be defined over Fqk . A simple calculation
shows that hn and f/F have the same divisor, so f = cFhn for some constant
c. We find(

f(Q+ T )
f(T )

)(qk−1)/n

=
(
cF (Q+ T )h(Q+ T )n

cF (T )h(T )n

)(qk−1)/n

=
(
F (Q+ T )
F (T )

)(qk−1)/n(
h(Q+ T )
h(T )

)qk−1

=
(
F (Q+ T )
F (T )

)(qk−1)/n

,
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since
(

h(Q+T )
h(T )

)qk−1

= 1.
Thus

en(P,R− φ(R)) =
(
F (Q+ T )
F (T )

)(qk−1)/n

= τn(P,Q).

2

The properties of the Tate pairing in Theorem 9 can also be proved using
this definition. For example, bilinearity easily follows from the bilinearity of en.
We did not prove the nondegeneracy of τn, which we can now do.

Theorem 13 If n is a prime such that n3 6 |#E(Fqk), then the Tate pairing τn
is nondegenerate.

We’ll establish a series of lemmas which will prove the result. The ideas are
from Washington ([65]).

Lemma 6 Let G be a finite abelian group (written additively) such that ng = 0
for all g ∈ G. Letting Hom(G,µn) denote the set of all homomorphisms from
G to µn, then |G| = #Hom(G,µn).

Proof We first prove the result for the special case when G ∼= Zm, with m|n.
Let f be a homomorphism from Zm to µn. Then f(1)m = f(m) = 1, so
f(1) ∈ µm ⊆ µn. The value of f(1) completely determines f , as f(b) = f(1)b.
There are clearly m choices for f(1), and each yields a different homomorphism,
so #Hom(G,µn) = #Hom(Zm, µn) = m = |G|.

Now if G is any finite abelian group, then we know

G ∼= Zm1 ⊕ · · · ⊕ Zmk
.

As ng = 0 for all g in G, then we must have that mi|n for all 1 ≤ i ≤ k. We
claim there is a bijection

Φ : Hom(Zm1 ⊕ · · · ⊕ Zmk
, µn) → Hom(Zm1 , µn)⊕ · · · ⊕Hom(Zmk

, µn).

Set Φ(f) = (f1, ..., fk), with fi defined by fi(b) = f(0, ..., 0, b, 0, ..., 0) where the b
is in the i-th entry. The inverse map sends (f1, ..., fk) to f , where f(b1, ..., bk) =
f1(b1)f2(b2) · · · fk(bk). The details are easy to verify. The result then follows as
|G| = m1m2 · · ·mk. 2

Lemma 7 The groups E[n] and H = Hom(E[n], µn) are isomorphic.

Proof For each T ∈ E[n], define a map ψT : E[n] → µn by ψT (S) = en(S, T ).
Clearly ψT (S + S′) = en(S + S′, T ) = en(S, T )en(S′, T ) = ψT (S)ψT (S′), so
ψT ∈ H. Let T ′ be another point in E[n]. Then ψT+T ′ is defined by

ψT+T ′(S) = en(S, T + T ′) = en(S, T )en(S, T ′) = ψT (S)ψT ′(S)
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, so ψT+T ′ = ψTψT ′ , which shows we have a homomorphism from E[n] into H.
Suppose ψT is the trivial homomorphism, so ψT (S) = en(S, T ) = 1 for all

S in E[n]. By the nondegeneracy of the Weil pairing, T = ∞, which shows
the homomorphism from E[n] into H is injective. By the previous lemma,
the two groups have the same order which implies the injection is actually an
isomorphism. 2

Now, define the map ψ by

ψ : E[n] →
∏

S∈E[n]

µn

ψ(T ) = (· · · , en(S, T ), · · · ).

It is clear that ψ is a homomorphism.

Lemma 8 We have #ψ(E[n]) = #E[n].

Proof By Lemma 7, E[n] and Hom(E[n], µn) are isomorphic. The kernel of ψ
is

ker ψ = {T ∈ E[n] | en(S, T ) = 1 for all S ∈ E[n]}.

Using the isomorphism, this is equivalently

ker ψ = {f ∈ Hom(E[n], µn) | f(S) = 1 for all S ∈ E[n]}
= Hom(E[n]/E[n], µn).

Thus by Lemma 6, #ker ψ = #E[n]/#E[n]. From the first isomorphism the-
orem for groups, we know #E[n]/#ker ψ = #ψ(E[n]). Combining these last
two equations gives the result. 2

Lemma 9 The kernel of ψ is (φ− 1)E[n], where φ is the Frobenius endomor-
phism of E(Fqk).

Proof For any T in E[n], we see

ψ(φ(T )) = (· · · , en(S, φ(T )), · · · )
= (· · · , en(φ(S), φ(T )), · · · )
= (· · · , φ(en(S, T )), · · · )
= (· · · , en(S, T ), · · · )
= ψ(T ).

This shows (φ− 1)E[n] ⊆ ker ψ.
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We now prove these two sets have the same order, which gives equality.

#E[n] = #ker (φ− 1)|E[n] (as ker(φ− 1) = Fqk)
= #E[n]/#((φ− 1)E[n]) (1st isomorphism theorem)
≥ #E[n]/#ker ψ (as (φ− 1)E[n] ⊆ ker ψ
= #ψ(E[n]) (by the 1st isomorphism theorem)
= #E[n] (by Lemma 8).

So there must be equality throughout, and #(φ− 1)E[n] = #ker ψ. 2

Lemma 10 Suppose we have a bilinear pairing 〈, 〉 : E[n]×E[n] → µn which is
nondegenerate in the first variable (that is, if 〈S, T 〉 = 1 for all S ∈ E[n] then
T = ∞). Then the pairing is nondegenerate in the second variable also.

Proof Let
S = {S ∈ E[n]|〈S, T 〉 = 1 for all T ∈ E[n]} .

For any T in E[n], we can define a homomorphism fT : E[n]/S → µn where
fT (S + S) = 〈S, T 〉. By the definition of S, these homomorphisms are well-
defined.

Now suppose that fT is the trivial homomorphism for some T . Then 〈S, T 〉 =
1 for all S ∈ E[n]. By the nondegeneracy in the first variable, we must have that
T = ∞. This means we have an injection from E[n] into Hom(E[n]/S, µn). By
Lemma 6, #Hom(E[n]/S, µn) = #E[n]/|S|. The injection implies that |S| = 1,
thus S = {∞}. This is exactly what nondegeneracy in the second variable
means. 2

We can now prove the nondegeneracy of τn. Suppose τn(P,Q) = 1 for all
P ∈ E[n]. Let R be such that [n]R = Q, so en(P,R − φ(R)) = 1 for any P
in E[n]. This means that R − φ(R) is in the kernel of ψ, which is the same as
(φ − 1)E[n]. So there exists a T ∈ E[n] such that φ(T ) − T = R − φ(R), or
R+T = φ(R+T ). The fixed field of φ is Fqk , so R+T ∈ E(Fqk). We can thus
write Q = [n]R = [n](R+T ), and [n2](R+T ) = [n]Q = ∞. By our assumption
that n3 6 |#E(Fqk), then n 6 |#E(Fqk)/n2, and R + T can’t have order n2. As n
is prime, R + T has order 1 or n, and either way Q = ∞, and we have shown
nondegeneracy in the first variable. Lemma 10 shows that τn is nondegenerate
in the second variable as well.

6 Distortion Maps

6.1 Endomorphisms, isogenies, and distortion maps

Let E : y2 = x3+Ax+B be an elliptic curve defined over Fq. An endomorphism
of E is a homomorphism from E(Fq) to itself given by rational functions. The
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simplest endomorphisms are just those given by multiplication by an integer
[n] : E → E where [n](P ) = [n]P. This shows that Z ⊆ End(E), the ring of
all endomorphisms of E. But there are more endomorphisms, as the following
theorem shows. For a proof, see [64].

Theorem 14 If E is ordinary, then End(E) is an order in an imaginary quadratic
field. If E is supersingular, then End(E) is an order in a quaternion algebra.

A quaternion algebra is an algebra of the form

H = Q + Qα+ Qβ + Qαβ,

where α and β satisfy

α2, β2 ∈ Q, α2 < 0, β2 < 0, βα = −αβ.

Note that H is non-commutative. D. Kohel has created an algorithm (see [35])
that determines End(E).

Now let n be a prime, and let K be the smallest extension of Fq for which
E[n] ⊆ K. If the embedding degree satisfies k > 1, then K = Fqk by Theorem
10. A distortion map D with respect to a cyclic subgroup 〈P 〉 of order n is an
endomorphism of the curve (defined over K) that maps any nonzero point Q ∈
〈P 〉 to a point D(Q) linearly independent from Q. That is, D(Q) 6∈ 〈P 〉. Since
D is a group homomorphism, D(Q) is a non-trivial element of order n on the
curve. It follows from Corollary 1 of Theorem 7 that the value en(Q,D(Q)) 6= 1.
As we will show in chapter 10, Verheul’s argument can readily be generalized,
provided that an efficiently computable D can be found.

We illustrate with a few simple examples. Suppose q = pf , with p a prime
where p ≡ 2 mod 3. Then the curve defined by y2 = x3 − 1 is supersingular.
The map

(x, y) → (ζx, y)

where ζ ∈ Fp2 with ζ3 = 1, ζ 6= 1 is a distortion map. Similarly, if p ≡ 3 mod 4,
the curve y2 = x3 + x is also supersingular. The map

(x, y) → (−x, iy)

with i ∈ Fp2 , i2 = −1 is a distortion map.
Verheul proved that distortion maps exist for all supersingular curves. Find-

ing an efficiently computable distortion map for all supersingular curves is more
difficult. One way to create distortion maps is to use l-isogenies. An isogeny
is a nonconstant homomorphism from E(Fq) to another curve E1(Fq) given by
rational functions. If the kernel has order l, then it is called an l-isogeny. Given
a curve E for which we wish to construct a distortion map, the image of an l-
isogeny φ from E is usually not E. However, we can construct an isomorphism
ψ from the image back to E, and the map ψ ◦φ will be a distortion map. Which
l we use depends on the elliptic curve. We will always assume that l is prime,
as if l is composite, we can factor l into a product of primes l = p1 · · · pr. Then
the l-isogeny can be obtained by using a composition of pi-isogenies.
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In the examples given above, the distortion maps are not only isogenies, but
actually are automorphisms of the curve. In fact, these maps and their inverses
are the only non-trivial automorphisms of elliptic curves when the characteristic
of Fq is greater than 3 (Theorem III.10.1 of [59]). Note that the endomorphism
rings of these curves are isomorphic to either Z[i] or Z[ 1+

√
−3

2 ], which are the
only imaginary quadratic number rings with non-trivial units.

We now describe how to find isogenies.

6.2 Vélu’s formulae

In [62], Vélu showed how to find an isogeny explicitly. Let l be an odd (not
necessarily prime) number. For simplicity, we’ll assume the characteristic of Fq

is greater than 3. Let F be a subgroup of E of order l, which we desire to be
the kernel of our isogeny.

We define φ in the following way. For P = (xP , yP ) 6∈ F , let

φ(P ) =

xP +
∑

Q∈F−{∞}

(xP+Q − xQ), yP +
∑

Q∈F−{∞}

(yP+Q − yQ)

 .

The points of F cause some difficulty, as x∞ and y∞ don’t make sense. To get
around this, we could use projective coordinates. We omit the details, because
the basic idea is clear. For any point P ∈ F , we set φ(P ) = ∞. It is easy to see
that φ is invariant under translation by elements of F , and that the kernel of φ
is F . Using the group law on the curve, we also see that φ can be written in
terms of rational functions. It necessarily follows by the following theorem that
φ is an isogeny.

Theorem 15 Let E and E1 be two elliptic curves defined over a field K, and
α : E(K) → E1(K) be a nonconstant map given by rational functions. If
α(∞) = ∞, then α is an isogeny.

For a proof see [59] or [65]. So φ is an l-isogeny with kernel F , as desired.
We would like to have an easier way of computing φ. Partition F − {∞}

into two sets R and −R, where −R consists of the negatives of the points of R.
Thus F − {∞} = R ∪ −R and R ∩ −R = ∅. If we set φ(x, y) = (X,Y ) then
using the formula for addition on E,

X = x+
∑
Q∈R

((
y − yQ

x− xQ

)2

− x− 2xQ +
(
y − y−Q

x− x−Q

)2

− x− 2x−Q

)
,

and a similar expression for Y . Using the fact that Q lies on E, recalling −Q =
(xQ,−yQ) and some straightforward algebra we can simplify the expression for
X:

X = x+
∑
Q∈R

(
2
3x2

Q +A

x− xQ
+ 4

x3
Q +AxQ +B

(x− xQ)2

)
.
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This equation can be further rewritten. In what follows, when we use deriva-
tives, we mean the formal derivative of a polynomial defined by the familiar
∂
∂xx

n = nxn−1. We extend this to derivatives of rational functions by using the
quotient rule. Let

g(x) =
∏

Q∈R

(x− xQ),

and define σ by
g(x) = x(l−1)/2 − σx(l−1)/2−1 + ...

Note that g′(x)
g(x) =

∑
Q∈R

1
x−xQ

and
(

g′(x)
g(x)

)′
= −

∑
Q∈R

1
(x−xQ)2 . Some more

algebra shows that

X = x+
∑
Q∈R

(
2(x− xQ)− 2

3x2 +A

x− xQ
+ 4

x3 +Ax+B

(x− xQ)2

)
.

Thus

X = lx− 2σ − 2(3x2 +A)
g′(x)
g(x)

− 4(x3 +Ax+B)
(
g′(x)
g(x)

)′
.

Up until now, we have been ignoring Y . There is a good reason to do so.
Any isogeny can be written as I(x, y) = (I(x), cyI ′(x)) for some constant c (see
[60]). In our case it can be checked that c = 1, and so Y = y ∂X

∂x , so the formula
for X determines the formula for Y . If the image of E under the isogeny is
y2 = x3 + Ãx+ B̃, then we have

(x3 +Ax+B)(I ′(x))2 = I(x)3 + ÃI(x) + B̃.

Differentiating this, we find

(3x2 +A)I ′(x) + 2(x3 +Ax+B)I ′′(x) = 3I(x)2 + Ã.

Note the similarity of the left hand side of the equation for X above. The
similarities become even more apparent if we make the substitution I(x) =
− log g(x)2.

This shows that φ can be written as

φ(x, y) =

(
f(x)
g(x)2

, y

(
f(x)
g(x)2

)′)

where f(x) is related to g(x) by

f(x)
g(x)2

= lx− 2σ − 2(3x2 +A)
g′(x)
g(x)

− 4(x3 +Ax+B)
(
g′(x)
g(x)

)′
.

We can also determine the Weierstrass equation of the image Ẽ of E. Let

g(x)2 = xl−1 − 2σxl−2 + σ2x
l−3 − σ3x

l−4 + ...
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and set t = A(l−1)+3(4σ2−2σ2) and w = 6Aσ+2B(l−1)+5(8σ3−6σσ2+3σ3).
Then the isogenous curve is Ẽ : y2 = x3 + (A− 5t)x+ (B − 7w). All the above
computations are done in Fq.

More generally, Vélu’s paper does not require that l be odd, although the
equations are easier in this case. In our applications l is odd and prime.

Observe that along with the coefficients A and B in the equation of E, the
polynomial g(x) is enough to determine the l-isogeny. As a consequence, we will
often display only g(x), and not the explicit equations for the image (X,Y ) of
the isogeny. We will show how to find g(x) in Algorithm 2 of chapter 8.

As an illustration of Vélu’s formulae, let’s take E to be the curve y2 =
x3 + 9x+ 4 over F13. A simple calculation finds that E has 14 points over F13.
The point P = (0, 2) has order 7, with [2]P = (1, 12) and [3]P = (8, 9). Using
these points, we can find a 7-isogeny. Since we know the kernel explicitly, we
easily see

g(x) = (x− 0)(x− 1)(x− 8) = x3 + 4x2 + 8x,

and hence σ = 9. We then compute

f(x)
g(x)2

= 7x+ 8− (3x2 + 9)
3x2 + 4x+ 8
x3 + 4x2 + 8x

− 2(x3 + 9x+ 4)
(

3x2 + 4x+ 8
x3 + 4x2 + 8x

)′
=
x7 + 8x6 + 8x5 + 11x4 + 9x3 + x2 + 5x+ 10

(x3 + 4x2 + 8x)2
.

Then by Vélu, the 7-isogeny with kernel {P, [2]P, [3]P, [4]P, [5]P, [6]P,∞} is

φ(x, y) =

(
x7 + 8x6 + 8x5 + 11x4 + 9x3 + x2 + 5x+ 10

(x3 + 4x2 + 8x)2
,

y
x9 + 12x8 + 5x7 + 6x6 + 9x5 + 6x4 + 10x2 + 8x+ 9

(x3 + 4x2 + 8x)3

)
.

To find the image of E under φ, we observe that σ2 = 6 and σ3 = 1. So
t = 9(7−1)+3(4·92−2·6) = 2 and w = 6·9·9+2·4(7−1)+5(8·93−6·9·6+3·1) = 9.
This means the image is Ẽ : y2 = x3 + 12x+ 6.

Let’s do an example where we have to use an extension of F13. Suppose we
want an 11-isogeny. As 11|(1310−1), we’ll work over F1310 . We’ll represent this
field as F13(θ), where θ is a root of x10+7x5+5x4+8x3+x2+x+2. Then E(F1310)
has 137859234436 = 22 · 72 · 112 · 24112 points. The point P = (7θ9 +2θ8 + θ7 +
5θ6+2θ5+12θ4+12θ3+4θ2+6θ+10, 3θ9+10θ8+8θ7+3θ6+10θ5+5θ3+9θ2+5)
has order 11. Then if we take the x-coordinates of P, [2]P, [3]P, [4]P, and [5]P ,
we get the degree 5 polynomial

g(x) = x5 + (12θ9 + 9θ8 + 11θ7 + 3θ6 + 9θ5 + 2θ4 + 2θ3 + 5θ2 + θ + 6)x4

+ (2θ9 + 6θ8 + 6θ7 + 9θ6 + 7θ5 + 11θ4 + θ3 + 9θ + 7)x3

+ (4θ9 + 8θ8 + 8θ7 + 11θ6 + θ5 + 9θ4 + 4θ3 + 7θ2 + θ + 9)x2

+ (11θ9 + 11θ8 + 3θ7 + 5θ6 + 5θ5 + 2θ3 + 10θ2 + θ)x

+ 7θ9 + 6θ8 + θ7 + 8θ6 + 3θ5 + 8θ4 + 9θ3 + 3θ2 + 6θ + 9.
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As mentioned before, g(x) explicitly determines the isogeny. We do not display
the complete equations for (X,Y ) here for reasons of space.

6.3 Elkies’ methods

In [14], Elkies describes another way to compute the polynomial g(x), which
determines an l-isogeny of an elliptic curve over a finite field. We continue
to assume that l is prime. We briefly describe the method, before giving an
example.

Let H denote the upper half plane of C. We can define an action of Γ =

SL2(Z) on H in the following way. If γ =
(
a b
c d

)
is a matrix in Γ, and z ∈ H,

then set
γz =

az + b

cz + d
.

If we look at the quotient H/Γ, then it is known that the points of H/Γ are
in one-to-one correspondence with the isomorphism classes of elliptic curves.
Specifically, if τ ∈ H/Γ, then the quotient of C with the lattice Z + Zτ is an
elliptic curve E. Its isomorphism class can be represented by the j-invariant,
j(E). As mentioned before, over an algebraically closed field, two elliptic curves
are isomorphic if and only if they have the same j-invariant. This gives rise to
the modular function j(τ) : H → C, where

j(τ) = j (C/(Z + Zτ)) .

It is called modular, because for any γ ∈ Γ, we have j(γτ) = j(τ). If we make
the change of variables q = e2πiτ , then we get the q-expansion

j(τ) =
1
q

+ 744 + 196884q + 21493760q2 + ...

We now look at what happens when we replace Γ by a certain subgroup.
For a given l, define

Γ0(l) =
{[

a b
c d

]
: ad− bc = 1 and c ≡ 0 mod l

}
.

Consider the action of integer matrices mod l on E[l], which is isomorphic to the
lattice (j+ kτ)/l mod (Z + τZ), where j, k = 0, 1, ..., l− 1. If γ ∈ Γ0(l), then it
fixes the set of elements of E[l] for which k = 0. So the subgroup {0, 1

l , ...,
l−1

l }
is invariant under the action of Γ0(l). We compactify H/Γ0(l) by adding in the
cusps, and let X0(l) denote the resulting algebraic curve, called a modular curve.

Given a finite subgroup G of E, there is an isogeny φ of E with kernel G, and
conversely, given an isogeny of E, its kernel is a finite subgroup of E. We have a
bijection between finite subgroups of E and isogenies of E (up to isomorphism).
This means that the points of X0(l) can be viewed as parameterizing l-isogenies.
Suppose φ : E → E1 is an l-isogeny. It is known that the function field of X0(l)
is generated by j and j1. More specifically, there is an irreducible polynomial
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Φl(X,Y ), called the modular polynomial, such that Φl(j, j1) = 0. Φl(X,Y ) ∈
Z(X,Y ) is a symmetric polynomial, and Φl(j, Y ) is the minimal polynomial over
Q(j) of the modular function jl : τ → j(lτ).

The coefficients of the polynomials Φl(X,Y ) grow rapidly. For example,

Φ3(X,Y ) =X4 −X3Y 3 + Y 4 + 2232(X3Y 2 +X2Y 3)− 1069956(X3Y +XY 3)

+ 36864000(X3 + Y 3) + 2587918086X2Y 2 + 8900222976000(X2Y +XY 2)

+ 452984832000000(X2 + Y 2)− 770845966336000000XY
+ 1855425871872000000000(X + Y ).

There are recursion formulas to efficiently calculate Φl modulo a prime.
If all we know is the Weierstrass equation y2 = x3 + Ax + B for E, then

for given l Elkies showed how we can determine the Weierstrass equation for
the image E1 of an l-isogeny, as well as the polynomial g(x) whose roots are
the x-coordinates of points in the kernel of the isogeny. The basic idea is the
following. From the original curve, we have a formula for the j-invariant in
terms of its coefficients. The modular polynomial relates the j-invariants of
the isogenous curves, so we can find the j-invariant of E1. From this, we can
come up with an equation for the isogenous curve. This equation leads to a
recurrence relation which will yield g(x) = x(l−1)/2 − σx(l−1)/2−1, provided we
know σ. Elkies shows how to find σ in terms of certain modular functions on
X0(l). We will need a parameterization of X0(l) to accomplish all of this.

Let λ0 be a nonzero meromorphic weight-2 modular form for Γ0(l). Let P
be a point on X0(l) at which j is the j-invariant of E. We compute the modular
functions

A4 := λ2
0E4(q),

A6 := λ3
0E6(q),

A′4 := λ2
0E4(ql),

and
A′6 := λ3

0E6(ql)

at that point P , with q = e2πiτ . Ek(q) is the Eisenstein series of weight k

Ek = 1− 4k
B2k

∞∑
n=1

σ2k−1(n)qn

where the B2k are the Bernoulli numbers, and σk(n) is the sum of the k-th
powers of the divisors of n.

Setting

γ =
−18B ·A4(P )
A ·A6(P )

,

E1 has Weierstrass equation

y2 = x3 − γ2

48
A′4(P )x+

γ3

864
A′6(P ).
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To determine g(x), we also need to write the modular function λ0E2(q) in terms
of our coordinates on X0(l). We can then solve a recurrence relation given in
[14] to get the coefficients of g(x). All these computations are done modulo the
characteristic of the field of definition of the curve E.

As an example, we show how to find a 47-isogeny using q-expansions. Using
the ideas suggested by Elkies, we find that an equation for X0(47) is given by

v2 = (u5 − 6u4 + 15u3 − 18u2 + 8u+ 1)(u5 − 10u4 + 35u3 − 70u2 + 76u− 43),

where

u =
1
q

+ 2 + q+ 2q2 + 3q3 + 3q4 + 5q5 + 5q6 + 8q7 + 9q8 + 12q9 + 14q10 +O(q11)

and

v = − 1
q5
− 2
q4
− 4
q3
− 4
q2

+
2
q
+24+89q+236q2+565q3+1218q4+2493q5+4834q6+O(q7).

We obtained u by taking a quotient of a modular form of weight 2

f1 = q3 − 4q5 + 3q7 + q8 + 3q9 − 2q10 +O(q11)

with a certain cuspform

f0 = q4 − 2q5 − q6 + 2q7 + q8 + 2q9 − 2q10 +O(q11),

and by computing v = q 1
f0

du
dq . We will also use λ0 = 1

f0
. By comparing q-

expansions, we find that

A4 = (−3840 + 6888u− 4536u2 + 1104u3)v + 37440− 193680u+ 418480u2 − 516320u3

+ 404785u4 − 207860u5 + 68390u6 − 13140u7 + 1105u8,

A′4 =
1

472
(3840− 6888u+ 4536u2 − 1104u3)v + 37440− 193680u+ 418480u2 − 516320u3

+ 404785u4 − 207860u5 + 68390u6 − 13140u7 + 1105u8,

A6 = (1134000− 4731552u+ 8606304u2 − 8928612u3 + 5729220u4 − 2277828u5 + 519372u6

− 51912u7)v − 6046488 + 62121600u− 239753088u2 + 523809224u3

− 753684216u4 + 767123880u5 − 571971047u6 + 316430562u7 − 129242265u8

+ 38024556u9 − 7635201u10 + 934146u11 − 51911u12,

and

A′6 =
1

473
((1134000− 4731552u+ 8606304u2 − 8928612u3 + 5729220u4 − 2277828u5

+ 519372u6 − 51912u7)v + 6046488− 62121600u+ 239753088u2 − 523809224u3

+ 753684216u4 − 767123880u5 + 571971047u6 − 316430562u7 + 129242265u8

− 38024556u9 + 7635201u10 − 934146u11 + 51911u12).
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We know that j = (12A4)
3

A3
4−A2

6
, and as we know v2 in terms of u, we can find a

polynomial relation between j and u:

j2 − P (u)j +Q(u) = 0.

Let E : y2 = x3 + 3078x + 7255 defined over the finite field F10333. It has
j-invariant 9864. Substituting j = 9864 into our polynomial with j and u, we
find that

0 = u48+1117u47 + 4662u46 + 2657u45 + 1404u44 + 3611u43 + 701u42 + 8244u41 + 3895u40

+ 7195u39 + 1644u38 + 9116u37 + 5891u36 + 1365u35 + 2893u34 + 10001u33

+ 5343u32 + 8039u31 + 5003u30 + 597u29 + 4430u28 + 6778u27 + 7972u26

+ 3162u25 + 6358u24 + 1439u23 + 9632u22 + 5052u21 + 2156u20 + 4106u19

+ 5874u18 + 7974u17 + 1423u16 + 6832u15 + 4695u14 + 7093u13 + 4496u12

+ 2029u11 + 644u10 + 6012u9 + 5523u8 + 36u7 + 5900u6 + 9970u5 + 10092u4

+ 2752u3 + 1215u2 + 5291u+ 3999.

Over F10333, a solution is u = 7183, from which we calculate v = 909. So
the point (7183, 909) on X0(47) parameterizes a unique 47-isogeny over F10333

of E to some other curve E1. Evaluating, we see that

A4(7183, 909) = 8113,

A6(7183, 909) = 6966,

A′4(7183, 909) = 60,

and
A′6(7183, 909) = 5452.

This gives us the equation of the isogenous curve

E1 : y2 = x3 + 7487x+ 8992.

To find the kernel, we find λ0E2(47) in terms of u:

λ0E2(47) =
23
12
u4 − 21

2
u3 +

287
12

u2 − 80
3
u+ 12,

so λ0E2(47)(7183, 909) = 3229, and upon inputting this into the recursion, we
find

g(x) = x23 + 2520x22 + 5714x21 + 7132x20 + 10141x19 + 8459x18 + 3066x17

+ 9279x16 + 3145x15 + 7909x14 + 3129x13 + 4489x12 + 2875x11

+ 6503x10 + 4215x9 + 6201x8 + 4867x7 + 8649x6 + 1659x5

+ 7298x4 + 2762x3 + 7157x2 + 10203x+ 5481.

By Vélu, this is enough to explicitly write down the isogeny.
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There was one other solution (u = 7099) to our equation relating j and u.
If we had used this value of u, we would have found a 47-isogeny to the curve
y2 = x3 + 188x+ 8836 defined by the polynomial

g(x) = x23+5257x22 + 777x21 + 30x20 + 1819x19 + 6366x18 + 917x17

+ 9660x16 + 4317x15 + 9827x14 + 385x13 + 3229x12 + 7505x11

+ 1876x10 + 8984x9 + 10246x8 + 1671x7 + 4784x6 + 7585x5

+ 361x4 + 9089x3 + 598x2 + 5362x+ 2377.

Elkies’ methods are not organized into an algorithm. To use his ideas, one
also needs a nice parameterization of X0(l), which may not be easy to find.
Elkies estimates that the complexity of his technique is roughly Õ(l4) bit op-
erations, although he emphasizes that no rigorous analysis has been done. In
comparison, the algorithm given in this paper to find g(x) requires 0̃(l5) bit
operations. As we will show, we expect l to be small, so the difference in com-
plexity between Elkies’ methods and our algorithm is negligible. The algorithm
in section 8 is also very easy to implement compared to Elkies’. Algorithm 3
doesn’t take advantage of the deep structure of elliptic curves, so perhaps this
is why Elkies’ technique has a lower complexity bound. For large l it might be
worthwhile to use his ideas.

7 Pairing Based Cryptography

Since 2000, pairings have been used in a variety of contexts in cryptography.
Here we list a few of the many ways pairings have been utilized. For several of
these, we need a point to have non-trivial pairing with itself, so we first need to
show how we can modify our pairings to accommodate this.

Let E(Fq) be an elliptic curve. The examples we give, as well as most cryp-
tographic protocols, require us to work in a cyclic subgroup 〈P 〉 of E(Fq), where
P has large prime order n. Let D be a distortion map for P , so D(P ) 6∈ 〈P 〉.
By the nondegeneracy of the pairings, en(P,D(P )) 6= 1 and when τn(P, P ) = 1
(which is the case when k > 1) then τn(P,D(P )) 6= 1 also. Several possible
elliptic curves with corresponding distortion maps are given in the appendix.

For the remainder of this chapter, let e(P,Q) = en(P,D(Q)) or e(P,Q) =
τn(P,D(Q)) depending on whether we wish to use the Weil or Tate pairing.
Note that e is still a bilinear pairing, and satisfies e(P, P ) 6= 1.

7.1 MOV/Frey-Rück attack

Both the Tate pairing and the Weil pairing ([45],[16]) can transform an instance
of the elliptic curve discrete logarithm problem into an instance of a finite field
discrete logarithm problem. There are sub-exponential algorithms to solve the
discrete log problem in finite fields, while no such algorithms are known for
general elliptic curves. Let ê be either the Tate or Weil pairing. Note that ê is
different than e.
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Suppose P is a point of prime order n on an elliptic curve E(Fq), with n and
q relatively prime. Let Q = [a]P for some unknown a. We will work in the field
Fqk , where k is the embedding degree. If k > 1, this is the smallest field in which
the curve has a full set of n2 points of order n. We then find an S ∈ E[n] such
that ê(P, S) 6= 1. Note that S cannot be found in E(Fq), since E(Fq)[n] = 〈P 〉.
We are guaranteed such an S exists by nondegeneracy, and with high probability
a random choice of S will work. Now compute ζP = ê(P, S) and ζQ = ê(Q,S)
both in Fqk . Then

ζQ = ê(Q,S) = ê([a]P, S) = ê(P, S)a = ζa
P .

We have transformed our discrete logarithm from the elliptic curve E to the
finite field Fqk , and the solution of the finite field problem is also the solution
to the elliptic curve DLP.

The best discrete log algorithms for Fqk are subexponential in log(qk), but
not in log(q), unless k is very small. So this attack will be computationally help-
ful only if k is small. For supersingular curves, we have k ≤ 6, so supersingular
curves are vulnerable to this attack.

7.2 Three party key distribution

Suppose we wished to create a common key between three parties Alice, Bob,
and Charles. One way to do this is to extend the Diffie-Hellman key exchange.
Given a point P on an elliptic curve E(Fq), Alice chooses a secret number a,
Bob chooses secret b, and Charles chooses secret c. In the first round, Alice
sends [a]P to Bob. Bob sends [b]P to Charles, and Charles sends [c]P to Alice.
In the second round, Alice computes and sends [a]([c]P ) = [ac]P to Bob. Bob
likewise sends [ab]P to Charles, and Charles sends [bc]P to Alice. All three users
can now find the common key [abc]P . It is natural to wonder if there is a one
round tripartite key exchange.

In 2001, Joux [28] found a way to do exactly this using pairings. In the first
round, Alice sends [a]P to both Bob and Charles. Bob sends [b]P to Alice and
Charles, and Charles sends [c]P to Alice and Bob. Then all three parties can
compute the key e(P, P )abc. For example, Alice can compute

e([b]P, [c]P )a = e(P, P )abc.

An attacker who wished to find the key would need to find e(P, P )abc, given
P, [a]P, [b]P, and [c]P . This is what’s known as the bilinear Diffie-Hellman
problem. Most pairing based cryptosystems rely on this or some similar problem
for security.

This simple three party key exchange was one of the first applications of
bilinear pairings to cryptography, and stimulated a lot of interest in the area.

7.3 Separating DH from DDH

Given points P, [a]P, and [b]P on an elliptic curve E defined over a finite field,
the Diffie-Hellman problem(DH) is to compute [ab]P .
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Let P1, P2, P3, and P4 be points in the subgroup 〈P1〉 of E(Fq), with P2 =
[a]P1 for some a. The decision Diffie-Hellman problem(DDH) is to determine
if P4 = [a]P3. If one can solve the Diffie-Hellman problem (which is some-
times called the computational Diffie-Hellman problem to distinguish it from
the DDH), then one can solve the decision Diffie-Hellman problem as follows.
Solve the Diffie-Hellman problem for the triple P1, P2 = [a]P1, P3 = [b]P1, to
get [ab]P1. Note that [ab]P1 = [a]([b]P1) = [a]P3. So P4 = [a]P3 if and only if
P4 = [ab]P1, and we have solved the decision problem. This shows that the deci-
sion Diffie-Hellman problem is no harder than the computational Diffie-Hellman
problem. Can we find an example of a group where the decision Diffie-Hellman
problem appears (based on known algorithms) to be strictly easier than the
Diffie-Hellman problem?

Joux and Nguyen [30] used pairings to find such a group. Both the Tate
and Weil pairing will work (when combined with a distortion map), as the key
feature needed is bilinearity. If e(P1, P3) 6= 1, then we compute e(P1, P4) and
e(P2, P3). If these values agree, then e(P2, P3) = e([a]P1, P3) = e(P1, [a]P3),
and if n is prime this implies P4 = [a]P3. Conversely, if P4 = [a]P3, then clearly
e(P1, P4) = e(P1, [a]P3) = e([a]P1, P3) = e(P2, P3). Joux and Nguyen showed
how to construct elliptic curves where the decisional Diffie-Hellman problem
can be solved in polynomial time using pairings, but the computational Diffie-
Hellman is provably as hard as the discrete logarithm problem on the curve.

Using Algorithms 2 and 3 of chapter 8, we can construct more examples of
curves for which the DDH is ”easy”, as the following theorem shows.

Theorem 16 Let E be an elliptic curve constructed using Algorithm 1, or one
of the curves in the appendix. Let P ∈ E(Fq) have prime order n. Then the
decision Diffie-Hellman problem in 〈P 〉 is efficiently solvable.

The proof was outlined in the paragraphs preceding the statement of the
theorem.

7.4 Determining group structure

If we know the number of points N of an elliptic curve E over Fq, we can use
pairings to determine the group structure. The following theorem from [65] tells
us the possibilities.

Theorem 17 Let E(Fq) be an elliptic curve. Then

E(Fq) ≡ ZN or Zn1 ⊕ Zn2

for some integers n1, n2 with n1n2 = N and n1|n2.

V. Miller has created a random polynomial time algorithm which finds the
group structure using the Weil pairing [47].
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7.5 Identity based encryption

If we know the number of points N of an elliptic curve E over Fq, we can use
pairings to determine the group structure. The following theorem from [65] tells
us the possibilities.

Theorem 18 Let E(Fq) be an elliptic curve. Then

E(Fq) ≡ ZN or Zn1 ⊕ Zn2

for some integers n1, n2 with n1n2 = N and n1|n2.

V. Miller has created a random polynomial time algorithm which finds the
group structure using the Weil pairing [47].

8 Identity based encryption

In 1984, Shamir [56] introduced the notion of identity based cryptography. With
public key cryptography, if a user Bob wishes to send a message to Alice, he
needs to know Alice’s public key. How can Bob be sure he has Alice’s key, and
not that substituted by some malicious attacker? One answer lies in the use
of certificates. Some trusted authority can issue a certificate with some form
of Alice’s identification, along with her public key. Bob can check the trusted
authority’s signature on the certificate to be confident he knows Alice’s key.

Shamir came up with the idea of using some form of Alice’s identification
for her public key, thereby avoiding the need for a certificate. This could be
her email address, for example. Anyone sending a message to Alice would then
know Alice’s public key. The notion of identity based encryption extends to
identity based signature schemes, identity based key exchanges, etc. It wasn’t
until 2001 that a practical identity based encryption scheme was created by
Boneh and Franklin [4]. We will illustrate a basic version of their scheme.

We need two hash functions,

H1 : {0, 1}m → 〈P 〉

H2 : Fqk → {0, 1}m

where P is a point on an elliptic curve E(Fq), and k is the embedding degree. If
we represent Alice’s identification as IDA, then her public key is KA = (IDA).
A trusted authority with master secret key s gives Alice her private deciphering
key DA = [s]H1(KA). The trusted authority has public key S = [s]P .

To send her a message M ∈ {0, 1}m, Bob computes Q = H1(KA) and selects
a random integer r. He also computes R = [r]P and c = M ⊕H2(e(Q,S)r). He
sends Alice the pair (R, c).

To decrypt, Alice uses her private key DA to calculate c ⊕ H2(e(DA, R)).
This is equal to

c⊕H2(e([s]Q, [r]P )) = c⊕H2(e(Q,S)r) = M.
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Anyone other than Alice wishing to decrypt the message M from (R, c) needs
to be able to compute e(Q,S)r = e(Q,P )rs given P,Q, S, and R. This requires
solving the bilinear Diffie-Hellman problem.

8.1 Short signatures

Boneh, Lynn and Shachem ([5]) used pairings to construct a signature scheme
with much shorter lengths than other signature schemes. Let H1 be the hash
function from the previous section. Alice’s private key is a secret integer r,
and her public key is R = [r]P . To sign a message M , Alice computes S =
[r]H1(M). Her signature is S. Anyone wishing to verify her signature can check
if e(P, S) = e(R,H1(M)). This equality holds for a valid signature

e(P, S) = e(P, [r]H1(M)) = e([r]P,H1(M)) = e(R,H1(M)).

Somebody wishing to forge a signature on M needs to be able to find S =
[r]H1(M), given P,R, and H1(M), which is a Diffie-Hellman problem in 〈P 〉.

9 The algorithms

9.1 Theory

Recall that to generalize Verheul’s theorem, we need an algorithm to create
trace zero supersingular curves, as well as an algorithm to find distortion maps.
In this section we provide algorithms which do this.

An elliptic curve is said to have complex multiplication if its endomorphism
ring is larger than Z. Theorem 14 states that elliptic curves over finite fields
always have complex multiplication. We will use curves with complex multipli-
cation to obtain supersingular curves.

The key result needed is the Deuring reduction theorem ([13]).

Theorem 19 Let E be an elliptic curve defined over a number field with com-
plex multiplication by an order O contained in the imaginary quadratic field
Q(
√
−d). If p is a good prime which doesn’t split in Q(

√
−d), then the reduction

of E mod p is a supersingular curve. If p splits then the reduction of E mod p
is ordinary.

For example, the curve E : y2 = x3 + x defined over Q has complex multi-
plication because the map

(x, y) → (−x, iy)

is an endomorphism over Q(
√
−1). A prime p splits in Q(

√
−1) iff p ≡ 1 mod 4,

so we see that E is a supersingular curve over Fp for any prime p ≡ 3 mod 4.
Similarly, by looking at which primes split in Q(

√
−3) we see that the curve

y2 = x3 − 1 is a supersingular curve over Fp whenever p ≡ −1 mod 6.
It is well-known that there are 9 imaginary quadratic fields with class number

one. These are Q(
√
−d) for d=1, 2, 3, 7, 11, 19, 43, 67, and 163. Since roughly
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half of all primes split in each Q(
√
−d), we can use one of these quadratic

imaginary fields to create supersingular curves over Fp for all but a fraction
( 1
29 ) of the primes. In [60], Silverman has a table of elliptic curves defined

over Q with complex multiplication in each of these nine fields. So for a given
prime p, if we are looking to find a supersingular curve over Fp, then with high
probability, we can use one of these curves. Note that if p > 3, then the curve
will have trace zero by Hasse’s theorem.

This doesn’t work for all primes, and we would also like to find supersingular
curves over arbitrary Fq, not just prime fields. The algorithm of R. Bröker in [7]
allows us to find a supersingular curve over a prime field. This curve can then
be twisted to get a supersingular curve over an extension field. The input to our
algorithm is a finite field Fq, of characteristic p. The output is a supersingular
curve Ẽ such that Ẽ(Fq2) is isomorphic to F∗q × F∗q . For p = 2 see chapter 9.

Algorithm 2 – Finding the Curve

1. (optional) If p is inert in any of the nine class number one fields, then get
E from the appendix. Go to step 6.

2. If p = 3 then let E be the curve y2 = x3 + x. Go to step 6.

3. Find the smallest prime l ≡ 3 mod 4 such that (−l
p ) = −1.

4. Construct the Hilbert class polynomial PK(x) mod p, where K = Q(
√
−l).

5. Find a root j of PK(x) in Fp. Then j is the j-invariant of our desired E,
and if we set a = 27j

4(1728−j) , then E : y2 = x3 + ax− a has j(E) = j.

6. a) If f = [Fq : Fp] is odd, twist E by a quadratic nonresidue β in Fp2 .
That is, Ẽ(Fq2) : y2 = x3 + aβ2x− aβ3.

b) If f is even, let Ẽ be E considered as a curve over Fq2 .

We now explain the algorithm and why it is correct. Let E be an elliptic
curve over C with complex multiplication by the maximal order in the field
K = Q(

√
−l). Let H be the Hilbert class field of K, which is the maximal

abelian unramified extension of K. Then [H : K] is the class number hK of K,
and H = K[x]/(PK(x)), where PK(x) is the Hilbert class polynomial of K. The
polynomial PK(x) is the minimal polynomial for the modular function j of E
(see Section 6.3), and is a monic polynomial with integer coefficients.

If we take a prime p that doesn’t split in K, then the roots of PK mod p
are the j-invariants of supersingular curves by Deuring’s reduction theorem. By
Lemma 2.3 of [7], if d is prime, and d ≡ 3 mod 4, then PK has a root in Fp.
This shows that the elliptic curve E we obtain in step 5 of Algorithm 2 is a
supersingular curve over Fp.

Our choice of l to be the smallest such prime is important. For the purpose
of just finding a non-residue in provably polynomial expected run time, one
just tries random l < p. However, the run times of Algorithms 2 and 3 depend
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crucially on the size of l, so we choose it to be as small as possible. An alternative
choice could be to choose l so that the class number of Q(

√
−l) is minimal.

From the classification of supersingular curves given in chapter 2, we see
that if f = [Fq : Fp] is odd then the trace of E over Fq is 0. Then as described
in chapter 4, the twisted curve over Fq2 is isomorphic to two copies of the
multiplicative group of F∗q . If instead f is even, then first recall that E(Fp) has
trace 0. When we consider E as a curve over Fq, the trace is then ±2

√
q, and

considered over Fq2 the trace is −2q. Thus the output of the algorithm is as
desired.

Our second algorithm finds a distortion map for supersingular curves, as-
suming we know the imaginary quadratic field where they have complex multi-
plication. In particular, this holds for the curves returned by Algorithm 2, as
well as the curves coming from the nine class number one fields. If the field of
complex multiplication is unknown, Kohel’s algorithm [35] could be used to find
it, but the algorithm runs in exponential time.

The distortion maps we create are compositions of isogenies and isomor-
phisms. Of the two, isogenies are harder to compute. Finding explicit isogenies
is a problem that has been well studied due to its importance in the Schoof-
Elkies-Atkins (SEA) algorithm to count the number of points of an elliptic curve
over a finite field. Most of these results, however, apply only to ordinary curves.
Also, these algorithms are designed to find the isogeny when the equations for
E and the isogenous curve E1 are known. In our situation we do not know the
equation for E1, so we cannot use these methods. See [6] for a survey of these
results. As mentioned previously, we could use Elkies’ ideas ([14]) to find the
isogeny, but we will use the following algorithm, which is much easier to imple-
ment. In practice, we expect its running time to be equivalent to to estimated
run time of Elkies.

The input to our algorithm is a supersingular elliptic curve E(Fq), q = pf ,
with complex multiplication by Q(

√
−l). We need l coprime to p, and we’ll

assume l is odd, though l need not be prime. The algorithm could be generalized
to include even l. The output is a distortion map for the subgroup 〈P 〉, where
P is any point of prime order r, with r 6 | pl.

Algorithm 3 – Computing the Distortion Map

1. If p remains prime in one or more of the 9 class number one fields, use one
of the 9 explicit distortion maps given in the appendix.

2. Otherwise compute Φl, the l-th torsion polynomial of E.

3. Find a factor g(x) ∈ Fq[x] of Φl(x) of degree l−1
2 .

4. Use Vélu’s formulae on the polynomial g(x). This gives us an explicit
l-isogeny φ (defined over Fq) from E to an isogenous curve E1.

5. Construct an isomorphism ψ from E1 back to E. The distortion map is
D = ψ ◦ φ.
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We know an l-isogeny exists as
√
−l is in the endomorphism ring (which is

the maximal order in Q(
√
l)). To use Vélu, we need the polynomial g(x) whose

roots are the x-coordinates of a points belonging to a subgroup of order l. This
subgroup consists of ∞, and l−1

2 pairs of points {P,−P}. The polynomial Φl

has as roots the x-coordinates of all points of order l, so it must have a factor
of degree l−1

2 over Fq. We take this factor to be g(x). Then we can use Vélu’s
formulae as explained in Section 5 to get an explicit isogeny from E to an elliptic
curve E1. In most cases, Φl has an irreducible factor of degree l−1

2 , which we
take to be g(x). If g(x) happens to factor over Fq, we need to find a way to find
it from the factorization of Φl(x). The factorization patterns of Φl are known
by [63]. If l|(q + 1), then there is a linear factor, and hence a point P ∈ E(Fq).
We compute the first l−1

2 multiples of P , from which it is easy to determine g.
The other case of reducible g occurs when Φl factors into 6 factors of degree
l−1
6 , and 3(l−1)

2 factors of degree l−1
3 . The polynomial g we seek is a product of

three of the six factors of lower degree. To know which product will give us the
isogeny, we pick a random point P on E and multiply three of the six factors of
degree l−1

6 together. We then apply Vélu’s formulae to this product and see if
P gets mapped to a point on the image of E. If it does, then we have found g,
and if not we try a new product.

The isomorphism from E1 back to E is easily computed from the coefficients
in the equations of the curves. Indeed, if E is the curve y2 = x3 +Ax+B, and
E1 is given by y2 = x3 +A1x+B1, then the isomorphism ψ : E1 → E is given
by

ψ(x, y) → (µ2x, µ3y),

where µ satisfies
µ4 = A/A1 if A1 6= 0

µ6 = B/B1 if B1 6= 0.

When µ 6∈ Fq then given P ∈ E(Fq), we see D(P ) 6∈ 〈P 〉 ⊆ E(Fq). So it is
easy to verify that D is a distortion map for P in this case. Even if µ ∈ Fq,
we can still show D is a distortion map. We’ll need the Deuring lifting theorem
[13].

Theorem 20 Given an elliptic curve E defined over a finite field, and an en-
domorphism α of E, then there exists an elliptic curve Ẽ defined over a finite
extension K of Q and an endomorphism α̃ of Ẽ such that E is the reduction of
Ẽ by some prime ideal of the ring of integers of K, and α is the reduction of α̃.

By our construction in Algorithm 2, Ẽ has complex multiplication by an
order O ⊆ Q(

√
−l). If α is an element of O, then the size of the kernel of α

is equal to N(α). Note the only elements in O with norm l are ±
√
−l. From

this it follows that since our map D has a kernel of size l, that on E we have
D2 = −l. That is, D(D(P )) = [−l]P , for all points P on E. For D to be a
distortion map, we need a point P ∈ E(Fq) such that D(P ) 6∈ 〈P 〉. Theorem
6.1 of [22] proves that as long as P has prime order r > 3 such that r 6 | pl, then
D is a distortion map for P .
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In chapter 11, we’ll give examples using both algorithms. We also applied
Algorithm 2 to the curves with complex multiplication in a quadratic imaginary
field of class number one. This gives 9 explicit curves with distortion maps. If
p is the characteristic of Fq, then unless p splits in all nine fields, we can use
these curves with their distortion maps. The distortion maps are listed in the
appendix. We can use these for all but a small fraction of primes p.

We could carry this approach further, obtaining explicit curves and distor-
tion maps for the twenty fields with class number 2. This is possible as the
Hilbert class polynomial PK is a quadratic, and we can find the roots of PK .
We give an example of how to do this in chapter 11. However the equations
become more complicated as the class number rises. For imaginary quadratic
fields K with class numbers higher than 2, one either needs a root of the Hilbert
class polynomial (which has degree 3 or more), or an equation of an elliptic
curve defined over a number field which has complex multiplication in K. Both
problems seem to be difficult, and this technique would only be needed for the
primes which split in all twenty nine of the fields with class numbers 1 and 2.
For such a prime one can use Algorithms 2 and 3 to find a curve and distortion
map.

We also remark that we can sometimes find simpler distortion maps if there
are elements of norm smaller than l in the ring of integers of Q(

√
−l). An element

with norm m < l will yield an m-isogeny, which by Vélu will have a simpler
equation than the distortion map we get from Algorithm 3. For example, when
l = 11, the element α = 1+

√
−11

2 has norm 3, so we can find a 3-isogeny. Instead
of factoring the torsion polynomial Φ11(x), we would instead factor Φ3(x), to
obtain g(x), which would be a degree 1 polynomial, rather than a degree 5
polynomial. This factor g(x) will typically be defined over an extension field,
which might be too large to be practical. We have included an example of this
in chapter 11, and used this method to obtain some results in the appendix.

9.2 Complexity analysis

Let us analyze the complexity of our algorithms. We will use Õ-notation, which
means that terms which are of logarithmic size in the main terms are ignored.
We start with the algorithm to construct supersingular curves. We are assuming
that the characteristic p of our field satisfies p > 2. For p = 2 see chapter 9.

Step 3 requires the computation of a quadratic non-residue mod p. Assuming
the generalized Riemann Hypothesis (GRH), we can find a prime l congruent
to 3 mod 4 with

(
−l
p

)
= −1 with l ≤ c(log p)2, for an effectively computable

constant c [36]. In fact, we can take c = 2 by [1]. Without the GRH, the best
bound is due to Burgess ([8]), who proved that there is an l with l ≤ p

1
4
√

e (log p)2.
Heuristically, we expect roughly one half of the primes to be non-residues, so in
practice we expect l to be very low for most primes p. As there are 24 primes
less than 200 congruent to 3 mod 4, we could expect that for roughly all but
1

224 of the primes, we will have l < 200.
If one is not content with an estimate for l that heuristically holds for all
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but a very small proportion of primes (namely, a constant bound on l), then
one can get a bound on l heuristically that holds for any p. This bound is no
longer constant, but it’s better than the provable bound using the GRH.

For large x and some constant c, consider the set{
primes p < x

∣∣∣ (
−j
p

)
= 1 for all primes j ≡ 3 mod 4 such that j < c log x log log x

}
.

Heuristically, this set should have cardinality approximately π(x) 1
2π(c log x log log x)/2 ,

and if we take c > 2
log 2 , then for large x, this is asymptotically� 1. This follows

as π(c log x log log x) is easily seen to be asymptotic to c log x. Hence, for large
x, there is a high probability the set is empty. Thus heuristically we expect l to
be bounded by O(log p log log p) = Õ(log p). The remainder of the complexity
analysis relies heavily on which estimate we use for l.

We next examine the cost of computing the Hilbert class polynomial PK ,
where K = Q(

√
−l). By [3], PK can be computed in Õ(l) bit operations.

Assuming the GRH, l = O((log p)2), and the complexity is Õ((log p)2) bit op-
erations. Again, as l will typically be small, PK could be computed and stored
in a table, say, for all l < 200, and this would be sufficient for most primes. In
fact, such a table exists for all l < 107 [34].

Step 5 requires us to find a root of PK in Fp, which it has by construction.
Root finding is a special case of factoring polynomials over Fp, and we will
discuss how we get the complexity estimate when we discuss our third algorithm.
If h is the class number of K, the root j can be found probabilistically with an
expected run time of Õ(h(log p)3) bit operations with a chance of failure less
than 1

2r , where r is the number of roots in Fp. We can run the algorithm k
times so that the failure probability is less than 1

2rk . If δ > 0 is given, then if
we run the algorithm − log δ

r log 2 times, then the chance of failure is less than δ. The
Brauer-Siegel theorem tells us that h = O(

√
disc(K)) = O(

√
l). So under the

GRH, h = O(log p), and the complexity is Õ((log p)4) bit operations.
Finally, if we need to twist the curve produced to get another trace, then

this can be done by simple field arithmetic. The cost of this is negligible when
compared with the rest of the algorithm.

If we do not assume the GRH, then we have an exponential algorithm.
With the GRH assumption, the total algorithm has an expected run time of
Õ((log q)4) bit operations . Under heuristic assumptions, our non-residue l will
be even smaller, and the algorithm will be very quick.

We next look at the algorithm to compute distortion maps.
The first step is to compute the l-th torsion polynomial Φl for our elliptic

curve E. This can be done by using the well-known recursion formulas to find
Φl in time Õ(l2(log q)2) bit operations ([58]). Assuming the GRH, this can be
done in approximately Õ((log q)6) bit operations.

The classic Cantor-Zassenhaus or Berlekamp algorithms can probabilistically
factor a degree n polynomial over Fq in Õ(n(n + log q)(log q)2) bit operations
[23]. In our situation, we have n = O(l2), so we can factor Φl in time Õ((l4 +
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l2 log q)(log q)2). The probability of failure is less than 1
2r−1 , where Φl splits

into r factors. Running the factoring algorithm k times gives us a chance of
failure of less than 1

2k(r−1) . Under the GRH, the complexity is Õ((log q)10) field
operations. Our heuristic estimates would be Õ((log q)6) for l = O(log q), or
Õ((log q)3) if l < 200. If g reduces, then we find it from multiplying l−1

2 linear
polynomials, or 3 polynomials of degree l−1

6 . The complexity is not worse than
the complexity of factoring.

The remaining steps in computing the distortion map involve performing
arithmetic with polynomials in Fq[x] or Fq2 [x], which can be done in time
Õ(l2(log q)2). Under the GRH, this is Õ((log q)6).

Heuristically, the algorithm to construct distortion maps should be efficient.
This is because everything depends on the quadratic non-residue l we find in
the first algorithm. As explained before, we expect l to be small. This means
that calculating Φl will not be difficult, nor will factoring it. It should also be
noted that our estimates are based on the simple quadratic-time algorithms for
field operations.

9.3 Timings

Overall, we find that we can construct a suitable elliptic curve and distortion
map in an expected run time of Õ((log q)10) bit operations, assuming the GRH.
Recall that we need to use these algorithms only if our explicit ones do not work.
Roughly speaking, the 9 examples from class number 1 imaginary quadratic
fields should work for all but 1

29 of the primes. Using the same technique, we
can construct 20 more examples from class number 2 imaginary quadratic fields,
which would cover all but roughly 1

220 of the remaining primes. Heuristically
we also expect the run time to be much lower than the given bound. Indeed, if
l = O(log q) (or l = O(1)), then the algorithm should run in about Õ((log q)6)
(or Õ(log q)3) bit operations.

Using V. Shoup’s ntl library in SAGE (see [61]), we time some computations
involving our algorithms. This was done on a 64 bit Dual Core AMD Opteran
Processor 865, with clock cycle 1.8 GHz. We do not count the time needed
to initialize the finite fields. We can assume that anybody who is interested in
solving the discrete log or Diffie-Hellman problem in Fp has already done so. The
time needed to run Algorithm 2 is very small. Indeed, for p as large as 10600,
the algorithm took around 0.1 seconds on average. The potential bottleneck
is computing the Hilbert class polynomial PK , and finding a root. When the
non-residue l is small, this is very fast.

For the second algorithm, we include some timings for the most time con-
suming steps. The first table is a list of times taken to compute the torsion
polynomial Φl for a given l and supersingular curve over Fp.

The second table shows how long factoring Φl takes for a given l, and a
supersingular curve over Fp.
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Table 2: Run times to compute torsion polynomials
p ≈ 10100 p ≈ 10200 p ≈ 10400

l = 50 .1 s .15 s .25 s
l = 100 .3 s .7 s 1.4 s
l = 150 1.1 s 2.4 s 4.8 s
l = 200 1.5 s 3.2 s 6.7 s
l = 250 2.9 s 6.3 s 12.5 s
l = 300 4.3 s 9.2 s 23 s
l = 350 6.1 s 13.1 s 27 s
l = 400 8.1 s 17 s 43 s

Table 3: Run times to factor torsion polynomials
p ≈ 1010 p ≈ 1020 p ≈ 1030 p ≈ 1040

l = 10 .02 s .05 s .07 s .12s
l = 20 .4 s .5 s .8 s 1.1 s
l = 30 3.5 s 3.5 s 5 s 7 s
l = 40 18 s 19 s 25 s 31 s
l = 50 63 s 67 s 89 s 107 s

Tables 2 and 3 show that the bottleneck of Algorithm 3 is in factoring the
torsion polynomial to get the kernel of the isogeny.

10 The Characteristic 2 case

When our finite field is of characteristic 2, we can find explicit equations for
supersingular curves, as well as for their distortion maps.

Note that over F2, we can easily count the number of points on the curves:

1. y2 + y = x3

2. y2 + y = x3 + x

3. y2 + y = x3 + x+ 1.

The first curve has 3 points, the second 5 points, and the third has only the
point at infinity. All three of these curves are thus supersingular over F2. The
traces of the three curves are 0,−2, and 2 respectively. It’s easy to calculate that
over F2m , these curves have traces 0, (−1+i)m+(−1−i)m, and (1+i)m+(1−i)m.
In fact, up to isomorphism, these are the only 3 supersingular curves over F2m

when m is odd. For curves over F2m , with m even, there are 7 different curves
up to isomorphism. For a proof of these statements, see [43]. We list the results
in the table below, writing Fq = F2m .
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Table 4: Isomorphism class representatives of supersingular curves over F2m

(see [43])
Curve E m #E(Fq) Group Structure of E(Fq) k

y2 + y = x3 m ≡ 1, 3, 5, 7 mod 8 q + 1 cyclic 2

y2 + y = x3 + x
m ≡ 1, 7 mod 8 q + 1 +

√
2q cyclic 4

m ≡ 3, 5 mod 8 q + 1−
√

2q cyclic 4

y2 + y = x3 + x+ 1 m ≡ 1, 7 mod 8 q + 1−
√

2q cyclic 4
m ≡ 3, 5 mod 8 q + 1 +

√
2q cyclic 4

y2 + y = x3 + δx m ≡ 0, 2 mod 4 q + 1 cyclic 2

y2 + y = x3 m ≡ 0 mod 4 q + 1− 2
√
q (Z/(√q − 1)Z)2 1

m ≡ 2 mod 4 q + 1 + 2
√
q (Z/(√q + 1)Z)2 1

y2 + y = x3 + ω
m ≡ 0 mod 4 q + 1 + 2

√
q (Z/(√q + 1)Z)2 1

m ≡ 2 mod 4 q + 1− 2
√
q (Z/(√q − 1)Z)2 1

y2 + γy = x3 m ≡ 0 mod 4 q + 1 +
√
q cyclic 3

m ≡ 2 mod 4 q + 1−√q cyclic 3

y2 + γy = x3 + α
m ≡ 0 mod 4 q + 1−√q cyclic 3
m ≡ 2 mod 4 q + 1 +

√
q cyclic 3

y2 + γ2y = x3 m ≡ 0 mod 4 q + 1 +
√
q cyclic 3

m ≡ 2 mod 4 q + 1−√q cyclic 3

y2 + γ2y = x3 + β
m ≡ 0 mod 4 q + 1−√q cyclic 3
m ≡ 2 mod 4 q + 1 +

√
q cyclic 3

Here (for m even) we need γ a non-cube in F2m , α, β, δ, ω ∈ F2m such that
Tr( α

γ2 ) = 1, Tr( β
γ4 ) = 1, Tr(ω) = 1, and Te(δ) 6= 0, where

Te : F2m → F4

and
Te(x) = x+ x22

+ x24
+ ...+ x2m−2

.

The map Tr is the absolute trace down to F2.
It is therefore simple to find trace 0 supersingular curves over F2m . If m is

odd, then y2+y = x3 will suffice. If m is even, then if we find a δ with Te(δ) 6= 0,
the curve y2 + y = x3 + δx works. For a random choice of an element x in F2m ,
we have Te(x) 6= 0 three quarters of the time, so finding an appropriate δ will
not be hard.

When the characteristic is two, the curves we need distortion maps for are
of the form

y2 + y = x3 +B,

where B is an element of F2m , possibly zero. A distortion map is given by

D(x, y) = (x+ s+ 1, y + sx+ s)

where s satisfies s2 + s+ 1 = 0.
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11 Proof of the Main Theorem

We end with the proof of the generalized version of Verheul’s theorem:

Theorem 21 Let Fq be an arbitrary finite field. Then there is an elliptic curve
such that Ẽ(Fq2) is a product of two cyclic groups of order q − 1.

Given such a curve, let P be a generator for one of the cyclic subgroups of
order q − 1. Under the MOV embedding, we have an isomorphism from 〈P 〉 to
F∗q . If an efficiently computable isomorphism can be found from F∗q to 〈P 〉, then
the Diffie-Hellman problem can be efficiently solved in both F∗q and 〈P 〉.

Proof If the characteristic p of Fq is greater than 2, then using Algorithm 2
in section 8, we can find E as desired. If p = 2 then we can find E as described
in section 9. The fact that Ẽ(Fq2) is a product of two cyclic groups of order
q − 1 follows from the classification of supersingular curves given in Section 2.
Let S be any point that together with P generates the whole group. Then we
can define the MOV embedding by

ê : 〈P 〉 → F∗q where ê(Q) = eq−1(Q,S),

where eq−1 is the Weil pairing. By Corollary 1 of Section 5, ζ = ê(P ) is a
generator for F∗q , so ê is onto. The fact that ê is a homomorphism follows from
the bilinearity of eq−1. As ê is thus a surjective homomorphism between two
finite groups of the same order, we have that ê is an isomorphism.

Let H be an efficiently computable isomorphism from F∗q to 〈P 〉. Let D
be a distortion map on Ẽ, which we can find efficiently using Algorithm 3 (see
Section 8). A distortion map means that for any point Q, Q and D(Q) are
linearly independent. Set

γ = eq−1(H(ζ), D(H(ζ))),

from which it follows that γ is a generator for F∗q . Now suppose we are given
ζ, ζa, and ζb. We calculate

eq−1(H(ζa), D(H(ζb))) = eq−1([a]H(ζ), [b]D(H(ζ))) = eq−1(H(ζ), D(H(ζ)))ab = γab.

We have solved the weak Diffie-Hellman problem. Thus, by Lemma 1, we can
efficiently find ζab, solving the Diffie-Hellman problem.

Given that we can efficiently solve the DHP in F∗q , we can also efficiently
solve the DHP in 〈P 〉. Given [a]P and [b]P , notice that ê(P ), ê([a]P ), and
ê([b]P ) are the input for a DHP in F∗q . By what we just showed, we can find
ê([ab]P ). Then note that H(ê(P )) is a generator of 〈P 〉, and we can compute
[ab]H(ê(P )) = H(ê([ab]P )). This solves the weak Diffie-Hellman problem in
〈P 〉, and so by Lemma 1, we can efficiently solve the DHP in 〈P 〉 also. 2
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12 Examples

12.1 Using the algorithms to create supersingular curves
and distortion maps

Let’s first try various random primes p, and come up with supersingular curves
over Fp with computable distortion maps. This shows that if a homomorphism
inverting the MOV embedding existed, then the Diffie-Hellman problem in Fp

would be efficiently solvable.
Let’s take p = 9013. We first check our 9 explicit curves and see if p satisfies

any of the conditions. It actually satisfies three of them, ( 2
p ) = ( 43

p ) = ( 163
p ) =

−1. So there are three curves we could use.
The first is E := y2 = x3 − 10

3 x−
56
27 , or over F9013 we have

E : y2 = x3 + 3001x+ 1667

Working in our finite field, we also have:

φ : (x, y) → (X,Y ) = (
x2 + 6010x+ 2

x+ 6010
, y
x2 + 3007x+ 5007

(x+ 6010)2
)

ψ : (X,Y ) →= (−X
2
,− Y

2
√
−2

).

Combining these two, we have the distortion map D = ψ ◦ φ, or

D(x, y) = (4506
x2 + 6010x+ 2

x+ 6010
, y

4506√
−2

x2 + 3007x+ 5007
(x+ 6010)2

).

This distortion map comes from a 2-isogeny.
Now let’s use the curve for the second non-residue 43. We find that

E : y2 = x3 + 8153x+ 7454

is a supersingular curve over F9013. There are two choices for g(x) given, and if
we use the one with smaller degree then

g(x) = x5 − (129 + 3
√
−43)x4 + (1492 + 4743

√
−43)x3 − (5097 + 6880

√
−43)x2

+ (5796 + 2204
√
−43)x+ (1984 + 8731

√
−43).

We know that φ is defined by

φ(x, y) =

(
f(x)
g(x)

, y

(
f(x)
g(x)

)′)

where

f(x)
g(x)

= 5x−(129+3
√
−43)−(3x2+8153)

g′(x)
g(x)

−2(x3+8153x+7454)
(
g′(x)
g(x)

)′
.

58



Then the distortion map is D = ψ ◦ φ with

ψ(x, y) = (µ2x, µ3y),

with µ = 1−
√
−43

2 .
Now let’s choose a prime p which doesn’t satisfy any of the nine conditions–

that is, it splits in all nine class number one fields. For example, p = 18313
works. We use our algorithm to first construct a supersingular elliptic curve over
the finite field with 18313 elements. The first prime l congruent to 3 mod 4 such
that

( −l
18313

)
= −1 is l = 23. The Hilbert polynomial for K = Q(

√
−23) reduced

mod p is PK = x3 + 12280x2 + 3521x + 14225, which has a root j = 12735.
Then setting a = 27j

4(1728−j) = 3964, the elliptic curve is

E : y2 = x3 + 3964x− 3964

which is supersingular over F18313. We now want to find a 23-isogeny. So we
compute the division polynomial Φ23, and find a degree 11 factor

g(x) = x11 + 6810x10 + 14200x9 + 4046x8 + 14378x7 + 1604x6 + 9479x5

+ 631x4 + 7787x3 + 13918x2 + 2644x+ 9822.

The roots of the polynomial g(x) are the x-coordinates of 22 points of E (2
points for each x-value), which, along with the point at infinity, give us the
kernel of a 23-isogeny.

Let’s try some finite fields of prime power order. Let’s say we want to run
our algorithms over F5415 . The only possible trace for a supersingular curve is
t = 0. We first use Algorithm 2 to create a supersingular curve over F541. We
see that we have l = 11, and our curve is E : y2 = x3 + 105x+ 436. Considered
over F5415 , this curve has a trace of 0. We can represent F5415 by F541(θ), where
θ5 + 3θ − 2 = 0. We find a degree 5 factor of Φ11(x)

g(x) = x5 + 225x4 + 183x3 + 121x2 + 165x+ 170.

By Vélu’s formula, g determines an 11-isogeny.
Now let’s try an extension of even degree. Let’s keep p = 541, and work over

F5414 . We use Algorithm 2 to create a supersingular elliptic curve with trace
t = −2 ∗ 5412 = −585362. We’ll represent F5414 as F541(θ), where θ4 + 6θ2 +
333θ + 2 = 0. Then we have

E : y2 = x3 + 105θ2x+ 436θ3.

Then we again want a degree 5 factor of Φ11(x)

g(x) = x5 + (144θ3 + 369θ2 + 429θ + 369)x4 + (494θ3 + 422θ2 + 400θ + 261)x3

+ (461θ3 + 373θ2 + 494θ + 429)x2 + (473θ3 + 81θ2 + 257θ + 467)x

+ 387θ3 + 518θ2 + 388θ + 450

.

Vélu’s formula can be used to explicitly write down the isogeny by performing
some simple calculations.
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12.2 Example of constructing an explicit curve and dis-
tortion map from an imaginary quadratic field with
class number 2

The field K = Q(
√
−5) has class number 2. The Hilbert class polynomial is

PK = x2 − 1264000x− 681472000

It has roots 632000 ± 282880
√

5. If we let a = 27j
4(1728−j) for one of the roots j,

then E : y2 = x3 +ax−a is a supersingular elliptic curve over Fp, with complex

multiplication in K, whenever
(
−5
p

)
= −1. The desired curve is:

E : y2 = x3 − (
1461375
349448

+
805545
698896

√
5)x+ (

1461375
349448

+
805545
698896

√
5)

.
For example, (−5

31 ) = −1 and ( 5
31 ) = 1. Then E over F31 reduces to be

y2 = x3 + 25x− 25, and has trace zero.
If we try this with p = 37, where both 5 and -5 are non-residues, then we find

that E becomes y2 = x3 + (34 + 31
√

5)x− (34 + 31
√

5), which is supersingular
over F372 with trace -74.

We could also twist E to make its equation a bit simpler. The twisted curve
is Ẽ : y2 = x3 + au2x − au3, where u is in Q(

√
5). Taking u = 836/3, we get

Ẽ : y2 = x3 − (324750 + 24942060
√

5)x+ (324750 + 24942060
√

5).
We’ll create a distortion map using E. Since K = Q(

√
−5), we look at the 5-

torsion polynomial of E. It turns out to be an irreducible degree 12 polynomial,

g(x) = x12 +
“
−309281544

√
5− 4026900

”
x10 +

“
1895596560

√
5 + 24681000

”
x9

+
“
−340197227370000

√
5− 65323382203390500

”
x8

+
“
−777593662560000

√
5− 149310587893464000

”
x7

+
“
4655457705992367657240000

√
5 + 181828041132360609036000

”
x6

+
“
−10800661879706310261936000

√
5− 421841401827640525800000

”
x5

+
“
−2519565840901090449276803280000

√
5− 241934405483566353959646590250000

”
x4

+
“
1612516377823695377505014400000

√
5 + 154838019284500385559432204000000

”
x3

+
“
2414064285299681423174125984041990000000

√
5 + 157114625958659851536784344149223000000

”
x2

+
“
−4828128567374280432485322333486540000000

√
5− 314228942241279194572099511316678000000

”
x

+ 94056372835102842500597474786589600012000000
√

5 + 6022194199911989805762734002813250424196200000

which determines a 25-isogeny. We can make it explicit using Vélu’s formulae,
but we do not display it here for reasons of space. We also can easily find an
isomorphism back to E to create the distortion map. These equations simplify
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over a finite field, as g(x) necessarily will have a quadratic factor yielding a
5-isogeny. For example, working over F31, we get that the 5-torsion polynomial
of y2 = x3 + 25x− 25 is

g(x) = x12 +22x9 +19x8 +8x7 +10x6 +9x5 +14x4 +7x3 +21x2 +14x+15,

which has a factor
g(x) = x2 + 5x+ 8.

By Vélu, we determine that the isogeny is

D = ψ ◦ φ

with

φ(x, y) =
(
x5 + 10x4 + 9x3 + 24x+ 3

(x2 + 5x+ 8)2
, y
x6 + 15x5 + 7x4 + 24x3 + 20x2 + 23x+ 7

(x2 + 5x+ 8)3

)
.

and
ψ(x, y) =

(
µ2x, µ3y

)
,

with µ = −9+
√

12
2 .

In general, over a class number 2 field Q(
√
d), if we desire the supersingular

curve to be defined over Fp for some prime p, then roughly one fourth of all
primes will work. This is because the Hilbert class polynomial will be a quadratic
polynomial, so we can get an explicit equation for a curve E defined over some
quadratic field Q(

√
k) with complex multiplication in Q(

√
d). The condition

that E is supersingular and defined over Fp means we need (−d
p ) = −1 and

(k
p ) = 1, which happens for roughly a quarter of all primes.

12.3 Example of constructing a simpler distortion map by
using an element of small norm

At the end of section 8.1, we remarked that in some cases we can find a simpler
distortion map. We now provide an example of this. Let E be the curve
y2 = x3 − 22

3 x + 847
108 . This curve has complex multiplication by Q(

√
−11),

and is listed in the appendix. If we choose a prime p such that (−11
p ) = −1,

then E will be a supersingular curve mod p.
Let’s take p = 19, and reducing mod p we have E : y2 = x3 + 18x + 14.

We seek an 11-isogeny, so we find a degree 5 factor of the torsion polynomial
Φ11(x):

g(x) = x5 + 18x4 + 4x3 + 18x2 + 9x+ 15.
By Vélu, the 11-isogeny is then

φ(x, y) =

 
x11 + 17 x10 + 14 x9 + 3 x8 + 7 x7 + 6 x6 + 11 x5 + 14 x4 + 10 x3 + 8 x2 + 14 x + 13

(x5 + 18 x4 + 4 x3 + 18 x2 + 9 x + 15)2
,

y
x15 + 16 x14 + 10 x13 + 17 x12 + 12 x11 + 15 x10 + 4 x9 + 4 x8 + 16 x7 + 16 x6 + 12 x5 + 15 x4 + 10 x3 + 9 x2 + 14 x + 14

(x5 + 18 x4 + 4 x3 + 18 x2 + 9 x + 15)3

!
.
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The image of E is the curve y2 = x3 + 12x+ 5. Then an isomorphism back to
E is given by

ψ(x, y) =
(
µ2x, µ3y

)
,

with µ = 2
√

3.
To simplify the distortion map D = ψ ◦ φ, we note that Q(

√
−11) has an

element of norm 3, namely α = 1−
√
−11

2 . The 3-torsion polynomial factors as

Φ3(x) = 3(x2 + 9x+ 10)(x2 + 10x+ 12)

over F19[x]. Over F192 [x], then a degree 1 factor is

g(x) = x+ 5 + 3
√
−11.

Using Vélu’s formulae, it is easy to check

φ(x, y) =

(
x3 + (10 + 6

√
−11)x2 + (12 +

√
−11)x+ 6 + 14

√
−11

(x+ 5 + 3
√
−11)2

,

y
x3 +

(
15 + 9

√
−11

)
x2 +

(
15 + 5

√
−11

)
x+ 15 + 13

√
−11

(x+ 5 + 3
√
−11)3

)
,

which is much simpler than the earlier φ. The isomorphism ψ is the same as
above, with µ = α.

13 Future work

An open question is to generalize some form of Verheul’s theorem to ordinary
curves with low embedding degree. This would require new methods, since
Verheul proved that distortion maps for ordinary curves exist only when k = 1,
and even then only under certain conditions. It would be interesting to find a
way to construct distortion maps efficiently for ordinary curves with k = 1.

In general, the problem of pairing inversion has not yet been well-studied.
There is only one paper ([20]) this author could find dealing with this topic. The
results in this paper provide some evidence that inversion seems to be difficult,
but the question of how difficult is still open.

Another area of further research would be to see how these results can be
extended to genus 2 curves. There are pairings defined for genus 2 curves, and
this would seem to be a good area for exploration.
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A Tables of distortion maps

In this section we give examples of distortion maps. E is the equation of the
curve defined over Fq, and the distortion map is D.

q = 2d

E : y2 + y = x3 + x
D : (x, y) → (x+ s2, y + sx+ t) with s2 + s+ 1 = 0 and t2 + t+ s = 0
#E(F2d) = 2d + 1± 2(d+1)/2

k = 4

q = 3d

E : y2 = x3 + x+ 1
D : (x, y) → (−x+ s, iy) with s3 + 2s+ 2 = 0 and i2 = −1
#E(F3d) = 3d + 1± 3(d+1)/2

k = 6

The following supersingular curves and distortion maps correspond to the
nine quadratic imaginary fields Q(

√
−d) with class number 1. Here E is defined

over Fp, where p is a prime satisfying the given congruence.

d = 1
p ≡ 3 mod 4
E : y2 = x3 + x
D : (x, y) → (−x,

√
−1y)

d = 2
p ≡ 5, 7 mod 8
E : y2 = x3 − 10

3 x−
56
27

φ : (x, y) → (X,Y ) = (x2+ 4
3 x+2

x+4/3 , y
x2+ 8

3 x− 2
9

(x+ 4
3 )2

)

ψ : (X,Y ) → (−X
2 ,−

Y
2
√
−2

)
D = ψ ◦ φ

d = 3
p ≡ 2 mod 3
E : y2 = x3 − 1
D : (x, y) → (( 1

2 +
√
−3
2 )x, y)

For the remaining examples, we will use the following notation. Each curve
E is written in the form y2 = x3 + ax + b. The distortion map D is given by
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D = ψ ◦ φ, with

φ : (x, y) → (X,Y ) =

(
f(x)
g(x)2

, y

(
f(x)
g(x)2

)′)
,

and
ψ : (X,Y ) →

(
µ2X,µ3Y

)
.

The constant µ and a degree (l − 1)/2 polynomial g(x) will be given. Let σ be
the negative coefficient of x(l−1)/2−1. That is,

g(x) = x(l−1)/2 − σx(l−1)/2−1 + ...

Then f(x)
g(x)2 is determined by g(x):

f(x)
g(x)2

= lx− 2σ − 2(3x2 + a)
g′(x)
g(x)

− 4(x3 + ax+ b)
(
g′(x)
g(x)

)′
.

For most, we also include an alternate polynomial g̃ defined over Q(
√
−d), which

can be used in place of g(x). This polynomial was obtained by using an element
of norm less than d.

d = 7(
p
7

)
= −1

E : y2 = x3 − 35
16x+ 49

32
g(x) = x3 − 7

4x
2 − 21

16x+ 91
64

µ = 1√
−7

d = 11(
p
11

)
= −1

E : y2 = x3 − 22
3 x+ 847

108
g(x) = x5 − 22

3 x
4 + 55

9 x
3 + 847

27 x
2 − 4477

81 x+ 5203
243

g̃(x) = x− 11+
√
−11

6

µ = 1√
−11

or 1+
√
−11

6 respectively

d = 19(
p
19

)
= −1

E : y2 = x3 − 38x+ 361
4

g(x) = x9 − 38x8 + 437x7 − 1444x6 − 7942x5 + 82308x4 − 274360x3

+ 390963x2 − 130321x− 130321
g̃(x) = x2 + (− 1

2

√
−19− 19

2 )x+ 19
10

√
−19 + 209

10

µ = 1√
−19

or 1+
√
−19

10 respectively

d = 43
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p ≡ 2, 3, 5, 7, 8, 12, 18, 19, 20, 22, 26, 27, 28, 29, 30, 32, 33, 34, 37, 39, 42 mod 43
E : y2 = x3 − 860x+ 38829

4

g(x) = x21 − 516x20 + 103630x19 − 11413877x18 + 778748877x17

− 33769644166x16 + 833870847126x15 − 2000870379255x14

− 736993488833148x13 + 32911276287905125x12 − 806581359647557814x11

+ 12154326008097154232x10 − 85488636774415066268x9

− 819460437704646376945x8 + 33045266965480421066927x7

− 507226653143565753994149x6 + 4950443683989031839796750x5

− 33086781074272853256290845x4 + 150403155502593496824039509x3

− 438478701575150710615466845x2 + 713289815206029706544774271x
− 446076356193311840984630959

g̃(x) = x5 + (−3
√
−43− 129)x4 + (

473
2
√
−43 +

11997
2

)x3

+ (−6880
√
−43− 131279)x2 + (

175655
2

√
−43 +

2760557
2

)x

− 9154399
22

√
−43− 124110427

22
µ = 1√

−43
or 1+

√
−43

22 respectively

d = 67(
p
67

)
= −1

E : y2 = x3 − 7370x+ 974113
4
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g(x) = x33 − 2546x32 + 2649247x31 − 1595291842x30

+ 640348896539x29 − 184253611923904x28 + 39510232802557718x27

− 6410867835187893127x26 + 777889689833250785627x25

− 65753617235862874562363x24 + 2665376764566205755131386x23

+ 224624674126473174518701681x22 − 57499834498241686961815567932x21

+ 6498340004208428725812074814882x20

− 494624293589288751051298289017859x19

+ 25957216907649962515771432250558117x18

− 737300932123173368936091692964120779x17

− 18673465964555838152080088863869343413x16

+ 3982226256724729369657726858045969934518x15

− 297241159711145894585208225854237573839212x14

+ 15302398104577546280070801623351769789679589x13

− 603821880748687768592666937974993829522291592x12

+ 18746518151806629074828169624747001744170025840x11

− 454049187145266464958957924888252972635939272305x10

+ 8158899886369573637516397638610796130585015395462x9

− 90518122926725311334202042278153526052702720644243x8

− 88602715854562730530381942532238574486674897032159x7

+ 29538089522615801104551289493626919072944395256348431x6

− 729194921188843357205207957768326321766958432731831809x5

+ 10829332229673947961792361795296021760140934355272515866x4

− 109052668329810506035001281351465097075234536606899255855x3

+ 735803717280674204938155090465839470225425518056788304413x2

− 3029074182392786437303454141383747830331561654660176389989x
+ 5780863640355951803541251725582920831821078132070031269809

g̃(x) = x8 + (−19
2
√
−67− 1273

2
)x7 + (4020

√
−67 + 158455)x6

+ (−1424621
2

√
−67− 42237001

2
)x5 + (

137771899
2

√
−67 +

3369394021
2

)x4

+ (−7882598709
2

√
−67− 166760150691

2
)x3

+ (133762539672
√
−67 + 2519056747702)x2

+ (−4996435864205
2

√
−67− 85372823611109

2
)x

+
337215206417115

17
√
−67 +

5299018657203644
17
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µ = 1√
−67

or 1+
√
−67

34 respectively
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d = 163(
p

163

)
= −1

E : y2 = x3 − 2174420x+ 4936546769
4

g̃(x) = x
20 + (−181

p
−163 − 29503)x

19 + (
7744619

2

p
−163 +

734730487

2
)x

18

+ (−37930957217
p
−163 − 2692457531821)x

17

+ (228093679624065
p
−163 + 13327099062294002)x

16

+ (−949312574918719893
p
−163 − 47969958126555042793)x

15

+ (2916633081409821170837
p
−163 + 131333948208755892888788)x

14

+ (−
13758057532173014129076119

2

p
−163 −

563173356960855925776027973

2
)x

13

+ (12771875820236768092961966590
p
−163 + 482033672047941610614379284385)x

12

+ (−18972755912738610670128624729461
p
−163 − 667217702351346481888852358851432)x

11

+ (22777652737830346424672334885165592
p
−163 + 752473059011528396632929667399738718)x

10

+ (−
44426902728096149859373022099918743847

2

p
−163 −

1387628553498750145311382943419302869489

2
)x

9

+ (
35223835660653348487566138127222530556583

2

p
−163

+
1045636847526778181420259301753041582215333

2
)x

8

+ (−
22626324319424519323335289243210482464228285

2

p
−163

−
641139938510026569750171049518954935923272679

2
)x

7

+ (5839584420594471628270877885731696880916956640
p
−163

+ 158522651511773676763167060558315287661080738015)x
6

+ (−2387989356646645807170081674873358620461652668878
p
−163

− 62294936670810816183045963066318920456146464461422)x
5

+ (
1512626537888243234919712214088513751163939201353789

2

p
−163

+
38020351834146587883244350917151535539095986603424115

2
)x

4

+ (−178957817718161231796872736627562743629277697782680953
p
−163

− 4344110975433376965625835238222668187539733998813404892)x
3

+ (
59568312510665006849348831822837101964968589780156064893

2

p
−163

+
1399294832265818740164578738577967123890460387870771787917

2
)x

2

+ (−
6221667618560978600178878525624654136748921563559508030331

2

p
−163

−
141683623406572604092028620133823762671615595294906660299939

2
)x

+
12581930240043493641072765695324996911884245555598783194049991

82

p
−163

+
278207147991034294318102823401069790182489898187269065279584283

82

µ = 1+
√
−163

82
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